1
|
Lipotoxicity: a driver of heart failure with preserved ejection fraction? Clin Sci (Lond) 2021; 135:2265-2283. [PMID: 34643676 PMCID: PMC8543140 DOI: 10.1042/cs20210127] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/17/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a growing public health concern, with rising incidence alongside high morbidity and mortality. However, the pathophysiology of HFpEF is not yet fully understood. The association between HFpEF and the metabolic syndrome (MetS) suggests that dysregulated lipid metabolism could drive diastolic dysfunction and subsequent HFpEF. Herein we summarise recent advances regarding the pathogenesis of HFpEF in the context of MetS, with a focus on impaired lipid handling, myocardial lipid accumulation and subsequent lipotoxicity.
Collapse
|
2
|
Tan Y, Li M, Wu G, Lou J, Feng M, Xu J, Zhou J, Zhang P, Yang H, Dong L, Li J, Zhang X, Gao F. Short-term but not long-term high fat diet feeding protects against pressure overload-induced heart failure through activation of mitophagy. Life Sci 2021; 272:119242. [PMID: 33607155 DOI: 10.1016/j.lfs.2021.119242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 01/04/2023]
Abstract
AIMS Recent studies have shown that enhancement of fatty acid utilization through feeding animals a high fat diet (HFD) attenuated cardiac dysfunction in heart failure (HF). Here, we aimed to examine the temporal effects of HFD feeding on cardiac function in mice with heart failure and its underlying mechanism. MAIN METHODS Pressure overload-induced HF was established via transverse aortic constriction (TAC) surgery. After surgery, the mice were fed on either normal diet or HFD for 8 or 16 weeks. KEY FINDINGS HFD feeding exerted opposite effects on cardiac function at different time points post-surgery. Short-term HFD feeding (8 wk) protected the heart against pressure overload, inhibiting cardiac hypertrophy and improving cardiac function, while long-term HFD feeding (16 wk) aggravated cardiac dysfunction in TAC mice. Short-term HFD feeding elevated cardiac fatty acid utilization, while long-term HFD feeding showed no significant effects on cardiac fatty acid utilization in TAC mice. Specifically, an increase in cardiac fatty acid utilization was accompanied with activated mitophagy and improved mitochondrial function. Palmitic acid treatment (400 μM, 2 h) stimulated fatty acid oxidation and mitophagy in neonatal myocytes. Mechanistically, fatty acid utilization stimulated mitophagy through upregulation of Parkin. Cardiac-specific knockdown of Parkin abolished the protective effects of short-term HFD feeding on cardiac function in TAC mice. SIGNIFICANCES These results suggested that short-term but not long-term HFD feeding protects against pressure overload-induced heart failure through activation of mitophagy, and dietary fat intake should be used with caution in treatment of heart failure.
Collapse
Affiliation(s)
- Yanzhen Tan
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China; Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Min Li
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Guiling Wu
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Jing Lou
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China; School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mengya Feng
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China; School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jie Xu
- Department of Cardiology, 986(th) Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jiaheng Zhou
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Pengfei Zhang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Hongyan Yang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ling Dong
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Jia Li
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xing Zhang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Feng Gao
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
3
|
Liu Z, Ding J, McMillen TS, Villet O, Tian R, Shao D. Enhancing fatty acid oxidation negatively regulates PPARs signaling in the heart. J Mol Cell Cardiol 2020; 146:1-11. [PMID: 32592696 DOI: 10.1016/j.yjmcc.2020.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022]
Abstract
High fatty acid oxidation (FAO) is associated with lipotoxicity, but whether it causes lipotoxic cardiomyopathy remains controversial. Molecular mechanisms that may be responsible for FAO-induced lipotoxic cardiomyopathy are also elusive. In this study, increasing FAO by genetic deletion of acetyl-CoA carboxylase 2 (ACC2) did not induce cardiac dysfunction after 16 weeks of high fat diet (HFD) feeding. This suggests that increasing FAO, per se, does not cause metabolic cardiomyopathy in obese mice. We compared transcriptomes of control and ACC2 deficient mouse hearts under chow- or HFD-fed conditions. ACC2 deletion had a significant impact on the global transcriptome including downregulation of the peroxisome proliferator-activated receptors (PPARs) signaling and fatty acid degradation pathways. Increasing fatty acids by HFD feeding normalized expression of fatty acid degradation genes in ACC2 deficient mouse hearts to the same level as the control mice. In contrast, cardiac transcriptome analysis of the lipotoxic mouse model (db/db) showed an upregulation of PPARs signaling and fatty acid degradation pathways. Our results suggest that enhancing FAO by genetic deletion of ACC2 negatively regulates PPARs signaling through depleting endogenous PPAR ligands, which can serve as a negative feedback mechanism to prevent excess activation of PPAR signaling under non-obese condition. In obesity, excessive lipid availability negates the feedback mechanism resulting in over activation of PPAR cascade, thus contributes to the development of cardiac lipotoxicity.
Collapse
Affiliation(s)
- ZhengLong Liu
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98109, USA
| | - Jeffrey Ding
- Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA 92093, USA
| | - Timothy S McMillen
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98109, USA
| | - Outi Villet
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98109, USA
| | - Rong Tian
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98109, USA.
| | - Dan Shao
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
4
|
Pérez‐Ramírez IF, González‐Dávalos ML, Mora O, Silva I, Gallegos‐Corona MA, Guzmán‐Maldonado SH, Reynoso‐Camacho R. Cardiac Lipid Metabolism Is Modulated by
Casimiroa edulis
and
Crataegus pubescens
Aqueous Extracts in High Fat and Fructose (HFF) Diet‐Fed Obese Rats. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - María L. González‐Dávalos
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN) Instituto de Neurobiología Universidad Nacional Autónoma de México 76230 Querétaro México
| | - Ofelia Mora
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN) Instituto de Neurobiología Universidad Nacional Autónoma de México 76230 Querétaro México
| | - Isaac Silva
- Facultad de Ciencias Naturales Universidad Autónoma de Querétaro 76230 Querétaro México
| | | | | | | |
Collapse
|
5
|
Guo Y, Wang Z, Qin X, Xu J, Hou Z, Yang H, Mao X, Xing W, Li X, Zhang X, Gao F. Enhancing fatty acid utilization ameliorates mitochondrial fragmentation and cardiac dysfunction via rebalancing optic atrophy 1 processing in the failing heart. Cardiovasc Res 2018; 114:979-991. [PMID: 29490017 DOI: 10.1093/cvr/cvy052] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/24/2018] [Indexed: 09/12/2024] Open
Abstract
AIMS Heart failure (HF) is characterized by reduced fatty acid (FA) utilization associated with mitochondrial dysfunction. Recent evidence has shown that enhancing FA utilization may provide cardioprotection against HF. Our aim was to investigate the effects and the underlying mechanisms of cardiac FA utilization on cardiac function in response to pressure overload. METHODS AND RESULTS Transverse aortic constriction (TAC) was used in C57 mice to establish pressure overload-induced HF. TAC mice fed on a high fat diet (HFD) exhibited increased cardiac FA utilization and improved cardiac function and survival compared with those on control diet. Such cardioprotection could also be provided by cardiac-specific overexpression of CD36. Notably, both HFD and CD36 overexpression attenuated mitochondrial fragmentation and improved mitochondrial function in the failing heart. Pressure overload decreased ATP-dependent metalloprotease (YME1L) expression and induced the proteolytic cleavage of the dynamin-like guanosine triphosphatase OPA1 as a result of suppressed FA utilization. Enhancing FA utilization upregulated YME1L expression and subsequently rebalanced OPA1 processing, resulting in restoration of mitochondrial morphology in the failing heart. In addition, cardiac-specific overexpression of YME1L exerted similar cardioprotective effects against HF to those provided by HFD or CD36 overexpression. CONCLUSIONS These findings demonstrate that enhancing FA utilization ameliorates mitochondrial fragmentation and cardiac dysfunction via rebalancing OPA1 processing in pressure overload-induced HF, suggesting a unique metabolic intervention approach to improving cardiac functions in HF.
Collapse
MESH Headings
- Animals
- CD36 Antigens/genetics
- CD36 Antigens/metabolism
- Cells, Cultured
- Diet, High-Fat
- Disease Models, Animal
- Energy Metabolism
- Fatty Acids/metabolism
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- Heart Failure/diet therapy
- Heart Failure/metabolism
- Heart Failure/pathology
- Heart Failure/physiopathology
- Male
- Metalloendopeptidases/genetics
- Metalloendopeptidases/metabolism
- Mice, Inbred C57BL
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Proteolysis
- Rats, Sprague-Dawley
- Ventricular Function, Left
Collapse
Affiliation(s)
- Yongzheng Guo
- School of Aerospace Medicine, Fourth Military Medical University, 17 Changlexi Road, Xi'an 710032, China and
| | - Zhen Wang
- School of Aerospace Medicine, Fourth Military Medical University, 17 Changlexi Road, Xi'an 710032, China and
| | - Xinghua Qin
- School of Aerospace Medicine, Fourth Military Medical University, 17 Changlexi Road, Xi'an 710032, China and
| | - Jie Xu
- School of Aerospace Medicine, Fourth Military Medical University, 17 Changlexi Road, Xi'an 710032, China and
| | - Zuoxu Hou
- School of Aerospace Medicine, Fourth Military Medical University, 17 Changlexi Road, Xi'an 710032, China and
| | - Hongyan Yang
- School of Aerospace Medicine, Fourth Military Medical University, 17 Changlexi Road, Xi'an 710032, China and
| | - Xuechao Mao
- School of Aerospace Medicine, Fourth Military Medical University, 17 Changlexi Road, Xi'an 710032, China and
| | - Wenjuan Xing
- School of Aerospace Medicine, Fourth Military Medical University, 17 Changlexi Road, Xi'an 710032, China and
| | - Xiaoliang Li
- Department of Emergency Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xing Zhang
- School of Aerospace Medicine, Fourth Military Medical University, 17 Changlexi Road, Xi'an 710032, China and
| | - Feng Gao
- School of Aerospace Medicine, Fourth Military Medical University, 17 Changlexi Road, Xi'an 710032, China and
| |
Collapse
|
6
|
Effects of environmental stress following myocardial infarction on behavioral measures and heart failure progression: The influence of isolated and group housing conditions. Physiol Behav 2015; 152:168-74. [DOI: 10.1016/j.physbeh.2015.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 09/07/2015] [Accepted: 09/25/2015] [Indexed: 01/07/2023]
|
7
|
Targeting mitochondrial oxidative metabolism as an approach to treat heart failure. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:857-65. [DOI: 10.1016/j.bbamcr.2012.08.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 08/21/2012] [Accepted: 08/23/2012] [Indexed: 01/24/2023]
|
8
|
Keung W, Ussher JR, Jaswal JS, Raubenheimer M, Lam VH, Wagg CS, Lopaschuk GD. Inhibition of carnitine palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice. Diabetes 2013; 62:711-20. [PMID: 23139350 PMCID: PMC3581198 DOI: 10.2337/db12-0259] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Impaired skeletal muscle fatty acid oxidation has been suggested to contribute to insulin resistance and glucose intolerance. However, increasing muscle fatty acid oxidation may cause a reciprocal decrease in glucose oxidation, which might impair insulin sensitivity and glucose tolerance. We therefore investigated what effect inhibition of mitochondrial fatty acid uptake has on whole-body glucose tolerance and insulin sensitivity in obese insulin-resistant mice. C57BL/6 mice were fed a high-fat diet (60% calories from fat) for 12 weeks to develop insulin resistance. Subsequent treatment of mice for 4 weeks with the carnitine palmitoyltransferase-1 inhibitor, oxfenicine (150 mg/kg i.p. daily), resulted in improved whole-body glucose tolerance and insulin sensitivity. Exercise capacity was increased in oxfenicine-treated mice, which was accompanied by an increased respiratory exchange ratio. In the gastrocnemius muscle, oxfenicine increased pyruvate dehydrogenase activity, membrane GLUT4 content, and insulin-stimulated Akt phosphorylation. Intramyocellular levels of lipid intermediates, including ceramide, long-chain acyl CoA, and diacylglycerol, were also decreased. Our results demonstrate that inhibition of mitochondrial fatty acid uptake improves insulin sensitivity in diet-induced obese mice. This is associated with increased carbohydrate utilization and improved insulin signaling in the skeletal muscle, suggestive of an operating Randle Cycle in muscle.
Collapse
|
9
|
Effect of chronic CPT-1 inhibition on myocardial ischemia-reperfusion injury (I/R) in a model of diet-induced obesity. Cardiovasc Drugs Ther 2012; 26:205-16. [PMID: 22407171 DOI: 10.1007/s10557-012-6377-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE By increasing circulating free fatty acids and the rate of fatty acid oxidation, obesity decreases glucose oxidation and myocardial tolerance to ischemia. Partial inhibition of fatty acid oxidation may improve myocardial tolerance to ischemia/reperfusion (I/R) in obesity. We assessed the effects of oxfenicine treatment on post ischemic cardiac function and myocardial infarct size in obese rats. METHODS Male Wistar rats were fed a control diet or a high calorie diet which resulted in diet induced obesity (DIO) for 16 weeks. Oxfenicine (200 mg/kg/day) was administered to control and DIO rats for the last 8 weeks. Isolated hearts were perfused and infarct size and post ischemic cardiac function was assessed after regional or global ischemia and reperfusion. Cardiac mitochondrial function was assessed and myocardial expression and activity of CPT-1 (carnitine palmitoyl transferase-1) and IRS-1 (insulin receptor substrate-1) was assessed using Western blot analysis. RESULTS In the DIO rats, chronic oxfenicine treatment improved post ischemic cardiac function and reduced myocardial infarct size after I/R but had no effect on the cardiac mitochondrial respiration. Chronic oxfenicine treatment worsened post ischemic cardiac function, myocardial infarct size and basal mitochondrial respiration in control rat hearts. Basal respiratory control index (RCI) values, state 2 and state 4 respiration rates and ADP phosphorylation rates were compromised by oxfenicine treatment. CONCLUSION Chronic oxfenicine treatment improved myocardial tolerance to I/R in the obese rat hearts but decreased myocardial tolerance to I/R in control rat hearts. This decreased tolerance to ischemia of oxfenicine treated controls was associated with adverse changes in basal and reoxygenation mitochondrial function. These changes were absent in oxfenicine treated hearts from obese rats.
Collapse
|
10
|
Abstract
The heart has both the greatest caloric needs and the most robust oxidation of fatty acids (FAs). Under pathological conditions such as obesity and type 2 diabetes, cardiac uptake and oxidation are not balanced and hearts accumulate lipid potentially leading to cardiac lipotoxicity. We will first review the pathways utilized by the heart to acquire FAs from the circulation and to store triglyceride intracellularly. Then we will describe mouse models in which excess lipid accumulation causes heart dysfunction and experiments performed to alleviate this toxicity. Finally, the known relationships between heart lipid metabolism and dysfunction in humans will be summarized.
Collapse
Affiliation(s)
- Ira J Goldberg
- Department of Medicine, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
11
|
Reducing the Burden of Ischemia Reperfusion. Cardiovasc Drugs Ther 2012; 26:193-4. [DOI: 10.1007/s10557-012-6383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Pellieux C, Montessuit C, Papageorgiou I, Pedrazzini T, Lerch R. Differential effects of high-fat diet on myocardial lipid metabolism in failing and nonfailing hearts with angiotensin II-mediated cardiac remodeling in mice. Am J Physiol Heart Circ Physiol 2012; 302:H1795-805. [PMID: 22408021 DOI: 10.1152/ajpheart.01023.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Normal myocardium adapts to increase of nutritional fatty acid supply by upregulation of regulatory proteins of the fatty acid oxidation pathway. Because advanced heart failure is associated with reduction of regulatory proteins of fatty acid oxidation, we hypothesized that failing myocardium may not be able to adapt to increased fatty acid intake and therefore undergo lipid accumulation, potentially aggravating myocardial dysfunction. We determined the effect of high-fat diet in transgenic mice with overexpression of angiotensinogen in the myocardium (TG1306/R1). TG1306/R1 mice develop ANG II-mediated left ventricular hypertrophy, and at one year of age approximately half of the mice present heart failure associated with reduced expression of regulatory proteins of fatty acid oxidation and reduced palmitate oxidation during ex vivo working heart perfusion. Hypertrophied hearts from TG1306/R1 mice without heart failure adapted to high-fat feeding, similarly to hearts from wild-type mice, with upregulation of regulatory proteins of fatty acid oxidation and enhancement of palmitate oxidation. There was no myocardial lipid accumulation or contractile dysfunction. In contrast, hearts from TG1306/R1 mice presenting heart failure were unable to respond to high-fat feeding by upregulation of fatty acid oxidation proteins and enhancement of palmitate oxidation. This resulted in accumulation of triglycerides and ceramide in the myocardium, and aggravation of contractile dysfunction. In conclusion, hearts with ANG II-induced contractile failure have lost the ability to enhance fatty acid oxidation in response to increased fatty acid supply. The ensuing accumulation of lipid compounds may play a role in the observed aggravation of contractile dysfunction.
Collapse
Affiliation(s)
- Corinne Pellieux
- Cardiology Center, Department of Medicine and Foundation for Medical Research, University Hospitals of Geneva, Geneva.
| | | | | | | | | |
Collapse
|
13
|
Stanley WC, Dabkowski ER, Ribeiro RF, O'Connell KA. Dietary fat and heart failure: moving from lipotoxicity to lipoprotection. Circ Res 2012; 110:764-76. [PMID: 22383711 PMCID: PMC3356700 DOI: 10.1161/circresaha.111.253104] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 01/27/2011] [Indexed: 02/07/2023]
Abstract
There is growing evidence suggesting that dietary fat intake affects the development and progression of heart failure. Studies in rodents show that in the absence of obesity, replacing refined carbohydrate with fat can attenuate or prevent ventricular expansion and contractile dysfunction in response to hypertension, infarction, or genetic cardiomyopathy. Relatively low intake of n-3 polyunsaturated fatty acids from marine sources alters cardiac membrane phospholipid fatty acid composition, decreases the onset of new heart failure, and slows the progression of established heart failure. This effect is associated with decreased inflammation and improved resistance to mitochondrial permeability transition. High intake of saturated, monounsaturated, or n-6 polyunsaturated fatty acids has also shown beneficial effects in rodent studies. The underlying mechanisms are complex, and a more thorough understanding is needed of the effects on cardiac phospholipids, lipid metabolites, and metabolic flux in the normal and failing heart. In summary, manipulation of dietary fat intake shows promise in the prevention and treatment of heart failure. Clinical studies generally support high intake of n-3 polyunsaturated fatty acids from marine sources to prevent and treat heart failure. Additional clinical and animals studies are needed to determine the optimal diet in terms of saturated, monounsaturated, and n-6 polyunsaturated fatty acids intake for this vulnerable patient population.
Collapse
Affiliation(s)
- William C Stanley
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
14
|
Hauton D, Caldwell GM. Cardiac lipoprotein lipase activity in the hypertrophied heart may be regulated by fatty acid flux. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:627-36. [PMID: 22226882 PMCID: PMC3793859 DOI: 10.1016/j.bbalip.2011.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 10/14/2011] [Accepted: 12/14/2011] [Indexed: 12/23/2022]
Abstract
Cardiac hypertrophy is characterised by an imbalance between lipid uptake and fatty acid β-oxidation leading to an accumulation of lipids, particularly triacylglycerol (TAG). It is unclear whether uptake mechanisms such as lipoprotein lipase (LPL) can be attenuated to diminish this uptake. Rats were cold acclimated to induce cardiac hypertrophy and increase cardiac LPL. Lipid uptake and metabolism were altered by feeding a ‘Western-style’ high fat diet (WSD) or feeding oxfenicine (2 g/L) in the drinking water. Diastolic stiffness (increased volume change/unit pressure change) was induced in hypertrophied hearts for rats fed WSD (P < 0.05) or WSD + oxfenicine (P < 0.01), although absolute performance of cardiac muscle, estimated from stress–strain calculations was unchanged. Cold acclimation increased cardiac endothelial LPL (P < 0.05) but this was diminished following oxfenicine. Following WSD LPL was further decreased below WSD-fed control hearts (P < 0.05) with no further decrease by oxfenicine supplementation. A negative correlation was noted between plasma TAG and endothelial LPL (correlation coefficient = − 0.654; P < 0.001) but not cardiac TAG concentration. Transcript levels of angiopoietin-like protein-4 (ANGPTL4) were increased 6-fold by WSD (P < 0.05) and increased 15-fold following WSD + oxfenicine (P < 0.001). For CA-hearts fed WSD or WSD + oxfenicine ANGPTL4 mRNA levels were preserved at chow-fed levels. VLDLR protein levels were increased 10-fold (P < 0.01) by CA. ANGPTL4 protein levels were increased 2-fold (P < 0.05) by WSD, but restored following oxfenicine. For CA-hearts WSD increased ANGPTL4 protein levels 3-fold (P < 0.01) with WSD + oxfenicine increasing ANGPTL4 protein 4-fold (P < 0.01). These data suggest that endothelial LPL levels in the heart are altered to maintain FA flux and may exploit ANGPTL4.
Collapse
Affiliation(s)
- David Hauton
- School of Clinical and Experimental Medicine, College of Medicinal and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| | | |
Collapse
|
15
|
Sharma V, McNeill JH. Parallel effects of β-adrenoceptor blockade on cardiac function and fatty acid oxidation in the diabetic heart: Confronting the maze. World J Cardiol 2011; 3:281-302. [PMID: 21949571 PMCID: PMC3176897 DOI: 10.4330/wjc.v3.i9.281] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/18/2011] [Accepted: 07/25/2011] [Indexed: 02/06/2023] Open
Abstract
Diabetic cardiomyopathy is a disease process in which diabetes produces a direct and continuous myocardial insult even in the absence of ischemic, hypertensive or valvular disease. The β-blocking agents bisoprolol, carvedilol and metoprolol have been shown in large-scale randomized controlled trials to reduce heart failure mortality. In this review, we summarize the results of our studies investigating the effects of β-blocking agents on cardiac function and metabolism in diabetic heart failure, and the complex inter-related mechanisms involved. Metoprolol inhibits fatty acid oxidation at the mitochondrial level but does not prevent lipotoxicity; its beneficial effects are more likely to be due to pro-survival effects of chronic treatment. These studies have expanded our understanding of the range of effects produced by β-adrenergic blockade and show how interconnected the signaling pathways of function and metabolism are in the heart. Although our initial hypothesis that inhibition of fatty acid oxidation would be a key mechanism of action was disproved, unexpected results led us to some intriguing regulatory mechanisms of cardiac metabolism. The first was upstream stimulatory factor-2-mediated repression of transcriptional master regulator PGC-1α, most likely occurring as a consequence of the improved function; it is unclear whether this effect is unique to β-blockers, although repression of carnitine palmitoyltransferase (CPT)-1 has not been reported with other drugs which improve function. The second was the identification of a range of covalent modifications which can regulate CPT-1 directly, mediated by a signalome at the level of the mitochondria. We also identified an important interaction between β-adrenergic signaling and caveolins, which may be a key mechanism of action of β-adrenergic blockade. Our experience with this labyrinthine signaling web illustrates that initial hypotheses and anticipated directions do not have to be right in order to open up meaningful directions or reveal new information.
Collapse
Affiliation(s)
- Vijay Sharma
- Vijay Sharma, John H McNeill, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3.F, Canada
| | | |
Collapse
|
16
|
Cole MA, Murray AJ, Cochlin LE, Heather LC, McAleese S, Knight NS, Sutton E, Jamil AA, Parassol N, Clarke K. A high fat diet increases mitochondrial fatty acid oxidation and uncoupling to decrease efficiency in rat heart. Basic Res Cardiol 2011; 106:447-57. [PMID: 21318295 PMCID: PMC3071466 DOI: 10.1007/s00395-011-0156-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/12/2010] [Accepted: 12/23/2010] [Indexed: 12/03/2022]
Abstract
Elevated levels of cardiac mitochondrial uncoupling protein 3 (UCP3) and decreased cardiac efficiency (hydraulic power/oxygen consumption) with abnormal cardiac function occur in obese, diabetic mice. To determine whether cardiac mitochondrial uncoupling occurs in non-genetic obesity, we fed rats a high fat diet (55% kcal from fat) or standard laboratory chow (7% kcal from fat) for 3 weeks, after which we measured cardiac function in vivo using cine MRI, efficiency in isolated working hearts and respiration rates and ADP/O ratios in isolated interfibrillar mitochondria; also, measured were medium chain acyl-CoA dehydrogenase (MCAD) and citrate synthase activities plus uncoupling protein 3 (UCP3), mitochondrial thioesterase 1 (MTE-1), adenine nucleotide translocase (ANT) and ATP synthase protein levels. We found that in vivo cardiac function was the same for all rats, yet oxygen consumption was 19% higher in high fat-fed rat hearts, therefore, efficiency was 21% lower than in controls. We found that mitochondrial fatty acid oxidation rates were 25% higher, and MCAD activity was 23% higher, in hearts from rats fed the high fat diet when compared with controls. Mitochondria from high fat-fed rat hearts had lower ADP/O ratios than controls, indicating increased respiratory uncoupling, which was ameliorated by GDP, a UCP3 inhibitor. Mitochondrial UCP3 and MTE-1 levels were both increased by 20% in high fat-fed rat hearts when compared with controls, with no significant change in ATP synthase or ANT levels, or citrate synthase activity. We conclude that increased cardiac oxygen utilisation, and thereby decreased cardiac efficiency, occurs in non-genetic obesity, which is associated with increased mitochondrial uncoupling due to elevated UCP3 and MTE-1 levels.
Collapse
Affiliation(s)
- Mark A Cole
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jaswal JS, Keung W, Wang W, Ussher JR, Lopaschuk GD. Targeting fatty acid and carbohydrate oxidation--a novel therapeutic intervention in the ischemic and failing heart. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1333-50. [PMID: 21256164 DOI: 10.1016/j.bbamcr.2011.01.015] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 12/16/2010] [Accepted: 01/11/2011] [Indexed: 12/19/2022]
Abstract
Cardiac ischemia and its consequences including heart failure, which itself has emerged as the leading cause of morbidity and mortality in developed countries are accompanied by complex alterations in myocardial energy substrate metabolism. In contrast to the normal heart, where fatty acid and glucose metabolism are tightly regulated, the dynamic relationship between fatty acid β-oxidation and glucose oxidation is perturbed in ischemic and ischemic-reperfused hearts, as well as in the failing heart. These metabolic alterations negatively impact both cardiac efficiency and function. Specifically there is an increased reliance on glycolysis during ischemia and fatty acid β-oxidation during reperfusion following ischemia as sources of adenosine triphosphate (ATP) production. Depending on the severity of heart failure, the contribution of overall myocardial oxidative metabolism (fatty acid β-oxidation and glucose oxidation) to adenosine triphosphate production can be depressed, while that of glycolysis can be increased. Nonetheless, the balance between fatty acid β-oxidation and glucose oxidation is amenable to pharmacological intervention at multiple levels of each metabolic pathway. This review will focus on the pathways of cardiac fatty acid and glucose metabolism, and the metabolic phenotypes of ischemic and ischemic/reperfused hearts, as well as the metabolic phenotype of the failing heart. Furthermore, as energy substrate metabolism has emerged as a novel therapeutic intervention in these cardiac pathologies, this review will describe the mechanistic bases and rationale for the use of pharmacological agents that modify energy substrate metabolism to improve cardiac function in the ischemic and failing heart. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.
Collapse
Affiliation(s)
- Jagdip S Jaswal
- Mazankowski Alberta Heart Institute, Departments of Pediatrics and Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
18
|
Chang KC, Tseng CD, Lu SC, Liang JT, Wu MS, Tsai MS, Hsu KL. Effects of acetyl-L-carnitine and oxfenicine on aorta stiffness in diabetic rats. Eur J Clin Invest 2010; 40:1002-10. [PMID: 20678118 DOI: 10.1111/j.1365-2362.2010.02358.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND We compared the haemodynamic and metabolic effects of acetyl-L-carnitine (one of the carnitine derivatives) and of oxfenicine (a carnitine palmitoyltransferase-1 inhibitor) in streptozotocin-induced diabetes in male Wistar rats. MATERIALS AND METHODS Diabetes was induced by a single tail vein injection of 55mgkg(-1) streptozotocin. The diabetic animals daily treated with either acetyl-L-carnitine (150mgkg(-1) in drinking water) or oxfenicine (150mgkg(-1) by oral gavage) for 8weeks,were compared with the untreated age-matched diabetic controls. Arterial wave reflection was derived using the impulse response function of the filtered aortic input impedance spectra. Thiobarbituric acid reactive substances (TBARS) measurement was used to estimate malondialdehyde (MDA) content. RESULTS Oxfenicine, but not acetyl-L-carnitine, increased total peripheral resistance in diabetes, which paralleled its elevation in plasma levels of free fatty acids. By contrast, acetyl-L-carnitine, but not oxfenicine, resulted in a significant increase in wave transit time and a decrease in wave reflection factor, suggesting that acetyl-L-carnitine may attenuate the diabetes-induced deterioration in systolic loading condition for the left ventricle. This was in parallel with its lowering of MDA/TBARS content in plasma and aortic walls in diabetes. Acetyl-L-carnitine therapy also prevented the diabetes-related cardiac hypertrophy, as evidenced by the reduction in ratio of the left ventricular weight to body weight. CONCLUSION Acetyl-L-carnitine, but not oxfenicine, attenuates aortic stiffening and cardiac hypertrophy, possibly through its decrease of lipid oxidation-derived MDA/TBARS in the rats with insulin deficiency.
Collapse
Affiliation(s)
- Kuo-Chu Chang
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev 2010; 90:207-58. [PMID: 20086077 DOI: 10.1152/physrev.00015.2009] [Citation(s) in RCA: 1505] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
There is a constant high demand for energy to sustain the continuous contractile activity of the heart, which is met primarily by the beta-oxidation of long-chain fatty acids. The control of fatty acid beta-oxidation is complex and is aimed at ensuring that the supply and oxidation of the fatty acids is sufficient to meet the energy demands of the heart. The metabolism of fatty acids via beta-oxidation is not regulated in isolation; rather, it occurs in response to alterations in contractile work, the presence of competing substrates (i.e., glucose, lactate, ketones, amino acids), changes in hormonal milieu, and limitations in oxygen supply. Alterations in fatty acid metabolism can contribute to cardiac pathology. For instance, the excessive uptake and beta-oxidation of fatty acids in obesity and diabetes can compromise cardiac function. Furthermore, alterations in fatty acid beta-oxidation both during and after ischemia and in the failing heart can also contribute to cardiac pathology. This paper reviews the regulation of myocardial fatty acid beta-oxidation and how alterations in fatty acid beta-oxidation can contribute to heart disease. The implications of inhibiting fatty acid beta-oxidation as a potential novel therapeutic approach for the treatment of various forms of heart disease are also discussed.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Group, Mazankowski Alberta Heart Institute, University of Alberta, Alberta T6G 2S2, Canada.
| | | | | | | | | |
Collapse
|
20
|
Harmancey R, Wilson CR, Wright NR, Taegtmeyer H. Western diet changes cardiac acyl-CoA composition in obese rats: a potential role for hepatic lipogenesis. J Lipid Res 2010; 51:1380-93. [PMID: 20093477 DOI: 10.1194/jlr.m001230] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The "lipotoxic footprint" of cardiac maladaptation in diet-induced obesity is poorly defined. We investigated how manipulation of dietary lipid and carbohydrate influenced potential lipotoxic species in the failing heart. In Wistar rats, contractile dysfunction develops at 48 weeks on a high-fat/high-carbohydrate "Western" diet, but not on low-fat/high-carbohydrate or high-fat diets. Cardiac content of the lipotoxic candidates--diacylglycerol, ceramide, lipid peroxide, and long-chain acyl-CoA species--was measured at different time points by high-performance liquid chromatography and biochemical assays, as was lipogenic capacity in the heart and liver by qRT-PCR and radiometric assays. Changes in membranes fluidity were also monitored using fluorescence polarization. We report that Western feeding induced a 40% decrease in myocardial palmitoleoyl-CoA content and a similar decrease in the unsaturated-to-saturated fatty acid ratio. These changes were associated with impaired cardiac mitochondrial membrane fluidity. At the same time, hepatic lipogenic capacity was increased in animals fed Western diet (+270% fatty acid elongase activity compared with high-fat diet), while fatty acid desaturase activity decreased over time. Our findings suggest that dysregulation of lipogenesis is a significant component of heart failure in diet-induced obesity.
Collapse
Affiliation(s)
- Romain Harmancey
- Department of Internal Medicine, Division of Cardiology, University of Texas Medical School at Houston, TX 77030, USA
| | | | | | | |
Collapse
|
21
|
Yan J, Young ME, Cui L, Lopaschuk GD, Liao R, Tian R. Increased glucose uptake and oxidation in mouse hearts prevent high fatty acid oxidation but cause cardiac dysfunction in diet-induced obesity. Circulation 2009; 119:2818-28. [PMID: 19451348 DOI: 10.1161/circulationaha.108.832915] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Shift of myocardial substrate preference has been observed in many chronic diseases such as diabetes and heart failure. This study was undertaken to elucidate the mechanisms underlying the chronic substrate switch in adult hearts and to determine the functional consequences of the switch. METHODS AND RESULTS Transgenic mice with cardiac-specific overexpression of the insulin-independent glucose transporter GLUT1 (TG) were used to increase intracellular glucose in cardiac myocytes. A high-fat diet was used to increase the fatty acid supply to the heart. High-fat diet induced a 40% increase in fatty acid oxidation in wild-type hearts, whereas glucose oxidation was decreased to 30% of the control. In contrast, glucose oxidation was >2-fold higher in TG hearts, and the high-fat diet failed to upregulate fatty acid oxidation in these hearts. Glucose induced changes in the expression of multiple metabolic genes, including peroxisome proliferator-activated receptor-alpha (decreased by 51%), 3-oxoacid CoA transferase (decreased by 67%), and acetyl-CoA carboxylase (increased by 4-fold), resulting in a remodeling of the metabolic network to favor a shift of substrate preference toward glucose. Although TG mice on a normal diet maintained normal cardiac energetics and function, the inability to upregulate myocardial fatty acid oxidation in TG mice fed a high-fat diet resulted in increased oxidative stress in the heart, activation of p38 mitogen-activated protein kinase, and contractile dysfunction. CONCLUSIONS We have demonstrated that chronic increases in myocardial glucose uptake and oxidation reduce the metabolic flexibility and render the heart susceptible to contractile dysfunction.
Collapse
Affiliation(s)
- Jie Yan
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
22
|
Rennison JH, McElfresh TA, Chen X, Anand VR, Hoit BD, Hoppel CL, Chandler MP. Prolonged exposure to high dietary lipids is not associated with lipotoxicity in heart failure. J Mol Cell Cardiol 2009; 46:883-90. [PMID: 19265702 DOI: 10.1016/j.yjmcc.2009.02.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 12/15/2022]
Abstract
Previous studies have reported that elevated myocardial lipids in a model of mild-to-moderate heart failure increased mitochondrial function, but did not alter left ventricular function. Whether more prolonged exposure to high dietary lipids would promote a lipotoxic phenotype in mitochondrial and myocardial contractile function has not been determined. We tested the hypothesis that prolonged exposure to high dietary lipids, following coronary artery ligation, would preserve myocardial and mitochondrial function in heart failure. Rats underwent ligation or sham surgery and were fed normal (10% kcal fat) (SHAM, HF) or high fat diet (60% kcal saturated fat) (SHAM+FAT, HF+FAT) for sixteen weeks. Although high dietary fat was accompanied by myocardial tissue triglyceride accumulation (SHAM 1.47+/-0.14; SHAM+FAT 2.32+/-0.14; HF 1.34+/-0.14; HF+FAT 2.21+/-0.20 micromol/gww), fractional shortening was increased 16% in SHAM+FAT and 28% in HF+FAT compared to SHAM and HF, respectively. Despite increased medium-chain acyl-CoA dehydrogenase (MCAD) activity in interfibrillar mitochondria (IFM) of both SHAM+FAT and HF+FAT, dietary lipids also were associated with decreased state 3 respiration using palmitoylcarnitine (SHAM 369+/-14; SHAM+FAT 307+/-23; HF 354+/-13; HF+FAT 366+/-18 nAO min(-1) mg(-1)) in SHAM+FAT compared to SHAM and HF+FAT. State 3 respiration in IFM also was decreased in SHAM+FAT relative to SHAM using succinate and DHQ. In conclusion, high dietary lipids promoted myocardial lipid accumulation, but were not accompanied by alterations in myocardial contractile function typically associated with lipotoxicity. In normal animals, high dietary fat decreased mitochondrial respiration, but also increased MCAD activity. These studies support the concept that high fat feeding can modify multiple cellular pathways that differentially affect mitochondrial function under normal and pathological conditions.
Collapse
Affiliation(s)
- Julie H Rennison
- Department of Physiology and Biophysics, School of Medicine E558, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Duda MK, O'Shea KM, Lei B, Barrows BR, Azimzadeh AM, McElfresh TE, Hoit BD, Kop WJ, Stanley WC. Low-carbohydrate/high-fat diet attenuates pressure overload-induced ventricular remodeling and dysfunction. J Card Fail 2008; 14:327-35. [PMID: 18474346 DOI: 10.1016/j.cardfail.2007.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/30/2007] [Accepted: 11/01/2007] [Indexed: 12/18/2022]
Abstract
BACKGROUND It is not known how carbohydrate and fat intake affect the development of left ventricular (LV) hypertrophy and contractile dysfunction in response to pressure overload. We hypothesized that a low-carbohydrate/high-fat diet prevents LV hypertrophy and dysfunction compared with high-carbohydrate diets. METHODS AND RESULTS Rats were fed high-carbohydrate diets composed of either starch or sucrose, or a low-carbohydrate/high-fat diet, and underwent abdominal aortic banding (AAB) for 2 months. AAB increased LV mass with all diets. LV end-diastolic and systolic volumes and the ratio of the mRNA for myosin heavy chain beta/alpha were increased with both high-carbohydrate diets but not with the low-carbohydrate/high-fat diet. Circulating levels of insulin and leptin, both stimulants for cardiac growth, were lower, and free fatty acids were higher with the low-carbohydrate/high-fat diet compared with high-carbohydrate diets. Among animals that underwent AAB, LV volumes were positively correlated with insulin and LV mass correlated with leptin. CONCLUSION A low-carbohydrate/high-fat diet attenuated pressure overload-induced LV remodeling compared with high-carbohydrate diets. This effect corresponded to lower insulin and leptin concentrations, suggesting they may contribute to the development of LV hypertrophy and dysfunction under conditions of pressure overload.
Collapse
Affiliation(s)
- Monika K Duda
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- Romain Harmancey
- Department of Internal Medicine, Division of Cardiology, University of Texas Medical School at Houston, 6431 Fannin, MSB 1.246, Houston, TX 77030, USA
| | | | | |
Collapse
|
25
|
Lockridge JB, Sailors ML, Durgan DJ, Egbejimi O, Jeong WJ, Bray MS, Stanley WC, Young ME. Bioinformatic profiling of the transcriptional response of adult rat cardiomyocytes to distinct fatty acids. J Lipid Res 2008; 49:1395-408. [PMID: 18387886 DOI: 10.1194/jlr.m700517-jlr200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus, obesity, and dyslipidemia increase risk for cardiovascular disease, and expose the heart to high plasma fatty acid (FA) levels. Recent studies suggest that distinct FA species are cardiotoxic (e.g., palmitate), while others are cardioprotective (e.g., oleate), although the molecular mechanisms mediating these observations are unclear. The purpose of the present study was to investigate the differential effects of distinct FA species (varying carbon length and degree of saturation) on adult rat cardiomyocyte (ARC) gene expression. ARCs were initially challenged with 0.4 mM octanoate (8:0), palmitate (16:0), stearate (18:0), oleate (18:1), or linoleate (18:2) for 24 h. Microarray analysis revealed differential regulation of gene expression by the distinct FAs; the order regarding the number of genes whose expression was influenced by a specific FA was octanoate (1,188) > stearate (740) > palmitate (590) > oleate (83) > linoleate (65). In general, cardioprotective FAs (e.g., oleate) increased expression of genes promoting FA oxidation to a greater extent than cardiotoxic FAs (e.g., palmitate), whereas the latter induced markers of endoplasmic reticulum and oxidative stress. Subsequent RT-PCR analysis revealed distinct time- and concentration-dependent effects of these FA species, in a gene-specific manner. For example, stearate- and palmitate-mediated ucp3 induction tended to be transient (i.e., initial high induction, followed by subsequent repression), whereas oleate-mediated induction was sustained. These findings may provide insight into why diets high in unsaturated FAs (e.g., oleate) are cardioprotective, whereas diets rich in saturated FAs (e.g., palmitate) are not.
Collapse
Affiliation(s)
- Joseph B Lockridge
- University of Texas Health Science Center at Houston, Brown Foundation Institute of Molecular Medicine, Houston TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Chess DJ, Stanley WC. Role of diet and fuel overabundance in the development and progression of heart failure. Cardiovasc Res 2008; 79:269-78. [PMID: 18343896 DOI: 10.1093/cvr/cvn074] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Under physiological conditions, the human heart derives energy from glucose, fatty acids, and/or lactate depending upon substrate availability, circulating hormone levels, and nutritional status. Circulating free fatty acid and glucose levels often exceed the normal range, as observed with type 2 diabetes, obesity, or physical inactivity. Chronic exposure of the heart to high plasma levels of free fatty acids may cause accumulation of toxic lipid intermediates within cardiomyocytes. Furthermore, suppression of glucose oxidation by increased fatty acid uptake shunts glucose into the oxidative pentose phosphate and hexosamine biosynthetic pathways, both of which yield potentially harmful products. Noxious derivatives of aberrant glucose and fatty acid oxidation can activate signalling cascades leading to myocyte dysfunction or death, processes termed 'glucotoxicity' and 'lipotoxicity'. This review discusses the effects of dietary extremes (e.g. high fat and high carbohydrate consumption) and substrate overabundance in the context of heart failure (HF) development and progression. Emerging data suggest that substrate excess leads to cardiac dysfunction and HF, which may be prevented or slowed by maintaining low body fat and high insulin sensitivity and consuming a diet of low glycaemic load that is high in mono- and polyunsaturated fatty acids.
Collapse
Affiliation(s)
- David J Chess
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
27
|
Enhanced acyl-CoA dehydrogenase activity is associated with improved mitochondrial and contractile function in heart failure. Cardiovasc Res 2008; 79:331-40. [DOI: 10.1093/cvr/cvn066] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Medium-chain Fatty Acids as Metabolic Therapy in Cardiac Disease. Cardiovasc Drugs Ther 2008; 22:97-106. [DOI: 10.1007/s10557-008-6084-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 01/17/2008] [Indexed: 12/18/2022]
|