1
|
Zhang Z, Wu X, Zou Z, Shen M, Liu Q, Zhangsun Z, Zhao H, Lei W, Wang Z, Dong Y, Yang Y. Heat stroke: Pathogenesis, diagnosis, and current treatment. Ageing Res Rev 2024; 100:102409. [PMID: 38986844 DOI: 10.1016/j.arr.2024.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Recently, the incidence of heat-related illnesses has exhibited a steadily upward trend, which is closely associated with several environmental factors such as climate change and air pollution. The progression of heat-related illnesses is a continuous process and can progress to the terminal period when it transforms into heat stroke, the most severe form. Heat stroke is markedly by a core body temperature above 40°C and central nervous system dysfunction. Current knowledge suggests that the pathogenesis of heat stroke is complex and varied, including inflammatory response, oxidative stress, cell death, and coagulation dysfunction. This review consolidated recent research progress on the pathophysiology and pathogenesis of heat stroke, with a focus on the related molecular mechanisms. In addition, we reviewed common strategies and sorted out the drugs in various preclinical stages for heat stroke, aiming to offer a comprehensive research roadmap for more in-depth researches into the mechanisms of heat stroke and the reduction in the mortality of heat stroke in the future.
Collapse
Affiliation(s)
- Zhe Zhang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Xiaopeng Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Zheng Zou
- Department of Neurosurgery, The General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Mingzhi Shen
- Department of General Medicine, Hainan Hospital of Chinese PLA General Hospital, 80 Jianglin Road, Hainan, 572013, China
| | - Qiong Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ziyin Zhangsun
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, 627 Wuluo Road, Wuhan, 430070, China
| | - Yushu Dong
- Department of Neurosurgery, The General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China.
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
2
|
Xia R, Sun M, Li Y, Yin J, Liu H, Yang J, Liu J, He Y, Wu B, Yang G, Li J. The pathogenesis and therapeutic strategies of heat stroke-induced myocardial injury. Front Pharmacol 2024; 14:1286556. [PMID: 38259273 PMCID: PMC10800451 DOI: 10.3389/fphar.2023.1286556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Heat stroke (HS) is a febrile illness characterized by an elevation in the core body temperature to over 40°C, accompanied by central nervous system impairment and subsequent multi-organ dysfunction syndrome. In recent years, the mortality rate from HS has been increasing as ambient temperatures continue to rise each year. The cardiovascular system plays an important role in the pathogenesis process of HS, as it functions as one of the key system for thermoregulation and its stability is associated with the severity of HS. Systemic inflammatory response and endothelial cell damage constitute pivotal attributes of HS, other factors such as ferroptosis, disturbances in myocardial metabolism and heat shock protein dysregulation are also involved in the damage to myocardial tissue in HS. In this review, a comprehensively detailed description of the pathogenesis of HS-induced myocardial injury is provided. The current treatment strategies and the promising therapeutic targets for HS are also discussed.
Collapse
Affiliation(s)
- Rui Xia
- Department of Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Meng Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuling Li
- Emergency Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing Yin
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Huan Liu
- Department of Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Jun Yang
- Department of Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Jing Liu
- Department of Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Yanyu He
- Department of Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Bing Wu
- Department of Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Guixiang Yang
- Department of Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Jianhua Li
- Department of Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| |
Collapse
|
3
|
An Overview of Exertional Heat Illness in Thoroughbred Racehorses: Pathophysiology, Diagnosis, and Treatment Rationale. Animals (Basel) 2023; 13:ani13040610. [PMID: 36830397 PMCID: PMC9951674 DOI: 10.3390/ani13040610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Exertional heat illness (EHI) is a complex medical disease. The thoroughbred (TB) racehorse is at considerable risk because of the intensity of its exercise activity and its high rate of metabolic heat production. The pathophysiology of EHI can combine aspects of both the heat toxicity pathway and the heat sepsis or endotoxemic pathway. Treatment regimes depend upon the detection of earliest clinical signs, rapid assessment, aggressive cooling and judicious use of ancillary medications. Ice-cold water provides the most rapid cooling, consistent with the need to lower core body temperature before tissue damage occurs. Research into EHI/HS by inducing the condition experimentally is ethically unjustifiable. Consequently, leading researchers in the human field have conceded that "most of our knowledge has been gained from anecdotal incidents, gathered from military personnel and athletes who have collapsed during or following physical activity, and that retrospective and case studies have provided important evidence regarding recognition and treatment of EHI". The authors' review into EHI shares that perspective, and the recommendations made herein are based on observations of heat-affected racehorses at the racetrack and their response, or lack of response, to treatment. From 2014 to 2018, 73 race meetings were attended, and of the 4809 individual starters, signs of EHI were recorded in 457. That observational study formed the basis for a series of articles which have been published under the title, 'EHI in Thoroughbred racehorses in eastern Australia', and forms the background for this review.
Collapse
|
4
|
Brownlow MA, Mizzi JX. Exertional heat illness in Thoroughbred racehorses – Pathophysiology, case definition and treatment rationale. EQUINE VET EDUC 2021. [DOI: 10.1111/eve.13459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - J. X. Mizzi
- 315 Singles Ridge Road Yellow Rock New South Wales Australia
| |
Collapse
|
5
|
Lin X, Lin CH, Liu R, Li C, Jiao S, Yi X, Walker MJ, Xu XM, Zhao T, Huang PC, Sun G. Myricetin against myocardial injury in rat heat stroke model. Biomed Pharmacother 2020; 127:110194. [PMID: 32371315 DOI: 10.1016/j.biopha.2020.110194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Heat stroke-induced mortality is rising across the globe. So, the design of prophylactic and/or therapeutic modalities for heat stroke is pressing need. The common plant derived flavonoid exhibits strong anti-oxidant and anti-inflammatory activities; however, its effects in heat stroke remain unknown. The study aimed to investigate the cardioprotective effects of myricetin on heat stroke induced acute myocardial injury as well as lethality in rats and to explore the underlying mechanisms. METHODS Myocardial injury was induced by subjecting the anesthetized rats to a high ambient temperature of 43 °C for 70 min. An intragastrical dose of myricetin (5-25 mg/kg body weight) was given to rats once per day for one week prior to the start of heat stress. Heat shock protein 72 antibodies was given intraperitoneally to rats 24 h before the start of heat stress. Myocardial injury severity was estimated by determing myocardial damage scores, myocardial injury indicators, myocardial oxidative and inflammatory factors. Western blot analysis was used for cardiac expression of heat shock protein (HSP)72. RESULTS Significant (P < 0.05) up-regulation of HSP-72 after chronic administration of myricetin coincided with significant (P < 0.05) reduction in hyperthermia, hypotension, cardiac inflammatory and oxidative damage and lethality. Inhibition of HSP-72 showed a significant (P < 0.05) reversal in the cardiaprotection as well as survival. CONCLUSIONS Our results indicate that myricetin diminishes myocardial injury as well as lethality in heat stroke by up-regulating HSP-72 and show promise as a novel prevention therapeutic for heat stroke.
Collapse
Affiliation(s)
- Xiaojing Lin
- Department of Spinal Cord Injury and Repair, Trauma and Orthopedics Institute of Chinese PLA, The 960th Hospital of Joint Logistics Support Force of PLA, Shandong Province, China; Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Cheng-Hsien Lin
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.
| | - Ruoxu Liu
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Chenyi Li
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Shuxin Jiao
- Department of Neuroscience, The 960th Hospital of Joint Logistics Support Force of PLA, Shandong Province, China
| | - Xueqing Yi
- Department of Medical Imaging, The 960th Hospital of Joint Logistics Support Force of PLA, Shandong Province, China
| | - M J Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman and Campbell Brain andSpine, Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman and Campbell Brain andSpine, Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tingbao Zhao
- Department of Spinal Cord Injury and Repair, Trauma and Orthopedics Institute of Chinese PLA, The 960th Hospital of Joint Logistics Support Force of PLA, Shandong Province, China
| | - Po-Chang Huang
- Department of Orthopaedics, Chi Mei Medical Center, Tainan, Taiwan.
| | - Gang Sun
- Department of Medical Imaging, The 960th Hospital of Joint Logistics Support Force of PLA, Shandong Province, China.
| |
Collapse
|
6
|
Lin CH, Tsai CC, Chen TH, Chang CP, Yang HH. Oxytocin maintains lung histological and functional integrity to confer protection in heat stroke. Sci Rep 2019; 9:18390. [PMID: 31804535 PMCID: PMC6895074 DOI: 10.1038/s41598-019-54739-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 11/19/2019] [Indexed: 01/07/2023] Open
Abstract
Oxytocin (OT) has been reported to have a protective effect in lipopolysaccharide-induced experimental acute lung injury (ALI). However, its role in heat stroke-related ALI has never been investigated. Herein, we aimed to explore the therapeutic effects and potential mechanism of action of OT on heat-induced ALI. Rats were treated with OT 60 min before the start of heat stress (42 °C for 80 min). Twenty minutes after the termination of heat stress, the effects of OT on lung histopathological changes, edema, acute pleurisy and the bronchoalveolar fluid levels of inflammatory cytokines and indicators of ischemia, cellular damage, and oxidative damage were assessed. We also evaluated the influence of OT pretreatment on heat-induced hypotension, hyperthermia, ALI score, and death in a rat model of heat stroke. The results showed that OT significantly reduced heat-induced lung edema, neutrophil infiltration, hemorrhage score, myeloperoxidase activity, ischemia, and the levels of inflammatory and oxidative damage markers in bronchoalveolar lavage fluid. The survival assessment confirmed the pathophysiological and biochemical results. An OT receptor antagonist (L-368,899) was administered 10 min before the OT injection to further demonstrate the role of OT in heat-induced ALI. The results showed that OT could not protect against the aforementioned heat stroke responses in rats treated with L-368,899. Interestingly, OT treatment 80 min after the start of heat shock did not affect survival. In conclusion, our data indicate that OT pretreatment can reduce the ischemic, inflammatory and oxidative responses related to heat-induced ALI in rats.
Collapse
Affiliation(s)
- Cheng-Hsien Lin
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Cheng-Chia Tsai
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Surgery, Mackay Memory Hospital, Taipei, Taiwan
| | - Tzu-Hao Chen
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.
| | - Hsi-Hsing Yang
- Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan, Taiwan.
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
| |
Collapse
|
7
|
Alpha-Lipoic Acid Protects Cardiomyocytes against Heat Stroke-Induced Apoptosis and Inflammatory Responses Associated with the Induction of Hsp70 and Activation of Autophagy. Mediators Inflamm 2019; 2019:8187529. [PMID: 31885498 PMCID: PMC6914879 DOI: 10.1155/2019/8187529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/21/2019] [Accepted: 11/06/2019] [Indexed: 12/20/2022] Open
Abstract
Heat stroke (HS) is a life-threatening illness and defined as when body temperature elevates above 40°C accompanied by the systemic inflammatory response syndrome that results in multiple organ dysfunctions. α-Lipoic acid (ALA) acts as a cofactor of mitochondrial enzymes and exerts anti-inflammatory and antioxidant properties in a variety of diseases. This study investigates the beneficial effects of ALA on myocardial injury and organ damage caused by experimental HS and further explores its underlying mechanism. Male Wistar rats were exposed to 42°C until their rectal core temperature reached 42.9°C and ALA was pretreared 40 or 80 mg/kg (i.v.) 1.5 h prior to heat exposure. Results showed that HS-induced lethality and hypothermia were significantly alleviated by ALA treatment that also improved plasma levels of CRE, LDH, and CPK and myocardial injury biomarkers myoglobin and troponin. In addition, ALA reduced cardiac superoxide anion formation and protein expression of cleaved caspase 3 caused by HS. Proinflammatory cytokine TNF-α and NF-κB pathways were significantly reduced by ALA treatment which may be associated with the upregulation of Hsp70. ALA significantly increased the Atg5-12 complex and LC3B II/LC3B I ratio, whereas the p62 and p-mTOR expression was attenuated in HS rats, indicating the activation of autophagy by ALA. In conclusion, ALA ameliorated the deleterious effects of HS by exerting antioxidative and anti-inflammatory capacities. Induction of Hsp70 and activation of autophagy contribute to the protective effects of ALA in HS-induced myocardial injury.
Collapse
|
8
|
Tsai CC, Wu HH, Chang CP, Lin CH, Yang HH. Calycosin-7-O-β-D-glucoside reduces myocardial injury in heat stroke rats. J Formos Med Assoc 2018; 118:730-738. [PMID: 30245143 DOI: 10.1016/j.jfma.2018.08.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/20/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND/PURPOSE Calycosin-7-O-β-D-glucoside (CG), a calycosin derivative compound derived from Astragali Radix, has protective effect against ischemia/reperfusion injury as well as bacterial endotoxin-induced vascular cell injury. In the present study, we ascertained whether CG could reduce myocardial injury in heatstroke rats. METHODS Heat stroke was induced by exposing anaesthetized rats to heat stress (43 °C for 70 min). Rats were given an i.p. dose of CG (26.8 mg/ml/kg) or vehicle solution (ml/kg) 15 min before the start of heat stress and immediately after termination of heat stress. Left ventricular performance, myocardial injury markers in the blood, and myocardial damage scores were assessed in heat stroke rats treated with or without CG. Additionally, cardiac levels of oxidative stress and inflammatory status were estimated simultaneously. RESULTS At the time point of heat stroke onset, compared with normothermic controls, group rats with vehicle solution had significantly decreased survival rate, increased hyperthermia, decreased left ventricular stress markers, and increased cardiac damage scores. Compared with group rats with vehicle solution, group rats with CG had significantly improved survival rate, decreased hyperthermia, decreased cardiac ischemic, inflammatory, and oxidative damage. CONCLUSION We thus conclude that myocardial injury can be a pressing need for the design of diagnostic and therapeutic modalities for heat stroke. In particular, our data indicate that CG protects against heat stroke in rats by mitigating myocardial injury.
Collapse
Affiliation(s)
- Cheng-Chia Tsai
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsing-Hsien Wu
- Division of Thoracic Surgery, Department of Surgery, Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation), Tainan, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Cheng-Hsien Lin
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.
| | - Hsi-Hsing Yang
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan; Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan, Taiwan.
| |
Collapse
|
9
|
Lin X, Zhao T, Lin CH, Zuo D, Ye Z, Lin S, Wen S, Liu L, Lin MT, Chang CP, Chao CM. Melatonin provides protection against heat stroke-induced myocardial injury in male rats. J Pharm Pharmacol 2018; 70:760-767. [PMID: 29484657 DOI: 10.1111/jphp.12895] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/12/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVES This study aimed to investigate the cardioprotective effects of melatonin on heat stroke (HS) induced acute myocardial infarction in rats and to explore the underlying mechanisms. METHODS Myocardial injury was induced by subjecting the anaesthetized rats to a high ambient temperature of 43°C for 70 min. Such a high ambient temperature caused hyperthermia, hypotension and myocardial injury in rats. Rats were treated with melatonin (3 mg/kg) intravenously one hour before and followed by an additional dose immediately after heat stress. KEY FINDINGS At the onset of HS, animals displayed myocardial injury evidenced by increased levels of cardiac damage indicators (e.g. total lactate dehydrogenase, cardiac troponin I and creatine kinase-MB), increased cardiac damage scores and suppressed left ventricular performance. Animals with HS also had increased cardiac oxidative stress evidenced by increased levels of lipid peroxidation (e.g. increased thiobarbituric acid reactive substances) and decreased levels of antioxidant enzymes (e.g. superoxide dismutase, catalase and reduced glutathione) and activated inflammation (e.g. increased levels of interleukin-6 and tumour necrosis factor-α). Pretreatment with melatonin significantly reversed the HS-induced myocardial injury, cardiac oxidative stress and cardiac inflammation. CONCLUSIONS Melatonin may protect against HS-induced myocardial injury in male rats by mitigating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Xiaojing Lin
- Department of Spinal Cord Injury and Repair, Trauma and Orthopedics, Institute of Chinese PLA, General Hospital of Jinan Military Region, Shandong, China.,Department of Neurobiology, Beijing Institute of Basic Medical Science, The Academy of Military Medical Sciences of the Chinese PLA, Guangdong, China
| | - Tingbao Zhao
- Department of Orthopedics, Shandong Cancer Hospital, Shandong University, Shandong, China
| | - Cheng-Hsien Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Dan Zuo
- Trauma and Orthopedics Center of Chinese PLA, General Hospital of Guangzhou Military Region Guangdong Province, Guangdong, China
| | - Zhujun Ye
- Trauma and Orthopedics Center of Chinese PLA, General Hospital of Guangzhou Military Region Guangdong Province, Guangdong, China
| | - Shide Lin
- Department of Neurobiology, Beijing Institute of Basic Medical Science, The Academy of Military Medical Sciences of the Chinese PLA, Guangdong, China
| | - Shaonan Wen
- Department of Neurobiology, Beijing Institute of Basic Medical Science, The Academy of Military Medical Sciences of the Chinese PLA, Guangdong, China
| | - Lin Liu
- Trauma and Orthopedics Center of Chinese PLA, General Hospital of Guangzhou Military Region Guangdong Province, Guangdong, China
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chien-Ming Chao
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| |
Collapse
|
10
|
Heat stress-induced neuroinflammation and aberration in monoamine levels in hypothalamus are associated with temperature dysregulation. Neuroscience 2017; 358:79-92. [DOI: 10.1016/j.neuroscience.2017.06.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/04/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022]
|
11
|
Lin X, Lin CH, Zhao T, Zuo D, Ye Z, Liu L, Lin MT. Quercetin protects against heat stroke-induced myocardial injury in male rats: Antioxidative and antiinflammatory mechanisms. Chem Biol Interact 2017; 265:47-54. [DOI: 10.1016/j.cbi.2017.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 11/30/2022]
|
12
|
Tsai YC, Lam KK, Peng YJ, Lee YM, Yang CY, Tsai YJ, Yen MH, Cheng PY. Heat shock protein 70 and AMP-activated protein kinase contribute to 17-DMAG-dependent protection against heat stroke. J Cell Mol Med 2016; 20:1889-97. [PMID: 27241357 PMCID: PMC5020632 DOI: 10.1111/jcmm.12881] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/18/2016] [Indexed: 12/25/2022] Open
Abstract
Heat shock protein 70 (Hsp70) preconditioning induces thermotolerance, and adenosine monophosphate (AMP)‐activated protein kinase (AMPK) plays a role in the process of autophagy. Here, we investigated whether 17‐dimethylaminoethylamino‐17‐demethoxy‐geldanamycin (17‐DMAG) protected against heat stroke (HS) in rats by up‐regulation of Hsp70 and phosphorylated AMPK (pAMPK). To produce HS, male Sprague–Dawley rats were placed in a chamber with an ambient temperature of 42°C. Physiological function (mean arterial pressure, heart rate and core temperature), hepatic and intestinal injury, inflammatory mediators and levels of Hsp70, pAMPK and light chain 3 (LC3B) in hepatic tissue were measured in HS rats or/and rats pre‐treated with 17‐DMAG. 17‐DMAG pre‐treatment significantly attenuated hypotension and organ dysfunction induced by HS in rats. The survival time during HS was also prolonged by 17‐DMAG treatment. Hsp70 expression was increased, whereas pAMPK levels in the liver were significantly decreased in HS rats. Following pre‐treatment with 17‐DMAG, Hsp70 protein levels increased further, and pAMPK levels were enhanced. Treatment with an AMPK activator significantly increased the LC3BII/LC3BI ratio as a marker of autophagy in HS rats. Treatment with quercetin significantly suppressed Hsp70 and pAMPK levels and reduced the protective effects of 17‐DMAG in HS rats. Both of Hsp70 and AMPK are involved in the 17‐DMAG‐mediated protection against HS. 17‐DMAG may be a promising candidate drug in the clinical setting.
Collapse
Affiliation(s)
- Yung-Chieh Tsai
- Department of Obstetrics and Gynecology, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Sport Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Kwok-Keung Lam
- Department of Pharmacology, Taipei Medical University, Taipei, Taiwan.,Department of Anesthesiology, Catholic Mercy Hospital, Hsinchu, Taiwan
| | - Yi-Jen Peng
- Department of Pathology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Yen-Mei Lee
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Yu Yang
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ju Tsai
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Mao-Hsiung Yen
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Pao-Yun Cheng
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
13
|
Hsu SF, Chao CM, Chang CP, Lin MT, Cheng BC. Heat shock protein 72 may improve hypotension by increasing cardiac mechanical efficiency and arterial elastance in heatstroke rats. Int J Cardiol 2016; 219:63-9. [PMID: 27288968 DOI: 10.1016/j.ijcard.2016.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/22/2016] [Accepted: 05/01/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE We attempted to test the hypothesis that preinduction of heat shock protein (HSP) 72 in the heart would improve left ventricular performance in rat heatstroke. METHODS Cardiac expression of HSP 72 was quantitatively evaluated by western blot analysis in rats 0h, 12h, or 72h after mild heat preconditioning (MHP; 43°C for 30min). They were subjected to severe heat stress (SHS; 43°C for 70min) to induce heatstroke. A 1.2F catheter-tip pressure transducer was inserted into the left ventricle of these group rats under general anesthesia to record hemodynamic in the closed chest with a pressure-volume loop module data recording and analysis system. RESULTS At the time point of heatstroke onset, compared with normothermic controls, group rats with 12h post-MHP had significantly increased cardiac HSP 72, decreased hyperthermia, decreased hypotension, decreased bradycardia, increased end-systolic pressure, increased end-diastolic pressure, increased stroke volume, decreased end-systolic volume, decreased end-diastolic pressure, increased cardiac output, increased ejection fraction, increased stroke work, increased arterial elastance, and decreased time constant of fall in ventricular pressure by Glantz-methods. With the loss of cardiac HSP 72 expression observed at 72h in post-MHP group rats, an insignificant protection against left ventricular performance was observed. CONCLUSION Preinduction of cardiac HSP 72 may improve hypotension in heatstroke rats by increasing both cardiac mechanical efficiency and arterial elastance.
Collapse
Affiliation(s)
- Shu-Fen Hsu
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung City 821, Taiwan
| | - Chien-Ming Chao
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan 736, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan; Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Bor-Chih Cheng
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan; Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan.
| |
Collapse
|
14
|
Bain AR, Nybo L, Ainslie PN. Cerebral Vascular Control and Metabolism in Heat Stress. Compr Physiol 2016; 5:1345-80. [PMID: 26140721 DOI: 10.1002/cphy.c140066] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review provides an in-depth update on the impact of heat stress on cerebrovascular functioning. The regulation of cerebral temperature, blood flow, and metabolism are discussed. We further provide an overview of vascular permeability, the neurocognitive changes, and the key clinical implications and pathologies known to confound cerebral functioning during hyperthermia. A reduction in cerebral blood flow (CBF), derived primarily from a respiratory-induced alkalosis, underscores the cerebrovascular changes to hyperthermia. Arterial pressures may also become compromised because of reduced peripheral resistance secondary to skin vasodilatation. Therefore, when hyperthermia is combined with conditions that increase cardiovascular strain, for example, orthostasis or dehydration, the inability to preserve cerebral perfusion pressure further reduces CBF. A reduced cerebral perfusion pressure is in turn the primary mechanism for impaired tolerance to orthostatic challenges. Any reduction in CBF attenuates the brain's convective heat loss, while the hyperthermic-induced increase in metabolic rate increases the cerebral heat gain. This paradoxical uncoupling of CBF to metabolism increases brain temperature, and potentiates a condition whereby cerebral oxygenation may be compromised. With levels of experimentally viable passive hyperthermia (up to 39.5-40.0 °C core temperature), the associated reduction in CBF (∼ 30%) and increase in cerebral metabolic demand (∼ 10%) is likely compensated by increases in cerebral oxygen extraction. However, severe increases in whole-body and brain temperature may increase blood-brain barrier permeability, potentially leading to cerebral vasogenic edema. The cerebrovascular challenges associated with hyperthermia are of paramount importance for populations with compromised thermoregulatory control--for example, spinal cord injury, elderly, and those with preexisting cardiovascular diseases.
Collapse
Affiliation(s)
- Anthony R Bain
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, Kelowna, Canada
| | - Lars Nybo
- Department of Nutrition, Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Philip N Ainslie
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, Kelowna, Canada
| |
Collapse
|
15
|
Cathepsin B is involved in the heat shock induced cardiomyocytes apoptosis as well as the anti-apoptosis effect of HSP-70. Apoptosis 2015; 19:1571-80. [PMID: 25217222 DOI: 10.1007/s10495-014-1033-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cathepsin B is one of the major lysosomal cysteine proteases that plays an important role in apoptosis. Herein, we investigated whether Cathepsin B is involved in cardiomyocyte apoptosis caused by hyperthermic injury (HI) and heat shock protein (HSP)-70 protects these cells from HI-induced apoptosis mediated by Cathepsin. HI was produced in H9C2 cells by putting them in a circulating 43 °C water bath for 120 min, whereas preinduction of HSP-70 was produced in H9C2 cells by mild heat preconditioning (or putting them in 42 °C water bath for 30 min) 8 h before the start of HI. It was found that HI caused both cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. E-64-c, in addition to reducing Cathepsin B activity, significantly attenuated HI-induced cardiomyocyte apoptosis (evidenced by increased apoptotic cell numbers, increased tuncated Bid (t-Bid), increased cytochrome C, increased caspase-9/-3, and decreased Bcl-2/Bax) in H9C2 cells. In addition, preinduction of HSP-70 by mild heat preconditioning or inhibition of HSP-70 by Tripolide significantly attenuated or exacerbated respectively both the cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. Furthermore, the beneficial effects of pre-induction of HSP-70 by mild heat production in reducing both cardiomyocyte apoptosis and increased Cathepsin B activity caused by HI can be significantly reduced by Triptolide preconditioning. These results indicate that Cathepsin B is involved in HI-induced cardiomyocyte apoptosis in H9C2 cells and HSP-70 protects these cells from HI-induced cardiomyocyte apoptosis through Cathepsin B pathways.
Collapse
|
16
|
Audet GN, Quinn CM, Leon LR. Point-of-care cardiac troponin test accurately predicts heat stroke severity in rats. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1264-72. [PMID: 26290107 DOI: 10.1152/ajpregu.00286.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/14/2015] [Indexed: 12/28/2022]
Abstract
Heat stroke (HS) remains a significant public health concern. Despite the substantial threat posed by HS, there is still no field or clinical test of HS severity. We suggested previously that circulating cardiac troponin (cTnI) could serve as a robust biomarker of HS severity after heating. In the present study, we hypothesized that (cTnI) point-of-care test (ctPOC) could be used to predict severity and organ damage at the onset of HS. Conscious male Fischer 344 rats (n = 16) continuously monitored for heart rate (HR), blood pressure (BP), and core temperature (Tc) (radiotelemetry) were heated to maximum Tc (Tc,Max) of 41.9 ± 0.1°C and recovered undisturbed for 24 h at an ambient temperature of 20°C. Blood samples were taken at Tc,Max and 24 h after heat via submandibular bleed and analyzed on ctPOC test. POC cTnI band intensity was ranked using a simple four-point scale via two blinded observers and compared with cTnI levels measured by a clinical blood analyzer. Blood was also analyzed for biomarkers of systemic organ damage. HS severity, as previously defined using HR, BP, and recovery Tc profile during heat exposure, correlated strongly with cTnI (R(2) = 0.69) at Tc,Max. POC cTnI band intensity ranking accurately predicted cTnI levels (R(2) = 0.64) and HS severity (R(2) = 0.83). Five markers of systemic organ damage also correlated with ctPOC score (albumin, alanine aminotransferase, blood urea nitrogen, cholesterol, and total bilirubin; R(2) > 0.4). This suggests that cTnI POC tests can accurately determine HS severity and could serve as simple, portable, cost-effective HS field tests.
Collapse
Affiliation(s)
- Gerald N Audet
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Carrie M Quinn
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Lisa R Leon
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
17
|
Liu CC, Shih MF, Wen YS, Lai YH, Yang TH. Dexamethasone improves heat stroke-induced multiorgan dysfunction and damage in rats. Int J Mol Sci 2014; 15:21299-313. [PMID: 25411796 PMCID: PMC4264226 DOI: 10.3390/ijms151121299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 11/16/2022] Open
Abstract
Dexamethasone (DXM) is known as an immunosuppressive drug used for inflammation control. In the present study, we attempted to examine whether DXM administration could attenuate the hypercoagulable state and the overproduction of pro-inflammatory cytokines, improve arterial hypotension, cerebral ischemia and damage, and vital organ failure in a rat model of heat stroke. The results indicated that all the rats suffering from heat stroke showed high serum levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), accompanied with increased prothrombin time, activated partial thromboplastin time and D-D dimer, and decreased protein C. During the induction period of heat stroke, plasma levels of blood urea nitrogen (BUN), creatinine, glutamic oxaloacetic transaminase (SGOT), glutamic pyruvic transaminase (SGPT), and alkaline phosphatase (ALP), were consistently increased. High striatal levels of glycerol, glutamate, and lactate/pyruvate were simultaneously detected. On the contrary, the mean arterial pressure, plasma levels of interleukin-10 (IL-10), and local cerebral blood flow at the striatum were all decreased. Importantly, intravenous administration of DXM substantially ameliorated the circulatory dysfunction, systematic inflammation, hypercoagulable state, cerebral ischemia and damage during the induction period of heat stroke. These findings demonstrated that DXM may be an alternative therapy that can ameliorate heat stroke victims by attenuating activated coagulation, systemic inflammation, and vital organ ischemia/injury during heat stroke.
Collapse
Affiliation(s)
- Chia-Chyuan Liu
- Department and Institute of Cosmetic Science, Chia-Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | - Mei-Fen Shih
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | - Yi-Szu Wen
- Department of Emergency medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Ying-Hsiu Lai
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Tsai-Hsiu Yang
- Department of Health and Nutrition, Chia-Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| |
Collapse
|
18
|
Hsu SF, Chao CM, Huang WT, Lin MT, Cheng BC. Attenuating heat-induced cellular autophagy, apoptosis and damage in H9c2 cardiomyocytes by pre-inducing HSP70 with heat shock preconditioning. Int J Hyperthermia 2013; 29:239-47. [PMID: 23590364 DOI: 10.3109/02656736.2013.777853] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE We sought to assess whether heat-induced autophagy, apoptosis and cell damage in H9c2 cells can be affected by pre-inducing HSP70 (heat shock protein 70). MATERIALS AND METHODS Cell viability was determined using 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide staining and a lactate dehydrogenase assay. Apoptosis was evidenced using both flow cytometry and counting caspase-3 positive cells, whereas autophagy was evidenced by the increased LC3-II expression and lysosomal activity. RESULTS The viability of H9c2 cells was temperature-dependently (40-44 °C) and time-dependently (90-180 min) significantly (p < 0.05) reduced by severe heat, which caused cell damage, apoptosis and autophagy. Heat-induced cell injury could be attenuated by pretreatment with 3-methylademine (an autophagy inhibitor) or Z-DEVD-FMK (a caspase-3 inhibitor). Neither apoptosis nor autophagy over the levels found in normothermic controls was induced in heat-shock preconditioned controls (no subsequent heat injury). The beneficial effects of mild heat preconditioning (preventing heat-induced cell damage, apoptosis and autophagy) were significantly attenuated by inhibiting HSP70 overexpression with triptolide (Tripterygium wilfordii) pretreatment. CONCLUSION We conclude that pre-inducing HSP70 attenuates heat-stimulated cell autophagy, apoptosis and damage in the heart. However, this requires in vivo confirmation.
Collapse
Affiliation(s)
- Shu-Fen Hsu
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung City, Taiwan
| | | | | | | | | |
Collapse
|
19
|
Chen SH, Lin MT, Chang CP. Ischemic and oxidative damage to the hypothalamus may be responsible for heat stroke. Curr Neuropharmacol 2013; 11:129-40. [PMID: 23997749 PMCID: PMC3637668 DOI: 10.2174/1570159x11311020001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 09/12/2012] [Accepted: 12/14/2012] [Indexed: 12/11/2022] Open
Abstract
The hypothalamus may be involved in regulating homeostasis, motivation, and emotional behavior by controlling autonomic and endocrine activity. The hypothalamus communicates input from the thalamus to the pituitary gland, reticular activating substance, limbic system, and neocortex. This allows the output of pituitary hormones to respond to changes in autonomic nervous system activity. Environmental heat stress increases cutaneous blood flow and metabolism, and progressively decreases splanchnic blood flow. Severe heat exposure also decreases mean arterial pressure (MAP), increases intracranial pressure (ICP), and decreases cerebral perfusion pressure (CPP = MAP - ICP), all of which lead to cerebral ischemia and hypoxia. Compared with normothermic controls, rodents with heatstroke have higher hypothalamic values of cellular ischemia (e.g., glutamate and lactate-to-pyruvate ratio) and damage (e.g., glycerol) markers, pro-oxidant enzymes (e.g., lipid peroxidation and glutathione oxidation), proinflammatory cytokines (e.g., interleukin-1β and tumor necrosis factor-α), inducible nitric oxide synthase-dependent nitric oxide, and an indicator for the accumulation of polymorphonuclear leukocytes (e.g., myeloperoxidase activity), as well as neuronal damage (e.g., apoptosis, necrosis, and autophagy) after heatstroke. Hypothalamic values of antioxidant defenses (e.g., glutathione peroxidase and glutathione reductase), however, are lower. The ischemic, hypoxic, and oxidative damage to the hypothalamus during heatstroke may cause multiple organ dysfunction or failure through hypothalamic-pituitary-adrenal axis mechanisms. Finding the link between the signaling and heatstroke-induced hypothalamic oxidative and ischemic damage might allow us to clinically attenuate heatstroke. In particular, free radical scavengers, heat shock protein-70 inducers, hypervolemic hemodilution, inducible nitric oxide synthase inhibitors, progenitor stem cells, flutamide, estrogen, interleukin-1 receptor antagonists, glucocorticoid, activated protein C, and baicalin mitigate preclinical heatstroke levels.
Collapse
Affiliation(s)
- Sheng-Hsien Chen
- Department of Obstetrics and Gynecology, Chi Mei Medical Center, Tainan, Taiwan ; Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | | | | |
Collapse
|
20
|
Bowyer JF, Patterson TA, Saini UT, Hanig JP, Thomas M, Camacho L, George NI, Chen JJ. Comparison of the global gene expression of choroid plexus and meninges and associated vasculature under control conditions and after pronounced hyperthermia or amphetamine toxicity. BMC Genomics 2013; 14:147. [PMID: 23497014 PMCID: PMC3602116 DOI: 10.1186/1471-2164-14-147] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 02/21/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The meninges (arachnoid and pial membranes) and associated vasculature (MAV) and choroid plexus are important in maintaining cerebrospinal fluid (CSF) generation and flow. MAV vasculature was previously observed to be adversely affected by environmentally-induced hyperthermia (EIH) and more so by a neurotoxic amphetamine (AMPH) exposure. Herein, microarray and RT-PCR analysis was used to compare the gene expression profiles between choroid plexus and MAV under control conditions and at 3 hours and 1 day after EIH or AMPH exposure. Since AMPH and EIH are so disruptive to vasculature, genes related to vasculature integrity and function were of interest. RESULTS Our data shows that, under control conditions, many of the genes with relatively high expression in both the MAV and choroid plexus are also abundant in many epithelial tissues. These genes function in transport of water, ions, and solutes, and likely play a role in CSF regulation. Most genes that help form the blood-brain barrier (BBB) and tight junctions were also highly expressed in MAV but not in choroid plexus. In MAV, exposure to EIH and more so to AMPH decreased the expression of BBB-related genes such as Sox18, Ocln, and Cldn5, but they were much less affected in the choroid plexus. There was a correlation between the genes related to reactive oxidative stress and damage that were significantly altered in the MAV and choroid plexus after either EIH or AMPH. However, AMPH (at 3 hr) significantly affected about 5 times as many genes as EIH in the MAV, while in the choroid plexus EIH affected more genes than AMPH. Several unique genes that are not specifically related to vascular damage increased to a much greater extent after AMPH compared to EIH in the MAV (Lbp, Reg3a, Reg3b, Slc15a1, Sct and Fst) and choroid plexus (Bmp4, Dio2 and Lbp). CONCLUSIONS Our study indicates that the disruption of choroid plexus function and damage produced by AMPH and EIH is significant, but the changes may not be as pronounced as they are in the MAV, particularly for AMPH. Expression profiles in the MAV and choroid plexus differed to some extent and differences were not restricted to vascular related genes.
Collapse
Affiliation(s)
- John F Bowyer
- Division of Neurotoxicology, National Center for Toxicological Research, U,S, Food and Drug Administration, Jefferson, AR 72079-9502, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Lam KK, Cheng PY, Lee YM, Liu YP, Ding C, Liu WH, Yen MH. The role of heat shock protein 70 in the protective effect of YC-1 on heat stroke rats. Eur J Pharmacol 2012; 699:67-73. [PMID: 23219797 DOI: 10.1016/j.ejphar.2012.11.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 11/22/2012] [Accepted: 11/23/2012] [Indexed: 01/30/2023]
Abstract
Heat stroke is a life-threatening illness characterized by an elevated core body temperature. Despite adequate lowering of the body temperature and support treatment of multiple organ-system function, heat stroke is often fatal. 3-(5'-Hydoxymethyl-2'-furyl)-1-benzyl-indazol (YC-1) been identified as an activator of soluble guanylate cyclase. To evaluate whether YC-1 protects multiple organ dysfunctions and improves survival during heat stroke and its mechanism. Male Sprague-Dawley rats untreated or treated with either YC-1 or quercetin (heat shock protein (Hsp) 70 inhibitor) were exposures to heat as a model of heat stroke. The mean arterial pressure (MAP), heart rate, rectal temperature (Tco), survival time, and plasma biochemical data, intracellular Hsp70 and heat shock factor-1 expression were measured. The value of MAP, heart rate and Tco of untreated heat stroke (HS) group were all significantly lower than that of normothermal (NT) group. Biochemical markers evidenced that liver and kidney injuries of HS group were significantly higher than that of NT groups. YC-1 (20mg/kg) pretreatment with heat stroke (YC-1+HS) group, the MAP and heart rate were return to normal, and the biochemical markers were all significantly recovered to normal. The survival time of HS group, NT group and YC-1+HS group were 21, 480, and 445 min, respectively. The expression of Hsp70 and HSF-1 in liver and renal of YC-1+HS group was significantly higher than that of HS group. All of the protective effects of YC-1 were all significantly suppressed when pretreated with quercetin (400mg/kg). Results indicate that YC-1 may improve survival due to induce Hsp70 overexpression.
Collapse
Affiliation(s)
- Kwok-Keung Lam
- Department of Pharmacology, Taipei Medical University, Taipei 114, Taiwan
| | | | | | | | | | | | | |
Collapse
|
22
|
Attenuating brain inflammation, ischemia, and oxidative damage by hyperbaric oxygen in diabetic rats after heat stroke. J Formos Med Assoc 2012; 112:454-62. [PMID: 24016610 DOI: 10.1016/j.jfma.2012.02.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND/PURPOSE Alternating hypothalamic-pituitary-adrenal axis mechanisms would lead to multiple organs dysfunction or failure. Herein, we attempt to assess whether hypothalamic inflammation and ischemic and oxidative damage that occurred during heatstroke (HS) can be affected by hyperbaric oxygen (HBO₂) therapy in streptozotocin-induced diabetic rats. METHODS In this study, anesthetized diabetic rats, immediately after the onset of HS, were divided into two major groups and given the normobaric air (21% O₂ at 1.0 atmospheres absolute) or HBO₂ (100% O₂ at 2.0 atmospheres absolute). HS was induced by exposing the animals to heat stress (43°C). Another group of anesthetized diabetic rats was kept at normothermic state and used as controls. RESULTS The survival time values for the HBO2-treated HS-diabetic rats increased form the control values of 78-82 minutes to new values of 184-208 minutes. HBO₂ therapy caused a reduction of HS-induced cellular ischemia (e.g., increased cellular levels of glutamate and lactate/pyruvate ratio), hypoxia (e.g., decreased cellular levels of PO₂), inflammation (e.g., increased cellular levels of interleukin-1β, tumor necrosis factor-alpha, interleukin-6, and myeloperoxidase), and oxidative damage (e.g., increased values of nitric oxide, 2,3-dihydroxybenzoic acid, glycerol, and neuronal damage score) in the hypothalamus of the diabetic rats. CONCLUSION Our results suggest that, in diabetic animals, HBO2 therapy may improve outcomes of HS in part by reducing heat-induced activated inflammation and ischemic and oxidative damage in the hypothalamus and other brain regions.
Collapse
|
23
|
Improved Detection of Heat Stroke-Induced Brain Injury by High B-Value Diffusion-Weighted Imaging. J Comput Assist Tomogr 2011; 35:498-500. [DOI: 10.1097/rct.0b013e3182220082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Yang TH, Shih MF, Wen YS, Ho WY, Leu KL, Wang MY, Liu CC. Attenuation of circulatory shock and cerebral ischemia injury in heat stroke by combination treatment with dexamethasone and hydroxyethyl starch. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2010; 2:19. [PMID: 20937119 PMCID: PMC2959042 DOI: 10.1186/2040-7378-2-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 10/11/2010] [Indexed: 11/17/2022]
Abstract
BACKGROUND Increased systemic cytokines and elevated brain levels of monoamines, and hydroxyl radical productions are thought to aggravate the conditions of cerebral ischemia and neuronal damage during heat stroke. Dexamethasone (DXM) is a known immunosuppressive drug used in controlling inflammation, and hydroxyethyl starch (HES) is used as a volume-expanding drug in cerebral ischemia and/or cerebral injury. Acute treatment with a combined therapeutic approach has been repeatedly advocated in cerebral ischemia experiments. The aim of this study is to investigate whether the combined agent (HES and DXM) has beneficial efficacy to improve the survival time (ST) and heat stroke-induced cerebral ischemia and neuronal damage in experimental heat stroke. METHODS Urethane-anesthetized rats underwent instrumentation for the measurement of colonic temperature, mean arterial pressure (MAP), local striatal cerebral blood flow (CBF), heart rate, and neuronal damage score. The rats were exposed to an ambient temperature (43 degrees centigrade) to induce heat stroke. Concentrations of the ischemic and damage markers, dopamine, serotonin, and hydroxyl radical productions in corpus striatum, and the serum levels of interleukin-1 beta, tumor necrosis factor-alpha and malondialdehyde (MDA) were observed during heat stroke. RESULTS After heat stroke, the rats displayed circulatory shock (arterial hypotension), decreased CBF, increased the serum levels of cytokines and MDA, increased cerebral striatal monoamines and hydroxyl radical productions release, and severe cerebral ischemia and neuronal damage compared with those of normothermic control rats. However, immediate treatment with the combined agent at the onset of heat stroke confers significant protection against heat stroke-induced circulatory shock, systemic inflammation; cerebral ischemia, cerebral monoamines and hydroxyl radical production overload, and improves neuronal damage and the ST in rats. CONCLUSIONS Our results suggest that the combination of a colloid substance with a volume-expanding effect and an anti-inflammatory agent may provide a better resuscitation solution for victims with heat stroke.
Collapse
Affiliation(s)
- Tsai-Hsiu Yang
- Department of Health and Nutrition, Chia-Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Mei-Fen Shih
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Yi-Szu Wen
- Department of Emergency medicine, Taipei Veterans General Hospital, Taipei 11267, Taiwan
| | - Wen-Yueh Ho
- Department and Institute of Cosmetic Science, Chia-Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Kuen-Lin Leu
- Department and Institute of Cosmetic Science, Chia-Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Mei-Ying Wang
- Department and Institute of Cosmetic Science, Chia-Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Chia-Chyuan Liu
- Department and Institute of Cosmetic Science, Chia-Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| |
Collapse
|
25
|
Cheng BC, Chang CP, Liu WP, Lin MT. Both mild hypothermia and dopamine D2 agonist are neuroprotective against hyperthermia-induced injury in PC12 cells. Neurosci Lett 2008; 443:140-4. [DOI: 10.1016/j.neulet.2008.07.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 07/21/2008] [Accepted: 07/30/2008] [Indexed: 11/24/2022]
|
26
|
Cheng BC, Chang CP, Tsay YG, Wu TF, Hsu CY, Lin MT. Body cooling causes normalization of cardiac protein expression and function in a rat heatstroke model. J Proteome Res 2008; 7:4935-45. [PMID: 18823141 DOI: 10.1021/pr8000089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cardiac dysfunction contributes to heatstroke genesis, which can be ameliorated by whole body cooling. A comparative analysis using two-dimensional in-gel electrophoresis of cardiac protein patterns is performed in rat controls, untreated heatstroke rats, and whole body cooling-treated heatstroke rats. After the onset of heatstroke, animals display hypotension and altered cardiac protein profiles, which can be reversed by whole body cooling. Thus, the proteomic mechanisms exerted by body cooling during heatstroke are elucidated by the current results.
Collapse
Affiliation(s)
- Bor-Chih Cheng
- Department of Surgery and Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
27
|
Chen YC, Liu YC, Yen DHT, Wang LM, Huang CI, Lee CH, Lin MT. l-ARGININE CAUSES AMELIORATION OF CEREBROVASCULAR DYSFUNCTION AND BRAIN INFLAMMATION DURING EXPERIMENTAL HEATSTROKE. Shock 2008; 29:212-6. [PMID: 17693925 DOI: 10.1097/shk.0b013e3180ca9ccc] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cerebrovascular dysfunction ensuing from severe heatstroke includes intracranial hypertension, cerebral hypoperfusion, and brain inflammation. We attempted to assess whether L-arginine improves survival during experimental heatstroke by attenuating these reactions. Anesthetized rats, 70 min after the start of heat stress (43 degrees C), were divided into two major groups and given the following: vehicle solution (1 mL/kg body weight) or L-arginine (50-250 mg/kg body weight) intravenously. Another group of rats was exposed to room temperature (24 degrees C) and used as normothermic controls. Their physiological and biochemical parameters were continuously monitored. When the vehicle-treated rats underwent heat stress, their survival time values were found to be 20 to 26 min. Treatment with i.v. doses of L-arginine significantly improved the survival rate during heatstroke (54-245 min). As compared with those of normothermic controls, all vehicle-treated heatstroke animals displayed higher levels of core temperature, intracranial pressure, and NO metabolite, glutamate, glycerol, lactate-pyruvate ratio, and dihydroxybenzoic acid in hypothalamus. In addition, hypothalamic levels of IL-1beta and TNF-alpha were elevated after heatstroke onset. In contrast, all vehicle-treated heatstroke animals had lower levels of MAP, cerebral perfusion pressure, cerebral blood flow, and brain partial pressure of oxygen. Administration of L-arginine immediately after the onset of heatstroke significantly reduced the intracranial hypertension and the increased levels of NO metabolite, glutamate, glycerol, lactate-pyruvate ratio, and dihydroxybenzoic acid in the hypothalamus that occurred during heatstroke. The heatstroke-induced increased levels of IL-1beta and TNF-alpha in the hypothalamus were suppressed by L-arginine treatment. In contrast, the hypothalamic levels of IL-10 were significantly elevated by L-arginine during heatstroke. The results suggest that L-arginine may cause attenuation of heatstroke by reducing cerebrovascular dysfunction and brain inflammation.
Collapse
Affiliation(s)
- Yen-Chia Chen
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
28
|
Chen SH, Chang FM, Chang HK, Chen WC, Huang KF, Lin MT. Human umbilical cord blood-derived CD34+ cells cause attenuation of multiorgan dysfunction during experimental heatstroke. Shock 2007; 27:663-71. [PMID: 17505307 DOI: 10.1097/01.shk.0000248593.71388.40] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Multiorgan dysfunction ensuing from severe heatstroke includes hypotension, hepatic and renal failure, hypercoagulable state, activated inflammation, and cerebral ischemia and injury. We attempted to assess whether human umbilical cord blood-derived CD34+ cell therapy improves survival during experimental heatstroke by attenuating multiorgan dysfunction. Anesthetized rats, immediately after the onset of heatstroke, were divided into 2 major groups and given CD34- or CD34+ cells (1 x 10(5)-5 x 10(5)/mL/kg body weight) i.v. They were exposed to ambient temperature of 43 degrees C to induce heatstroke. Another group of rats were exposed to room temperature (26 degrees C) and used as normothermic controls. Hypotension, hepatic and renal failure (evidenced by increased serum urea nitrogen, creatinine, aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase levels in plasma), hypercoagulable state (evidenced by increased prothrombin time, activated partial thromboplastin time, and D-dimer, and decreased platelet count and protein C in plasma), activated inflammation (evidence by increased TNF-alpha levels in serum), and cerebral dysfunction (evidenced by intracranial hypertension, cerebral hypoperfusion and hypoxia, and cerebral ischemia and injury) were monitored. When the CD34- cell-treated or untreated rats underwent heat stress, their survival time values were found to be 19 to 23 min. Resuscitation with CD34+ cells significantly improved survival time (duration, 63-291 min). As compared with normothermic controls, all CD34- cell-treated heatstroke animals displayed hypotension, hepatic and renal failure, hypercoagulable state, activated inflammation, and cerebral ischemia and injury. However, CD34+ cell therapy significantly caused attenuation of all the above-mentioned heatstroke reactions. In addition, the levels of IL-10 in plasma and glial cell line-derived neurotrophic factors in brain were all significantly increased after CD34+ cell therapy during heatstroke. Our data indicate that CD34+ cell therapy may resuscitate persons who had a heatstroke by reducing multiorgan dysfunction or failure.
Collapse
Affiliation(s)
- Sheng-Hsien Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
29
|
Chen SH, Huang KF, Lin MT, Chang FM. Human umbilical cord blood cells or estrogen may be beneficial in treating heatstroke. Taiwan J Obstet Gynecol 2007; 46:15-25. [PMID: 17389184 DOI: 10.1016/s1028-4559(08)60101-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This current review summarized animal models of heatstroke experimentation that promote our current knowledge of therapeutic effects on cerebrovascular dysfunction, coagulopathy, and/or systemic inflammation with human umbilical cord blood cells (HUCBCs) or estrogen in the setting of heatstroke. Accumulating evidences have demonstrated that HUCBCs provide a promising new therapeutic method against neurodegenerative diseases, such as stroke, traumatic brain injury, and spinal cord injury as well as blood disease. More recently, we have also demonstrated that post- or pretreatment by HUCBCs may resuscitate heatstroke rats with by reducing circulatory shock, and cerebral nitric oxide overload and ischemic injury. Moreover, CD34+ cells sorted from HUCBCs may improve survival by attenuating inflammatory, coagulopathy, and multiorgan dysfunction during experimental heatstroke. Many researchers indicated pro- (e.g. tumor necrosis factor-alpha [TNF-alpha]) and anti-inflammatory (e.g. interleukin-10 [IL-10]) cytokines in the peripheral blood stream correlate with severity of circulatory shock, cerebral ischemia and hypoxia, and neuronal damage occurring in heatstroke. It has been shown that intravenous administration of CD34+ cells can secrete therapeutic molecules, such as neurotrophic factors, and attenuate systemic inflammatory reactions by decreasing serum TNF-alpha but increasing IL-10 during heatstroke. Another line of evidence has suggested that estrogen influences the severity of injury associated with cerebrovascular shock. Recently, we also successfully demonstrated estrogen resuscitated heatstroke rats by ameliorating systemic inflammation. Conclusively, HUCBCs or estrogen may be employed as a beneficial therapeutic strategy in prevention and repair of cerebrovascular dysfunction, coagulopathy, and/or systemic inflammation during heatstroke.
Collapse
Affiliation(s)
- Sheng-Hsien Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Department of Obstetrics and Gynecology, Chi Mei Medical Center, Tainan, Taiwan
| | | | | | | |
Collapse
|
30
|
Hsiao SH, Chang CP, Chiu TH, Lin MT. Resuscitation from experimental heatstroke by brain cooling therapy. Resuscitation 2007; 73:437-45. [PMID: 17300862 DOI: 10.1016/j.resuscitation.2006.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 10/19/2006] [Accepted: 11/03/2006] [Indexed: 11/25/2022]
Abstract
We have used hypothermic retrograde jugular venous flush to cool the brain previously and to provide better resuscitation than peripheral cold saline infusion during heatstroke in the rat. The current study was performed to assess the effects of brain cooling further on production of reactive nitrogen species, reactive oxygen species, tumor necrosis factor-alpha, and interleukin-10 in both serum and brain during heatstroke. Rats, under general anaesthesia, were randomized into the following groups and given: (a) 36 degrees C or (b) 4 degrees C saline infusion in the external jugular vein immediately after onset of heatstroke. They were exposed to an ambient temperature of 43 degrees C for exactly 70 min to induce heatstroke. When the 36 degrees C saline-treated rats underwent heat stress, their survival time values were found to be 21-25 min. Immediately after the onset of heatstroke, resuscitation with an i.v. dose of 4 degrees C saline greatly improved survival (226-268 min). Compared with the normothermic controls, the 36 degrees C saline-treated heatstroke rats displayed higher levels of brain temperature, intracranial pressure, serum and hypothalamic nitric oxide metabolite, tumor necrosis factor-alpha and dihydroxybenzoic acid as well as hypothalamic inducible nitric oxide synthase immunoreactivity. In contrast, the values of mean arterial pressure, cerebral perfusion pressure, and hypothalamic levels of local blood flow, and partial pressure of oxygen were all significantly lower during heatstroke. The cerebrovascular dysfunction, the increased levels of nitric oxide metabolites, tumor necrosis factor-alpha, and dihydroxybenzoic acid in both the serum and the hypothalamus, and the increased levels of hypothalamic inducible nitric oxide synthase immunoreactivity occurred during heatstroke were significantly suppressed by brain cooling. Although the serum and hypothalamic interleukin-10 maintained at a negligible level before stress, they were significantly elevated by brain cooling during heatstroke. These findings suggest that brain cooling may resuscitate persons who had heatstroke by decreasing overproduction of reactive nitrogen species, tumor necrosis factor-alpha, reactive oxygen species and cerebrovascular dysfunction, but increasing production of interleukin-10.
Collapse
Affiliation(s)
- Sheng-Huang Hsiao
- Institute of Physiology, National Yang-Ming University School of Medicine, Taipei 110, Taiwan
| | | | | | | |
Collapse
|
31
|
Chen YW, Chen SH, Chou W, Lo YM, Hung CH, Lin MT. Exercise pretraining protects against cerebral ischaemia induced by heat stroke in rats. Br J Sports Med 2007; 41:597-602. [PMID: 17496074 PMCID: PMC2465410 DOI: 10.1136/bjsm.2006.033829] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND In the rat brain, heat-stroke-induced damage to cerebral neurons is attenuated through heat-shock-induced overexpression of heat-shock protein 72 (HSP72). OBJECTIVE To ascertain whether progressive exercise preconditioning induces HSP72 expression in the rat brain and prevents heat-stroke-induced cerebral ischaemia and injury. METHODS Male Wistar rats were randomly assigned to either a sedentary group or an exercise group. Those in the exercise group progressively ran on a treadmill 5 days/week, for 30-60 min/day at an intensity of 20-30 m/min for 3 weeks. The effects of heat stroke on mean arterial pressure, cerebral blood flow, brain ischaemia markers (glutamate, lactate/pyruvate ratio and nitric oxide), a cerebral injury marker (glycerol) and brain neuronal damage score in the preconditioned animals were compared with effects in unexercised controls. Heat stroke was induced by exposing urethane-anaesthetised animals to a temperature of 43 degrees C for 55 min, which caused the body temperature to reach 42 degrees C. RESULTS Three weeks of progressive exercise pretreatment induced HSP72 preconditioning in the brain and conferred significant protection against heat-stroke-induced hyperthermia, arterial hypotension, cerebral ischaemia and neuronal damage; it also prolonged survival. CONCLUSIONS Exercise for 3 weeks can improve heat tolerance as well as attenuate heat-stroke-induced cerebral ischaemia in rats. The maintenance of mean arterial pressure and cerebral blood flow at appropriate levels in the rat brain may be related to overexpression of HSP72.
Collapse
Affiliation(s)
- Yu-Wen Chen
- Department of Physical Therapy, China Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
32
|
Cheng BC, Chang CP, Lin MT, Lee CC. Inhibition of neuronal nitric oxide synthase causes attenuation of cerebrovascular dysfunction in experimental heatstroke. Neuropharmacology 2007; 52:297-305. [PMID: 16950411 DOI: 10.1016/j.neuropharm.2006.07.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 07/20/2006] [Accepted: 07/20/2006] [Indexed: 11/22/2022]
Abstract
The present study was performed to assess the prophylactic effect of 7-nitroindazole (7-NI), an inhibitor of neuronal nitric oxide synthase (nNOS), in an animal model of heatstroke. Anesthetized rats, immediately before the start of heat stress, were divided into two major groups and given the following: vehicle solution (1 mL per kg body weight) or 7-NI (5-20mg/mL per kg body weight) intraperitoneally. They were exposed to ambient temperature of 43 degrees C to induce heatstroke. Another group of rats were exposed to room temperature (24 degrees C) and used as normothermic controls. Their physiologic and biochemical parameters were continuously monitored. When the vehicle-pretreated rats underwent heat stress, their survival time values were found to be 21-25 min. Pretreatment with intraperitoneal doses of 7-NI significantly improved survival during heatstroke (55-164 min). As compared to those of normothermic controls, all vehicle-pretreated heatstroke animals displayed higher levels of core temperature, intracranial pressure, nitric oxide metabolite (NO(2)(-)), glutamate, glycerol, lactate/pyruvate ratio, neuronal damage score and nNOS expression in the hypothalamus, and tumor necrosis factor-alpha (TNF-alpha) in the serum. In contrast, all vehicle-pretreated heatstroke animals had lower levels of mean arterial pressure, cerebral perfusion pressure, cerebral blood flow, and brain PO(2). Administration of 7-NI before the start of heat exposure significantly reduced the hyperthermia, intracranial hypertension, nNOS-dependent NO(2)(-), glutamate, glycerol, lactate/pyruvate ratio, and neuronal damage score in the hypothalamus, as well as overproduction of TNF-alpha in the serum that occurred during heatstroke. The data show that reduction of nNOS-dependent NO(2)(-) with 7-NI causes attenuation of cerebrovascular dysfunction, hyperthermia, and TNF-alpha overproduction during heatstroke in the rat.
Collapse
Affiliation(s)
- Bor-Chih Cheng
- Division of Cardiology, Chi Mei Medical Center, Tainan 710, Taiwan
| | | | | | | |
Collapse
|
33
|
Chang CP, Huang WT, Cheng BC, Hsu CC, Lin MT. The flavonoid baicalin protects against cerebrovascular dysfunction and brain inflammation in experimental heatstroke. Neuropharmacology 2007; 52:1024-33. [PMID: 17204294 DOI: 10.1016/j.neuropharm.2006.10.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 10/27/2006] [Accepted: 10/30/2006] [Indexed: 12/15/2022]
Abstract
The present study was performed to assess the prophylactic effect of baicalin, a flavonoid compound, in an animal model of heatstroke. Anesthetized rats, immediately before the start of heat stress, were divided into two major groups and given the following: vehicle solution (1mL per kg body weight) or baicalin (10-40mg per kg body weight) intravenously. They were exposed to ambient temperature of 43 degrees C to induce heatstroke. Another group of rats was exposed to room temperature (24 degrees C) and used as normothermic controls. Their physiologic and biochemical parameters were continuously monitored. When the vehicle-pretreated rats underwent heat stress, their survival time values were found to be 20-28min. Pretreatment with intravenous doses of baicalin significantly improved survival during heatstroke (65-248min). As compared to those of normothermic controls, all vehicle-pretreated heatstroke animals displayed higher levels of core temperature, intracranial pressure, and nitric oxide metabolite (NO(2)(-)), glutamate, glycerol, lactate/pyruvate ratio, and dihydroxybenzoic acid (DHBA) in hypothalamus. In addition, both serum and hypothalamic levels of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) as well as plasma levels of creatinine, serum urea nitrogen, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase and alkaline phosphatase were elevated after heatstroke onset. In contrast, all vehicle-pretreated heatstroke animals had lower levels of mean arterial pressure, cerebral perfusion pressure, cerebral blood flow, and brain PO(2). Administration of baicalin before the start of heat exposure significantly reduced the hyperthermia, intracranial hypertension, and the increased levels of NO(2)(-), glutamate, glycerol, lactate/pyruvate ratio, and DHBA in the hypothalamus that occurred during heatstroke. The heatstroke-induced increased levels of IL-1beta and TNF-alpha in both the serum and hypothalamus, and renal and hepatic dysfunction were suppressed by baicalin pretreatment. In contrast, both the serum and hypothalamic levels of IL-10 were significantly elevated by baicalin during heatstroke. We successfully demonstrated that baicalin can be used as a prophylactic agent for heatstroke. In particular, baicalin may protect against cerebrovascular dysfunction and brain inflammation in heatstroke.
Collapse
Affiliation(s)
- Ching-Ping Chang
- Department of Biotechnology, Southern Taiwan University of Technology, Tainan Hsien, Taiwan 710
| | | | | | | | | |
Collapse
|