1
|
Cadena-Ramos AI, De-la-Peña C. Picky eaters: selective autophagy in plant cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:364-384. [PMID: 37864806 DOI: 10.1111/tpj.16508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
Autophagy, a fundamental cellular process, plays a vital role in maintaining cellular homeostasis by degrading damaged or unnecessary components. While selective autophagy has been extensively studied in animal cells, its significance in plant cells has only recently gained attention. In this review, we delve into the intriguing realm selective autophagy in plants, with specific focus on its involvement in nutrient recycling, organelle turnover, and stress response. Moreover, recent studies have unveiled the interesting interplay between selective autophagy and epigenetic mechanisms in plants, elucidating the significance of epigenetic regulation in modulating autophagy-related gene expression and finely tuning the selective autophagy process in plants. By synthesizing existing knowledge, this review highlights the emerging field of selective autophagy in plant cells, emphasizing its pivotal role in maintaining nutrient homeostasis, facilitating cellular adaptation, and shedding light on the epigenetic regulation that governs these processes. Our comprehensive study provides the way for a deeper understanding of the dynamic control of cellular responses to nutrient availability and stress conditions, opening new avenues for future research in this field of autophagy in plant physiology.
Collapse
Affiliation(s)
- Alexis I Cadena-Ramos
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34 Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34 Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| |
Collapse
|
2
|
Sun J, Liang W, Ye S, Chen X, Zhou Y, Lu J, Shen Y, Wang X, Zhou J, Yu C, Yan C, Zheng B, Chen J, Yang Y. Whole-Transcriptome Analysis Reveals Autophagy Is Involved in Early Senescence of zj-es Mutant Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:899054. [PMID: 35720578 PMCID: PMC9204060 DOI: 10.3389/fpls.2022.899054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Senescence is a necessary stage of plant growth and development, and the early senescence of rice will lead to yield reduction and quality decline. However, the mechanisms of rice senescence remain obscure. In this study, we characterized an early-senescence rice mutant, designated zj-es (ZheJing-early senescence), which was derived from the japonica rice cultivar Zhejing22. The mutant zj-es exhibited obvious early-senescence phenotype, such as collapsed chloroplast, lesions in leaves, declined fertility, plant dwarf, and decreased agronomic traits. The ZJ-ES gene was mapped in a 458 kb-interval between the molecular markers RM5992 and RM5813 on Chromosome 3, and analysis suggested that ZJ-ES is a novel gene controlling rice early senescence. Subsequently, whole-transcriptome RNA sequencing was performed on zj-es and its wild-type rice to dissect the underlying molecular mechanism for early senescence. Totally, 10,085 differentially expressed mRNAs (DEmRNAs), 1,253 differentially expressed lncRNAs (DElncRNAs), and 614 differentially expressed miRNAs (DEmiRNAs) were identified, respectively, in different comparison groups. Based on the weighted gene co-expression network analysis (WGCNA), the co-expression turquoise module was found to be the key for the occurrence of rice early senescence. Furthermore, analysis on the competing endogenous RNA (CeRNA) network revealed that 14 lncRNAs possibly regulated 16 co-expressed mRNAs through 8 miRNAs, and enrichment analysis showed that most of the DEmRNAs and the targets of DElncRNAs and DEmiRNAs were involved in reactive oxygen species (ROS)-triggered autophagy-related pathways. Further analysis showed that, in zj-es, ROS-related enzyme activities were markedly changed, ROS were largely accumulated, autophagosomes were obviously observed, cell death was significantly detected, and lesions were notably appeared in leaves. Totally, combining our results here and the remaining research, we infer that ROS-triggered autophagy induces the programmed cell death (PCD) and its coupled early senescence in zj-es mutant rice.
Collapse
Affiliation(s)
- Jia Sun
- College of Life Science, Fujian A&F University, Fuzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Weifang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Shenghai Ye
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xinyu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuhang Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Jianfei Lu
- Zhejiang Plant Protection, Quarantine and Pesticide Management Station, Hangzhou, China
| | - Ying Shen
- Zhejiang Plant Protection, Quarantine and Pesticide Management Station, Hangzhou, China
| | - Xuming Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Jie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Chulang Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Science, Ningbo, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| |
Collapse
|
3
|
Espinoza-Corral R, Lundquist PK. The plastoglobule-localized protein AtABC1K6 is a Mn 2+-dependent kinase necessary for timely transition to reproductive growth. J Biol Chem 2022; 298:101762. [PMID: 35202657 PMCID: PMC8956952 DOI: 10.1016/j.jbc.2022.101762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/25/2022] Open
Abstract
The Absence of bc1 Complex (ABC1) is an ancient, atypical protein kinase family that emerged prior to the archaeal-eubacterial divergence. Loss-of-function mutants in ABC1 genes are linked to respiratory defects in microbes and humans and to compromised photosynthetic performance and stress tolerance in plants. However, demonstration of protein kinase activity remains elusive, hampering their study. Here, we investigate a homolog from Arabidopsis thaliana, AtABC1K6, and demonstrate in vitro autophosphorylation activity, which we replicate with a human ABC1 ortholog. We also show that AtABC1K6 protein kinase activity requires an atypical buffer composition, including Mn2+ as a divalent cation cofactor and a low salt concentration. AtABC1K6 associates with plastoglobule lipid droplets of A. thaliana chloroplasts, along with five paralogs. We show that the protein kinase activity associated with isolated A. thaliana plastoglobules was inhibited at higher salt concentrations, but could accommodate Mg2+ as well as Mn2+, indicating salt sensitivity, but not the requirement for Mn2+, may be a general characteristic of ABC1 proteins. Finally, loss of functional AtABC1K6 impairs the developmental transition from vegetative to reproductive growth. This phenotype was complemented by the wild-type sequence of AtABC1K6, but not by a kinase-dead point mutant in the unique Ala-triad of the ATP-binding pocket, demonstrating the physiological relevance of the protein's kinase activity. We suggest that ABC1s are bona fide protein kinases with a unique regulatory mechanism. Our results open the door to detailed functional and mechanistic studies of ABC1 proteins and plastoglobules.
Collapse
Affiliation(s)
- Roberto Espinoza-Corral
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA; Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA.
| | - Peter K Lundquist
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA; Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
4
|
Hao C, Yang Y, Du J, Deng XW, Li L. The PCY-SAG14 phytocyanin module regulated by PIFs and miR408 promotes dark-induced leaf senescence in Arabidopsis. Proc Natl Acad Sci U S A 2022; 119:e2116623119. [PMID: 35022242 PMCID: PMC8784109 DOI: 10.1073/pnas.2116623119] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/08/2021] [Indexed: 11/21/2022] Open
Abstract
Leaf senescence is a critical process in plants and has a direct impact on many important agronomic traits. Despite decades of research on senescence-altered mutants via forward genetics and functional assessment of senescence-associated genes (SAGs) via reverse genetics, the senescence signal and the molecular mechanism that perceives and transduces the signal remain elusive. Here, using dark-induced senescence (DIS) of Arabidopsis leaf as the experimental system, we show that exogenous copper induces the senescence syndrome and transcriptomic changes in light-grown plants parallel to those in DIS. By profiling the transcriptomes and tracking the subcellular copper distribution, we found that reciprocal regulation of plastocyanin, the thylakoid lumen mobile electron carrier in the Z scheme of photosynthetic electron transport, and SAG14 and plantacyanin (PCY), a pair of interacting small blue copper proteins located on the endomembrane, is a common thread in different leaf senescence scenarios, including DIS. Genetic and molecular experiments confirmed that the PCY-SAG14 module is necessary and sufficient for promoting DIS. We also found that the PCY-SAG14 module is repressed by a conserved microRNA, miR408, which in turn is repressed by phytochrome interacting factor 3/4/5 (PIF3/4/5), the key trio of transcription factors promoting DIS. Together, these findings indicate that intracellular copper redistribution mediated by PCY-SAG14 has a regulatory role in DIS. Further deciphering the copper homeostasis mechanism and its interaction with other senescence-regulating pathways should provide insights into our understanding of the fundamental question of how plants age.
Collapse
Affiliation(s)
- Chen Hao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yanzhi Yang
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Jianmei Du
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China;
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China;
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Itoh RD, Nakajima KP, Sasaki S, Ishikawa H, Kazama Y, Abe T, Fujiwara MT. TGD5 is required for normal morphogenesis of non-mesophyll plastids, but not mesophyll chloroplasts, in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:237-255. [PMID: 33884686 DOI: 10.1111/tpj.15287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Stromules are dynamic membrane-bound tubular structures that emanate from plastids. Stromule formation is triggered in response to various stresses and during plant development, suggesting that stromules may have physiological and developmental roles in these processes. Despite the possible biological importance of stromules and their prevalence in green plants, their exact roles and formation mechanisms remain unclear. To explore these issues, we obtained Arabidopsis thaliana mutants with excess stromule formation in the leaf epidermis by microscopy-based screening. Here, we characterized one of these mutants, stromule biogenesis altered 1 (suba1). suba1 forms plastids with severely altered morphology in a variety of non-mesophyll tissues, such as leaf epidermis, hypocotyl epidermis, floral tissues, and pollen grains, but apparently normal leaf mesophyll chloroplasts. The suba1 mutation causes impaired chloroplast pigmentation and altered chloroplast ultrastructure in stomatal guard cells, as well as the aberrant accumulation of lipid droplets and their autophagic engulfment by the vacuole. The causal defective gene in suba1 is TRIGALACTOSYLDIACYLGLYCEROL5 (TGD5), which encodes a protein putatively involved in the endoplasmic reticulum (ER)-to-plastid lipid trafficking required for the ER pathway of thylakoid lipid assembly. These findings suggest that a non-mesophyll-specific mechanism maintains plastid morphology. The distinct mechanisms maintaining plastid morphology in mesophyll versus non-mesophyll plastids might be attributable, at least in part, to the differential contributions of the plastidial and ER pathways of lipid metabolism between mesophyll and non-mesophyll plastids.
Collapse
Affiliation(s)
- Ryuuichi D Itoh
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Kohdai P Nakajima
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Shun Sasaki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo, 102-8554, Japan
| | - Hiroki Ishikawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo, 102-8554, Japan
| | - Yusuke Kazama
- Nishina Center, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Tomoko Abe
- Nishina Center, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Makoto T Fujiwara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo, 102-8554, Japan
| |
Collapse
|
6
|
Choi H, Yi T, Ha SH. Diversity of Plastid Types and Their Interconversions. FRONTIERS IN PLANT SCIENCE 2021; 12:692024. [PMID: 34220916 PMCID: PMC8248682 DOI: 10.3389/fpls.2021.692024] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/24/2021] [Indexed: 05/03/2023]
Abstract
Plastids are pivotal subcellular organelles that have evolved to perform specialized functions in plant cells, including photosynthesis and the production and storage of metabolites. They come in a variety of forms with different characteristics, enabling them to function in a diverse array of organ/tissue/cell-specific developmental processes and with a variety of environmental signals. Here, we have comprehensively reviewed the distinctive roles of plastids and their transition statuses, according to their features. Furthermore, the most recent understanding of their regulatory mechanisms is highlighted at both transcriptional and post-translational levels, with a focus on the greening and non-greening phenotypes.
Collapse
Affiliation(s)
| | | | - Sun-Hwa Ha
- Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
7
|
Sanjaya A, Kazama Y, Ishii K, Muramatsu R, Kanamaru K, Ohbu S, Abe T, Fujiwara MT. An Argon-Ion-Induced Pale Green Mutant of Arabidopsis Exhibiting Rapid Disassembly of Mesophyll Chloroplast Grana. PLANTS (BASEL, SWITZERLAND) 2021; 10:848. [PMID: 33922223 PMCID: PMC8145761 DOI: 10.3390/plants10050848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 01/13/2023]
Abstract
Argon-ion beam is an effective mutagen capable of inducing a variety of mutation types. In this study, an argon ion-induced pale green mutant of Arabidopsis thaliana was isolated and characterized. The mutant, designated Ar50-33-pg1, exhibited moderate defects of growth and greening and exhibited rapid chlorosis in photosynthetic tissues. Fluorescence microscopy confirmed that mesophyll chloroplasts underwent substantial shrinkage during the chlorotic process. Genetic and whole-genome resequencing analyses revealed that Ar50-33-pg1 contained a large 940 kb deletion in chromosome V that encompassed more than 100 annotated genes, including 41 protein-coding genes such as TYRAAt1/TyrA1, EGY1, and MBD12. One of the deleted genes, EGY1, for a thylakoid membrane-localized metalloprotease, was the major contributory gene responsible for the pale mutant phenotype. Both an egy1 mutant and F1 progeny of an Ar50-33-pg1 × egy1 cross-exhibited chlorotic phenotypes similar to those of Ar50-33-pg1. Furthermore, ultrastructural analysis of mesophyll cells revealed that Ar50-33-pg1 and egy1 initially developed wild type-like chloroplasts, but these were rapidly disassembled, resulting in thylakoid disorganization and fragmentation, as well as plastoglobule accumulation, as terminal phenotypes. Together, these data support the utility of heavy-ion mutagenesis for plant genetic analysis and highlight the importance of EGY1 in the structural maintenance of grana in mesophyll chloroplasts.
Collapse
Affiliation(s)
- Alvin Sanjaya
- Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554, Japan; (A.S.); (R.M.)
| | - Yusuke Kazama
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji, Yoshida, Fukui 910-1195, Japan
| | - Kotaro Ishii
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
| | - Ryohsuke Muramatsu
- Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554, Japan; (A.S.); (R.M.)
| | - Kengo Kanamaru
- Faculty of Agriculture, Kobe University, Nada, Kobe, Hyogo 657-8501, Japan;
| | - Sumie Ohbu
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
| | - Tomoko Abe
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
| | - Makoto T. Fujiwara
- Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554, Japan; (A.S.); (R.M.)
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
| |
Collapse
|
8
|
Abstract
The plastid genome (plastome ) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy, and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations is allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter, we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and the tools of plastid genetic engineering.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Robert K Jansen
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
9
|
Greiner S, Golczyk H, Malinova I, Pellizzer T, Bock R, Börner T, Herrmann RG. Chloroplast nucleoids are highly dynamic in ploidy, number, and structure during angiosperm leaf development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:730-746. [PMID: 31856320 DOI: 10.1111/tpj.14658] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/20/2019] [Accepted: 12/10/2019] [Indexed: 05/19/2023]
Abstract
Chloroplast nucleoids are large, compact nucleoprotein structures containing multiple copies of the plastid genome. Studies on structural and quantitative changes of plastid DNA (ptDNA) during leaf development are scarce and have produced controversial data. We have systematically investigated nucleoid dynamics and ptDNA quantities in the mesophyll of Arabidopsis, tobacco, sugar beet, and maize from the early post-meristematic stage until necrosis. DNA of individual nucleoids was quantified by DAPI-based supersensitive epifluorescence microscopy. Nucleoids occurred in scattered, stacked, or ring-shaped arrangements and in recurring patterns during leaf development that was remarkably similar between the species studied. Nucleoids per organelle varied from a few in meristematic plastids to >30 in mature chloroplasts (corresponding to about 20-750 nucleoids per cell). Nucleoid ploidies ranged from haploid to >20-fold even within individual organelles, with average values between 2.6-fold and 6.7-fold and little changes during leaf development. DNA quantities per organelle increased gradually from about a dozen plastome copies in tiny plastids of apex cells to 70-130 copies in chloroplasts of about 7 μm diameter in mature mesophyll tissue, and from about 80 plastome copies in meristematic cells to 2600-3300 copies in mature diploid mesophyll cells without conspicuous decline during leaf development. Pulsed-field electrophoresis, restriction of high-molecular-weight DNA from chloroplasts and gerontoplasts, and CsCl equilibrium centrifugation of single-stranded and double-stranded ptDNA revealed no noticeable fragmentation of the organelle DNA during leaf development, implying that plastid genomes in mesophyll tissues are remarkably stable until senescence.
Collapse
Affiliation(s)
- Stephan Greiner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Hieronim Golczyk
- Department of Molecular Biology, Institute of Biotechnology, John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708, Lublin, Poland
| | - Irina Malinova
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Tommaso Pellizzer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Thomas Börner
- Institut für Biologie/Molekulare Genetik, Humboldt-Universität zu Berlin, Rhoda Erdmann Haus, Philippstr. 13, D-10115, Berlin, Germany
| | - Reinhold G Herrmann
- Department für Biologie I, Ludwig-Maximilians-Universität München, Bereich Botanik, Menzinger Str. 67, D-80638, Munich, Germany
| |
Collapse
|
10
|
Xu XY, Akbar S, Shrestha P, Venugoban L, Devilla R, Hussain D, Lee J, Rug M, Tian L, Vanhercke T, Singh SP, Li Z, Sharp PJ, Liu Q. A Synergistic Genetic Engineering Strategy Induced Triacylglycerol Accumulation in Potato ( Solanum tuberosum) Leaf. FRONTIERS IN PLANT SCIENCE 2020; 11:215. [PMID: 32210994 PMCID: PMC7069356 DOI: 10.3389/fpls.2020.00215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/12/2020] [Indexed: 05/23/2023]
Abstract
Potato is the 4th largest staple food in the world currently. As a high biomass crop, potato harbors excellent potential to produce energy-rich compounds such as triacylglycerol as a valuable co-product. We have previously reported that transgenic potato tubers overexpressing WRINKLED1, DIACYLGLYCEROL ACYLTRANSFERASE 1, and OLEOSIN genes produced considerable levels of triacylglycerol. In this study, the same genetic engineering strategy was employed on potato leaves. The overexpression of Arabidopsis thaliana WRINKED1 under the transcriptional control of a senescence-inducible promoter together with Arabidopsis thaliana DIACYLGLYCEROL ACYLTRANSFERASE 1 and Sesamum indicum OLEOSIN driven by the Cauliflower Mosaic Virus 35S promoter and small subunit of Rubisco promoter respectively, resulted in an approximately 30- fold enhancement of triacylglycerols in the senescent transgenic potato leaves compared to the wild type. The increase of triacylglycerol in the transgenic potato leaves was accompanied by perturbations of carbohydrate accumulation, apparent in a reduction in starch content and increased total soluble sugars, as well as changes of polar membrane lipids at different developmental stages. Microscopic and biochemical analysis further indicated that triacylglycerols and lipid droplets could not be produced in chloroplasts, despite the increase and enlargement of plastoglobuli at the senescent stage. Possibly enhanced accumulation of fatty acid phytyl esters in the plastoglobuli were reflected in transgenic potato leaves relative to wild type. It is likely that the plastoglobuli may have hijacked some of the carbon as the result of WRINKED1 expression, which could be a potential factor restricting the effective accumulation of triacylglycerols in potato leaves. Increased lipid production was also observed in potato tubers, which may have affected the tuberization to a certain extent. The expression of transgenes in potato leaf not only altered the carbon partitioning in the photosynthetic source tissue, but also the underground sink organs which highly relies on the leaves in development and energy deposition.
Collapse
Affiliation(s)
- Xiao-yu Xu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- Plant Breeding Institute and Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Sehrish Akbar
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | | | | | | | - Dawar Hussain
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Jiwon Lee
- Center for Advanced Microscopy, The Australian National University, Canberra, ACT, Australia
| | - Melanie Rug
- Center for Advanced Microscopy, The Australian National University, Canberra, ACT, Australia
| | - Lijun Tian
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | | | | | - Zhongyi Li
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Peter J. Sharp
- Plant Breeding Institute and Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Qing Liu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| |
Collapse
|
11
|
Fan J, Yu L, Xu C. Dual Role for Autophagy in Lipid Metabolism in Arabidopsis. THE PLANT CELL 2019; 31:1598-1613. [PMID: 31036588 PMCID: PMC6635848 DOI: 10.1105/tpc.19.00170] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/26/2019] [Accepted: 04/19/2019] [Indexed: 05/18/2023]
Abstract
Autophagy is a major catabolic pathway whereby cytoplasmic constituents including lipid droplets (LDs), storage compartments for neutral lipids, are delivered to the lysosome or vacuole for degradation. The autophagic degradation of cytosolic LDs, a process termed lipophagy, has been extensively studied in yeast and mammals, but little is known about the role for autophagy in lipid metabolism in plants. Organisms maintain a basal level of autophagy under favorable conditions and upregulate the autophagic activity under stress including starvation. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) basal autophagy contributes to triacylglycerol (TAG) synthesis, whereas inducible autophagy contributes to LD degradation. We found that disruption of basal autophagy impedes organellar membrane lipid turnover and hence fatty acid mobilization from membrane lipids to TAG. We show that lipophagy is induced under starvation as indicated by colocalization of LDs with the autophagic marker and the presence of LDs in vacuoles. We additionally show that lipophagy occurs in a process morphologically resembling microlipophagy and requires the core components of the macroautophagic machinery. Together, this study provides mechanistic insight into lipophagy and reveals a dual role for autophagy in regulating lipid synthesis and turnover in plants.
Collapse
Affiliation(s)
- Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
12
|
Johnston IG. Tension and Resolution: Dynamic, Evolving Populations of Organelle Genomes within Plant Cells. MOLECULAR PLANT 2019; 12:764-783. [PMID: 30445187 DOI: 10.1016/j.molp.2018.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Mitochondria and plastids form dynamic, evolving populations physically embedded in the fluctuating environment of the plant cell. Their evolutionary heritage has shaped how the cell controls the genetic structure and the physical behavior of its organelle populations. While the specific genes involved in these processes are gradually being revealed, the governing principles underlying this controlled behavior remain poorly understood. As the genetic and physical dynamics of these organelles are central to bioenergetic performance and plant physiology, this challenges both fundamental biology and strategies to engineer better-performing plants. This article reviews current knowledge of the physical and genetic behavior of mitochondria and chloroplasts in plant cells. An overarching hypothesis is proposed whereby organelles face a tension between genetic robustness and individual control and responsiveness, and different species resolve this tension in different ways. As plants are immobile and thus subject to fluctuating environments, their organelles are proposed to favor individual responsiveness, sacrificing genetic robustness. Several notable features of plant organelles, including large genomes, mtDNA recombination, fragmented organelles, and plastid/mitochondrial differences may potentially be explained by this hypothesis. Finally, the ways that quantitative and systems biology can help shed light on the plethora of open questions in this field are highlighted.
Collapse
Affiliation(s)
- Iain G Johnston
- School of Biosciences, University of Birmingham, Birmingham, UK; Birmingham Institute for Forest Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
13
|
Kim J. Sugar metabolism as input signals and fuel for leaf senescence. Genes Genomics 2019; 41:737-746. [PMID: 30879182 DOI: 10.1007/s13258-019-00804-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/21/2019] [Indexed: 12/27/2022]
Abstract
Senescence in plants is an active and acquired developmental process that occurs at the last developmental stage during the life cycle of a plant. Leaf senescence is a relatively slow process, which is characterized by loss of photosynthetic activity and breakdown of macromolecules, to compensate for reduced energy production. Sugars, major photosynthetic assimilates, are key substrates required for cellular respiration to produce intermediate sources of energy and reducing power, which are known to be essential for the maintenance of cellular processes during senescence. In addition, sugars play roles as signaling molecules to facilitate a wide range of developmental processes as metabolic sensors. However, the roles of sugar during the entire period of senescence remain fragmentary. The purpose of the present review was to examine and explore changes in production, sources, and functions of sugars during leaf senescence. Further, the review explores the current state of knowledge on how sugars mediate the onset or progression of leaf senescence. Progress in the area would facilitate the determination of more sophisticated ways of manipulating the senescence process in plants and offer insights that guide efforts to maintain nutrients in leafy plants during postharvest storage.
Collapse
Affiliation(s)
- Jeongsik Kim
- Faculty of Science Education, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
14
|
Cardoso-Gustavson P, Dias MG, Costa FOB, de Moura Leite Camargos G, da Cruz Centeno D. Imaging of glyphosate uptake and identification of early microscopic markers in leaves of C3 and C4 glyphosate-resistant and -susceptible species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:502-513. [PMID: 30075454 DOI: 10.1016/j.ecoenv.2018.07.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/12/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Details of glyphosate uptake are not fully elucidated, and although this herbicide promotes important alterations in the plant phenotype few hours after its application (early responses), a detailed description of the presumable changes in plant anatomy is still poorly assessed by now. Due to glyphosate effects over leaf permeability, the use of an inert fluorescent tracer may allow the observation of the uptake event in situ. In addition, microscopic markers might put a light on the recognition of glyphosate-resistant (GR) and -susceptible (GS) species or varieties, which may vary in C3 and C4 species due to their putative distinct leaf anatomy. Here we aimed (i) to provide a new technique to track the route of glyphosate formulation towards leaf tissues using a fluorescent tracer, and (ii) to describe the early specific microscopic alterations in GR and GS -C3 or -C4 caused by the glyphosate formulation. Roundup Transorb® was applied in seedlings cultivated in a greenhouse and response alterations in leaf anatomy were described. Lucifer Yellow CH (LYCH) was applied over the same region where glyphosate formulation was previously applied to track the alterations in leaf permeability caused by this herbicide. LYCH successfully tracked the glyphosate formulation uptake, reaching the vascular bundles of GS species, and becoming retained in leaf tissues of GR species. All species exhibited a decrease in chlorophyll content at the site of glyphosate application regardless of their photosynthetic metabolism or susceptibility. GS species showed alterations in chloroplast morphology and activity of non-enzymatic antioxidants (carotenoids and flavonoids), in addition to symptoms indicating a process of accelerated cell senescence. A specific type of cell necrosis (hypersensitive response) was observed in GR-C4 species as a way to prevent the translocation of this herbicide, while GR-C3 species accumulated phenolic compounds inside the vacuole, probably sequestrating and inactivating the glyphosate action. This study provides a reliable tool to track glyphosate formulation uptake in situ and is the first attempt to the identification of early specific microscopic markers caused by glyphosate formulation.
Collapse
Affiliation(s)
- Poliana Cardoso-Gustavson
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, 09606-070 São Bernardo do Campo, Brazil; Oxiteno S.A., Research and Development, Agrochemicals, 09380-440 Mauá, Brazil.
| | - Marcia Gonçalves Dias
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, 09606-070 São Bernardo do Campo, Brazil
| | - Fernanda Oliveira Barreto Costa
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, 09606-070 São Bernardo do Campo, Brazil; Oxiteno S.A., Research and Development, Agrochemicals, 09380-440 Mauá, Brazil
| | | | - Danilo da Cruz Centeno
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, 09606-070 São Bernardo do Campo, Brazil
| |
Collapse
|
15
|
Otegui MS. Vacuolar degradation of chloroplast components: autophagy and beyond. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:741-750. [PMID: 28992297 DOI: 10.1093/jxb/erx234] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/10/2017] [Indexed: 05/21/2023]
Abstract
Chloroplast degradation during natural or stress-induced senescence requires the participation of both plastidic and extraplastidic degradative pathways. As part of the extraplastidic pathways, chloroplasts export stroma, envelope, and thylakoid proteins in membrane-bound organelles that are ultimately degraded in vacuoles. Some of these pathways, such as the formation of senescence-associated vacuoles (SAVs) and CV-containing vesicles (CCVs), do not depend on autophagy, whereas delivery of Rubisco-containing bodies (RCBs), ATI1-PS (ATG8-interacting Protein 1) bodies, and small starch-like granule (SSLG) bodies is autophagy dependent. In addition, autophagy of entire chloroplasts delivers damaged chloroplasts into the vacuolar lumen for degradation. This review summarizes the autophagy-dependent and independent trafficking mechanisms by which plant cells degrade chloroplast components in vacuoles.
Collapse
Affiliation(s)
- Marisa S Otegui
- Laboratory of Cell and Molecular Biology and Departments of Botany and Genetics, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
16
|
Abstract
The process of leaf senescence consists of the final stage of leaf development. It has evolved as a mechanism to degrade macromolecules and micronutrients and remobilize them to other developing parts of the plant; hence it plays a central role for the survival of plants and crop production. During senescence, a range of physiological, morphological, cellular, and molecular events occur, which are generally referred to as the senescence syndrome that includes several hallmarks such as visible yellowing, loss of chlorophyll and water content, increase of ion leakage and cell death, deformation of chloroplast and cell structure, as well as the upregulation of thousands of so-called senescence-associated genes (SAGs) and downregulation of photosynthesis-associated genes (PAGs). This chapter is devoted to methods characterizing the onset and progression of leaf senescence at the morphological, physiological, cellular, and molecular levels. Leaf senescence normally progresses in an age-dependent manner but is also induced prematurely by a variety of environmental stresses in plants. Focused on the hallmarks of the senescence syndrome, a series of protocols is described to asses quantitatively the senescence process caused by developmental cues or environmental perturbations. We first briefly describe the senescence process, the events associated with the senescence syndrome, and the theories and methods to phenotype senescence. Detailed protocols for monitoring senescence in planta and in vitro, using the whole plant and the detached leaf, respectively, are presented. For convenience, most of the protocols use the model plant species Arabidopsis and rice, but they can be easily extended to other plants.
Collapse
|
17
|
Lohscheider JN, Rojas-Stütz MC, Rothbart M, Andersson U, Funck D, Mendgen K, Grimm B, Adamska I. Altered levels of LIL3 isoforms in Arabidopsis lead to disturbed pigment-protein assembly and chlorophyll synthesis, chlorotic phenotype and impaired photosynthetic performance. PLANT, CELL & ENVIRONMENT 2015; 38:2115-27. [PMID: 25808681 DOI: 10.1111/pce.12540] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/04/2015] [Indexed: 05/10/2023]
Abstract
Light-harvesting complex (LHC)-like (LIL) proteins contain two transmembrane helices of which the first bears a chlorophyll (Chl)-binding motif. They are widespread in photosynthetic organisms, but almost nothing is known about their expression and physiological functions. We show that two LIL3 paralogues (LIL3:1 and LIL3:2) in Arabidopsis thaliana are expressed in photosynthetically active tissues and their expression is differentially influenced by light stress. Localization studies demonstrate that both isoforms are associated with subcomplexes of LHC antenna of photosystem II. Transgenic plants with reduced amounts of LIL3:1 exhibited a slightly impaired growth and have reduced Chl and carotenoid contents as compared to wild-type plants. Ectopic overexpression of either paralogue led to a developmentally regulated switch to co-suppression of both LIL3 isoforms, resulting in a circular chlorosis of the leaf rosettes. Chlorotic sectors show severely diminished levels of LIL3 isoforms and other proteins, and thylakoid morphology was changed. Additionally, the levels of enzymes involved in Chl biosynthesis are altered in lil3 mutant plants. Our data support a role of LIL3 paralogues in the regulation of Chl biosynthesis under light stress and under standard growth conditions as well as in a coordinated ligation of newly synthesized and/or rescued Chl molecules to their target apoproteins.
Collapse
Affiliation(s)
- Jens N Lohscheider
- Biochemie und Physiologie der Pflanzen, Universität Konstanz, DE-78457, Konstanz, Germany
- Department of Plant Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Marc C Rojas-Stütz
- Biochemie und Physiologie der Pflanzen, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Maxi Rothbart
- Pflanzenphysiologie, Humboldt-Universität zu Berlin, DE-10115, Berlin, Germany
| | - Ulrica Andersson
- Biochemie und Physiologie der Pflanzen, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Dietmar Funck
- Biochemie und Physiologie der Pflanzen, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Kurt Mendgen
- Phytopathologie, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Bernhard Grimm
- Pflanzenphysiologie, Humboldt-Universität zu Berlin, DE-10115, Berlin, Germany
| | - Iwona Adamska
- Biochemie und Physiologie der Pflanzen, Universität Konstanz, DE-78457, Konstanz, Germany
| |
Collapse
|
18
|
Papini A, van Doorn WG. Crystalloids in apparent autophagic plastids: remnants of plastids or peroxisomes? JOURNAL OF PLANT PHYSIOLOGY 2015; 174:36-40. [PMID: 25462964 DOI: 10.1016/j.jplph.2014.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/20/2014] [Accepted: 10/20/2014] [Indexed: 06/04/2023]
Abstract
Plant macroautophagy is carried out by autophagosome-type organelles. Recent evidence suggests that plastids also can carry out macroautophagy. The double membrane at the surface of plastids apparently invaginates, forming an intraplastidial space. This space contains a portion of cytoplasm that apparently becomes degraded. Here we report, in Tillandsia sp. and Aechmaea sp., the presence of almost square or diamond-shaped crystalloids inside what seems the intraplastidial space of autophagous plastids. The same type of crystalloids were observed in chloroplasts and other plastids, but were not found in the cytoplasm or the vacuole. Peroxisomes contained smaller and more irregularly shaped crystalloids compared to the ones observed in 'autophagous' plastids. It is hypothesized that plastids are able to sequester chloroplasts and other plastids.
Collapse
Affiliation(s)
- Alessio Papini
- Dipartimento di Biologia Vegetale, Università di Firenze, Via La Pira 4, 50132 Florence, Italy.
| | - Wouter G van Doorn
- Mann Laboratory, Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
19
|
van Doorn WG, Prisa D. Lipid globules on the plastid surface in Iris tepal epidermis cells during tepal maturation and senescence. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1714-1721. [PMID: 25213705 DOI: 10.1016/j.jplph.2014.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 06/03/2023]
Abstract
Epidermis cells in the outer tepals of Iris flowers (Iris×hollandica, cv. Blue Magic) start programmed cell death (PCD) prior to floral opening. The tepals show visible senescence symptoms three days after full opening. Visible senescence coincides with collapse (death) of the upper epidermis cells. In these cells, electron-dense particles (plastoglobuli), membranes, and oil bodies were observed in the plastid interior. Electron-dense globules similar to plastoglobuli, thus apparently mainly consisting of lipids, were found on the plastid surface, from before flower opening until cell death. Such electron-dense globules were also present in the cytosol. The size of some of the globules on the plastid surface increased with time. The globules are likely involved in transfer of lipidic/proteinaceous material from the plastid to the cytosol. As the plastids contained ample oil bodies, up to the time of cell death, cell death was likely not due to lack of reserves. Mitochondrial ultrastructure also remained the same until cell death. The role of mitochondria in PCD is discussed.
Collapse
Affiliation(s)
- Wouter G van Doorn
- Mann Laboratory, Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | - Domenico Prisa
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura (CRA-VIV), Via dei Fiori 8, 51012 Pescia, Italy
| |
Collapse
|
20
|
Senescence-Associated Vacuoles, a Specific Lytic Compartment for Degradation of Chloroplast Proteins? PLANTS 2014; 3:498-512. [PMID: 27135516 PMCID: PMC4844279 DOI: 10.3390/plants3040498] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/14/2014] [Accepted: 09/15/2014] [Indexed: 11/21/2022]
Abstract
Degradation of chloroplasts and chloroplast components is a distinctive feature of leaf senescence. In spite of its importance in the nutrient economy of plants, knowledge about the mechanism(s) involved in the breakdown of chloroplast proteins is incomplete. A novel class of vacuoles, “senescence-associated vacuoles” (SAVs), characterized by intense proteolytic activity appear during senescence in chloroplast-containing cells of leaves. Since SAVs contain some chloroplast proteins, they are candidate organelles to participate in chloroplast breakdown. In this review we discuss the characteristics of SAVs, and their possible involvement in the degradation of Rubisco, the most abundant chloroplast protein. Finally, SAVs are compared with other extra-plastidial protein degradation pathways operating in senescing leaves.
Collapse
|
21
|
|
22
|
Wang Y, Zhang J, Yu J, Jiang X, Sun L, Wu M, Chen G, Lv C. Photosynthetic changes of flag leaves during senescence stage in super high-yield hybrid rice LYPJ grown in field condition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 82:194-201. [PMID: 24976603 DOI: 10.1016/j.plaphy.2014.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/10/2014] [Indexed: 06/03/2023]
Abstract
Photosynthetic activities and thylakoid membrane protein patterns as well as the ultrastructure of chloroplasts in flag leaves were investigated during the senescence processes in high-yield hybrid rice LYPJ under field condition. The earlier decrease of PS I activity than PS II in LYPJ was primarily due to the significant degradation of PS I chlorophyll-protein complex. The degradation rate for each chlorophyll-protein complex was different and the order for the stability of thylakoid membrane complexes during flag leaf senescence in rice LYPJ was: LHCII > OEC > PSII core antenna > PSII core > PSI core > LHCI, which was partly supported by the BN-PAGE gel combined with immunoblot analysis. A decrease in the chlorophyll a/b ratio at the senescence stage was observed to coincide with stability of the LHCII subunits. Ultrastructural investigations revealed that the chloroplasts have large loosen stacking grana without interconnecting stroma thylakoids during the senescence processes. It was hypothesized that the stability of grana thylakoids harboring the major LHCII under high radiation condition in summer might played a key role in the dissipation of excess light energy. This alternative strategy would protect photosynthetic apparatus from photodamage and might be causally related to the high yield of this rice cultivar.
Collapse
Affiliation(s)
- Yuwen Wang
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210023, China
| | - Jingjing Zhang
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210023, China
| | - Jing Yu
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210023, China
| | - Xiaohan Jiang
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210023, China
| | - Lingang Sun
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210023, China
| | - Min Wu
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210023, China; Zijin College, Nanjing University of Science and Technology, Nanjing 210023, China
| | - Guoxiang Chen
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210023, China.
| | - Chuangen Lv
- Institute of Food and Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
23
|
Casanova-Sáez R, Mateo-Bonmatí E, Kangasjärvi S, Candela H, Micol JL. Arabidopsis ANGULATA10 is required for thylakoid biogenesis and mesophyll development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2391-404. [PMID: 24663344 PMCID: PMC4036511 DOI: 10.1093/jxb/eru131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The chloroplasts of land plants contain internal membrane systems, the thylakoids, which are arranged in stacks called grana. Because grana have not been found in Cyanobacteria, the evolutionary origin of genes controlling the structural and functional diversification of thylakoidal membranes in land plants remains unclear. The angulata10-1 (anu10-1) mutant, which exhibits pale-green rosettes, reduced growth, and deficient leaf lateral expansion, resulting in the presence of prominent marginal teeth, was isolated. Palisade cells in anu10-1 are larger and less packed than in the wild type, giving rise to large intercellular spaces. The ANU10 gene encodes a protein of unknown function that localizes to both chloroplasts and amyloplasts. In chloroplasts, ANU10 associates with thylakoidal membranes. Mutant anu10-1 chloroplasts accumulate H2O2, and have reduced levels of chlorophyll and carotenoids. Moreover, these chloroplasts are small and abnormally shaped, thylakoidal membranes are less abundant, and their grana are absent due to impaired thylakoid stacking in the anu10-1 mutant. Because the trimeric light-harvesting complex II (LHCII) has been reported to be required for thylakoid stacking, its levels were determined in anu10-1 thylakoids and they were found to be reduced. Together, the data point to a requirement for ANU10 for chloroplast and mesophyll development.
Collapse
Affiliation(s)
- Rubén Casanova-Sáez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Eduardo Mateo-Bonmatí
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Saijaliisa Kangasjärvi
- Department of Biochemistry and Food Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| |
Collapse
|
24
|
Oldenburg DJ, Rowan BA, Kumar RA, Bendich AJ. On the fate of plastid DNA molecules during leaf development: response to the Golczyk et al. Commentary. THE PLANT CELL 2014; 26:855-61. [PMID: 24668748 PMCID: PMC4001397 DOI: 10.1105/tpc.113.121772] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/05/2014] [Accepted: 03/11/2014] [Indexed: 05/18/2023]
Affiliation(s)
- Delene J. Oldenburg
- Department of Biology, University of Washington, Seattle, Washington 98195-5325
| | - Beth A. Rowan
- Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany
| | - Rachana A. Kumar
- Department of Biology, University of Washington, Seattle, Washington 98195-5325
| | - Arnold J. Bendich
- Department of Biology, University of Washington, Seattle, Washington 98195-5325
- Address correspondence to
| |
Collapse
|
25
|
Golczyk H, Greiner S, Wanner G, Weihe A, Bock R, Börner T, Herrmann RG. Chloroplast DNA in mature and senescing leaves: a reappraisal. THE PLANT CELL 2014; 26:847-54. [PMID: 24668747 PMCID: PMC4001396 DOI: 10.1105/tpc.113.117465] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/07/2013] [Accepted: 03/11/2014] [Indexed: 05/04/2023]
Abstract
The fate of plastid DNA (ptDNA) during leaf development has become a matter of contention. Reports on little change in ptDNA copy number per cell contrast with claims of complete or nearly complete DNA loss already in mature leaves. We employed high-resolution fluorescence microscopy, transmission electron microscopy, semithin sectioning of leaf tissue, and real-time quantitative PCR to study structural and quantitative aspects of ptDNA during leaf development in four higher plant species (Arabidopsis thaliana, sugar beet [Beta vulgaris], tobacco [Nicotiana tabacum], and maize [Zea mays]) for which controversial findings have been reported. Our data demonstrate the retention of substantial amounts of ptDNA in mesophyll cells until leaf necrosis. In ageing and senescent leaves of Arabidopsis, tobacco, and maize, ptDNA amounts remain largely unchanged and nucleoids visible, in spite of marked structural changes during chloroplast-to-gerontoplast transition. This excludes the possibility that ptDNA degradation triggers senescence. In senescent sugar beet leaves, reduction of ptDNA per cell to ∼30% was observed reflecting primarily a decrease in plastid number per cell rather than a decline in DNA per organelle, as reported previously. Our findings are at variance with reports claiming loss of ptDNA at or after leaf maturation.
Collapse
Affiliation(s)
- Hieronim Golczyk
- Department of Molecular Biology, Institute of
Biotechnology, John Paul II Catholic University of Lublin, 20-708 Lublin,
Poland
| | - Stephan Greiner
- Max-Planck-Institut für Molekulare
Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Gerhard Wanner
- Department für Biologie I, Bereich Botanik,
Biozentrum der Ludwig-Maximilians–Universität München, D-82152
Planegg-Martinsried, Germany
| | - Andreas Weihe
- Institut für Biologie/Genetik,
Humboldt-Universität zu Berlin, D-10115 Berlin, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare
Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Thomas Börner
- Institut für Biologie/Genetik,
Humboldt-Universität zu Berlin, D-10115 Berlin, Germany
| | - Reinhold G. Herrmann
- Department für Biologie I, Bereich Botanik,
Biozentrum der Ludwig-Maximilians–Universität München, D-82152
Planegg-Martinsried, Germany
| |
Collapse
|
26
|
Abstract
The plastid genome (plastome) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations are allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and tools of plastid genetic engineering.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
27
|
Cao J, Song Y, Wu H, Qin L, Hu L, Hao R. Ultrastructural studies on the natural leaf senescence of Cinnamomum camphora. SCANNING 2013; 35:336-343. [PMID: 23292543 DOI: 10.1002/sca.21065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/22/2012] [Indexed: 06/01/2023]
Abstract
The process of natural leaf senescence of Cinnamomum camphora (C. camphora)-a commercial tree in Asia, was investigated, focusing on changes in cellular ultrastructure, epicuticular wax, and stoma. The changes to mesophyll cells in a senescing leaf predominantly include degradation of the following cellular components: cytoplasm, the central vacuole, small vacuoles, and vesicles with a diameter smaller than 400 nm, which are involved in the degradation of chloroplasts. The sequence of change in epicuticular wax during leaf senescence was different from those in herbaceous plants by atomic force microscope and scanning electron microscopic analysis. Comparing with maturation leaves, senescing leaves develop a wider aperture in their stoma, which would delay the leaf senescence of C. camphora.
Collapse
Affiliation(s)
- Jianbo Cao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China; Public Laboratory of Electron Microscopy, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
28
|
Lee TA, Vande Wetering SW, Brusslan JA. Stromal protein degradation is incomplete in Arabidopsis thaliana autophagy mutants undergoing natural senescence. BMC Res Notes 2013; 6:17. [PMID: 23327451 PMCID: PMC3724497 DOI: 10.1186/1756-0500-6-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/15/2013] [Indexed: 02/08/2023] Open
Abstract
Background Degradation of highly abundant stromal proteins plays an important role in the nitrogen economy of the plant during senescence. Lines of evidence supporting proteolysis within the chloroplast and outside the chloroplast have been reported. Two extra-plastidic degradation pathways, chlorophagy and Rubisco Containing Bodies, rely on cytoplasmic autophagy. Results In this work, levels of three stromal proteins (Rubisco large subunit, chloroplast glutamine synthetase and Rubisco activase) and one thylakoid protein (the major light harvesting complex protein of photosystem II) were measured during natural senescence in WT and in two autophagy T-DNA insertion mutants (atg5 and atg7). Thylakoid-localized protein decreased similarly in all genotypes, but stromal protein degradation was incomplete in the two atg mutants. In addition, degradation of two stromal proteins was observed in chloroplasts isolated from mid-senescence leaves. Conclusions These data suggest that autophagy does contribute to the complete proteolysis of stromal proteins, but does not play a major degenerative role. In addition, support for in organello degradation is provided.
Collapse
Affiliation(s)
- Travis A Lee
- Department of Biological Sciences, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840-9502, USA
| | | | | |
Collapse
|
29
|
Mohapatra PK, Joshi P, Ramaswamy NK, Raval MK, Biswal UC, Biswal B. Damage of photosynthetic apparatus in the senescing basal leaf of Arabidopsis thaliana: a plausible mechanism of inactivation of reaction center II. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 62:116-121. [PMID: 23220185 DOI: 10.1016/j.plaphy.2012.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 10/06/2012] [Indexed: 06/01/2023]
Abstract
Significant decline in oxygen evolution and DCPIP photoreduction and a marginal restoration of the later with DPC as an electron donor suggest the inactivation of reaction center of photosystem II. The declines in the height of thermoluminescence bands support the view and the damage of reaction center II could be central to the senescence process in Arabidopsis leaves. The enhancement in the number of reduced quinones, signifying a loss in redox homeostasis in the electron transport chain between photosystem II and I leads to the creation of an energy imbalance. The view is supported by the decline in actual quantum yield of photosystem II in the light adapted state and maximum quantum yield of primary photochemistry in the dark adapted state of chlorophyll fluorescence. An increase in chlorophyll a fluorescence polarization and decline in carotenoid to chlorophyll energy transfer efficiency suggest the perturbation in thylakoid structure. A plausible mechanism illustrating the senescence mediated inactivation of oxygen evolving complex has been proposed.
Collapse
|
30
|
Development-Dependent Changes in the Amount and Structural Organization of Plastid DNA. PLASTID DEVELOPMENT IN LEAVES DURING GROWTH AND SENESCENCE 2013. [DOI: 10.1007/978-94-007-5724-0_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Brouwer B, Ziolkowska A, Bagard M, Keech O, Gardeström P. The impact of light intensity on shade-induced leaf senescence. PLANT, CELL & ENVIRONMENT 2012; 35:1084-98. [PMID: 22171633 DOI: 10.1111/j.1365-3040.2011.02474.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plants often have to cope with altered light conditions, which in leaves induce various physiological responses ranging from photosynthetic acclimation to leaf senescence. However, our knowledge of the regulatory pathways by which shade and darkness induce leaf senescence remains incomplete. To determine to what extent reduced light intensities regulate the induction of leaf senescence, we performed a functional comparison between Arabidopsis leaves subjected to a range of shading treatments. Individually covered leaves, which remained attached to the plant, were compared with respect to chlorophyll, protein, histology, expression of senescence-associated genes, capacity for photosynthesis and respiration, and light compensation point (LCP). Mild shading induced photosynthetic acclimation and resource partitioning, which, together with a decreased respiration, lowered the LCP. Leaf senescence was induced only under strong shade, coinciding with a negative carbon balance and independent of the red/far-red ratio. Interestingly, while senescence was significantly delayed at very low light compared with darkness, phytochrome A mutant plants showed enhanced chlorophyll degradation under all shading treatments except complete darkness. Taken together, our results suggest that the induction of leaf senescence during shading depends on the efficiency of carbon fixation, which in turn appears to be modulated via light receptors such as phytochrome A.
Collapse
Affiliation(s)
- Bastiaan Brouwer
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden
| | | | | | | | | |
Collapse
|
32
|
Lu W, Wu S. Mechanism for dynamic regulation of iNOS expression after UVB-irradiation. Mol Carcinog 2012; 52:627-33. [DOI: 10.1002/mc.21898] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/06/2012] [Accepted: 02/14/2012] [Indexed: 11/11/2022]
|