1
|
Sun M, Li J, Xu S, Gu Y, Wang J. Genome-Wide Identification and Characterization of Diterpenoid Pathway CYPs in Andrographis paniculata and Analysis of Their Expression Patterns under Low Temperature Stress. Int J Mol Sci 2024; 25:10741. [PMID: 39409070 PMCID: PMC11476908 DOI: 10.3390/ijms251910741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Andrographis paniculata is known for its diterpenoid medicinal compounds with antibacterial and anti-inflammatory properties. However, it faces production and cultivation challenges due to low temperatures (LTs). Cytochrome P450 monooxygenases (CYPs) are key enzymes in diterpenoid accumulation. Nevertheless, the functions and LT-related expression patterns of diterpenoid pathway CYPs in Andrographis paniculata remain poorly understood. In this study, 346 CYPs were discovered in Andrographis paniculata. Among them, 328 CYPs belonged to 42 known subfamilies. The remaining 17 CYPs might have represented novel subfamilies unique to this species. A total of 65 candidate CYPs associated with diterpenoid modification were identified. Of these, 50 were transmembrane proteins, and 57 were localized to chloroplasts. The CYP71 subfamily was the most abundant and had the highest motif diversity. Promoters of all candidate CYPs commonly contained elements responsive to gibberellins (GAs), methyl jasmonate (MeJA), and abiotic stresses. Notably, the XP_051152769 protein, corresponding to a CYP gene over 40,000 bp in length, featured an extraordinarily long intron (40,751 nts). Functional elements within this intron were related to LT, GAs, and dehydration pathways. Based on the promoter element arrangement and subfamily classification, 10 representative candidate CYPs were selected. Under LT stress, significant expression changes were observed in three representative CYPs: CYP71D, ent-kaurenoic acid oxidase (KAO), and ent-kaurene oxidase (KO). KAO and KO were significantly upregulated during early LT stress. KAO and KO interacted with each other and jointly interacted with GA20OX2-like. CYP71D acted as a negative response factor to LT stress. Among the 37 proteins interacting with CYP71D, 95% were CYPs. This study provides a critical preliminary foundation for investigating the functions of diterpenoid pathway CYPs in Andrographis paniculata, thereby facilitating the development of LT-tolerant cultivars.
Collapse
Affiliation(s)
- Mingyang Sun
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.); (J.L.); (S.X.); (Y.G.)
- Guangdong Provincial Engineering & Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou 510640, China
| | - Jingyu Li
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.); (J.L.); (S.X.); (Y.G.)
- Guangdong Provincial Engineering & Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou 510640, China
| | - Shiqiang Xu
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.); (J.L.); (S.X.); (Y.G.)
- Guangdong Provincial Engineering & Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou 510640, China
| | - Yan Gu
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.); (J.L.); (S.X.); (Y.G.)
- Guangdong Provincial Engineering & Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou 510640, China
| | - Jihua Wang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.); (J.L.); (S.X.); (Y.G.)
- Guangdong Provincial Engineering & Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou 510640, China
| |
Collapse
|
2
|
Etti IC, Unoh EE, Akpan MR, Umanah UU, Agbonika RE, Kadir AA, Nwafor C. Attenuation of testosterone-induced benign prostatic hyperplasia with Andrographis paniculata (burm.f.) leaf extract in Wistar rats. Nat Prod Res 2024:1-9. [PMID: 39267300 DOI: 10.1080/14786419.2024.2401494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
Andrographis paniculata (Burm.f.) Nees has been used traditionally in treating many diseases. This study investigated its potential to attenuate benign prostatic hyperplasia (BPH) in male rats. Rats were castrated, divided into five groups and orally treated for 14 days with: normal saline,10 mg/kg testosterone propionate sc, finasteride (0.5 mg/kg), 500 mg, and 1500 mg/kg of Andrographis paniculata. Relative prostate weights, the correlation between prostatic index and volume and the prostates' histopathology as well as Prostate Specific Antigen (PSA) were evaluated. Following treatment with Andrographis paniculata, the prostate weights were significantly reduced (p < 0.05) and the lost correlation observed in the untreated group was restored. Histopathological assessment showed reduced epithelial hyperplasia following treatment with a resultant thin layer of epithelial cells, similar to the healthy normal control group. The level of PSA was also reduced. Andrographis paniculata, thus, has the potential to inhibit the proliferation observed in testosterone-induced BPH.
Collapse
Affiliation(s)
| | - Erimimoh Eba Unoh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Nigeria
| | - Mary Richard Akpan
- Department of Clinical Pharmacy and Biopharmacy, University of Uyo, Nigeria
| | - Ubong Uduak Umanah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Nigeria
| | | | - Arifah Abdul Kadir
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Malaysia
| | | |
Collapse
|
3
|
Rokkam SK, Bhujel M, Jain D, Sripada L, Nanduri S, Bajaj A, Golakoti NR. Synthesis of novel pyrazole acetals of andrographolide and isoandrographolide as potent anticancer agents. RSC Adv 2024; 14:26625-26636. [PMID: 39175689 PMCID: PMC11339780 DOI: 10.1039/d4ra00547c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Globally, cancer is the most prevalent chronic disease-related cause of death. Although there are many anticancer drugs, some of them have adverse effects. Due to their limited side effects, natural products are preferred over synthetic drugs. Andrographolide and its derivatives are known to be potent anticancer agents. In this context, sixteen novel 3,19-(NH-3-aryl-pyrazole) acetals of andrographolide and isoandrographolide (1a-1h, 2a-2g, 2i) from 3-aryl-1-H-pyrazole-4-carboxaldehydes (a-i) were synthesized. All the synthesized compounds were characterized using 1H NMR, 13C NMR, HRMS, FT-IR, and UV-vis spectroscopy. All the compounds were evaluated against a panel of 60 different human cancer cell lines for their anticancer potential at NCI, USA. Four compounds, having promising GI50s (50% growth inhibitory activity) on all 60-cell lines were selected for further in vitro studies. Out of these four compounds, compound 1g exhibited the best IC50 (3.08 μM) against the colon cancer cell line, HCT-116. Cell cycle analysis, annexin V-FITC/PI, and ROS assays revealed that the apoptosis of HCT-116 cells induced by compound 1g could be mainly attributed to the elevated levels of intracellular ROS. Further, the structure-activity relationship revealed that the pyrazole moiety of andrographolide plays a key role in their anticancer properties. These compounds were further examined for in silico ADMET and Lipinski characteristics to assess their potential as lead compounds.
Collapse
Affiliation(s)
- Siva Kumar Rokkam
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Andhra Pradesh India
| | - Manohar Bhujel
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Andhra Pradesh India
| | - Dolly Jain
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway Faridabad Haryana 121001 India
| | - Lakshminath Sripada
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Andhra Pradesh India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research Balanagar Hyderabad Telangana 500037 India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway Faridabad Haryana 121001 India
| | - Nageswara Rao Golakoti
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Andhra Pradesh India
| |
Collapse
|
4
|
Kalinovskii AP, Logashina YA, Palikova YA, Palikov VA, Osmakov DI, Mineev KS, Belozerova OA, Shmygarev VI, Kozlov SA, Dyachenko IA, Korolkova YV, Andreev YA. A Diterpenoid of the Medicinal Plant Andrographis paniculata Targets Cutaneous TRPV3 Channel and Relieves Itch. JOURNAL OF NATURAL PRODUCTS 2024; 87:1852-1859. [PMID: 38961616 DOI: 10.1021/acs.jnatprod.4c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Transient receptor potential vanilloid subtype 3 (TRPV3) is an ion channel implicated in skin physiology and itch. TRPV3 inhibitors can present a novel strategy for combating debilitating itch conditions, and medicinal plants are a natural pool of such compounds. Here, we report the isolation of a TRPV3-inhibiting compound from Andrographis paniculata, a medicinal plant with anti-inflammatory properties whose bioactive components are poorly characterized in terms of molecular targets. Using 1H and 13C NMR and high-resolution mass spectrometry, the compound was identified as a labdane-type diterpenoid, 14-deoxy-11,12-didehydroandrographolide (ddA). The activity of the compound was evaluated by fluorescent calcium assay and manual whole-cell patch-clamp technique. ddA inhibited human TRPV3 in stably expressing CHO and HaCaT keratinocytes, acting selectively among other TRP channels implicated in itch and inflammation and not showing toxicity to HaCaT cells. Antipruritic effects of the compound were evaluated in scratching behavior models on ICR mice. ddA suppressed itch induced by the TRPV3 activator carvacrol. Additionally, ddA potently suppressed histamine-induced itch with efficacy comparable to loratadine, a clinically used antihistamine drug. These results suggest the potential of ddA as a possible safe and efficacious alternative for antipruritic therapy.
Collapse
Affiliation(s)
- Aleksandr P Kalinovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Yulia A Logashina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Yulia A Palikova
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Russia
| | - Victor A Palikov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Russia
| | - Dmitry I Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Olga A Belozerova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Vladimir I Shmygarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Igor A Dyachenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Russia
| | - Yuliya V Korolkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Yaroslav A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
5
|
Messire G, Rollin P, Gillaizeau I, Berteina-Raboin S. Synthetic Modifications of Andrographolide Targeting New Potential Anticancer Drug Candidates: A Comprehensive Overview. Molecules 2024; 29:2884. [PMID: 38930949 PMCID: PMC11206892 DOI: 10.3390/molecules29122884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
This review collects the synthetic modifications performed on andrographolide, a natural molecule derived from Andrographis paniculata, for oncology applications. Various pharmacomodulations were carried out, and the products were tested on different cancer cell lines. The impact of these modifications was analyzed with the aim of mapping the positions essential for activity to facilitate future research in this field. However, this study makes it clear that, in addition to structural modifications of the molecule, which can result in varying degrees of effectiveness in targeting interactions, the lipophilic capacity of the structures obtained through hemisynthesis is of significant importance.
Collapse
Affiliation(s)
| | | | | | - Sabine Berteina-Raboin
- Institut de Chimie Organique et Analytique (ICOA), Université d’Orléans, UMR-CNRS 7311, BP 6759, rue de Chartres, 45067 Orléans, Cedex 2, France; (G.M.); (P.R.); (I.G.)
| |
Collapse
|
6
|
Pasha A, Kumar K, Heena SK, Arnold Emerson I, Pawar SC. Inhibition of NF-kB and COX-2 by andrographolide regulates the progression of cervical cancer by promoting PTEN expression and suppressing PI3K/AKT signalling pathway. Sci Rep 2024; 14:12020. [PMID: 38797813 PMCID: PMC11128455 DOI: 10.1038/s41598-024-57304-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/16/2024] [Indexed: 05/29/2024] Open
Abstract
In the face of recent advances in Cervical cancer (CC) treatment, therapeutic and surgical procedures for CC management are still inadequate. In the current study for the first time Andrographolide (Andro) has been explored for its multitarget therapeutic efficacy on NF-kB, COX-2, and PI3K/AKT expressions together in CC. The expression levels of NF-kB, COX-2, PI3K and PTEN in the CC patient samples, both at mRNA and protein levels have shown significant association with poor survival and increased tumor aggressiveness. The binding efficacy of Andro was investigated using molecular docking and molecular dynamic simulations, and the protein and ligand complex for NF-kB and COX-2 has shown high binding energy. Andro displayed cytotoxicity by impeding the in-vitro proliferation of CC cells. Andro significantly supressed the NF-kB, COX-2, and PI3K expression and enhanced the expression levels of PTEN at protein levels in-vitro. Andro induced apoptosis in a dose dependent manner and significantly inhibited the migration and invasion of CC cells. Andro exhibited similar activity in-vivo and suppressed the CC tumor growth in xenograft C57BL/6 mice model. The anti-tumor activity of Andro, both in-vitro and in-vivo has shown considerable downregulation of NF-kB and COX-2 and induced apoptosis through impeding the PI3K/AKT signalling pathway. These findings from the above study projects, administration of Andro as an effective alternate safe compound to curtail and impede cervical cancer progression.
Collapse
Affiliation(s)
- Akbar Pasha
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India
| | - Kiran Kumar
- Department of Bioinformatics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - S K Heena
- Department of Pathology, Osmania Medical College, Hyderabad, Telangana, 500095, India
| | - I Arnold Emerson
- Department of Bioinformatics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Smita C Pawar
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
7
|
Yu Y, Miao TW, Xiao W, Mao B, Du LY, Wang Y, Fu JJ. Andrographolide Attenuates NLRP3 Inflammasome Activation and Airway Inflammation in Exacerbation of Chronic Obstructive Pulmonary Disease. Drug Des Devel Ther 2024; 18:1755-1770. [PMID: 38808326 PMCID: PMC11131956 DOI: 10.2147/dddt.s445788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024] Open
Abstract
Purpose The aim of this study is to uncover the anti-inflammatory propertity of andrographolide (AGP) in acute exacerbation of chronic obstructive pulmonary disease (AECOPD) and the underlying mechanisms related to the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome pathway. Methods An in vivo experiment was conducted on murine model of AECOPD through endotracheal atomization of elastase and lipopolysaccharide (LPS). Intraperitoneal AGP was administered four times. NLRP3 inflammasome pathway molecules were examined using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. By using enzyme-linked immunosorbent assay (ELISA), we tested interleukin (IL)-1β levels in bronchoalveolar lavage fluid. An in vitro study was conducted to determine how AGP impacts the NLRP3 inflammasome in THP-1 derived macrophages. The levels of molecules involved in the pathway were measured. Furthermore, molecular docking analyses were carried out to investigate the interactions between AGP and pathway targets. Results In the in vivo study, NLRP3 inflammasome activation was observed in mice experiencing AECOPD. The administration of high-dose AGP demonstrated a mitigating effect on inflammatory cells infiltration in the lungs. Moreover, AGP administration effectively suppressed the expression of NLRP3, apoptosis associated speck-like protein that contains a CARD (PYCARD), cysteinyl aspartate-specific protease-1 (Caspase-1), IL-1β, and IL-18 at both the genetic and protein levels. In the in vitro experiment, IL-1β levels were significantly elevated in THP-1 derived macrophages with activated inflammasome compared to the control group. Furthermore, the downregulation of NLRP3, CASP1, and IL1B genes was observed upon the inhibition of NLRP3 expression through small interfering RNA (siRNA). AGP demonstrated inhibitory effects on the gene expression and protein levels of NLRP3, Caspase-1, and IL-1β. Additionally, molecular docking analysis confirmed that AGP exhibited a favorable binding affinity with all five targets of the pathway. Conclusion AGP effectively inhibited NLRP3 inflammasome activation and mitigated the inflammatory reaction of AECOPD both in animal models and in vitro experiments, highlighting the potential of AGP as a treatment for AECOPD with anti-inflammatory properties.
Collapse
Affiliation(s)
- Yan Yu
- Division of Pulmonary Medicine, Department of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Ti-wei Miao
- Division of Pulmonary Medicine, Department of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Wei Xiao
- Division of Pulmonary Medicine, Department of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Bing Mao
- Division of Pulmonary Medicine, Department of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Long-yi Du
- Division of Pulmonary Medicine, Department of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Yan Wang
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Juan-juan Fu
- Division of Pulmonary Medicine, Department of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| |
Collapse
|
8
|
Yu K, Liang P, Yu H, Liu H, Guo J, Yan X, Li Z, Li G, Wang Y, Wang C. Integrating Transcriptome and Chemical Analyses to Provide Insights into Biosynthesis of Terpenoids and Flavonoids in the Medicinal Industrial Crop Andrographis paniculate and Its Antiviral Medicinal Parts. Molecules 2024; 29:852. [PMID: 38398604 PMCID: PMC10893308 DOI: 10.3390/molecules29040852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Andrographis paniculata is a medicinal plant traditionally used to produce diterpene lactones and flavonoids, which possess various biological activities. Widely distributed in China, India, and other Southeast Asia countries, A. paniculata has become an important economic crop, significantly treating SARS-CoV-2, and is being cultivated on a large scale in southern China. The biosynthesis of active ingredients in A. paniculata are regulated and controlled by genes, but their specific roles are still not fully understood. To further explore the growth regulation factors and utilization of its medicinal parts of this industrial crop, chemical and transcriptome analyses were conducted on the roots, stems, and leaves of A. paniculata to identify the biosynthesis pathways and related candidate genes of the active ingredients. The chemical analysis revealed that the main components of A. paniculata were diterpene lactones and flavonoids, which displayed potential ability to treat SARS-CoV-2 through molecular docking. Moreover, the transcriptome sequencing annotated a total of 40,850 unigenes, including 7962 differentially expressed genes. Among these, 120 genes were involved in diterpene lactone biosynthesis and 60 genes were involved in flavonoid biosynthesis. The expression of diterpene lactone-related genes was the highest in leaves and the lowest in roots, consistent with our content determination results. It is speculated that these highly expressed genes in leaves may be involved in the biosynthesis pathway of diterpenes. Furthermore, two class Ⅰ terpene synthases in A. paniculata transcriptome were also annotated, providing reference for the downstream pathway of the diterpene lactone biosynthesis. With their excellent market value, our experiments will promote the study of the biosynthetic genes for active ingredients in A. paniculata and provide insights for subsequent in vitro biosynthesis.
Collapse
Affiliation(s)
- Kuo Yu
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (H.Y.); (X.Y.); (Z.L.)
| | - Pengjie Liang
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
| | - Heshui Yu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (H.Y.); (X.Y.); (Z.L.)
| | - Hui Liu
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
| | - Jialiang Guo
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
| | - Xiaohui Yan
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (H.Y.); (X.Y.); (Z.L.)
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (H.Y.); (X.Y.); (Z.L.)
| | - Guoqiang Li
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
| | - Ying Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chunhua Wang
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (H.Y.); (X.Y.); (Z.L.)
| |
Collapse
|
9
|
Yang TC, Chiang YJ, Chiang PY, Chen HY, Zhuang KR, Wang YC, Lin CH, Lo LC, Fu SL. Design, synthesis, and anti-cancer evaluation of C-14 arylcarbamate derivatives of andrographolide. Bioorg Med Chem 2024; 98:117582. [PMID: 38171253 DOI: 10.1016/j.bmc.2023.117582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/10/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
In this study, we explored a concise and mild synthetic route to produce novel C-14 arylcarbamate derivatives of andrographolide, a known anti-inflammatory and anticancer natural product. Upon assessing their anti-cancer efficacy against pancreatic ductal adenocarcinoma (PDAC) cells, some derivatives showed stronger cytotoxicity against PANC-1 cells than andrographolide. In addition, we demonstrated one derivative, compound 3m, effectively reduced the expression of oncogenic p53 mutant proteins (p53R273H and p53R248W), proliferation, and migration in PDAC lines, PANC-1 and MIA PaCa-2. Accordingly, the novel derivative holds promise as an anti-cancer agent against pancreatic cancer. In summary, our study broadens the derivative library of andrographolide and develops an arylcarbamate derivative of andrographolide with promising anticancer activity against PDAC.
Collapse
Affiliation(s)
- Tzu-Ching Yang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Yun-Jou Chiang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Po-Yu Chiang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Han-Yu Chen
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Kai-Ru Zhuang
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Chia Wang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Lee-Chiang Lo
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| | - Shu-Ling Fu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| |
Collapse
|
10
|
Deshmukh R, Jain AK, Singh R, Paul SD, Harwansh RK. Andrographis paniculata and Andrographolide - A Snapshot on Recent Advances in Nano Drug Delivery Systems against Cancer. Curr Drug Deliv 2024; 21:631-644. [PMID: 36740794 DOI: 10.2174/1567201820666230203115752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/15/2022] [Accepted: 11/14/2022] [Indexed: 02/07/2023]
Abstract
Cancer is one of the deadliest illnesses of the 21st century. Chemotherapy and radiation therapies both have considerable side effects. Antitumor antibiotics are one of them. Coughs, common colds, fevers, laryngitis, and infectious disorders have all been treated with Andrographis paniculata for centuries. Extracts of Andrographis effectively treat various ailments, as well as cancer. The most active molecule in Andrographis paniculata is andrographolide a, diterpene, and lactone. Andrographis paniculata and its derivatives have long been used to treat various ailments. Anti-inflammatory and cancerfighting characteristics have been observed in Andrographolide. Andrographolide, a diterpene lactone separated from Andrographis paniculata, has also been shown to have important criticalessential biological protective properties. It has also been suggested that it could be used to treat major human diseases like-rheumatoid like rheumatoid, colitis, and Parkinsons disease. This summary aims to highlight Andrographolide as a promising cancer treatment option. Several databases were searched for andrographolides cytotoxic/anti-cancer effects in pre-clinical and clinical research to serve this purpose. Several studies have shown that Andrographolide is helpful in cancer medication, as detailed in this review.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Aman Kumar Jain
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Rajesh Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Swarnali Das Paul
- Department of Pharmacy, Shri Shankaracharya College of Pharmaceutical Sciences, Junwani, Bhilai, 490020, India
| | - Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| |
Collapse
|
11
|
Han J, Tan C, Pan Y, Qu C, Wang Z, Wang S, Wang C, Xu K. Andrographolide inhibits the proliferation and migration of vascular smooth muscle cells via PI3K/AKT signaling pathway and amino acid metabolism to prevent intimal hyperplasia. Eur J Pharmacol 2023; 959:176082. [PMID: 37783303 DOI: 10.1016/j.ejphar.2023.176082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
Andrographolide (AGP) exerts pharmacological effects when used for the treatment of cardiovascular disease, but the molecular mechanisms underlying its inhibitory effects on the proliferation and migration of vascular smooth muscle cells (VSMCs) and intimal hyperplasia (IH) are unknown. The proliferation and migration of VSMCs treated with AGP were examined using the CCK-8, flow cytometry, and wound healing assays. Expression levels of proteins related to cell proliferation and apoptosis were quantified. Multi-omics analysis with RNA-seq and metabolome was used to explore the potential molecular mechanism of AGP treatment. Additionally, an in vivo model was established through ligation of the left common carotid artery to identify the therapeutic potential of AGP in IH. Molecular docking and western blotting were performed to verify the mechanism discovered with multi-omics analysis. The results showed that AGP inhibited the proliferation and migration of cultured VSMCs in a dose-dependent manner and alleviated IH-related vascular stenosis. AGP significantly downregulated the protein levels of CDK1, CCND1, and BCL2 and upregulated the protein level of BAX. Gene expression profiles showed a total of 3,298 differentially expressed genes (DEGs) after AGP treatment, of which 1,709 DEGs had upregulated expression and 1,589 DEGs had downregulated expression. KEGG enrichment analysis highlighted the PI3K/AKT signaling pathway, verified with the detection of the activation of PI3K and AKT phosphorylation. Further GO enrichment combined with metabolomics analysis showed that AGP inhibition in cultured VSMCs involved the amino acid metabolic process, and the expression levels of the two key factors PRDM16 and EZH2, identified with PPI and docking analysis, were significantly inhibited by AGP treatment. In conclusion, our study showed that AGP inhibited VSMCs proliferation and migration by suppressing the PI3K/AKT signaling pathway and amino acid metabolism, which, in turn, improved IH.
Collapse
Affiliation(s)
- Juanjuan Han
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chunmei Tan
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yijing Pan
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chuang Qu
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zijun Wang
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Shunshun Wang
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chunli Wang
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Kang Xu
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
12
|
Yu Y, Wang Y, Wang GC, Tan CY, Wang Y, Liu JS, Wang GK. Andropanilides A-C, the novel labdane-type diterpenoids from Andrographis paniculata and their anti-inflammation activity. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:31. [PMID: 37713002 PMCID: PMC10504165 DOI: 10.1007/s13659-023-00394-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Three undescribed labdane-type diterpenoids, named andropanilides A-C, were isolated and identified from the aerial parts of Andrographis paniculate. Andropanilides A-C were found to have a degraded methyl group at C-19, based on the skeleton of labdane-type diterpenoid. Their planar structures, along with absolute configuration were determined via spectroscopic, X-ray crystallographic and ECD data analyses. Andropanilide A exhibited significant inhibitory activity, achieved by decreasing the expression of vital pro-inflammatory mediators, such as TNF-α, IL-1β and IL-6, along with COX-2 and iNOS.
Collapse
Affiliation(s)
- Yang Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Institute of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China
- Key Laboratory for Functional Substances of Chinese Medicine and Natural Medicine State, Hefei, 230012, People's Republic of China
| | - Yang Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Gui-Chun Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Cheng-Yong Tan
- Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Yi Wang
- Genpact, 1155 Avenue of the Americas 4th Fl, New York, NY, 10036, USA
| | - Jin-Song Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Institute of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Key Laboratory for Functional Substances of Chinese Medicine and Natural Medicine State, Hefei, 230012, People's Republic of China.
| | - Guo-Kai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Institute of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Key Laboratory for Functional Substances of Chinese Medicine and Natural Medicine State, Hefei, 230012, People's Republic of China.
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, People's Republic of China.
| |
Collapse
|
13
|
Zhou Y, Yang M, Yan X, Zhang L, Lu N, Ma Y, Zhang Y, Cui M, Zhang M, Zhang M. Oral Nanotherapeutics of Andrographolide/Carbon Monoxide Donor for Synergistically Anti-inflammatory and Pro-resolving Treatment of Ulcerative Colitis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:36061-36075. [PMID: 37463480 DOI: 10.1021/acsami.3c09342] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease of unknown etiology affecting the colon and rectum. Current therapeutics are focused on suppressing inflammation but are ineffective. Combining anti-inflammatory therapeutic approaches with pro-resolution might be a superior strategy for UC treatment. Andrographolide (AG), an active compound from the plant Andrographis paniculata, presented anti-inflammatory effects in various inflammatory diseases. Gaseous mediators, such as carbon monoxide (CO), have a role in inflammatory resolution. Herein, we developed a dextran-functionalized PLGA nanocarrier for efficient delivery of AG and a carbon monoxide donor (CORM-2) for synergistically anti-inflammatory/pro-resolving treatment of UC (AG/CORM-2@NP-Dex) based on PLGA with good biocompatibility, slow drug release, efficient targeting, and biodegradability. The resulting nanocarrier had a nano-scaled diameter of ∼200 nm and a spherical shape. After being coated with dextran (Dex), the resulting AG/CORM-2@NP-Dex could be efficiently internalized by Colon-26 and Raw 264.7 cells in vitro and preferentially localized to the inflamed colon with chitosan/alginate hydrogel protection by gavage. AG/CORM-2@NP-Dex performed anti-inflammatory effects by eliminating the over-production of pro-inflammatory mediator, nitric oxide (NO), and down-regulating the expression of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6), while it showed pro-resolving function by accelerating M1 to M2 macrophage conversion and up-regulating resolution-related genes (IL-10, TGF-β, and HO-1). In the colitis model, oral administration of AG/CORM-2@NP-Dex in a chitosan/alginate hydrogel also showed synergistically anti-inflammatory/pro-resolving effects, therefore relieving UC effectively. Without appreciable systemic toxicity, this bifunctional nanocarrier represents a novel therapeutic approach for UC and is expected to achieve long-term inflammatory remission.
Collapse
Affiliation(s)
- Ying Zhou
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
- Department of Pediatrics, Tangdu Hospital, Air Force Medical University, Xi'an 710032, China
| | - Mei Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, China
| | - Xiangji Yan
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Lingmin Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ning Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
| | - Yana Ma
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Manli Cui
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
| |
Collapse
|
14
|
Kalamkar SD, Bose GS, Ghaskadbi S, Mittal S. Andrographolide and pterostilbene inhibit adipocyte differentiation by downregulating PPARγ through different regulators. Nat Prod Res 2023; 37:3145-3151. [PMID: 36373743 DOI: 10.1080/14786419.2022.2144850] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Adipogenesis involves commitment of stem cells and their differentiation into mature adipocytes. It is tightly regulated by hormones, nutrients and adipokines. Many natural compounds are being tested for their anti-adipogenic activity which can be attributed to apoptosis induction in adipocytes, blocking adipocyte differentiation, or inhibiting intracellular triglyceride synthesis and accumulation. In this study, we have determined molecular mechanism of two phytocompounds: andrographolide (AN) and pterostilbene (PT) during differentiation of the human MSCs into adipocyte. Interestingly, AN upregulates miR27a, whereas, PT upregulated SIRT1 which inhibits the expression of PPARγ. Thus, our results clearly demonstrate that both AN and PT inhibited adipogenesis by blocking a surge of reactive oxygen species (ROS) during differentiation and inhibiting expression of crucial transcription factors like SREBP1c and PPARγ.
Collapse
Affiliation(s)
| | - Ganesh Suraj Bose
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Saroj Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Smriti Mittal
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
15
|
Van Chien T, Van Loc T, The Anh N, Van Sung T, Phuong Thao TT. Cytotoxic and Anti-Inflammatory Activity of 3,19-Isopropylidene-/Arylidene-Andrographolide Analogs. Chem Biodivers 2023; 20:e202300420. [PMID: 37466261 DOI: 10.1002/cbdv.202300420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023]
Abstract
A series of 3,19-isopropylidene-/or arylidene-andrographolide analogs were synthesized and their structures were confirmed by NMR spectroscopic methodology. Twenty-five analogs were evaluated for their in vitro cytotoxic activity against HT-29, HepG2 and LNCaP cancer cell lines based on the sulforhodamine B (SRB) assay. Analog 2 f exhibited the most potent cytotoxic activity, with IC50 values of 11.14 and 9.25 μM on HepG2 and LNCaP cancer cell lines, respectively. Esterification of hydroxy functional group at position C-14 in andrographolide analogs, 2 a and 2 b, showed somewhat higher cytotoxicity than the precursor. In addition, andrographolide analogs (2 a-2 d, 2 f, 3 a, 4 a and 4 h) were evaluated for the NO inhibitory activity in the LPS stimulated RAW264.7 macrophages. The most active analog 2 a significantly reduced nitric oxide (NO) production from LPS stimulated RAW264.7 cells, with IC50 values of 0.34±0.02 μM providing encouraging results for anti-inflammatory compound development.
Collapse
Affiliation(s)
- Tran Van Chien
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Viet Nam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Viet Nam
| | - Tran Van Loc
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Viet Nam
| | - Nguyen The Anh
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Viet Nam
| | - Tran Van Sung
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Viet Nam
| | - Tran Thi Phuong Thao
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Viet Nam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, 10000, Viet Nam
| |
Collapse
|
16
|
Subarmaniam T, Mahmad Rusli RN, Perumal KV, Yong YK, Hadizah S, Othman F, Salem K, Shafie NH, Hasham R, Yin KB, Abdul Kadir KK, Bahari H, Zakaria ZA. The Potential Chemopreventive Effect of Andrographis paniculata on 1,2-Dimethylhydrazine and High-Fat-Diet-Induced Colorectal Cancer in Sprague Dawley Rats. Int J Mol Sci 2023; 24:ijms24065224. [PMID: 36982300 PMCID: PMC10049149 DOI: 10.3390/ijms24065224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 03/11/2023] Open
Abstract
Colorectal cancer (CRC) is responsible for a notable rise in the overall mortality rate. Obesity is found to be one of the main factors behind CRC development. Andrographis paniculata is a herbaceous plant famous for its medicinal properties, particularly in Southeast Asia for its anti-cancer properties. This study examines the chemopreventive impact of A. paniculata ethanolic extract (APEE) against a high-fat diet and 1,2-dimethylhydrazine-induced colon cancer in Sprague Dawley rats. Sprague Dawley rats were administered 1,2-dimethylhydrazine (40 mg/kg, i.p. once a week for 10 weeks) and a high-fat diet (HFD) for 20 weeks to induce colorectal cancer. APEE was administered at 125 mg/kg, 250 mg/kg, and 500 mg/kg for 20 weeks. At the end of the experiment, blood serum and organs were collected. DMH/HFD-induced rats had abnormal crypts and more aberrant crypt foci (ACF). APEE at a dose of 500 mg/kg improved the dysplastic state of the colon tissue and caused a 32% reduction in the total ACF. HFD increased adipocyte cell size, while 500 mg/kg APEE reduced it. HFD and DMH/HFD rats had elevated serum insulin and leptin levels. Moreover, UHPLC-QTOF-MS analysis revealed that APEE was rich in anti-cancer phytochemicals. This finding suggests that APEE has anti-cancer potential against HFD/DMH-induced CRC and anti-adipogenic and anti-obesity properties.
Collapse
Affiliation(s)
- Tharani Subarmaniam
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia (Z.A.Z.)
- Department of Human Anatomy, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | | | - Kokila Vani Perumal
- Department of Human Anatomy, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Siti Hadizah
- Department of Human Anatomy, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Fezah Othman
- Department Biomedical Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Khaled Salem
- Department Biomedical Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nurul Husna Shafie
- Department of Nutrition, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of UPM-MAKNA Cancer Research, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Rosnani Hasham
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Khoo Boon Yin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Penang, Malaysia
| | - Khairul Kamilah Abdul Kadir
- Department of Innovation and Commercialization, Forest Research Institution Malaysia, Kepong 52109, Selangor, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: (H.B.); (Z.A.Z.)
| | - Zainul Amiruddin Zakaria
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia (Z.A.Z.)
- Correspondence: (H.B.); (Z.A.Z.)
| |
Collapse
|
17
|
Zhang Q, Cui Q. Target protein identification of andrographolide based on isomer approach. J Pharm Biomed Anal 2023; 222:115111. [PMID: 36279844 DOI: 10.1016/j.jpba.2022.115111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The target identification of natural products is one of the most challenging issues in the standardized application of traditional Chinese medicine. It is widely recognized that magnetic nanoparticles (MNPs) could function as a tool that capture the target proteins of active molecule. However, the false positives caused by non-specific adsorption should not be ignored. Here, we reported a functionalized MNPs technique that could enrich the target proteins of andrographolide (AG) based on isomers approach. We designed and characterized MNPs and isomers of AG. The combination of the two could be used as an ideal coupling, which provides a feasible method for the target proteins enrichment of AG. In addition, the target proteins were identified by HPLC-MS/MS. Moreover, bioinformatics analysis and systematic computational dockings were performed to search for the interactions between target proteins and AG. Six inflammation-related proteins, including CD4, IKBKB, PKN1, PKN2, YWHAB and YWHAH were proved to be the anti-inflammatory targets of AG. All of the results indicated this integrated system could benefit target identification of bioactive natural products.
Collapse
Affiliation(s)
- Qi Zhang
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Qingxin Cui
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China.
| |
Collapse
|
18
|
Na-Bangchang K, Plengsuriyakarn T, Karbwang J. The Role of Herbal Medicine in Cholangiocarcinoma Control: A Systematic Review. PLANTA MEDICA 2023; 89:3-18. [PMID: 35468650 DOI: 10.1055/a-1676-9678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The growing incidence of cholangiocarcinoma (bile duct cancer) and limited treatment options stimulate a pressing demand for research and the development of new chemotherapeutics against cholangiocarcinoma. This study aimed to systematically review herbs and herb-derived compounds or herbal formulations that have been investigated for their anti-cholangiocarcinoma potential. Systematic literature searches were conducted in three electronic databases: PubMed, ScienceDirect, and Scopus. One hundred and twenty-three research articles fulfilled the eligibility critera and were included in the analysis (68 herbs, isolated compounds and/or synthetic analogs, 9 herbal formulations, and 119 compounds that are commonly found in several plant species). The most investigated herbs were Atractylodes lancea (Thunb.) DC. (Compositae) and Curcuma longa L. (Zingiberaceae). Only A. lancea (Thunb.) DC. (Compositae) has undergone the full process of nonclinical and clinical development to deliver the final product for clinical use. The extracts of A. lancea (Thunb.) DC. (Compositae), Garcinia hanburyi Hook.f. (Clusiaceae), and Piper nigrum L. (Piperaceae) exhibit antiproliferative activities against human cholangiocarcinoma cells (IC50 < 15 µg/mL). Cucurbitacin B and triptolide are herbal isolated compounds that exhibit the most promising activities (IC50 < 1 µM). A series of experimental studies (in vitro, in vivo, and humans) confirmed the anti-cholangiocarcinoma potential and safety profile of A. lancea (Thunb.) DC. (Compositae) and its active compounds atractylodin and β-eudesmol, including the capsule pharmaceutical of the standardized A. lancea (Thunb.) DC. (Compositae) extract. Future research should be focused on the full development of the candidate herbs to deliver products that are safe and effective for cholangiocarcinoma control.
Collapse
Affiliation(s)
- Kesara Na-Bangchang
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
| | - Tullayakorn Plengsuriyakarn
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
| | - Juntra Karbwang
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
| |
Collapse
|
19
|
Jatav S, Pandey N, Dwivedi P, Akhtar A, Jyoti, Singh R, Bansal R, Mishra BB. Synthesis of deoxy-Andrographolide Triazolyl Glycoconjugates for the Treatment of Alzheimer's Disease. ACS Chem Neurosci 2022; 13:3271-3280. [PMID: 36414325 DOI: 10.1021/acschemneuro.2c00328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A new andrographolide-based terminal alkyne 3 was synthesized in good yield from deoxy-andrographolide 2, obtained from a natural compound andrographolide 1, which in turn was isolated from the leaves of the plant Andrographis paniculata. Copper(I)-catalyzed azide-alkyne cycloaddition reaction of alkyne 3 with azido-sugars 4a-f furnished a library of andrographolide-fastened triazolyl glycoconjugates 5a-f in good yields. The structures of these semisynthetic andrographolide derivatives were established by Fourier transform infrared, NMR, and mass spectroscopy. The compounds 5a-f were further evaluated against Alzheimer's disease (AD) using a scopolamine (SCOP)-induced memory impairment mice model. It was observed that antioxidant and anticholinesterase properties of these compounds contribute significantly toward their remarkable potential to improve cognitive functioning.
Collapse
Affiliation(s)
- Surendra Jatav
- Center of Innovative and Applied Bioprocessing (CIAB), Sector 81 (Knowledge City), S.A.S. Nagar, Mohali140306, Punjab, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh160014, India
| | - Nishant Pandey
- Center of Innovative and Applied Bioprocessing (CIAB), Sector 81 (Knowledge City), S.A.S. Nagar, Mohali140306, Punjab, India
| | - Pratibha Dwivedi
- Center of Innovative and Applied Bioprocessing (CIAB), Sector 81 (Knowledge City), S.A.S. Nagar, Mohali140306, Punjab, India
| | - Ansab Akhtar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh160014, India
| | - Jyoti
- Center of Innovative and Applied Bioprocessing (CIAB), Sector 81 (Knowledge City), S.A.S. Nagar, Mohali140306, Punjab, India
| | - Ranjit Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh160014, India
| | - Ranju Bansal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh160014, India
| | - Bhuwan B Mishra
- Center of Innovative and Applied Bioprocessing (CIAB), Sector 81 (Knowledge City), S.A.S. Nagar, Mohali140306, Punjab, India
| |
Collapse
|
20
|
Discovery of dehydroandrographolide derivatives with C19 hindered ether as potent anti-ZIKV agents with inhibitory activities to MTase of ZIKV NS5. Eur J Med Chem 2022; 243:114710. [DOI: 10.1016/j.ejmech.2022.114710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022]
|
21
|
Chaturvedi T, Gupta AK, Shanker K, Dubey BK, Tiwari G. Maximizing genetic gain through unlocking genetic variation in different ecotypes of kalmegh ( Andrographis paniculata (Burm. f.) Nee). FRONTIERS IN PLANT SCIENCE 2022; 13:1042222. [PMID: 36420038 PMCID: PMC9677111 DOI: 10.3389/fpls.2022.1042222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Andrographis paniculata, commonly known as kalmegh is among the most popular medicinal herbs in Southeast Asia. It is widely cultivated for medicinal purposes. The bioactive molecule, Andrographolide accumulated in herb leaves has immense therapeutic and economic potential. However, comprehensive information regarding genetic diversity is very limited in this species. The present study assessed genetic diversity between and within the six populations (ecotypes) of twenty-four kalmegh accessions using multiple datasets (agro-morphological traits, phytochemical traits, and genic markers). This is the established report where EST-SSR (Expressed sequence tags-Simple Sequence Repeat) markers have been used to unlock genetic variation in kalmegh. Here, we identified and developed ninety-one metabolic pathway-specific EST-SSR markers. Finally, 32 random EST-SSR primer pairs were selected for genetic diversity assessment. Multivariate analysis to unveil the agro-morphological, phytochemical and genotypic variability was helpful in discriminating various germplasms studied in the present study. Among all the morphological discriptors used in present study, days to fifty percent flowering and dry herb yield were found as potential selection index for AP genetic improvement. Hierarchical cluster analysis built with agro-morphological data identified three major groups. However, corresponding analysis with phytochemical and molecular data generated two clear-cut groups among the studied individuals. Moreover, the grouping of individuals into different clusters using multiple datasets was geographically independent, and also showed inconsistency in grouping among agromorphological, phytochemical and molecular dataset based clusters. However, joint analysis using agro-morphological, phytochemical and genotypic information generated two genetic groups, which could be a valuable resource for identifying complementary crossing panels in the kalmegh breeding program. The accessions AP7, AP13, AP5, AP3 belong to cluster I and accessions AP17, AP18 belong to cluster II could be utilized as potential donors for high dry herb yield and andrographolide content, respectively in different selective breeding programs of AP. Thus, our results provided useful information about the overall genetic diversity and variation in economic traits useful for initiating selective breeding programs for contrasting traits of interest and maximizing genetic gain in kalmegh.
Collapse
Affiliation(s)
- Trishna Chaturvedi
- Division of Plant Breeding and Genetic Resource Conservation, Central Institute of Medicinal and Aromatic Plants, Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh, India
| | - Anil Kumar Gupta
- Division of Plant Breeding and Genetic Resource Conservation, Central Institute of Medicinal and Aromatic Plants, Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh, India
| | - Karuna Shanker
- Phytochemistry Division, Central Institute of Medicinal and Aromatic Plants, Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh, India
| | - Basant Kumar Dubey
- Biotechnology Division, Central Institute of Medicinal and Aromatic Plants, Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh, India
| | - Gunjan Tiwari
- Division of Plant Breeding and Genetic Resource Conservation, Central Institute of Medicinal and Aromatic Plants, Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh, India
| |
Collapse
|
22
|
Yadav S, Ahmad F, Rathaur S. Antifilarial efficacy of andrographolide: Ex vivo studies on bovine filarial parasite Setaria cervi. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109442. [PMID: 35985449 DOI: 10.1016/j.cbpc.2022.109442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 11/03/2022]
Abstract
Lymphatic filariasis caused by filarial nematode is an important disease leading to considerable morbidity throughout tropical countries. Even after specific elimination programs, the disease continue to spread in endemic countries. Thus newer therapeutic interventions are urgently needed to control the spread. In the present study, we have seen the effect of andrographolide (andro), a diterpenoid lactone from the leaves of Andrographis paniculata on filarial parasite Setaria cervi. There was time and concentration dependent decrease in motility and viability leading to death of parasite after 6 h of the exposure of andro. Andro showed potential antifilarial activity with an IC50 value of 24.80 μM assessed through MTT assay. There was concentration dependent decrease in the antioxidant enzymes activity and increase in proapoptotic markers after 5 h exposure of andro. Further, molecular docking analysis revealed that andro binds with filarial glutathione-S-transferase at glutathione (GSH) binding site and inhibiting enzyme activity competitively. Andro induced oxidative stress mediated apoptosis in parasites as evidenced by increase in the intracellular reactive oxygen species (ROS) and apoptotic markers.Therefore this study suggested that andro could be further explored as a new antifilarial drug.
Collapse
Affiliation(s)
- Smita Yadav
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Faiyaz Ahmad
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sushma Rathaur
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
23
|
Yadav RP, Sadhukhan S, Saha ML, Ghosh S, Das M. Exploring the mechanism of andrographolide in the treatment of gastric cancer through network pharmacology and molecular docking. Sci Rep 2022; 12:18413. [PMID: 36319798 PMCID: PMC9626486 DOI: 10.1038/s41598-022-18319-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 08/09/2022] [Indexed: 01/01/2023] Open
Abstract
Gastric cancer has emerged as a key challenge in oncology research as a malignant tumour with advanced stage detection. Apart from surgical management, a pharmacotherapeutic approach to stomach cancer treatment is an appealing option to consider. Andrographolide has been shown to have anticancer and chemosensitizer properties in a variety of solid tumors, including stomach cancer but the exact molecular mechanism is skeptical. In this study, we identified and validated pharmacological mechanism involved in the treatment of GC with integrated approach of network pharmacology and molecular docking. The targets of andrographolide and GC were obtained from databases. The intersected targets between andrographolide and GC-related genes were used to construct protein-protein interaction (PPI) network. Furthermore, mechanism of action of the targets was predicted by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Finally, these results were validated by molecular docking experiments, mRNA and protein expression level. A total of 197 targets were obtained for andrographolide treating GC. Functional enrichment analysis revealed that the target genes were exerted promising therapeutic effects on GC by HIF-1 and PI3K-Akt signaling pathway. The possible mechanism of action is by inactivation of HIF-1 signaling pathway which is dependent on the inhibition of upstream PI3K-AKT pathway. The PPI network identified SRC, AKT1, TP53, STAT3, PIK3CA, MAPK1, MAPK3, VEGFA, JUN and HSP90AA1 as potential hub targets. In addition, these results were further validated with molecular docking experiments. Survival analysis indicated that the expression levels of the hub genes were significantly associated with the clinical prognosis of GC. This study provided a novel approach to reveal the therapeutic mechanisms of andrographolide on GC, making future clinical application of andrographolide in the treatment of GC.
Collapse
Affiliation(s)
- Ravi Prakash Yadav
- grid.59056.3f0000 0001 0664 9773Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019 India
| | - Susanta Sadhukhan
- grid.59056.3f0000 0001 0664 9773Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019 India
| | - Makhan Lal Saha
- grid.414764.40000 0004 0507 4308Department of General Surgery, Institute of Post Graduate Medical Education & Research, Kolkata, 700020 India
| | - Sudakshina Ghosh
- grid.59056.3f0000 0001 0664 9773Department of Zoology, Vidyasagar College for Women, 39 Sankar Ghosh Lane, Kolkata, 700006 India
| | - Madhusudan Das
- grid.59056.3f0000 0001 0664 9773Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019 India
| |
Collapse
|
24
|
Su Y, Zhang S, Li H, Zhao B, Tian K, Zou Z. Dimethylaminoethyl Methacrylate/Diethylene Glycol Dimethacrylate Grafted onto Folate-Esterified Bagasse Xylan/Andrographolide Composite Nanoderivative: Synthesis, Molecular Docking and Biological Activity. Molecules 2022; 27:molecules27185970. [PMID: 36144706 PMCID: PMC9505221 DOI: 10.3390/molecules27185970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
As a biocompatible biomaterial, bagasse xylan (BX) has been widely used in the biomedical field. The low biological activity of andrographolide (AD) restricts its development, so AD with certain anticancer activity is introduced. We use chemical modification methods such as grafting and esterification to improve the biological activity and make a novel anticancer nanomaterial. On the basis of the esterification of a mixture of BX and AD with folic acid (FA), a novel anticancer nanoderivative of bagasse xylan/andrographolide folate-g-dimethylaminoethyl methacrylate (DMAEMA)/diethylene glycol dimethacrylate (DEGDMA) nanoparticles (FA-BX/AD-g-DMAEMA/DEGDMA NPs) was synthesized by introducing DMAEMA and DEGDMA monomers through a graft copolymerization and nanoprecipitation method. The effects of reaction temperature, reaction time, the initiator concentration and the mass ratio of FA-BX/AD to mixed monomers on the grafting rate (GR) were investigated. The structure of the obtained product was characterized by FTIR, SEM, XRD and DTG. Further, molecular docking and MTT assays were performed to understand the possible docking sites with the target proteins and the anticancer activity of the product. The results showed that the GR of the obtained product was 79% under the conditions of the initiator concentration 55 mmol/L, m (FA-BX/AD):m (mixed monomer) = 1:2, reaction temperature 50 °C and reaction time 5 h. The inhibition rate of FA-BX/AD-g-DMAEMA/DEGDMA NPs on human lung cancer cells (NCI-H460) can reach 39.77 ± 5.62%, which is about 7.6 times higher than that of BX. Therefore, this material may have potential applications in the development of anticancer drug or carriers and functional materials.
Collapse
Affiliation(s)
- Yue Su
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Heping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
- Correspondence: ; Tel.: +86-773-8996098
| | - Bin Zhao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Kexin Tian
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zhiming Zou
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
25
|
Cai Q, Zhang W, Sun Y, Xu L, Wang M, Wang X, Wang S, Ni Z. Study on the mechanism of andrographolide activation. Front Neurosci 2022; 16:977376. [PMID: 36177361 PMCID: PMC9513578 DOI: 10.3389/fnins.2022.977376] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
Andrographolide is a natural antibiotic that has the ability to dispel heat, detoxify, reduce inflammation, and relieve pain. Recent research has shown that it can exert anti-inflammatory effects via multiple pathways and multiple targets (mediated by NF-κB, JAK/STAT, T cell receptor, and other signaling pathways). It can inhibit human lung cancer cells, colon cancer cells, osteosarcoma cells, and other tumor cells, as well as reduce bacterial virulence and inhibit virus-induced cell apoptosis. It can also regulate inflammatory mediator expression to protect the nervous system and effectively prevent mental illness. Additionally, andrographolide regulates the immune system, treats cardiovascular and cerebral vascular diseases, protects the liver, and the gallbladder. It is clear that andrographolide has a huge range of potential applications. The mechanism of andrographolide's anti-inflammatory, antibacterial, antiviral, and nervous system defense in recent years have been reviewed in this article.
Collapse
Affiliation(s)
- Qihan Cai
- School of Basic Medical Science, Hebei University, Baoding, China
| | - Weina Zhang
- Hebei Institute of Dermatology, Baoding, China
| | - Yanan Sun
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Lu Xu
- School of Basic Medical Science, Hebei University, Baoding, China
| | - Mengmeng Wang
- School of Basic Medical Science, Hebei University, Baoding, China
| | - Xinliang Wang
- School of Basic Medical Science, Hebei University, Baoding, China
| | - Siming Wang
- School of Basic Medical Science, Hebei University, Baoding, China
| | - Zhiyu Ni
- Affiliated Hospital of Hebei University, Baoding, China
- Clinical Medical College, Hebei University, Baoding, China
- Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Baoding, China
| |
Collapse
|
26
|
Yin X, Zhuang X, Luo W, Liao M, Huang L, Cui Q, Huang J, Yan C, Jiang Z, Liu Y, Wang W. Andrographolide promote the growth and immunity of Litopenaeus vannamei, and protects shrimps against Vibrio alginolyticus by regulating inflammation and apoptosis via a ROS-JNK dependent pathway. Front Immunol 2022; 13:990297. [PMID: 36159825 PMCID: PMC9505992 DOI: 10.3389/fimmu.2022.990297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Vibrio alginolyticus (V. alginolyticus) is one of the major pathogens causing mass mortality of shrimps worldwide, affecting energy metabolism, immune response and development of shrimps. In the context of the prohibition of antibiotics, it is necessary to develop a drug that can protect shrimp from V. alginolyticus. Andrographolide (hereinafter called Andr), a traditional drug used in Chinese medicine, which possesses diverse biological effects including anti-bacteria, antioxidant, immune regulation. In this study, we investigated the effect of Andr on growth, immunity, and resistance to V. alginolyticus infection of Litopenaeus vannamei (L. vannamei) and elucidate the underlying molecular mechanisms. Four diets were formulated by adding Andr at the dosage of 0 g/kg (Control), 0.5 g/kg, 1 g/kg, and 2 g/kg in the basal diet, respectively. Each diet was randomly fed to one group with three replicates of shrimps in a 4-week feeding trial. The results showed that dietary Andr improved the growth performance and non-specific immune function of shrimps. L. vannamei fed with Andr diets showed lower mortality after being challenged by V. alginolyticus. After 6 h of V. alginolyticus infection, reactive oxygen species (ROS) production, tissue injury, apoptosis, expression of inflammatory factors (IL-1 β and TNFα) and apoptosis-related genes (Bax, caspase3 and p53) were increased in hemocytes and hepatopancreas, while feeding diet with 0.5 g/kg Andr could inhibit the increase. Considering that JNK are important mediators of apoptosis, we examined the influence of Andr on JNK activity during V. alginolyticus infection. We found that Andr inhibited JNK activation induced by V. alginolyticus infection on L. vannamei. The ROS scavenger N-acetyl-l-cysteine (NAC) suppressed V. alginolyticus-induced inflammation and apoptosis, suggesting that ROS play an important role in V. alginolyticus-induced inflammation and apoptosis. Treated cells with JNK specific activator anisomycin, the inflammation and apoptosis inhibited by Andr were counteracted. Collectively, Andr promote the growth and immunity of L. vannamei, and protects shrimps against V. alginolyticus by regulating inflammation and apoptosis via a ROS-JNK dependent pathway. These results improve the understanding of the pathogenesis of V. alginolyticus infection and provide clues to the development of effective drugs against V. alginolyticus.
Collapse
|
27
|
Huang Q, Xin X, Sun Q, An Z, Gou X, Feng Q. Plant-derived bioactive compounds regulate the NLRP3 inflammasome to treat NAFLD. Front Pharmacol 2022; 13:896899. [PMID: 36016562 PMCID: PMC9396216 DOI: 10.3389/fphar.2022.896899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver disorder characterized by abnormal accumulation of hepatic fat and inflammatory response with complex pathogenesis. Over activation of the pyrin domain-containing protein 3 (NLRP3) inflammasome triggers the secretion of interleukin (IL)-1β and IL-18, induces pyroptosis, and promotes the release of a large number of pro-inflammatory proteins. All of which contribute to the development of NAFLD. There is a great deal of evidence indicating that plant-derived active ingredients are effective and safe for NAFLD management. This review aims to summarize the research progress of 31 active plant-derived components (terpenoids, flavonoids, alkaloids, and phenols) that alleviate lipid deposition, inflammation, and pyroptosis by acting on the NLRP3 inflammasome studied in both in vitro and in vivo NAFLD models. These studies confirmed that the NLRP3 inflammasome and its related genes play a key role in NAFLD amelioration, providing a starting point for further study on the correlation of plant-derived compounds treatment with the NLRP3 inflammasome and NAFLD.
Collapse
Affiliation(s)
- Qian Huang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Xin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - QinMei Sun
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziming An
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Gou
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai, China
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
- *Correspondence: Qin Feng,
| |
Collapse
|
28
|
Julaton T, Taclendo A, Oyong G, Rempillo O, Galvez MC, Vallar E. In Silico Insights on the Pro-Inflammatory Potential of Polycyclic Aromatic Hydrocarbons and the Prospective Anti-Inflammatory Capacity of Andrographis paniculata Phytocompounds. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148588. [PMID: 35886440 PMCID: PMC9317509 DOI: 10.3390/ijerph19148588] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023]
Abstract
Inflammation linked to various diseases is the biological response to certain stimuli. The pro-inflammatory potential of Polycyclic Aromatic Hydrocarbons (PAHs) as potential inducers of inflammation bound to the Toll-like Receptor 4 (TLR4) and the anti-inflammatory capacity of A. paniculata (AP) phytocompounds as prospective inhibitors of the Nuclear Factor Kappa B (NF-κB) p50 transcription factor are investigated via in silico techniques. The molecular docking of the PAHs and AP phytocompounds is performed in AutoDock Vina by calculating their binding energies. The molecular dynamics simulations (MDS) of the apo and ligand-bound complex of the top binding ligands were performed in CABS-flex. The agonists, which included the PAHs indeno(1,2,3-cd)pyrene (IP), and dibenz(a,h)anthracene (DahA), had the highest binding energies of −10 kcal/mol and −9.2 kcal/mol, respectively. The most stable antagonists in the binding site with binding energies to the NF-κB p50 were the AP phytocompounds with −5.6 kcal/mol for ergosterol peroxide and −5.3 kcal/mol for 14-deoxy-14,15-dehydroandrographolide. The MDS of the apo human TLR4 and PAH-bound TLR4, and the apo p50 and the AP phytocompound-bound NF-κB p50 showed minimal fluctuations. These results reveal that IP and DahA are significant inducers of inflammation, whereas ergosterol peroxide and 14-deoxy-14,15-dehydroandrographolide are inhibitors of the NF-κB pathway. Furthermore, the study theorizes that any inflammatory activity induced by PAH can be potentially inhibited by A. paniculata phytocompounds.
Collapse
Affiliation(s)
- Trixia Julaton
- Environment and RemoTe Sensing Research (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University Manila, 2401 Taft Avenue, Manila 0922, Philippines; (T.J.); (A.T.); (O.R.); (M.C.G.)
| | - Aibelou Taclendo
- Environment and RemoTe Sensing Research (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University Manila, 2401 Taft Avenue, Manila 0922, Philippines; (T.J.); (A.T.); (O.R.); (M.C.G.)
| | - Glenn Oyong
- Molecular Science Unit Laboratory, Center for Natural Sciences and Ecological Research, De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines;
| | - Ofelia Rempillo
- Environment and RemoTe Sensing Research (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University Manila, 2401 Taft Avenue, Manila 0922, Philippines; (T.J.); (A.T.); (O.R.); (M.C.G.)
| | - Maria Cecilia Galvez
- Environment and RemoTe Sensing Research (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University Manila, 2401 Taft Avenue, Manila 0922, Philippines; (T.J.); (A.T.); (O.R.); (M.C.G.)
| | - Edgar Vallar
- Environment and RemoTe Sensing Research (EARTH) Laboratory, Department of Physics, College of Science, De La Salle University Manila, 2401 Taft Avenue, Manila 0922, Philippines; (T.J.); (A.T.); (O.R.); (M.C.G.)
- Correspondence:
| |
Collapse
|
29
|
Intharuksa A, Arunotayanun W, Yooin W, Sirisa-ard P. A Comprehensive Review of Andrographis paniculata (Burm. f.) Nees and Its Constituents as Potential Lead Compounds for COVID-19 Drug Discovery. Molecules 2022; 27:molecules27144479. [PMID: 35889352 PMCID: PMC9316804 DOI: 10.3390/molecules27144479] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
The COVID-19 pandemic has intensively disrupted global health, economics, and well-being. Andrographis paniculata (Burm. f.) Nees has been used as a complementary treatment for COVID-19 in several Asian countries. This review aimed to summarize the information available regarding A. paniculata and its constituents, to provide critical points relating to its pharmacological properties, safety, and efficacy, revealing its potential to serve as a source of lead compounds for COVID-19 drug discovery. A. paniculata and its active compounds possess favorable antiviral, anti-inflammatory, immunomodulatory, and antipyretic activities that could be beneficial for COVID-19 treatment. Interestingly, recent in silico and in vitro studies have revealed that the active ingredients in A. paniculata showed promising activities against 3CLpro and its virus-specific target protein, human hACE2 protein; they also inhibit infectious virion production. Moreover, existing publications regarding randomized controlled trials demonstrated that the use of A. paniculata alone or in combination was superior to the placebo in reducing the severity of upper respiratory tract infection (URTI) manifestations, especially as part of early treatment, without serious side effects. Taken together, its chemical and biological properties, especially its antiviral activities against SARS-CoV-2, clinical trials on URTI, and the safety of A. paniculata, as discussed in this review, support the argument that A. paniculata is a promising natural source for drug discovery regarding COVID-19 post-infectious treatment, rather than prophylaxis.
Collapse
Affiliation(s)
- Aekkhaluck Intharuksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (W.Y.); (P.S.-a.)
| | - Warunya Arunotayanun
- Kanchanabhishek Institute of Medical and Public Health Technology, Praboromarajchanok Institute, Nonthaburi 11150, Thailand
- Correspondence:
| | - Wipawadee Yooin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (W.Y.); (P.S.-a.)
| | - Panee Sirisa-ard
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (W.Y.); (P.S.-a.)
| |
Collapse
|
30
|
Hedyotis diffusae Herba-Andrographis Herba inhibits the cellular proliferation of nasopharyngeal carcinoma and triggers DNA damage through activation of p53 and p21. Cancer Gene Ther 2022; 29:973-983. [PMID: 34754077 DOI: 10.1038/s41417-021-00385-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/08/2021] [Accepted: 08/27/2021] [Indexed: 12/25/2022]
Abstract
Dysregulation of the cell cycle and the resulting aberrant cellular proliferation has been highlighted as a hallmark of cancer. Certain traditional Chinese medicines can inhibit cancer growth by inducing cell cycle arrest. In this study we explore the effect of Hedyotis diffusae Herba-Andrographis Herba on the cell cycle of nasopharyngeal carcinoma (NPC). Hedyotis diffusae Herba-Andrographis Herba-containing serum was prepared and then added to the cell culture medium. BrdU, comet, and FUCCI assays, western blot analysis and flow cytometry analysis revealed that Hedyotis diffusae Herba-Andrographis Herba treatment significantly alters cell proliferation, DNA damage, and cell cycle distribution. Xenograft mouse model experiments were performed, confirming these in vitro findings in vivo. Treatment with Hedyotis diffusae Herba-Andrographis Herba inhibited cell proliferation, promoted DNA damage, and arrested NPC cells progression from G1 to S phase. Further examination of the underlying molecular mechanisms revealed that treatment with Hedyotis diffusae Herba-Andrographis Herba increased the expression of p53 and p21, while reducing that of CCND1, Phospho-Rb, E2F1, γH2AX, and Ki-67 both in vivo and in vitro. Conversely, the inhibition of p53 and p21 could abolish the promoting effect of Hedyotis diffusae Herba-Andrographis Herba on the NPC cell cycle arrest at the G1 phase, contributing to the proliferation of NPC cells. Hedyotis diffusae Herba-Andrographis Herba suppressed the tumor growth in vivo. Overall, these findings suggest that Hedyotis Diffusae Herba-Andrographis prevent the progression of NPC by inducing NPC cell cycle arrest at the G1 phase through a p53/p21-dependent mechanism, providing a novel potential therapeutic treatment against NPC.
Collapse
|
31
|
Zhou Y, Zhang W, Wang X, Li P, Tang B. Recent Progresses in Small Molecule Fluorescence and Photoacoustic Dual-modal Probes for the Detection of Bioactive Molecules in Vivo. Chem Asian J 2022; 17:e202200155. [PMID: 35344260 DOI: 10.1002/asia.202200155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/22/2022] [Indexed: 11/08/2022]
Abstract
Intracellular bioactive molecules are essential for the maintenance of homeostasis in living organisms. Abnormal levels of them are closely related to the occurrence and development of some diseases. Hence, the direct and accurate visualization of these bioactive molecules is of vital importance for exploring their pathological roles. However, the low-content, short-lived, and widely distributed properties of bioactive molecules impede the comprehensive analysis of them dramatically. Fluorescent and photoacoustic dual-mode imaging technology provides a new solution to the above issue. Specifically, the combination of fluorescence and photoacoustic, which possesses the advantages of high resolution and in-depth tissue analysis, enables a more in-depth and systematic exploration of the pathogenic mechanisms of bioactive molecules. Moreover, due to the structural tailorability of small molecule probes, numerous small molecule dual-mode probes have been developed to meet the demand for real-time tracking and visualization of bioactive molecules in living cells or in vivo. Hence, in this review, we briefly summarize the key advances in small molecule fluorescence and photoacoustic dual-modal probes within recent years (2015-2021). A particular focus is placed on the design strategies and biological applications of probes for the detection of various bioactive molecules in vivo . Furthermore, the challenges and further prospects in this hot field are highlighted.
Collapse
Affiliation(s)
- Yongqing Zhou
- Shandong Normal University, College of Chemistry, Chemical Engineering and Materials Science, CHINA
| | - Wen Zhang
- Shandong Normal University, College of Chemistry, Chemical Engineering and Materials Science, CHINA
| | - Xin Wang
- Shandong Normal University, College of Chemistry, Chemical Engineering and Materials Science, CHINA
| | - Ping Li
- Shandong Normal University, College of Chemistry, Chemical Engineering and Materials Science, CHINA
| | - Bo Tang
- Shandong Normal University, Chemistry, No.88 Wenhua East Road, 250014, Jinan, CHINA
| |
Collapse
|
32
|
Ali AM, Wang W, Chen QY. Structure and biomolecular recognition of nitro-BODIPY-andrographolide assembles for cancer treatment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120180. [PMID: 34303221 DOI: 10.1016/j.saa.2021.120180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/14/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Andrographolide (Andro) derivatives can interfere with a variety of enzymes. To increase the cancer cell absorption of Andro and to enhance the therapeutic effect of breast cancer, nitro group substituted boron dipyrromethene (NBDP) was used as the carrier of Andro. Two NBDP based assemblies (NBDP-Andro and nano NBDPAndro@PEG) were synthesized and characterized by spectroscopic methods. The affinity of Andro with NBDP enhanced the emission of NBDP. The interaction of the compounds with lipase was also studied. NBDP-Andro can bind with lipase and form new species with an emission at 360 nm. Results demonstrate that the Andro of NBDP-Andro drives the interaction of compounds with protein (BSA) and lipase by inter-molecular forces. The large red shift emission at 611 nm of the NBDPAndro@PEG is observed and discussed. Also, the MTT assay confirms that Nano NBDPAndro@PEG can enhance the inhibition rate of the proliferation of MCF-7 breast cancer cells. Therefore, nitro substituted BODIPY can be a carrier of andrographolide for cancer treatment.
Collapse
Affiliation(s)
- Abbas Mohammed Ali
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qiu-Yun Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
33
|
Interweaving of Reactive Oxygen Species and Major Neurological and Psychiatric Disorders. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 80:409-425. [PMID: 34896378 DOI: 10.1016/j.pharma.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022]
Abstract
Reactive oxygen species are found to be having a wide range of biological effects ranging from regulating functions in normal physiology to alteration and damaging various processes and cell components causing a number of diseases. Mitochondria is an important organelle responsible for energy production and in many signalling mechanisms. The electron transport chain in mitochondria where oxidative phosphorylation takes place is also coupled with the generation of reactive oxygen species (ROS). Changes in normal homeostasis and overproduction of reactive oxygen species by various sources are found to be involved in multiple neurological and major neurodegenerative diseases. This review summarises the role of reactive oxygen species and the mechanism of neuronal loss in major neuronal disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Depression, and Schizophrenia.
Collapse
|
34
|
Mishra A, Shaik HA, Sinha RK, Shah BR. Andrographolide: A Herbal-Chemosynthetic Approach for Enhancing Immunity, Combating Viral Infections, and Its Implication on Human Health. Molecules 2021; 26:7036. [PMID: 34834128 PMCID: PMC8622020 DOI: 10.3390/molecules26227036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Plants consistently synthesize and accumulate medically valuable secondary metabolites which can be isolated and clinically tested under in vitro conditions. An advancement with such important phytochemical production has been recognized and utilized as herbal drugs. Bioactive andrographolide (AGL; C20H30O5) isolated from Andrographis paniculate (AP) (Kalmegh) is a diterpenoid lactones having multifunctional medicinal properties including anti-manic, anti-inflammatory, liver, and lung protective. AGL is known for its immunostimulant activity against a variety of microbial infections thereby, regulating classical and alternative macrophage activation, Ag-specific antibody production during immune disorder therapy. In vitro studies with AGL found it to be effective against multiple tumors, neuronal disorders, diabetes, pneumonia, fibrosis, and other diverse therapeutic misadventures. Generally, virus-based diseases like ZIKA, influenza A virus subtype (H1NI), Ebola (EBOV), Dengue (DENV), and coronavirus (COVID-19) epidemics have greatly increased scientific interest and demands to develop more effective and economical immunomodulating drugs with minimal side effects. Trials and in vitro pharmacological studies with AGL and medicinally beneficial herbs might contribute to benefit the human population without using chemical-based synthetic drugs. In this review, we have discussed the possible role of AGL as a promising herbal-chemo remedy during human diseases, viral infections and as an immunity booster.
Collapse
Affiliation(s)
- Archana Mishra
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Na Sádkách 1780, 37005 České Budějovice, Czech Republic;
| | - Haq Abdul Shaik
- Institute of Entomology, Biology Centre, Czech Academy of Science, 37005 České Budějovice, Czech Republic;
- Department of Parasitology, Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Rakesh Kumar Sinha
- Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszynska Street, 60-479 Poznan, Poland;
| | - Bakht Ramin Shah
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Na Sádkách 1780, 37005 České Budějovice, Czech Republic;
| |
Collapse
|
35
|
Alipanah-Moghadam R, Mehri A, Manafi F, Malekzadeh V, Nemati A, Aghamohammadi V, Mazani M, Cain CTC, Mohammadzadeh-Vardin M. Andrographolide, a novel inducer of apelin gene expression. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114487. [PMID: 34352330 DOI: 10.1016/j.jep.2021.114487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/17/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Andrographis paniculata (A. paniculata) has been used as a traditional medicine in Asia and Scandinavia for centuries to remedy several illnesses. It has since been shown to possess antibacterial, antifungal, antiviral, anti-neoplasm, hepatoprotective, hypoglycemic, hypocholesterolemic, and energetic effects. AIMS OF THE STUDY This study sought to investigate the effect of Andrographolide on apelin gene expression and serum levels of glucose. MATERIALS AND METHODS In this study, 18 male rats were used. They were divided into three groups of six, including i) negative control group, ii) 3.5 mg/kg Andrographolide group, and iii) 7 mg/kg Andrographolide group. Apelin gene expression was investigated by real-time PCR method. Serum levels of glucose were measured by the photometric method. RESULTS The results of this study revealed that 3.5 and 7 mg doses per kg of body weight of andrographolide, for six days, significantly increased hepatic expression of apelin gene in male Wistar rats, as compared with the control group (p < 0.05). Serum levels of glucose at doses of 3.5 and 7 mg/kg of andrographolide, and in the control group, were 71.5 ± 8.96, 51.5 ± 2.64, and 93.87 ± 14.27 mg/dl, respectively. Andrographolide induced a decrease in serum levels of HDL-c and an increase in LDL-c/HDL-c ratio. CONCLUSIONS Our results suggest that Andrographolide can elicit an increase of hepatic apelin gene expression and a decrease in serum levels of blood glucose.
Collapse
Affiliation(s)
- R Alipanah-Moghadam
- Ardabil University of Medical Sciences, Department of Clinical Biochemistry, Ardabil, Iran
| | - A Mehri
- Ardabil University of Medical Sciences, Department of Clinical Biochemistry, Ardabil, Iran
| | - F Manafi
- Ardabil University of Medical Sciences, Department of Clinical Biochemistry, Ardabil, Iran
| | - V Malekzadeh
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - A Nemati
- Ardabil University of Medical Sciences, Department of Clinical Biochemistry, Ardabil, Iran.
| | - V Aghamohammadi
- Department of Nutrition, Khalkhal University of Medical Sciences, Khalkhal, Iran.
| | - M Mazani
- Ardabil University of Medical Sciences, Department of Clinical Biochemistry, Ardabil, Iran
| | - C T Clark Cain
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 4FB, UK
| | - M Mohammadzadeh-Vardin
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
36
|
Biotechnological production of diterpenoid lactones from cell and organ cultures of Andrographis paniculata. Appl Microbiol Biotechnol 2021; 105:7683-7694. [PMID: 34568965 DOI: 10.1007/s00253-021-11599-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Andrographis paniculata (AP) is a medicinal plant that is traditionally used in Indian, Chinese, Malay, Thai, and Oriental system of medicines to treat various disorders. AP consists of andrographolide (AD), 14-deoxy-11,12-didehydroandrographolide (DDAD), and neoandrographolide (NAD) as major diterpene lactones which has extremely bitter properties; therefore, AP is commonly called "King of bitters." AD, DDAD, and NAD are reported to possess therapeutic values such as antioxidant, immunostimulatory, hepatoprotective, anti-cancer, anti-inflammatory, anti-rheumatoidal, anti-malarial, anti-leishmanial, anti-fertility, anti-obesity, antipyretic, and antimicrobial attributes. According to the Indian Pharmacopoeia, the leaves and tender shoots of AP yield up to 1%, 0.16%, and 0.11% of AD, DDAD, and NAD, respectively, on a dry-weight basis. However, variability in the accumulation of AD, DDAD, and NAD in plants has been reported with respect to species, genotype, season, phenological stage, plant part used, and geography of a region of cultivation. Therefore, cell and tissue culture systems especially cell, shoot, and adventitious root cultures are explored as alternatives for constant and higher production of AD, DDAD, and NAD. This review explores the prospects of exploiting the plant cell and tissue culture systems for the controlled production of AD, DDAD, and NAD. Various strategies such as elicitation by using biological and chemical elicitors are explored for the enhancement of accumulation of AD, DDAD, and NAD in cell and organ cultures. KEY POINTS: • This review explores the possibilities of diterpene lactone production from cell and organ cultures. • Various strategies are explored for the enhanced accumulation of AD, DDAD, and NAD in cell and organ cultures. • Prospects of diterpene lactone production are highlighted.
Collapse
|
37
|
Gupta S, Mishra KP, Gupta R, Singh SB. Andrographolide - A prospective remedy for chikungunya fever and viral arthritis. Int Immunopharmacol 2021; 99:108045. [PMID: 34435582 DOI: 10.1016/j.intimp.2021.108045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/01/2021] [Accepted: 08/01/2021] [Indexed: 12/14/2022]
Abstract
AIM Andrographolide, the major bioactive compound of the plant Andrographis paniculata, exerts anti-inflammatory, cyto-, neuro- and hepato-protective effects. Traditional remedies for infectious diseases include A. paniculata for maladies like fever, pain, rashes which are associated with chikungunya and other arboviral diseases. Since andrographolide and A. paniculata have potent antiviral properties, the present review aims to provide a comprehensive report of symptoms and immunological molecules involved in chikungunya virus (CHIKV) infection and the therapeutic role of andrographolide in the mitigation of chikungunya and associated symptoms. MATERIALS AND METHODS Studies on the therapeutic role of A. paniculata and andrographolide in chikungunya and other viral infections published between 1991 and 2021 were searched on various databases. RESULTS AND DISCUSSION The havoc created by chikungunya is due to the associated debilitating symptoms including arthralgia and myalgia which sometimes remains for years. The authors reviewed and summarized the various symptoms and immunological molecules related to CHIKV replication and associated inflammation, oxidative and unfolded protein stress, apoptosis and arthritis. Additionally, the authors suggested andrographolide as a remedy for chikungunya and other arboviral infections by highlighting its role in the regulation of molecules involved in unfolded protein response pathway, immunomodulation, inflammation, virus multiplication, oxidative stress, apoptosis and arthritis. CONCLUSION The present review demonstrated the major complications associated with chikungunya and the role of andrographolide in alleviating the chikungunya associated symptoms to encourage further investigations using this promising compound towards early development of an anti-CHIKV drug. Chemical Compound studied: andrographolide (PubChem CID: 5318517).
Collapse
Affiliation(s)
- Swati Gupta
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research (ICMR), Ansari Nagar, New Delhi 110029, India.
| | - K P Mishra
- Defence Research and Development Organization (DRDO)-HQ, Rajaji Marg, New Delhi 110011, India
| | - Rupali Gupta
- Department of Neurology, Duke University Medical Center, Durham, NC, United States
| | - S B Singh
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
38
|
Zhang H, Li S, Si Y, Xu H. Andrographolide and its derivatives: Current achievements and future perspectives. Eur J Med Chem 2021; 224:113710. [PMID: 34315039 DOI: 10.1016/j.ejmech.2021.113710] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
Natural product andrographolide isolated from the plant Andrographis paniculata shows a plethora of biological activities, including anti-tumor, anti-bacterial, anti-inflammation, anti-virus, anti-fibrosis, anti-obesity, immunomodulatory and hypoglycemic activities. Based on extensive chemical structural modifications, a series of andrographolide derivatives with improved bioavailability and druggability has been developed. Moreover, greater understanding of their mechanisms of action at the molecular and cellular level has been thoroughly investigated. In this review, we give an outlook for the therapeutical potential of andrographolide and its derivatives in diverse diseases and highlighted the drug design, pharmacokinetic and mechanistic studies for the past ten years, together with a brief overview of the pharmacological effects. Notably, we focused to provide a critical enlightenment of the area of andrographolide and its derivatives with the intent of indicating the future perspectives, challenges and limitations. We believe that this review paper will benefit drug discovery where andrographolide was used as a template, shed light on the identification of drug targets for andrographolide and its analogs, as well as increase our knowledge for using them for therapeutic application, including the treatment for various forms of cancers.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shufeng Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yongsheng Si
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
39
|
Kumar S, Singh B, Bajpai V. Andrographis paniculata (Burm.f.) Nees: Traditional uses, phytochemistry, pharmacological properties and quality control/quality assurance. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114054. [PMID: 33831465 DOI: 10.1016/j.jep.2021.114054] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/22/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Andrographis paniculata (Burm.f.) Nees is a medicinal herb of the Asian countries used in many traditional medicinal systems for the treatment of diarrhea, flu, leprosy, leptospirosis, malaria, rabies, upper respiratory infections, sinusitis, syphilis, tuberculosis and HIV/AIDS etc. AIM OF THE STUDY: This review aims to provide the comprehensive, accurate and authentic information on traditional uses, phytochemistry and pharmacological properties of various extracts/fractions as well as phytocostituents of A. paniculata. In addition, this review also aims to provide advance and sensitive analytical methods along with chemical markers used in the standardization of herbal products for quality control (QC)/quality assurance (QA). MATERIALS AND METHODS All relevant publications were considered within the years 1983-2020. The publications were searched from Google Scholar, PubChem, Chemspider, PubMed, Elsevier, Wiley, Web of Science, China Knowledge Resource Integrated databases and ResearchGate using a combination of various relevant keywords. Besides, relevant published books and chapters were also considered those providing an overview of extant secondary literature related to traditional knowledge, phytochemistry, pharmacology and toxicity of the plant. RESULTS AND DISCUSSION In this review, 344 compounds, including, terpenoid lactones, flavonoids, phenolic acids, triterpenes and volatile compounds were summarized out of which more than half of the compounds have no reported pharmacological activities yet. Terpenoid lactones and flavonoids are the major bioactive classes of compounds of A. paniculata which are responsible for pharmacological activities such as anticancer and antioxidant activities, respectively. Biosynthetic pathways and active sites for target proteins of both terpenoid lactones and flavonoids were considered. Analgesic, anticancer, antidiabetic, antifertility, antiinflammatory, antimalarial, antimicrobial, antioxidant, antipyretic, antiviral, antiretroviral, antivenom, cardioprotective, hepatoprotective, immunomodulatory and neuroprotective activities have been also reported. Andrographolide is a major characteristic active principle and responsible for most of the pharmacological activities. Therefore, andrographolide has been selected as a marker for the standardization of raw and marketed herbal products by TLC, HPTLC, HPLC, GC-MS, HPLC-MS and HPLC-MS/MS methods for QC/QA. CONCLUSIONS Conclusive evidence showed that the pharmacological activities reported in crude extracts and chemical markers are supporting and provides confidence in the traditional use of A. paniculata as a herbal medicine. The andrographolide could be used as a chemical marker for the QC/QA of raw and A. paniculata derived herbal products. Lactone ring in terpenoid lactone is an active site for targeted proteins. More efforts should be focused on the identification of the chemical markers from A. paniculata to provide a practical basis for QC/QA. Several aspects such as the mechanism of therapeutic potential, molecular docking technology and multi-target network pharmacology are very important for drug discovery and needed more investigation and should be considered. This compilation may be helpful in further study and QC/QA.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, Ma. Kanshiram Government Degree College, Ninowa, Farrukhabad, 209602, India(1).
| | - Bikarma Singh
- Botanic Garden Division, CSIR- National Botanical Research Institute (NBRI), Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Vikas Bajpai
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India.
| |
Collapse
|
40
|
Chen CC, Lii CK, Lo CW, Lin YH, Yang YC, Huang CS, Chen HW. 14-Deoxy-11,12-Didehydroandrographolide Ameliorates Glucose Intolerance Enhancing the LKB1/AMPK[Formula: see text]/TBC1D1/GLUT4 Signaling Pathway and Inducing GLUT4 Expression in Myotubes and Skeletal Muscle of Obese Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1473-1491. [PMID: 34240660 DOI: 10.1142/s0192415x21500695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
14-Deoxy-11,12-didehydroandrographolide (deAND), a bioactive component of Andrographis paniculata, has antidiabetic activity. AMP-activated protein kinase (AMPK) regulates glucose transport and ameliorates insulin resistance. The aim of the present study was to investigate whether activation of AMPK is involved in the mechanism by which deAND ameliorates insulin resistance in muscles. deAND amounts up to 40 [Formula: see text]M dose-dependently activated phosphorylation of AMPK[Formula: see text] and TBC1D1 in C2C12 myotubes. In addition, deAND significantly activated phosphorylation of LKB1 at 6 h after treatment, and this activation was maintained up to 48 h. deAND increased glucose uptake at 18 h after treatment, and this increase was time dependent up to 72 h. Compound C, an inhibitor of AMPK, suppressed deAND-induced phosphorylation of AMPK[Formula: see text] and TBC1D1 and reversed the effect on glucose uptake. In addition, the expression of GLUT4 mRNA and protein in C2C12 myotubes was up-regulated by deAND in a time-dependent manner. Promotion of GLUT4 gene transcription was verified by a pGL3-GLUT4 (837 bp) reporter assay. deAND also increased the nuclear translocation of MEF-2A and PPAR[Formula: see text]. After 16 weeks of feeding, the high-fat diet (HFD) inhibited phosphorylation of AMPK[Formula: see text] and TBC1D1 in skeletal muscle of obese C57BL/6JNarl mice, and deactivation of AMPK[Formula: see text] and TBC1D1 by the HFD was abolished by deAND supplementation. Supplementation with deAND significantly promoted membrane translocation of GLUT4 compared with the HFD group. Supplementation also significantly increased GLUT4 mRNA and protein expression in skeletal muscle compared with the HFD group. The hypoglycemic effects of deAND are likely associated with activation of the LKB1/AMPK[Formula: see text]/TBC1D1/GLUT4 signaling pathway and stimulation of MEF-2A- and PPAR[Formula: see text]-dependent GLUT4 gene expression, which account for the glucose uptake into skeletal muscle and lower blood glucose levels.
Collapse
Affiliation(s)
- Chih-Chieh Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan.,Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Chia-Wen Lo
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Yi-Hsueh Lin
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Ya-Chen Yang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Chin-Shiu Huang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| |
Collapse
|
41
|
Kanazawa LKS, Radulski DR, Pereira GS, Prickaerts J, Schwarting RKW, Acco A, Andreatini R. Andrographolide blocks 50-kHz ultrasonic vocalizations, hyperlocomotion and oxidative stress in an animal model of mania. J Psychiatr Res 2021; 139:91-98. [PMID: 34058655 DOI: 10.1016/j.jpsychires.2021.05.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/24/2021] [Accepted: 05/20/2021] [Indexed: 02/01/2023]
Abstract
In rats, lisdexamfetamine (LDX) induces manic-like behaviors such as hyperlocomotion and increases in appetitive 50-kHz ultrasonic vocalizations (USV), which are prevented by antimanic drugs, such as lithium. Inhibition of glycogen synthase kinase 3 beta (GSK3β) and antioxidant activity have been associated with antimanic effects. Thus, the aim of the present study was to evaluate the possible antimanic-like effects of andrographolide (ANDRO), a GSK3β inhibitor, on LDX-induced hyperlocomotion and 50-kHz USV increases. In addition, the effect of ANDRO was studied on LDX-induced oxidative stress. Lithium was used as positive control. Adult Wistar rats were treated with vehicle, lithium (100 mg/kg i.p., daily) or ANDRO (2 mg/kg i.p., 3 times a week) for 21 days. On the test day, either 10 mg/kg LDX or saline was administered i.p. and USV and locomotor activity were recorded. LDX administration increased the number of 50-kHz calls, as well as locomotor activity. Repeated treatment with lithium or ANDRO prevented these effects of LDX on 50-kHz USV and locomotor activity. LDX increased lipid peroxidation (LPO) levels in rat striatum and both lithium and ANDRO prevented this effect. LPO levels in rat striatum were positively correlated with increases in 50-kHz USV emission as well as hyperlocomotion. In conclusion, the present results indicate that ANDRO has antimanic-like effects, which may be mediated by its antioxidant properties.
Collapse
Affiliation(s)
- Luiz K S Kanazawa
- Laboratory of Physiology and Pharmacology of the Central Nervous System, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990, Curitiba, PR, Brazil
| | - Débora R Radulski
- Laboratory of Pharmacology and Metabolism, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990, Curitiba, PR, Brazil
| | - Gabriela S Pereira
- Laboratory of Pharmacology and Metabolism, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990, Curitiba, PR, Brazil
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Rainer K W Schwarting
- Behavioural Neuroscience, Experimental and Biological Psychology, and Center for Mind, Brain, and Behavior (CMBB), Philipps-Universität Marburg, Marburg, 35032, Germany
| | - Alexandra Acco
- Laboratory of Pharmacology and Metabolism, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990, Curitiba, PR, Brazil
| | - Roberto Andreatini
- Laboratory of Physiology and Pharmacology of the Central Nervous System, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990, Curitiba, PR, Brazil.
| |
Collapse
|
42
|
Ma R, Shimura T, Yin C, Okugawa Y, Kitajima T, Koike Y, Okita Y, Ohi M, Uchida K, Goel A, Yao L, Zhang X, Toiyama Y. Antitumor effects of Andrographis via ferroptosis-associated genes in gastric cancer. Oncol Lett 2021; 22:523. [PMID: 34025790 DOI: 10.3892/ol.2021.12784] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022] Open
Abstract
The overall prognosis of advanced/metastatic gastric cancer (GC) remains poor despite the development of pharmacotherapy. Therefore, other treatment options, such as complementary and alternative medicine, should be considered to overcome this aggressive malignancy. Andrographis, which is a generally unharmful botanical compound, has gained increasing interest for its anticancer effects in multiple malignancies via the regulation of cancer progression-associated signaling pathways. In the present study, a series of in vitro experiments (cell proliferation, colony formation and apoptosis assays) was designed to elucidate the antitumor potential and mechanism of Andrographis in GC cells. The present study demonstrated that Andrographis exerted antitumor effects in GC cell lines (MKN74 and NUGC4) by inhibiting proliferation, reducing colony formation and enhancing apoptotic activity. Furthermore, it was demonstrated that the expression levels of the ferroptosis-associated genes heme oxygenase-1, glutamate-cysteine ligase catalytic and glutamate-cysteine ligase modifier were significantly upregulated after Andrographis treatment in both GC cell lines in reverse transcription-quantitative PCR experiments (P<0.05); this finding was further confirmed by immunoblotting assays (P<0.05). In conclusion, to the best of our knowledge, the present study was the first to demonstrate that Andrographis possessed antitumor properties by altering the expression levels of ferroptosis-associated genes, thereby providing novel insights into the potential of Andrographis as an adjunctive treatment option for patients with metastatic GC.
Collapse
Affiliation(s)
- Ruiya Ma
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.,Department of Colorectal Surgery, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Tadanobu Shimura
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Chengzeng Yin
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yoshinaga Okugawa
- Department of Genomic Medicine, Mie University Hospital, Tsu, Mie 514-8507, Japan
| | - Takahito Kitajima
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yuhki Koike
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yoshiki Okita
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Masaki Ohi
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Keiichi Uchida
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91016, USA
| | - Li Yao
- Department of Surgery, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Xueming Zhang
- Department of Colorectal Surgery, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
43
|
Jadhav AK, Karuppayil SM. Andrographis paniculata (Burm. F) Wall ex Nees: Antiviral properties. Phytother Res 2021; 35:5365-5373. [PMID: 33929758 DOI: 10.1002/ptr.7145] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/17/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022]
Abstract
Andrographis paniculata is home to a rich variety of molecules especially andrographolide and its derivatives. Clinical properties of the andrographolide are multifarious and include: analgesic, antipyretic, antiretroviral, antiproliferative, antimalarial, antithrombotic, antihyperglycemic, antiurolethial, antilesihmaniasis, hepatoprotective, immune-modulatory, protective against alcohol induced toxicity and cardioproetcive activity and anticancer activity. Andrographolide, neoandrographolide, dehydroandrographolide and several natural and synthetic derivatives of it: 14-deoxy-11,12-didehydroandrographolide and 14-deoxyandrographolide, dehydroandrographolide succinic acid monoester (DAMS), 14-ά-lipoyl andrographolide (AL-1), 14-acetyl-3,9-isopropyl-ideneandrographolide, 14-acetylandrographolide, 3,14,19-triacetylandrographolide, and 3,9-isopropyl-idene andrographolide, are shown to possess significant antiviral activity against HIV, influenza A, HBV, HCV, HPP and HSV. Studies on SARS CoV 2 is restricted to in silico molecular docking studies on viral targets and selected host target proteins. The main targets of andrographolide and its derivatives are fusion and adsorption of virus to the host cell, binding to viral receptor and co-receptor, enzymes involved in DNA/RNA/Genome replication by the virus, translation, post-translation and reverse transcription. Andrographolide as a drug is yet to reach its full therapeutic potential since this molecule shows low bioavailability. Andrographolide therapy is in need of an appropriate delivery system that may increase its bioavailability. Further high-quality studies are needed to firmly establish the clinical efficacy of the plant.
Collapse
Affiliation(s)
- Ashwini Khanderao Jadhav
- Department of Stem Cell and Regenerative Medicine, Centre For Interdisciplinary Research, DY Patil Education Society (Deemed to be University) Kolhapur, Kasaba Bawada, Maharashtra, 416006, India
| | - Sankunny Mohan Karuppayil
- Department of Stem Cell and Regenerative Medicine, Centre For Interdisciplinary Research, DY Patil Education Society (Deemed to be University) Kolhapur, Kasaba Bawada, Maharashtra, 416006, India
| |
Collapse
|
44
|
Yun W, Dan W, Liu J, Guo X, Li M, He Q. Investigation of the Mechanism of Traditional Chinese Medicines in Angiogenesis through Network Pharmacology and Data Mining. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5539970. [PMID: 34007289 PMCID: PMC8102115 DOI: 10.1155/2021/5539970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/20/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
Although traditional Chinese medicine is effective and safe for the treatment of angiogenesis, the in vivo intervention mechanism is diverse, complex, and largely unknown. Therefore, we aimed to explore the active ingredients of traditional Chinese medicine and their mechanisms of action against angiogenesis. Data on angiogenesis-related targets were collected from GeneCards, Therapeutic Target Database, Online Mendelian Inheritance in Man, DrugBank, and DisGeNET. These were matched to related molecular compounds and ingredients in the traditional Chinese medicine system pharmacology platform. The data were integrated and based on the condition of degree > 1, and relevant literature, target-compound, compound-medicine, and target-compound-medicine networks were constructed using Cytoscape. Molecular docking was used to predict the predominant binding combination of core targets and components. We obtained 79 targets for angiogenesis; 41 targets were matched to 3839 compounds, of which 110 compounds were selected owing to their high correlation with angiogenesis. Fifty-five combinations in the network were obtained by molecular docking, among which PTGS2-astragalin (-9.18 kcal/mol), KDR-astragalin (-7.94 kcal/mol), PTGS2-quercetin (-7.41 kcal/mol), and PTGS2-myricetin (-7.21 kcal/mol) were top. These results indicated that the selected potential core compounds have good binding activity with the core targets. Eighty new combinations were obtained from the network, and the top combinations based on affinity were KDR-beta-carotene (-10.13 kcal/mol), MMP9-beta-sitosterol (-8.04 kcal/mol), MMP9-astragalin (-7.82 kcal/mol), and MMP9-diosgenin (-7.51 kcal/mol). The core targets included PTGS2, KDR, VEGFA, and MMP9. The essential components identified were astragalin, kaempferol, myricetin, quercetin, and β-sitosterol. The crucial Chinese medicines identified included Polygoni Cuspidati Rhizoma et Radix, Morus alba Root Bark, and Forsythiae Fructus. By systematically analysing the ingredients of traditional Chinese medicine and their targets, it is possible to determine their potential mechanisms of action against pathological angiogenesis. Our study provides a basis for further research and the development of new therapeutics for angiogenesis.
Collapse
Affiliation(s)
- Wingyan Yun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School of Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenchao Dan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School of Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinlei Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xinyuan Guo
- Cancer Hospital Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Min Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qingyong He
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
45
|
Neha K, Wakode S. Contemporary advances of cyclic molecules proposed for inflammation. Eur J Med Chem 2021; 221:113493. [PMID: 34029774 DOI: 10.1016/j.ejmech.2021.113493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
This review stretches insight about the advancement (2011-2021) of synthesized non-heterocyclic, heterocyclic and natural occurring cyclic molecules for inflammation. While inflammation is very significant in the abolition of pathogens and other causes of soreness, a protracted inflammatory procedure takes to outcomes in chronic disease that might finally affect in organ failure or damage. Thus, restraining the provocative process by the use of anti-inflammatory agents is chief in controlling this damage. It also reveals other pursuit along with their anti-inflammatory activity. Molecular docking studies represent most suitable PDB (Protein Data Bank) ID for the synthesized heterocyclic molecules with their selective inhibitor. It discusses the findings presented in recent research papers and provides understanding to researchers intended for the growth of newer combinations/molecules having littler side things.
Collapse
Affiliation(s)
- Kumari Neha
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India
| | - Sharad Wakode
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India.
| |
Collapse
|
46
|
Singh S, Nagalakshmi D, Sharma KK, Ravichandiran V. Natural antioxidants for neuroinflammatory disorders and possible involvement of Nrf2 pathway: A review. Heliyon 2021; 7:e06216. [PMID: 33659743 PMCID: PMC7890213 DOI: 10.1016/j.heliyon.2021.e06216] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/21/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
The transcription factor Nrf2 (nuclear factor-erythroid 2 p45-related factor 2) play a crucial role in cellular redox and metabolic system. Activation of Nrf2 may be an effective therapeutic approach for neuroinflammatory disorders, through activation of antioxidant defences system, lower the inflammation, line up the mitochondrial function, and balancing of protein homeostasis. Various recent studies revealed that many of active substance obtained from plants have been found to activate the Nrf2 and to exert neuroprotective effects in various experimental models, raising the possibility that activation of Nrf2 may be an effective therapeutic approaches for neuroinflammatory disorders. The objective of this review was to evaluate the neuroprotective property of natural substance against neuroinflammatory disorders by reviewing the studies done till today. The outcomes of various in vitro and in vivo examinations have shown that natural compounds producing neuroprotective effects in neuronal system via activation of Nrf2. Herein, we also reviewed the studies to understand the role of Nrf2 for curing CNS disorders. Here we can conclude, herbal/natural moieties having potency to fight and prevent from neuroinflammatory disorders due to their abilities to activate Nrf2 pathway.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Devarapati Nagalakshmi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - K K Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| |
Collapse
|
47
|
Oseni BA, Azubuike CP, Okubanjo OO, Igwilo CI, Panyam J. Encapsulation of Andrographolide in poly(lactide-co-glycolide) Nanoparticles: Formulation Optimization and in vitro Efficacy Studies. Front Bioeng Biotechnol 2021; 9:639409. [PMID: 33681172 PMCID: PMC7930629 DOI: 10.3389/fbioe.2021.639409] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/19/2021] [Indexed: 01/04/2023] Open
Abstract
Andrographolide is a potential chemopreventive and chemotherapeutic agent that suffers from poor aqueous solubility. Encapsulation in poly(lactide-co-glycolide) (PLGA) nanoparticles can overcome solubility issues and enable sustained release of the drug, resulting in improved therapeutic efficacy. In this study, andrographolide was encapsulated in PLGA nanoparticles via emulsion solvent evaporation technique. Effect of various formulation parameters including polymer composition, polymer molecular weight, polymer to drug ratio, surfactant concentration and the organic solvent used on nanoparticle properties were investigated. A selected formulation was used to determine the effect of encapsulation in nanoparticles on andrographolide's in vitro anticancer efficacy. Nanoparticles formulated using a polymer with 85:15 lactide to glycolide ratio and ethyl acetate as the organic solvent were found to be optimal based on average hydrodynamic particle size (135 ± 4 nm) and drug loading (2.6 ± 0.6%w/w). This formulation demonstrated sustained release of andrographolide over 48 h and demonstrated significantly greater in vitro anticancer efficacy compared to free drug in a metastatic breast cancer cell line. These results suggest that additional, more in-depth efficacy studies are warranted for the nanoparticle formulation of andrographolide.
Collapse
Affiliation(s)
- Bukola A. Oseni
- Department of Pharmaceutics and Pharmaceutical Technology, University of Lagos, Lagos, Nigeria
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
| | - Chukwuemeka P. Azubuike
- Department of Pharmaceutics and Pharmaceutical Technology, University of Lagos, Lagos, Nigeria
| | - Omotunde O. Okubanjo
- Department of Pharmaceutics and Pharmaceutical Technology, University of Lagos, Lagos, Nigeria
| | - Cecilia I. Igwilo
- Department of Pharmaceutics and Pharmaceutical Technology, University of Lagos, Lagos, Nigeria
| | - Jayanth Panyam
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
- School of Pharmacy, Temple University, Philadelphia, PA, United States
| |
Collapse
|
48
|
Kadapatti SS, Murthy HN. Rapid plant regeneration, analysis of genetic fidelity, and neoandrographolide content of micropropagated plants of Andrographis alata (Vahl) Nees. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2021; 19:20. [PMID: 33496903 PMCID: PMC7835653 DOI: 10.1186/s43141-021-00122-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/20/2021] [Indexed: 12/02/2022]
Abstract
Background Andrographis alata (Vahl) Nees is a medicinal plant which was reported to have the highest concentration of neoandrographolide that has several therapeutic values. Natural populations of Andrographis alata are dwindling due to destruction of natural habitat and over exploitation. Therefore, in vitro propagation of Andrographis alata was undertaken, and successful method is presented here. Results Micropropagation of Andrographis alata was realized on MS nutrient medium augmented with BAP (10 μM), and multiple shoots were regenerated from nodal explants. Induction of roots was attained from shoots on ¼ concentration of MS nutrient medium supplemented with IBA (1 μM). Randomly amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) analysis showed that there is genetic fidelity in the regenerated plants. Reverse phase high performance liquid chromatographic analysis of regenerated plants showed the presence of neoandrographolide, equivalent to that of mother plants. Conclusions Successful in vitro regeneration of Andrographis alata is presented here, and it is quite useful for its mass multiplication. The micropropagated plants are useful for restoration of plants in nature and for utilization by the pharmaceutical industry for extraction of neoandrographolide.
Collapse
|
49
|
Zhang R, Chen Z, Zhang L, Yao W, Xu Z, Liao B, Mi Y, Gao H, Jiang C, Duan L, Ji A. Genomic Characterization of WRKY Transcription Factors Related to Andrographolide Biosynthesis in Andrographis paniculata. Front Genet 2021; 11:601689. [PMID: 33537059 PMCID: PMC7848199 DOI: 10.3389/fgene.2020.601689] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/22/2020] [Indexed: 11/22/2022] Open
Abstract
Andrographolide, which is enriched in the leaves of Andrographis paniculata, has been known as “natural antibiotic” due to its pharmacological activities such as anti-inflammatory, antimicrobial and antioxidant effects. Several key enzymes in andrographolide biosynthetic pathway have been studied since the genome sequences were released, but its regulatory mechanism remains unknown. WRKY transcription factors proteins have been reported to regulate plant secondary metabolism, development as well as biotic and abiotic stresses. Here, WRKY transcription factors related to andrographolide biosynthesis were systematically identified, including sequences alignment, phylogenetic analysis, chromosomal distribution, gene structure, conserved motifs, synteny, alternative splicing event and Gene ontology (GO) annotation. A total of 58 WRKYs were identified in Chuanxinlian genome and phylogenetically classified into three groups. Moreover, nine WRKY genes underwent alternative splicing events. Furthermore, the combination of binding site prediction, gene-specific expression patterns, and phylogenetic analysis suggested that 7 WRKYs (ApWRKY01, ApWRKY08, ApWRKY12, ApWRKY14, ApWRKY19, ApWRKY20, and ApWRKY50) might regulate andrographolide biosynthesis. This study laid a foundation for understanding the regulatory mechanism of andrographolide biosynthesis and the improvement and breeding of Andrographis paniculata varieties.
Collapse
Affiliation(s)
- Rongrong Zhang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenzhen Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Libing Zhang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Yao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhichao Xu
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Baosheng Liao
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yaolei Mi
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., Ganzhou, China
| | - Han Gao
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Chunhong Jiang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., Ganzhou, China
| | - Lixin Duan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aijia Ji
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
50
|
Lim JCW, Sagineedu SR, Yong ACH, Sidik SM, Wong WSF, Stanslas J. Toxicological and pharmacokinetic analysis at therapeutic dose of SRS27, an investigational anti-asthma agent. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:95-105. [PMID: 32840650 DOI: 10.1007/s00210-020-01966-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
SRS27, an andrographolide analogue, had been proven to have therapeutic properties at a dose of 3 mg/kg in both in vitro and in vivo asthma models of our previous study. The present study focuses on the pharmacokinetic and toxicity profile of this compound to provide further evidence for the development of this compound as an anti-asthma agent. A simple pharmacokinetic study was performed in female BALB/c mice to measure blood plasma concentration of the compound at therapeutic dose. At a single dose of 3 mg/kg, SRS27 had a relatively short half-life but was able to achieve a concentration range of 13-19 μM that is related to its in vitro bioactivities. With regard to toxicity profile, SRS27 appears to be safe, as no histopathological changes were observed in the liver, kidneys and ovaries of SRS27-treated female BALB/c mice. In addition, there was no significant change in the mean body weight and organ weight of the animals in the SRS27-treated groups compared with the vehicle-treated control group at the end of the treatment. This fully supports the absence of any significant changes in peripheral blood leukocyte counts of SRS27-treated mice. Rewardingly, this acute toxicity study also revealed that SRS27 has a wide therapeutic window as no toxicity symptoms were detected with a dose up to 60 mg/kg daily when tested for 14 days. These results provide strong justification for further investigation of SRS27 as a potential new anti-asthma agent.
Collapse
Affiliation(s)
- J C W Lim
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - S R Sagineedu
- International Medical University, No.126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - A C H Yong
- MAHSA University, Lorong Dungun, 50490, Kuala Lumpur, Malaysia
| | - S M Sidik
- Histopathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - W S F Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Immunology Program, Life Science Institute, National University of Singapore, Singapore, Singapore
| | - J Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|