1
|
Chen X, Liu S, Teame T, Luo J, Liu Y, Zhou Q, Ding Q, Yao Y, Yang Y, Ran C, Zhang Z, Zhou Z. Effect of Bacillus velezensis T23 solid-state fermentation product on growth, gut and liver health, and gut microbiota of common carp (Cyprinus carpio). AQUACULTURE 2025; 596:741733. [DOI: 10.1016/j.aquaculture.2024.741733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Budin M, Luo TD, Lausmann C, Gehrke T, Citak M. What are the risk factors and microorganism profiles of periprosthetic hip joint infections with a concomitant sinus tract? Arch Orthop Trauma Surg 2024; 145:84. [PMID: 39708188 DOI: 10.1007/s00402-024-05713-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024]
Abstract
INTRODUCTION A sinus tract, an abnormal channel between the skin and joint, is a major criterion that proves the presence of an underlying periprosthetic joint infection. Its presence not only increases failure rates but also leads to poor outcomes. Despite its clinical relevance, little is known about risk factors and underlying microorganism profiles. The aim of this study was to investigate PJIs of the hip with a sinus tract, identifying risk factors and microorganism profiles. MATERIALS AND METHODS This was a retrospective case control study of all PJI cases of the hip treated at our institution. A total of 4,368 cases with a PJI of the hip were identified of which 653 patients (14.95%), displayed a sinus tract. Univariate and multivariate analysis was performed. Odds ratio (OR) and 95% confidence interval (CI) were presented. RESULTS Multivariate analysis identified diabetes mellitus (p = 0.004; OR = 1.62; 95% CI 1.17-2.44), history of ileus (p < 0.001; OR = 4.65; 95% CI 2.38-9.08), osteomyelitis (p < 0.001; OR = 2.35; 95% CI 1.65-3.35) and prior revisions (p = 0-014; OR = 1.36; 95% CI 1.07-1.74) as risk factors for a sinus tract. Polymicrobial infections (p < 0.001; OR = 2.35; 95% CI 1.86-2.96), Staphylococcus aureus (p < 0.001; OR = 3.67; 95% CI 2.86-4.71) and Escherichia coli (p = 0.014; OR = 1.65; 95% CI 1.11-2.46) were associated with a sinus tract in PJIs of the hip. CONCLUSIONS Microorganism profiles and risk factors differ significantly in patients with PJI of a THA with a sinus tract. These insights can help surgeons in planning and selecting appropriate antibiotics for cement loading and empiric antibiotic treatment, as well as in risk stratification of patients, who may develop a sinus tract following THA.
Collapse
Affiliation(s)
- Maximilian Budin
- Department of Orthopaedic Surgery, HELIOS ENDO-Clinic Hamburg, Holstenstraße 2, 22767, Hamburg, Germany
| | - T David Luo
- Department of Orthopaedic Surgery, HELIOS ENDO-Clinic Hamburg, Holstenstraße 2, 22767, Hamburg, Germany
| | - Christian Lausmann
- Department of Orthopaedic Surgery, HELIOS ENDO-Clinic Hamburg, Holstenstraße 2, 22767, Hamburg, Germany
| | - Thorsten Gehrke
- Department of Orthopaedic Surgery, HELIOS ENDO-Clinic Hamburg, Holstenstraße 2, 22767, Hamburg, Germany
| | - Mustafa Citak
- Department of Orthopaedic Surgery, HELIOS ENDO-Clinic Hamburg, Holstenstraße 2, 22767, Hamburg, Germany.
| |
Collapse
|
3
|
Munley JA, Kelly LS, Park G, Pons EE, Kannan KB, Bible LE, Efron PA, Nagpal R, Mohr AM. POSTINJURY PNEUMONIA INDUCES A UNIQUE BLOOD MICROBIOME SIGNATURE. Shock 2024; 62:762-771. [PMID: 39178199 DOI: 10.1097/shk.0000000000002428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
ABSTRACT Background : Previous preclinical studies have demonstrated a pathobiome after traumatic injury; however, the impact of postinjury sepsis on gut epithelial permeability and bacterial translocation remains unknown. We hypothesized that polytrauma with postinjury pneumonia would result in impaired gut permeability leading to specific blood microbiome arrays. Methods : Male and proestrus female Sprague-Dawley rats were subjected to either polytrauma (PT), PT plus 2-hours daily chronic restraint stress (PT/CS), PT with postinjury day 1 inoculation with pseudomonas pneumonia (PT + PNA), PT/CS + PNA, or naive controls. Whole blood microbiome was measured serially using high-throughput 16S rRNA sequencing and QIIME2 bioinformatics analyses. Microbial diversity was assessed using Chao1/Shannon indices and principle coordinate analysis. Intestinal permeability was evaluated by plasma occludin and lipopolysaccharide-binding protein assays. Results : PT/CS + PNA had increased intestinal permeability compared to uninfected counterparts (PT/CS) with significantly elevated occludin ( P < 0.01). Bacteria was not detected in the blood of naïve controls, PT or PT/CS, but was present in both PT + PNA and PT/CS + PNA on days 2 and 7. The PT/CS + PNA blood biome showed dominance of Streptococcus compared to PT + PNA at day 2 ( P < 0.05). Females PT/CS + PNA had a significant abundance of Staphylococcus at day 2 and Streptococcus at day 7 in the blood biome compared to male counterparts ( P < 0.05). Conclusion : Multicompartmental trauma with postinjury pneumonia results in increased intestinal permeability and bacteremia with a unique blood biome, with sexual dimorphisms evident in the blood biome composition. These findings suggest that postinjury sepsis has clinical significance and could influence outcomes after severe trauma and critical illness.
Collapse
Affiliation(s)
- Jennifer A Munley
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Lauren S Kelly
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Gwoncheol Park
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University College of Education, Health, and Human Sciences, Tallahassee, Florida
| | - Erick E Pons
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Kolenkode B Kannan
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Letita E Bible
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Philip A Efron
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Ravinder Nagpal
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University College of Education, Health, and Human Sciences, Tallahassee, Florida
| | - Alicia M Mohr
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
4
|
Tian Y, Li X, Chen Y, Hu X, Liu Y, Luo H, Jing G. Swimming Modes of Bacteria Escaping from a Soft Confined Space. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39565220 DOI: 10.1021/acs.langmuir.4c03808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Navigating through soft and highly confined environments is crucial for bacteria moving within living organisms' tissues, yet this topic has been less explored. In our study, we experimentally harnessed the unique biconcave geometry of red blood cells (RBCs) to enable real-time visualization of swimming Escherichia coli interacting with soft RBCs. Our findings show that RBCs adhering to a rigid surface can enclose spaces comparable to the size of bacteria, effectively entrapping them. Remarkably, we found that bacteria can escape from this extremely confined space through three newly defined escape modes: Bundling, Unbundling, and Flipping, each mode relying on the specific states of bacterial flagella. A quantitative analysis uncovers significant differences among these modes in terms of scattering angle, escaping speed, and trapping duration. We used two methods to alter the rigidity and adhesion strength of RBCs, and we studied their effects on the detailed bacterial escape process. Our results contribute to the knowledge of bacterial migration in soft, confined spaces, thereby enhancing our understanding of similar processes in biological tissue environments.
Collapse
Affiliation(s)
- Yangguang Tian
- School of Physics, Northwest University, 710127 Xi'An, China
| | - Xinlei Li
- Department of Blood Transfusion, Xijing Hospital, Fourth Military Medical University, 710032 Xi'An, China
| | - Yaozhen Chen
- Department of Blood Transfusion, Xijing Hospital, Fourth Military Medical University, 710032 Xi'An, China
| | - Xingbin Hu
- Department of Blood Transfusion, Xijing Hospital, Fourth Military Medical University, 710032 Xi'An, China
| | - Yanan Liu
- School of Physics, Northwest University, 710127 Xi'An, China
| | - Hao Luo
- School of Physics, Northwest University, 710127 Xi'An, China
| | - Guangyin Jing
- School of Physics, Northwest University, 710127 Xi'An, China
| |
Collapse
|
5
|
Rajput I, Rajendran VM, Nickerson AJ, Lodge JPA, Sandle GI. Somatostatin peptides prevent increased human colonic epithelial permeability induced by hypoxia. Am J Physiol Gastrointest Liver Physiol 2024; 327:G701-G710. [PMID: 39226584 PMCID: PMC11559641 DOI: 10.1152/ajpgi.00057.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
Mesenteric ischemia increases gut permeability and bacterial translocation. In human colon, chemical hypoxia induced by 2,4-dinitrophenol (DNP) activates basolateral intermediate conductance K+ (IK) channels (designated KCa3.1 or KCNN4) and increases paracellular shunt conductance/permeability (GS), but whether this leads to increased macromolecule permeability is unclear. Somatostatin (SOM) inhibits IK channels and prevents hypoxia-induced increases in GS. Thus, we examined whether octreotide (OCT), a synthetic SOM analog, prevents hypoxia-induced increases GS in human colon and hypoxia-induced increases in total epithelial conductance (GT) and permeability to FITC-dextran 4000 (FITC) in rat colon. The effects of serosal SOM and OCT on increases in GS induced by 100 µM DNP were compared in isolated human colon. The effects of OCT on DNP-induced increases in GT and transepithelial FITC movement were evaluated in isolated rat distal colon. GS in DNP-treated human colon was 52% greater than in controls (P = 0.003). GS was similar when 2 µM SOM was added after or before DNP treatment, in both cases being less (P < 0.05) than with DNP alone. OCT (0.2 µM) was equally effective preventing hypoxia-induced increases in GS, whether added after or before DNP treatment. In rat distal colon, DNP significantly increased GT by 18% (P = 0.016) and mucosa-to-serosa FITC movement by 43% (P = 0.01), and 0.2 µM OCT pretreatment completely prevented these changes. We conclude that OCT prevents hypoxia-induced increases in paracellular/macromolecule permeability and speculate that it may limit ischemia-induced gut hyperpermeability during abdominal surgery, thereby reducing bacterial/bacterial toxin translocation and sepsis.NEW & NOTEWORTHY Somatostatin (SOM, 2 µM) and octreotide (OCT, 0.2 µM, a long-acting synthetic analog of SOM) were equally effective in preventing chemical hypoxia-induced increases in paracellular shunt permeability/conductance in isolated human colon. In rat distal colon, chemical hypoxia significantly increased total epithelial conductance and transepithelial movement of FITC-dextran 4000, changes completely prevented by 0.2 µM OCT. OCT may prevent or limit gut ischemia during abdominal surgery, thereby decreasing the risk of bacterial/bacterial toxin translocation and sepsis.
Collapse
Affiliation(s)
- Ibrahim Rajput
- Department of Surgery, St James's University Hospital, Leeds, United Kingdom
| | - Vazhaikkurichi M Rajendran
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Andrew J Nickerson
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - J Peter A Lodge
- Department of Surgery, St James's University Hospital, Leeds, United Kingdom
| | - Geoffrey I Sandle
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, United Kingdom
| |
Collapse
|
6
|
Tsugawa H, Tsubaki S, Tanaka R, Nashimoto S, Imai J, Matsuzaki J, Hozumi K. Macrophage-depleted young mice are beneficial in vivo models to assess the translocation of Klebsiella pneumonia from the gastrointestinal tract to the liver in the elderly. Microbes Infect 2024; 26:105371. [PMID: 38849070 DOI: 10.1016/j.micinf.2024.105371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Pathobionts are commensal intestinal microbiota capable of causing systemic infections under specific conditions, such as environmental changes or aging. However, it is unclear how pathobionts are recognized by the intestinal mucosal immune system under physiological conditions. This study demonstrates that the gut pathobiont Klebsiella pneumoniae causes injury to the epithelium and translocates to the liver in specific pathogen-free mice treated with clodronate-liposomes that depleted macrophages. In the clodronate-liposome-treated mice, indigenous classical K. pneumoniae (cKp) with non-K1/K2 capsular serotypes were isolated from the liver, indicating that gut commensal cKp translocated from the gastrointestinal tract to the liver due to the depletion of intestinal macrophages. Oral inoculation of isolated cKp to clodronate-liposome-treated mice significantly reduced the survival rates compared to that of non-treated mice. Our findings demonstrate that intestinal mucosal macrophages play a pivotal role in sensing commensal cKp and suppressing their translocation to the liver. This study demonstrates that clodronate-liposome-treated mouse models are effective for screening and evaluating drugs that prevent the translocation of cKp to the liver, providing new insights into the development of preventive protocols against K. pneumoniae infection.
Collapse
Affiliation(s)
- Hitoshi Tsugawa
- Transkingdom Signaling Research Unit, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, 259-1193, Japan.
| | - Shogo Tsubaki
- Transkingdom Signaling Research Unit, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, 259-1193, Japan
| | - Rika Tanaka
- Department of Immunology, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, 259-1193, Japan
| | - Sho Nashimoto
- Transkingdom Signaling Research Unit, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, 259-1193, Japan
| | - Jin Imai
- Department of Clinical Health Science, Tokai University School of Medicine, Isehara, 259-1193, Japan
| | - Juntaro Matsuzaki
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, Tokyo, 105-8512, Japan
| | - Katsuto Hozumi
- Department of Immunology, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, 259-1193, Japan
| |
Collapse
|
7
|
Lacy BE, Cangemi DJ. Opioids and the Gastrointestinal Tract: The Role of Peripherally Active µ-Opioid Receptor Antagonists in Modulating Intestinal Permeability. Am J Gastroenterol 2024; 119:1970-1978. [PMID: 38870087 PMCID: PMC11446513 DOI: 10.14309/ajg.0000000000002887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Opioid receptors are found throughout the gastrointestinal tract, including the large intestine. Many patients treated with opioids experience opioid-induced constipation (OIC). Laxatives are not effective in most patients, and in those who do initially respond, the efficacy of laxatives generally diminishes over time. In addition, OIC does not spontaneously resolve for most patients. However, complications of opioids extend far beyond simply slowing gastrointestinal transit. Opioid use can affect intestinal permeability through a variety of mechanisms. Toll-like receptors are a crucial component of innate immunity and are tightly regulated within the gut epithelium. Pathologic µ-opioid receptor (MOR) and toll-like receptor signaling, resulting from chronic opioid exposure, disrupts intestinal permeability leading to potentially harmful bacterial translocation, elevated levels of bacterial toxins, immune activation, and increased cytokine production. Peripherally active MOR antagonists, including methylnaltrexone, are effective at treating OIC. Benefits extend beyond simply blocking the MOR; these agents also act to ameliorate opioid-induced disrupted intestinal permeability. In this review, we briefly describe the physiology of the gastrointestinal epithelial border and discuss the impact of opioids on gastrointestinal function. Finally, we consider the use of peripherally active MOR antagonists to treat disrupted intestinal permeability resulting from opioid use and discuss the potential for improved morbidity and mortality in patients treated with methylnaltrexone for opioid-induced bowel disorders.
Collapse
|
8
|
Madani WAM, Ramos Y, Cubillos-Ruiz JR, Morales DK. Enterococcal-host interactions in the gastrointestinal tract and beyond. FEMS MICROBES 2024; 5:xtae027. [PMID: 39391373 PMCID: PMC11466040 DOI: 10.1093/femsmc/xtae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
The gastrointestinal tract (GIT) is typically considered the natural niche of enterococci. However, these bacteria also inhabit extraintestinal tissues, where they can disrupt organ physiology and cause life-threatening infections. Here, we discuss how enterococci, primarily Enterococcus faecalis, interact with the intestine and other host anatomical locations such as the oral cavity, heart, liver, kidney, and vaginal tract. The metabolic flexibility of these bacteria allows them to quickly adapt to new environments, promoting their persistence in diverse tissues. In transitioning from commensals to pathogens, enterococci must overcome harsh conditions such as nutrient competition, exposure to antimicrobials, and immune pressure. Therefore, enterococci have evolved multiple mechanisms to adhere, colonize, persist, and endure these challenges in the host. This review provides a comprehensive overview of how enterococci interact with diverse host cells and tissues across multiple organ systems, highlighting the key molecular pathways that mediate enterococcal adaptation, persistence, and pathogenic behavior.
Collapse
Affiliation(s)
- Wiam Abdalla Mo Madani
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, NY 10065, United States
| | - Yusibeska Ramos
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
| | - Juan R Cubillos-Ruiz
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, NY 10065, United States
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, NY 10065, United States
| | - Diana K Morales
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
| |
Collapse
|
9
|
Hong J, Fu Y, Chen X, Zhang Y, Li X, Li T, Liu Y, Fan M, Lin R. Gut microbiome changes associated with chronic pancreatitis and pancreatic cancer: a systematic review and meta-analysis. Int J Surg 2024; 110:5781-5794. [PMID: 38847785 PMCID: PMC11392207 DOI: 10.1097/js9.0000000000001724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/19/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND The study of changes in the microbiome in chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC) holds significant potential for developing noninvasive diagnostic tools as well as innovative interventions to alter the progression of diseases. This systematic review and meta-analysis aimed to analyze in detail the taxonomic and functional characteristics of the gut microbiome in patients with CP and PDAC. METHODS Two researchers conducted a systematic search across public databases to gather all published research up to June 2023. Diversity and gut microbiota composition are the main outcomes the authors focus on. RESULTS This meta-analysis included 14 studies, involving a total of 1511 individuals in the PDAC ( n =285), CP ( n =342), and control ( n =649) groups. Our results show a significant difference in the composition of gut microbiota between PDAC/CP patients compared to healthy controls (HC), as evidenced by a slight decrease in α-diversity, including Shannon (SMD=-0.33; P =0.002 and SMD=-0.59; P <0.001, respectively) and a statistically significant β-diversity ( P <0.05). The pooled results showed that at the phylum level, the proportion of Firmicutes was lower in PDAC and CP patients than in HC patients. At the genus level, more than two studies demonstrated that four genera were significantly increased in PDAC patients compared to HC (e.g. Escherichia-Shigella and Veillonella ). CP patients had an increase in four genera (e.g. Escherichia-Shigella and Klebsiella ) and a decrease in eight genera (e.g. Coprococcus and Bifidobacterium ) compared to HC. Functional/metabolomics results from various studies also showed differences between PDAC/CP patients and HC. In addition, this study found no significant differences in gut microbiota between PDAC and CP patients. CONCLUSIONS Current evidence suggests changes in gut microbiota is associated with PDAC/CP, commonly reflected by a reduction in beneficial species and an increase in the pathogenic species. Further studies are needed to confirm these findings and explore therapeutic possibilities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mengke Fan
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
10
|
Shi A, Schwartz DK. Bridging Macroscopic Diffusion and Microscopic Cavity Escape of Brownian and Active Particles in Irregular Porous Networks. ACS NANO 2024; 18:22864-22873. [PMID: 39146529 DOI: 10.1021/acsnano.4c02873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
While irregular and geometrically complex pore networks are ubiquitous in nature and industrial processes, there is no universal model describing nanoparticle transport in these environments. 3D super-resolution nanoparticle tracking was employed to study the motion of passive (Brownian) and active (self-propelled) species within complex networks, and universally identified a mechanism involving successive cavity exploration and escape. In all cases, the long-time ensemble-averaged diffusion coefficient was proportional to a quantity involving the characteristic length scale and time scale associated with microscopic cavity exploration and escape (D ∼ r2/ttrap), where the proportionality coefficient reflected the apparent porous network connectivity. For passive nanoparticles, this coefficient was always lower than expected theoretically for a random walk, indicating reduced network accessibility. In contrast, the coefficient for active nanomotors, in the same pore spaces, aligned with the theoretical value, suggesting that active particles navigate "intelligently" in porous environments, consistent with kinetic Monte Carlo simulations in networks with variable pore sizes. These findings elucidate a model of successive cavity exploration and escape for nanoparticle transport in porous networks, where pore accessibility is a function of motive force, providing insights relevant to applications in filtration, controlled release, and beyond.
Collapse
Affiliation(s)
- Anni Shi
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80305, United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80305, United States
| |
Collapse
|
11
|
Hayashi S, Moriyama T, Ito Y, Harada Y, Dodo H, Kumahara K, Yogi T, Ohashi N, Higashi R, Mori A. Proton-Pump Inhibitors and Risk of Bloodstream Infection without an Identifiable Source: a Hospital-Based Case-Control Study. Jpn J Infect Dis 2024; 77:205-212. [PMID: 38296545 DOI: 10.7883/yoken.jjid.2023.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
The association between proton-pump inhibitor (PPI) use and systemic infections caused by bacterial translocation is unclear. This study aimed to investigate whether patients receiving PPI therapy have a higher risk of bloodstream infections (BSI) without an identifiable source of infection. We conducted a hospital-based case-control study which enrolled all patients aged 20 years and older who were hospitalized in Ichinomiya Nishi Hospital with BSI confirmed by two sets of positive blood cultures in 2019. Patient data were collected from medical records, and the bacterial translocation-type (BT-type) BSI group was defined as patients with BSI without an identifiable source of infection, whereas those with a BSI from an identifiable source were assigned to the control group based on the diagnostic criteria for each infectious disease. Data from 309 patients, including 66 cases and 243 controls, were analyzed. Compared with PPI non-users, PPI users had a 2.4-fold higher risk of developing BT-type BSI after controlling for potential confounders (adjusted odds ratio: 2.41, 95% confidence interval: 1.29-4.51, P = 0.006). In conclusion, PPI use is associated with a higher risk of BSI without an identifiable source; therefore, PPI use might increase the risk of BSI secondary to bacterial translocation.
Collapse
Affiliation(s)
- Shintaro Hayashi
- Department of Gastroenterology, Ichinomiya Nishi Hospital, Japan
| | | | - Yuichiro Ito
- Department of Gastroenterology, Ichinomiya Nishi Hospital, Japan
| | - Yuta Harada
- Department of Gastroenterology, Ichinomiya Nishi Hospital, Japan
| | - Hiroki Dodo
- Department of Gastroenterology, Ichinomiya Nishi Hospital, Japan
| | - Kana Kumahara
- Department of Gastroenterology, Ichinomiya Nishi Hospital, Japan
| | - Tatsuji Yogi
- Department of Gastroenterology, Ichinomiya Nishi Hospital, Japan
| | - Noritsugu Ohashi
- Department of Gastroenterology, Ichinomiya Nishi Hospital, Japan
| | - Reiji Higashi
- Department of Gastroenterology, Ichinomiya Nishi Hospital, Japan
| | - Akihiro Mori
- Department of Gastroenterology, Ichinomiya Nishi Hospital, Japan
| |
Collapse
|
12
|
Liu Z, Mou S, Li L, Chen Q, Yang R, Guo S, Jin Y, Liu L, Li T, Chen H, Wang X. The Barrier Disruption and Pyroptosis of Intestinal Epithelial Cells Caused by Perfringolysin O (PFO) from Clostridium perfringens. Cells 2024; 13:1140. [PMID: 38994991 PMCID: PMC11240805 DOI: 10.3390/cells13131140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Clostridium perfringens (C. perfringens), a Gram-positive bacterium, produces a variety of toxins and extracellular enzymes that can lead to disease in both humans and animals. Common symptoms include abdominal swelling, diarrhea, and intestinal inflammation. Severe cases can result in complications like intestinal hemorrhage, edema, and even death. The primary toxins contributing to morbidity in C. perfringens-infected intestines are CPA, CPB, CPB2, CPE, and PFO. Amongst these, CPB, CPB2, and CPE are implicated in apoptosis development, while CPA is associated with cell death, increased intracellular ROS levels, and the release of the inflammatory factor IL-18. However, the exact mechanism by which PFO toxins exert their effects in the infected gut is still unidentified. This study demonstrates that a C. perfringens PFO toxin infection disrupts the intestinal epithelial barrier function through in vitro and in vivo models. This study emphasizes the notable influence of PFO toxins on intestinal barrier integrity in the context of C. perfringens infections. It reveals that PFO toxins increase ROS production by causing mitochondrial damage, triggering pyroptosis in IPEC-J2 cells, and consequently resulting in compromised intestinal barrier function. These results offer a scientific foundation for developing preventive and therapeutic approaches against C. perfringens infections.
Collapse
Affiliation(s)
- Zhankui Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (S.M.); (L.L.); (Q.C.); (R.Y.); (S.G.); (Y.J.); (L.L.); (T.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People’s Republic of China (MOE), Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Shuang Mou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (S.M.); (L.L.); (Q.C.); (R.Y.); (S.G.); (Y.J.); (L.L.); (T.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People’s Republic of China (MOE), Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Liang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (S.M.); (L.L.); (Q.C.); (R.Y.); (S.G.); (Y.J.); (L.L.); (T.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People’s Republic of China (MOE), Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Qichao Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (S.M.); (L.L.); (Q.C.); (R.Y.); (S.G.); (Y.J.); (L.L.); (T.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People’s Republic of China (MOE), Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Ruicheng Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (S.M.); (L.L.); (Q.C.); (R.Y.); (S.G.); (Y.J.); (L.L.); (T.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People’s Republic of China (MOE), Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Shibang Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (S.M.); (L.L.); (Q.C.); (R.Y.); (S.G.); (Y.J.); (L.L.); (T.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People’s Republic of China (MOE), Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Yancheng Jin
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (S.M.); (L.L.); (Q.C.); (R.Y.); (S.G.); (Y.J.); (L.L.); (T.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People’s Republic of China (MOE), Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Lixinjie Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (S.M.); (L.L.); (Q.C.); (R.Y.); (S.G.); (Y.J.); (L.L.); (T.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People’s Republic of China (MOE), Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Tianzhi Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (S.M.); (L.L.); (Q.C.); (R.Y.); (S.G.); (Y.J.); (L.L.); (T.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People’s Republic of China (MOE), Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (S.M.); (L.L.); (Q.C.); (R.Y.); (S.G.); (Y.J.); (L.L.); (T.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People’s Republic of China (MOE), Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (S.M.); (L.L.); (Q.C.); (R.Y.); (S.G.); (Y.J.); (L.L.); (T.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People’s Republic of China (MOE), Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| |
Collapse
|
13
|
Kim YT, Mills DA. Exploring the gut microbiome: probiotics, prebiotics, synbiotics, and postbiotics as key players in human health and disease improvement. Food Sci Biotechnol 2024; 33:2065-2080. [PMID: 39130661 PMCID: PMC11315840 DOI: 10.1007/s10068-024-01620-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 08/13/2024] Open
Abstract
The human gut microbiome accompanies us from birth, and it is developed and matured by diet, lifestyle, and environmental factors. During aging, the bacterial composition evolves in reciprocal communication with the host's physiological properties. Many diseases are closely related to the gut microbiome, which means the modulation of the gut microbiome can promote the disease targeting remote organs. This review explores the intricate interaction between the gut microbiome and other organs, and their improvement from disease by prebiotics, probiotics, synbiotics, and postbiotics. Each section of the review is supported by clinical trials that substantiate the benefits of modulation the gut microbiome through dietary intervention for improving primary health outcomes across various axes with the gut. In conclusion, the review underscores the significant potential of targeting the gut microbiome for therapeutic and preventative interventions in a wide range of diseases, calling for further research to fully unlock the microbiome's capabilities in enhancing human health.
Collapse
Affiliation(s)
- You-Tae Kim
- Department of Food Science and Technology, University of California-Davis, Davis, CA USA
| | - David A. Mills
- Department of Food Science and Technology, University of California-Davis, Davis, CA USA
| |
Collapse
|
14
|
Lee CC, Chiu CH. Link between gut microbiota and neonatal sepsis. J Formos Med Assoc 2024; 123:638-646. [PMID: 37821302 DOI: 10.1016/j.jfma.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
In neonates, the gastrointestinal tract is rapidly colonized by bacteria after birth. Gut microbiota development is critical during the first few years of life. However, disruption of gut microbiota development in neonates can lead to gut dysbiosis, characterized by overcolonization by pathogenic bacteria and delayed or failed maturation toward increasing microbial diversity and Fermicutes dominance. Gut dysbiosis can predispose infants to sepsis. Pathogenic bacteria can colonize the gut prior to sepsis and cause sepsis through translocation. This review explores gut microbiota development in neonates, the evidence linking gut dysbiosis to neonatal sepsis, and the potential role of probiotics in gut microbiota modulation and sepsis prevention.
Collapse
Affiliation(s)
- Chien-Chung Lee
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
15
|
Dey P. Good girl goes bad: Understanding how gut commensals cause disease. Microb Pathog 2024; 190:106617. [PMID: 38492827 DOI: 10.1016/j.micpath.2024.106617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
This review examines the complex connection between commensal microbiota and the development of opportunistic infections. Several underlying conditions, such as metabolic diseases and weakened immune systems, increase the vulnerability of patients to opportunistic infections. The increasing antibiotic resistance adds significant complexity to the management of infectious diseases. Although commensals have long been considered beneficial, recent research contradicts this notion by uncovering chronic illnesses linked to atypical pathogens or commensal bacteria. This review examines conditions in which commensal bacteria, which are usually beneficial, contribute to developing diseases. Commensals' support for opportunistic infections can be categorized based on factors such as colonization fitness, pathoadaptive mutation, and evasion of host immune response. Individuals with weakened immune systems are especially susceptible, highlighting the importance of mucosal host-microbiota interaction in promoting infection when conditions are inappropriate. Dysregulation of gut microbial homeostasis, immunological modulation, and microbial interactions are caused by several factors that contribute to the development of chronic illnesses. Knowledge about these mechanisms is essential for developing preventive measures, particularly for susceptible populations, and emphasizes the importance of maintaining a balanced gut microbiota in reducing the impact of opportunistic infections.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India.
| |
Collapse
|
16
|
Jakuszeit T, Croze OA. Role of tumbling in bacterial scattering at convex obstacles. Phys Rev E 2024; 109:044405. [PMID: 38755868 DOI: 10.1103/physreve.109.044405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/15/2024] [Indexed: 05/18/2024]
Abstract
Active propulsion, as performed by bacteria and Janus particles, in combination with hydrodynamic interaction results in the accumulation of bacteria at a flat wall. However, in microfluidic devices with cylindrical pillars of sufficiently small radius, self-propelled particles can slide along and scatter off the surface of a pillar, without becoming trapped over long times. This nonequilibrium scattering process has been predicted to result in large diffusivities, even at high obstacle density, unlike particles that undergo classical specular reflection. Here, we test this prediction by experimentally studying the nonequilibrium scattering of pusherlike swimmers in microfluidic obstacle lattices. To explore the role of tumbles in the scattering process, we microscopically tracked wild-type (run and tumble) and smooth-swimming (run only) mutants of the bacterium Escherichia coli scattering off microfluidic pillars. We quantified key scattering parameters and related them to previously proposed models that included a prediction for the diffusivity, discussing their relevance. Finally, we discuss potential interpretations of the role of tumbles in the scattering process and connect our work to the broader study of swimmers in porous media.
Collapse
Affiliation(s)
- Theresa Jakuszeit
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS UMR 144, 75005 Paris, France
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Ottavio A Croze
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
17
|
Zhang W, Jin C, Zhang S, Wu L, Li B, Shi M. Gut lymph purification alleviates acute lung injury induced by intestinal ischemia-reperfusion in rats by removing danger-associated molecular patterns from gut lymph. Heliyon 2024; 10:e25711. [PMID: 38371985 PMCID: PMC10873747 DOI: 10.1016/j.heliyon.2024.e25711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024] Open
Abstract
Background The potential effect of removing danger-associated molecular patterns (DAMPs) from gut lymph on reducing acute lung injury (ALI) induced by gut ischemia-reperfusion injury (GIRI) is uncertain. This study aimed to investigate whether gut lymph purification (GLP) could improve GIRI-induced acute lung injury in rats by clearing danger-associated molecular patterns. Materials and methods Rats were divided into four groups: Sham, GIRI, GIRI + gut lymph drainage (GLD), and GIRI + GLP. After successful modeling, lung tissue samples were collected from rats for hematoxylin-eosin (HE) staining and detection of apoptotic indexes. We detected the DAMPs levels in blood and lymph samples. We observed the microstructure of AEC Ⅱ and measured the expression levels of apoptosis indexes. Results The GIRI group showed destruction of alveolar structure, thickened alveolar walls, and inflammatory cell infiltration. This was accompanied by significantly increased levels of high mobility group protein-1 (HMGB-1) and Interleukin-6 (IL-6), while reduced levels of heat shock protein 70 (HSP 70) and Interleukin-10 (IL-10) in both lymph and serum. In contrast, the lung tissue damage in the GIRI + GLP group was significantly improved compared to the GIRI group. This was evidenced by a reduction in the expression levels of HMGB-1 and IL-6 in both lymph and serum and an increase in HSP 70 and IL-10 levels. Additionally, organelle structure of AEC II was significantly improved in the GIRI + GLP group compared to the GIRI group. Conclusions GLP inhibits inflammation and cell apoptosis in GIRI-induced ALI by blocking the link between DAMPs and mononuclear phagocytes, reducing the severity of ALI.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Critical Care Medicine, The People's Hospital of Leshan, Leshan City, Sichuan Province, 614008, China
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Can Jin
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Zunyi Medical University, Zunyi, Guizhou, China
| | | | - Linlin Wu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Bohan Li
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Meimei Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University. Xi'an, 710069, Shanxi, China
| |
Collapse
|
18
|
Paiano L, Mastronardi M, Campisciano G, Rosso N, Casagranda B, Comar M, de Manzini N, Palmisano S. Liver Bacterial Colonization in Patients with Obesity and Gut Dysbiosis. Obes Surg 2024; 34:402-408. [PMID: 38102371 DOI: 10.1007/s11695-023-06989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
PURPOSE Recently, the link between gut microbiota, liver inflammation, and obesity has become an interesting focus of research. The aim of this study is to show the possible relation between gut microbiota dysbiosis in patients with obesity and the presence of bacterial genomes in their liver biopsies. MATERIALS AND METHODS A prospective study on patients undergoing bariatric surgery was carried out. Anthropometric and metabolic data, comorbidities, stool samples, and hepatic biopsies were collected and analyzed at the time of surgery. The V3-16S rRNA region was sequenced using the Ion Torrent new-generation sequencing platform. RESULTS In each of the 23 patients enrolled, the bacterial population was analyzed both in the stools and liver. In eight patients (34.7%), Prevotella (62.5%), Bacteroides (50%), Streptococcus (12.5%), and Dalister (12.5%) were found in both samples, simultaneously; in 15 cases, the liver was free from colonization. The statistically significant difference between groups was a Roseburia intestinalis reduction in fecal samples of patients with liver biopsies colonized by bacteria (1% vs 3%; p = 0.0339). CONCLUSION To the best of our knowledge, this is the first study reporting the presence of bacterial genome in a liver biopsy on bariatric patients, instead of the microbe-associated molecular patterns. Notably, in literature, the presence of Roseburia intestinalis in stool samples has been shown to prevent intestinal inflammation playing its role in the gut barrier integrity. In our population, the Roseburia reduction was associated with the presence of bacterial genome in the liver, probably related to a greater permeability of the gut and vascular barriers.
Collapse
Affiliation(s)
- Lucia Paiano
- Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy
- Surgical Clinic Unit, Cattinara Hospital, ASUGI, Strada di Fiume, 447, 34149, Trieste, Italy
| | - Manuela Mastronardi
- Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy.
- Surgical Clinic Unit, Cattinara Hospital, ASUGI, Strada di Fiume, 447, 34149, Trieste, Italy.
| | - Giuseppina Campisciano
- Institute for Maternal and Child Health IRCCS, Burlo Garofolo, Via dell' Istria 65/1, 34149, Trieste, Italy
| | - Natalia Rosso
- Fondazione Italiana Fegato, Centro Studi Fegato, Area Science Park Basovizza Bldg.Q SS14 Km, 163.5, 34149, Trieste, Italy
| | - Biagio Casagranda
- Surgical Clinic Unit, Cattinara Hospital, ASUGI, Strada di Fiume, 447, 34149, Trieste, Italy
| | - Manola Comar
- Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy
- Institute for Maternal and Child Health IRCCS, Burlo Garofolo, Via dell' Istria 65/1, 34149, Trieste, Italy
| | - Nicolò de Manzini
- Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy
- Surgical Clinic Unit, Cattinara Hospital, ASUGI, Strada di Fiume, 447, 34149, Trieste, Italy
| | - Silvia Palmisano
- Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy
- Surgical Clinic Unit, Cattinara Hospital, ASUGI, Strada di Fiume, 447, 34149, Trieste, Italy
| |
Collapse
|
19
|
Magnan C, Lancry T, Salipante F, Trusson R, Dunyach-Remy C, Roger C, Lefrant JY, Massanet P, Lavigne JP. Role of gut microbiota and bacterial translocation in acute intestinal injury and mortality in patients admitted in ICU for septic shock. Front Cell Infect Microbiol 2023; 13:1330900. [PMID: 38179421 PMCID: PMC10765587 DOI: 10.3389/fcimb.2023.1330900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Sepsis is a life-threatening organ dysfunction with high mortality rate. The gut origin hypothesis of multiple organ dysfunction syndrome relates to loss of gut barrier function and the ensuing bacterial translocation. The aim of this study was to describe the evolution of gut microbiota in a cohort of septic shock patients over seven days and the potential link between gut microbiota and bacterial translocation. Methods Sixty consecutive adult patients hospitalized for septic shock in intensive care units (ICU) were prospectively enrolled. Non-inclusion criteria included patients with recent or scheduled digestive surgery, having taken laxatives, pre- or probiotic in the previous seven days, a progressive digestive neoplasia, digestive lymphoma, chronic inflammatory bowel disease, moribund patient, and pregnant and lactating patients. The primary objective was to evaluate the evolution of bacterial diversity and richness of gut microbiota during seven days in septic shock. Epidemiological, clinical and biological data were gathered over seven days. Gut microbiota was analyzed through a metagenomic approach. 100 healthy controls were selected among healthy blood donors for reference basal 16S rDNA values. Results Significantly lower bacterial diversity and richness was observed in gut microbiota of patients at Day 7 compared with Day 0 (p<0.01). SOFA score at Day 0, Acute Gastrointestinal Injury (AGI) local grade, septic shock origin and bacterial translocation had an impact on alpha diversity. A large increase in Enterococcus genus was observed at Day 7 with a decrease in Enterobacterales, Clostridiales, Bifidobacterium and other butyrate-producing bacteria. Discussion This study shows the importance of bacterial translocation during AGI in septic shock patients. This bacterial translocation decreases during hospitalization in ICUs in parallel to the decrease of microbiota diversity. This work highlights the role of gut microbiota and bacterial translocation during septic shock.
Collapse
Affiliation(s)
- Chloé Magnan
- Bacterial Virulence and Chronic Infection (VBIC), INSERM U1047, Univ Montpellier, Department of Microbiology and Hospital Hygiene, Platform MICRO&BIO, University Hospital Center (CHU) Nîmes, Nîmes, France
| | - Thomas Lancry
- UR-UM103 UMAGINE, Univ Montpellier, Division of Anesthesia Critical Care, Pain and Emergency Medicine, CHU Nîmes, Nîmes, France
| | - Florian Salipante
- Department of Biostastistics, Epidemiology, Public Health and Innovation in Methodology, Univ Montpellier, CHU Nîmes, Nîmes, France
| | - Rémi Trusson
- UR-UM103 UMAGINE, Univ Montpellier, Division of Anesthesia Critical Care, Pain and Emergency Medicine, CHU Nîmes, Nîmes, France
| | - Catherine Dunyach-Remy
- Bacterial Virulence and Chronic Infection (VBIC), INSERM U1047, Univ Montpellier, Department of Microbiology and Hospital Hygiene, Platform MICRO&BIO, University Hospital Center (CHU) Nîmes, Nîmes, France
| | - Claire Roger
- UR-UM103 UMAGINE, Univ Montpellier, Division of Anesthesia Critical Care, Pain and Emergency Medicine, CHU Nîmes, Nîmes, France
| | - Jean-Yves Lefrant
- UR-UM103 UMAGINE, Univ Montpellier, Division of Anesthesia Critical Care, Pain and Emergency Medicine, CHU Nîmes, Nîmes, France
| | - Pablo Massanet
- UR-UM103 UMAGINE, Univ Montpellier, Division of Anesthesia Critical Care, Pain and Emergency Medicine, CHU Nîmes, Nîmes, France
| | - Jean-Philippe Lavigne
- Bacterial Virulence and Chronic Infection (VBIC), INSERM U1047, Univ Montpellier, Department of Microbiology and Hospital Hygiene, Platform MICRO&BIO, University Hospital Center (CHU) Nîmes, Nîmes, France
| |
Collapse
|
20
|
Zhu Q, Han Y, Wang X, Jia R, Zhang J, Liu M, Zhang W. Hypoxia exacerbates intestinal injury and inflammatory response mediated by myeloperoxidase during Salmonella Typhimurium infection in mice. Gut Pathog 2023; 15:62. [PMID: 38037141 PMCID: PMC10688069 DOI: 10.1186/s13099-023-00586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND High-altitude exposure can cause oxidative stress damage in the intestine, which leads to increased intestinal permeability and bacterial translocation, resulting in local and systemic inflammation. Control of infection is critically dependent on the host's ability to kill pathogens with reactive oxygen species (ROS). Myeloperoxidase (MPO) targets ROS in pathogens. This study aimed to investigate the effects of hypoxia on the colonic mucosal barrier and myeloperoxidase (MPO)-mediated innate immune response in the colon. METHODS AND RESULTS Genetically engineered mice were exposed to a hypobaric oxygen chamber for 3 days and an inflammation model was established using Salmonella Typhimurium infection. We found that hypoxic exposure caused the development of exacerbated bacterial colitis and enhanced bacterial dissemination in MPO-deficient mice. Infection and disease severity were associated with significantly increased Ly6G+ neutrophil and F4/80+ macrophage counts in infected tissues, which is consistent with elevated proinflammatory cytokines and chemoattractant molecules. Hypoxia restrained antioxidant ability and MPO deficiency aggravated the respiratory burst in the colon. CONCLUSION Hypoxia can damage the colonic mucosa. MPO mediates the innate immune response and regulates the mucosal and systemic inflammatory responses to Salmonella infection during hypoxia.
Collapse
Affiliation(s)
- Qinfang Zhu
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Ying Han
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Xiaozhou Wang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Ruhan Jia
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Jingxuan Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Meiheng Liu
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Wei Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China.
| |
Collapse
|
21
|
Theodorou V, Beaufrand C, Eutamene H. Effect of xyloglucan associations with gelatin or gelose on Escherichia coli-derived lipopolysaccharide-induced enteritis in rats. Drugs Context 2023; 12:2023-5-2. [PMID: 37908642 PMCID: PMC10615328 DOI: 10.7573/dic.2023-5-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
Background Escherichia coli is the predominant non-pathogenic facultative microbe of the human intestine, although some strains are diarrhoeagenic in humans. E. coli-derived lipopolysaccharide (LPS) induces diarrhoea, intestinal barrier impairment, bacterial translocation and intestinal inflammation. Associations with the mucoprotectant xyloglucan exhibit antidiarrhoeal effects. This study evaluated and compared the effects of xyloglucan in combination with gelatin or gelose (agar-agar) on jejunal permeability and inflammation using an in vivo rat model of E. coli LPS-induced enteritis. Methods Xyloglucan (12.5 mg/kg) plus gelatin (250 mg/kg) or gelose (250 or 500 mg/kg) were administered orally 2 hours before intraperitoneal injection with E. coli LPS. Following euthanasia, jejunal segments were removed for intestinal permeability measurement in Ussing chambers and inflammatory tone evaluation by myeloperoxidase activity assay. Results LPS administration increased jejunal permeability and increased mucosal inflammation in male Wistar rats. Xyloglucan plus gelatin 250 mg/kg and xyloglucan plus gelose 500 mg/kg significantly attenuated LPS-induced jejunal hyperpermeability and myeloperoxidase activity. Conclusion Xyloglucan, a known mucosal barrier protector, in combination with gelatin or gelose, has beneficial and comparable effects on intestinal permeability and inflammation following E. coli LPS insult in male rats.
Collapse
Affiliation(s)
- Vassilia Theodorou
- Neurogastroenterology & Nutrition Group, Toxalim UMR 1331 INRAE/UPS/INPT-EI-Purpan, Toulouse University, Toulouse, France
| | - Catherine Beaufrand
- Neurogastroenterology & Nutrition Group, Toxalim UMR 1331 INRAE/UPS/INPT-EI-Purpan, Toulouse University, Toulouse, France
| | - Hélène Eutamene
- Neurogastroenterology & Nutrition Group, Toxalim UMR 1331 INRAE/UPS/INPT-EI-Purpan, Toulouse University, Toulouse, France
| |
Collapse
|
22
|
Cláudia-Ferreira A, Barbosa DJ, Saegeman V, Fernández-Rodríguez A, Dinis-Oliveira RJ, Freitas AR. The Future Is Now: Unraveling the Expanding Potential of Human (Necro)Microbiome in Forensic Investigations. Microorganisms 2023; 11:2509. [PMID: 37894167 PMCID: PMC10608847 DOI: 10.3390/microorganisms11102509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The relevance of postmortem microbiological examinations has been controversial for decades, but the boom in advanced sequencing techniques over the last decade is increasingly demonstrating their usefulness, namely for the estimation of the postmortem interval. This comprehensive review aims to present the current knowledge about the human postmortem microbiome (the necrobiome), highlighting the main factors influencing this complex process and discussing the principal applications in the field of forensic sciences. Several limitations still hindering the implementation of forensic microbiology, such as small-scale studies, the lack of a universal/harmonized workflow for DNA extraction and sequencing technology, variability in the human microbiome, and limited access to human cadavers, are discussed. Future research in the field should focus on identifying stable biomarkers within the dominant Bacillota and Pseudomonadota phyla, which are prevalent during postmortem periods and for which standardization, method consolidation, and establishment of a forensic microbial bank are crucial for consistency and comparability. Given the complexity of identifying unique postmortem microbial signatures for robust databases, a promising future approach may involve deepening our understanding of specific bacterial species/strains that can serve as reliable postmortem interval indicators during the process of body decomposition. Microorganisms might have the potential to complement routine forensic tests in judicial processes, requiring robust investigations and machine-learning models to bridge knowledge gaps and adhere to Locard's principle of trace evidence.
Collapse
Affiliation(s)
- Ana Cláudia-Ferreira
- 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (A.C.-F.); (R.J.D.-O.)
| | - Daniel José Barbosa
- 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (A.C.-F.); (R.J.D.-O.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Veroniek Saegeman
- Department of Infection Control and Prevention, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Amparo Fernández-Rodríguez
- Microbiology Laboratory, Biology Service, Institute of Toxicology and Forensic Sciences, 28232 Madrid, Spain;
| | - Ricardo Jorge Dinis-Oliveira
- 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (A.C.-F.); (R.J.D.-O.)
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana R. Freitas
- 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (A.C.-F.); (R.J.D.-O.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | | |
Collapse
|
23
|
Zhang Y, Aldamarany WAS, Deng L, Zhong G. Carbohydrate supplementation retains intestinal barrier and ameliorates bacterial translocation in an antibiotic-induced mouse model. Food Funct 2023; 14:8186-8200. [PMID: 37599609 DOI: 10.1039/d3fo01343j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Bacterial translocation (BT), with antibiotic use as an inducer, is associated with increased risk of developing multiple inflammatory disorders, and is closely associated with intestinal barrier integrity. Deacetylated konjac glucomannan (DKGM) and konjac oligo-glucomannan (KOGM) are two of the most widely used derivatives in the food industry. They are structurally and physiologically distinct from konjac glucomannan (KGM), and previous studies have confirmed their prebiotic effects. But whether they play a role in antibiotic-induced BT is unknown. Here, we applied an antibiotic cocktail (Abx) to a mouse model and investigated whether and how KGM and its derivatives function in BT and inflammation response amelioration during and after antibiotics, and which intervention plan is more effective. The results showed that KGM and its derivatives all inhibited BT. The colon tissue lesions caused by BT were largely alleviated, and short-chain fatty acid (SCFA) production was highly improved with the supplementation of carbohydrates. The prolonged intervention plan using KGM and its derivatives was more efficient than intervention only during the Abx administration period. Among the three dietary fibers, KGM behaved best, while DKGM and KOGM behaved equivalently. Additionally, KGM and its derivatives all reduced the inflammatory response accompanying BT, but DKGM may have a direct inhibitory efficacy in inflammation other than that through IL-10, unlike KGM or KOGM.
Collapse
Affiliation(s)
- Yuan Zhang
- College of Food Science, Southwest University, Chongqing, 400715, China.
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing, 400715, China
| | - Waleed A S Aldamarany
- College of Food Science, Southwest University, Chongqing, 400715, China.
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University (Assiut Branch), Assiut 71524, Egypt
| | - Liling Deng
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Geng Zhong
- College of Food Science, Southwest University, Chongqing, 400715, China.
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing, 400715, China
| |
Collapse
|
24
|
Zhang X, Chen X, Wang Z, Meng X, Hoffmann-Sommergruber K, Cavallari N, Wu Y, Gao J, Li X, Chen H. Goblet cell-associated antigen passage: A gatekeeper of the intestinal immune system. Immunology 2023; 170:1-12. [PMID: 37067238 DOI: 10.1111/imm.13648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/02/2023] [Indexed: 04/18/2023] Open
Abstract
Effective delivery of luminal antigens to the underlying immune system is the initial step in generating antigen-specific responses in the gut. However, a large body of information regarding the immune response activation process remains unknown. Recently, goblet cells (GCs) have been reported to form goblet cell-associated antigen passages (GAPs). Luminal antigens can be transported inside GAPs and reach subepithelial immune cells to induce antigen-specific immune responses, contributing largely to gut homeostasis and the prevention of some intestinal diseases like allergic enteritis and bacterial translocation. In this article, we summarized recent observations on the formation of intestinal GAPs and their roles in mucosal immunity. We hope that this review can offer a fresh perspective and valuable insights for clinicians and researchers interested in studying the intestinal immune system.
Collapse
Affiliation(s)
- Xing Zhang
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
| | - Xiao Chen
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
| | - Zhongliang Wang
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
| | - Xuanyi Meng
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People's Republic of China
| | | | - Nicola Cavallari
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Yong Wu
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People's Republic of China
| | - Jinyan Gao
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
| | - Xin Li
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
| | - Hongbing Chen
- State Key Laboratory Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, People's Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
25
|
Wang D, Kuang Y, Lv Q, Xie W, Xu X, Zhu H, Zhang Y, Cong X, Cheng S, Liu Y. Selenium-enriched Cardamine violifolia protects against sepsis-induced intestinal injury by regulating mitochondrial fusion in weaned pigs. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2099-2111. [PMID: 36814047 DOI: 10.1007/s11427-022-2274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 02/24/2023]
Abstract
Sepsis is a life-threatening organ dysfunction caused by the dysregulated response of the host to an infection, and treatments are limited. Recently, a novel selenium source, selenium-enriched Cardamine violifolia (SEC) has attracted much attention due to its anti-inflammatory and antioxidant properties, but little is known about its role in the treatment of sepsis. Here, we found that SEC alleviated LPS-induced intestinal damage, as indicated by improved intestinal morphology, and increased disaccharidase activity and tight junction protein expression. Moreover, SEC ameliorated the LPS-induced release of pro-inflammatory cytokines, as indicated by decreased IL-6 level in the plasma and jejunum. Moreover, SEC improved intestinal antioxidant functions by regulating oxidative stress indicators and selenoproteins. In vitro, TNF-α-challenged IPEC-1 cells were examined and showed that selenium-enriched peptides, which are the main functional components extracted from Cardamine violifolia (CSP), increased cell viability, decreased lactate dehydrogenase activity and improved cell barrier function. Mechanistically, SEC ameliorated LPS/TNF-α-induced perturbations in mitochondrial dynamics in the jejunum and IPEC-1 cells. Moreover, CSP-mediated cell barrier function is primarily dependent on the mitochondrial fusion protein MFN2 but not MFN1. Taken together, these results indicate that SEC mitigates sepsis-induced intestinal injury, which is associated with modulating mitochondrial fusion.
Collapse
Affiliation(s)
- Dan Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yanling Kuang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Qingqing Lv
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Wenshuai Xie
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xiao Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yue Zhang
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, 445000, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, 445000, China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
26
|
Zhao L, Xiao J, Li S, Guo Y, Fu R, Hua S, Du Y, Xu S. The interaction between intestinal microenvironment and stroke. CNS Neurosci Ther 2023; 29 Suppl 1:185-199. [PMID: 37309254 PMCID: PMC10314114 DOI: 10.1111/cns.14275] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Stroke is not only a major cause of disability but also the third leading cause of death, following heart disease and cancer. It has been established that stroke causes permanent disability in 80% of survivors. However, current treatment options for this patient population are limited. Inflammation and immune response are major features that are well-recognized to occur after a stroke. The gastrointestinal tract hosts complex microbial communities, the largest pool of immune cells, and forms a bidirectional regulation brain-gut axis with the brain. Recent experimental and clinical studies have highlighted the importance of the relationship between the intestinal microenvironment and stroke. Over the years, the influence of the intestine on stroke has emerged as an important and dynamic research direction in biology and medicine. AIMS In this review, we describe the structure and function of the intestinal microenvironment and highlight its cross-talk relationship with stroke. In addition, we discuss potential strategies aiming to target the intestinal microenvironment during stroke treatment. CONCLUSION The structure and function of the intestinal environment can influence neurological function and cerebral ischemic outcome. Improving the intestinal microenvironment by targeting the gut microbiota may be a new direction in treating stroke.
Collapse
Affiliation(s)
- Linna Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Translational Research of TCM Prescription and SyndromeTianjinChina
| | - Jie Xiao
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Songlin Li
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Yuying Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Translational Research of TCM Prescription and SyndromeTianjinChina
| | - Rong Fu
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Shengyu Hua
- Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Yuzheng Du
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Shixin Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Translational Research of TCM Prescription and SyndromeTianjinChina
| |
Collapse
|
27
|
Werawatganon D, Vivatvakin S, Somanawat K, Tumwasorn S, Klaikeaw N, Siriviriyakul P, Chayanupatkul M. Effects of probiotics on pancreatic inflammation and intestinal integrity in mice with acute pancreatitis. BMC Complement Med Ther 2023; 23:166. [PMID: 37217916 DOI: 10.1186/s12906-023-03998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/14/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Severe acute pancreatitis is a potentially life-threatening disease. Despite being a common disorder, acute pancreatitis lacks a specific treatment. The present study aimed to examine the effects of probiotics on pancreatic inflammation and intestinal integrity in mice with acute pancreatitis. METHODS Male ICR mice were randomly divided into 4 groups (n = 6 per group). The control group received two intraperitoneal (i.p.) injections of normal saline as a vehicle control. The acute pancreatitis (AP) group received two i.p. injections of L-arginine 450 mg/100 g body weight. AP plus probiotics groups received L-arginine to induce acute pancreatitis as above. In the single-strain and mixed-strain groups, mice received 1 mL of Lactobacillus plantarum B7 1 × 108 CFU/mL and 1 mL of Lactobacillus rhamnosus L34 1 × 108 CFU/mL and Lactobacillus paracasei B13 1 × 108 CFU/mL by oral gavage, respectively for 6 days starting 3 days prior to the AP induction. All mice were sacrificed 72 h after L-arginine injection. Pancreatic tissue was obtained for histological evaluation and immunohistochemical studies for myeloperoxidase, whereas ileal tissue was used for immunohistochemical studies for occludin, and claudin-1. Blood samples were collected for amylase analysis. RESULTS Serum amylase levels and pancreatic myeloperoxidase levels in the AP group were significantly higher than in controls and significantly decreased in probiotic groups compared with the AP group. Ileal occludin and claudin-1 levels were significantly lower in the AP group than in controls. Ileal occludin levels significantly increased, whereas ileal claudin-1 levels did not significantly change in both probiotic groups as compared with the AP group. The pancreatic histopathology showed significantly higher degree of inflammation, edema, and fat necrosis in the AP group, and these changes improved in mixed-strained probiotic groups. CONCLUSIONS Probiotics, particularly the mixed-strain ones, attenuated AP via the reduction of inflammation and the maintenance of intestinal integrity.
Collapse
Affiliation(s)
- Duangporn Werawatganon
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sarocha Vivatvakin
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kanjana Somanawat
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somying Tumwasorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Naruemon Klaikeaw
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Prasong Siriviriyakul
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Maneerat Chayanupatkul
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
28
|
Zha C, Peng Z, Huang K, Tang K, Wang Q, Zhu L, Che B, Li W, Xu S, Huang T, Yu Y, Zhang W. Potential role of gut microbiota in prostate cancer: immunity, metabolites, pathways of action? Front Oncol 2023; 13:1196217. [PMID: 37265797 PMCID: PMC10231684 DOI: 10.3389/fonc.2023.1196217] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
The gut microbiota helps to reveal the relationship between diseases, but the role of gut microbiota in prostate cancer (PCa) is still unclear. Recent studies have found that the composition and abundance of specific gut microbiota are significantly different between PCa and non-PCa, and the gut microbiota may have common and unique characteristics between different diseases. Intestinal microorganisms are affected by various factors and interact with the host in a variety of ways. In the complex interaction model, the regulation of intestinal microbial metabolites and the host immune system is particularly important, and they play a key role in maintaining the ecological balance of intestinal microorganisms and metabolites. However, specific changes in the composition of intestinal microflora may promote intestinal mucosal immune imbalance, leading to the formation of tumors. Therefore, this review analyzes the immune regulation of intestinal flora and the production of metabolites, as well as their effects and mechanisms on tumors, and briefly summarizes that specific intestinal flora can play an indirect role in PCa through their metabolites, genes, immunity, and pharmacology, and directly participate in the occurrence, development, and treatment of tumors through bacterial and toxin translocation. We also discussed markers of high risk PCa for intestinal microbiota screening and the possibility of probiotic ingestion and fecal microbiota transplantation, in order to provide better treatment options for clinic patients. Finally, after summarizing a number of studies, we found that changes in immunity, metabolites.
Collapse
Affiliation(s)
- Cheng Zha
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zheng Peng
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kunyuan Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kaifa Tang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Urology & Andrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qiang Wang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lihua Zhu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bangwei Che
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shenghan Xu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Yu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenjun Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
29
|
Codelia-Anjum A, Lerner LB, Elterman D, Zorn KC, Bhojani N, Chughtai B. Enterococcal Urinary Tract Infections: A Review of the Pathogenicity, Epidemiology, and Treatment. Antibiotics (Basel) 2023; 12:antibiotics12040778. [PMID: 37107140 PMCID: PMC10135011 DOI: 10.3390/antibiotics12040778] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Urinary tract infections (UTIs) are among the most common causes of infections worldwide and can be caused by numerous uropathogens. Enterococci are Gram-positive, facultative anaerobic commensal organisms of the gastrointestinal tract that are known uropathogens. Enterococcus spp. has become a leading cause of healthcare associated infections, ranging from endocarditis to UTIs. In recent years, there has been an increase in multidrug resistance due to antibiotic misuse, especially in enterococci. Additionally, infections due to enterococci pose a unique challenge due to their ability to survive in extreme environments, intrinsic antimicrobial resistance, and genomic malleability. Overall, this review aims to highlight the pathogenicity, epidemiology, and treatment recommendations (according to the most recent guidelines) of enterococci.
Collapse
Affiliation(s)
- Alia Codelia-Anjum
- Department of Urology, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Lori B Lerner
- Department of Urology, VA Boston Healthcare System, Boston, MA 02132, USA
| | - Dean Elterman
- Division of Urology, Department of Surgery, University Health Network, University of Toronto, Toronto, ON M5T 2SB, Canada
| | - Kevin C Zorn
- Division of Urology, Centre Hospitalier de l'Université de Monstréal, Montreal, QC H2X 0A9, Canada
| | - Naeem Bhojani
- Division of Urology, Centre Hospitalier de l'Université de Monstréal, Montreal, QC H2X 0A9, Canada
| | - Bilal Chughtai
- Department of Urology, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY 10065, USA
| |
Collapse
|
30
|
Rohith G, Sureshkumar S, Anandhi A, Kate V, Rajesh BS, Abdulbasith KM, Nanda N, Palanivel C, Vijayakumar C. Effect of Synbiotics in Reducing the Systemic Inflammatory Response and Septic Complications in Moderately Severe and Severe Acute Pancreatitis: A Prospective Parallel-Arm Double-Blind Randomized Trial. Dig Dis Sci 2023; 68:969-977. [PMID: 35857241 DOI: 10.1007/s10620-022-07618-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 07/04/2022] [Indexed: 12/09/2022]
Abstract
AIM This study aimed at evaluating the efficacy of synbiotics in reducing septic complications in moderately severe and severe acute pancreatitis. METHODS This was a prospective, parallel-arm, double-blinded superiority randomized control study. All patients with moderately severe and severe acute pancreatitis were included in the study. Acute on chronic pancreatitis, pancreatitis due to trauma, ERCP and malignancy were excluded. 1 g of synbiotic containing both pre- and probiotics was administered to the cases twice a day for 14 days and a similar-looking placebo to controls. Patients were followed for 90 days. Primary outcomes were reduction of septic complications and inflammatory marker levels. Secondary outcomes were mortality, non-septic morbidity, length of hospitalization (LOH) and need for intervention. RESULTS A total of 86 patients were randomized to 43 in each arm. Demographic profile and severity of pancreatitis were comparable. There was no significant difference in septic complications between the groups (59% vs. 64%; p 0.59). Total leucocyte and neutrophil counts showed a significant reduction in the first 7 days (p = 0.01 and 0.05). No significant difference was seen in other inflammatory markers. There was a significant reduction in the LOH (10 vs. 7; p = 0.02). Non-septic morbidity (41% vs. 62.2%; p 0.06) and length of ICU stay (3 vs. 2; p 0.06) had a trend towards significance. The need for intervention and mortality was comparable. CONCLUSION Synbiotics did not significantly reduce the septic complications in patients with moderately severe and severe acute pancreatitis; however, they significantly reduced the LOH. There was no reduction in mortality and need for intervention. Clinical Trials Registry of India Number: CTRI/2018/03/012597.
Collapse
Affiliation(s)
- Gorrepati Rohith
- Department of Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India
| | - Sathasivam Sureshkumar
- Department of Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India.
| | - Amaranathan Anandhi
- Department of Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India
| | - Vikram Kate
- Department of Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India
| | - B S Rajesh
- Department of Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India
| | - K M Abdulbasith
- Department of Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India
| | - Nivedita Nanda
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Chinnakali Palanivel
- Department of Preventive and Social Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Chellappa Vijayakumar
- Department of Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India
| |
Collapse
|
31
|
Di Tommaso N, Santopaolo F, Gasbarrini A, Ponziani FR. The Gut-Vascular Barrier as a New Protagonist in Intestinal and Extraintestinal Diseases. Int J Mol Sci 2023; 24:ijms24021470. [PMID: 36674986 PMCID: PMC9864173 DOI: 10.3390/ijms24021470] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The intestinal barrier, with its multiple layers, is the first line of defense between the outside world and the intestine. Its disruption, resulting in increased intestinal permeability, is a recognized pathogenic factor of intestinal and extra-intestinal diseases. The identification of a gut-vascular barrier (GVB), consisting of a structured endothelium below the epithelial layer, has led to new evidence on the etiology and management of diseases of the gut-liver axis and the gut-brain axis, with recent implications in oncology as well. The gut-brain axis is involved in several neuroinflammatory processes. In particular, the recent description of a choroid plexus vascular barrier regulating brain permeability under conditions of gut inflammation identifies the endothelium as a key regulator in maintaining tissue homeostasis and health.
Collapse
Affiliation(s)
- Natalia Di Tommaso
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence:
| |
Collapse
|
32
|
Barak G, Carroll MR, Dean A. Salpingitis in an Adolescent Female With Constipation and Abdominal Pain. JPGN REPORTS 2022; 3:e271. [PMID: 37168476 PMCID: PMC10158367 DOI: 10.1097/pg9.0000000000000271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/10/2022] [Indexed: 05/13/2023]
Abstract
Abdominal pain is one of the most common presenting complaints in the emergency room for pediatric patients. While constipation is one of the most common causes for abdominal pain in pediatrics, serious intra-abdominal pathology must always be excluded. We report a pre-coital post-menarchal adolescent female who presented with severe abdominal pain and constipation and had radiographic findings of salpingitis. It was suspected that uterine and adnexal changes seen on imaging resulted from the fecal mass compressing the genitourinary tract leading to fluid collection manifesting as radiographic evidence of salpingitis. This mechanism is similar to bladder outlet obstruction resulting from compression by intestinal stool burden, leading to urinary stasis, bacteriuria, and ascending urinary tract infection. This case demonstrates how a common pediatric problem, constipation, can lead to a condition rarely found in the pre-coital adolescent population.
Collapse
Affiliation(s)
- Gal Barak
- From the Department of Pediatrics, Baylor College of Medicine/ Texas Children’s Hospital, Houston, TX
| | - Matthew R. Carroll
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | - Andrea Dean
- From the Department of Pediatrics, Baylor College of Medicine/ Texas Children’s Hospital, Houston, TX
| |
Collapse
|
33
|
Chida K, Ishido K, Sakamoto Y, Kimura N, Morohashi H, Miura T, Wakiya T, Yokoyama H, Nagase H, Ichinohe D, Suto A, Kuwata D, Ichisawa A, Nakamura A, Kasai D, Hakamada K. Necrotizing pancreatitis complicated by retroperitoneal emphysema: two case reports. Surg Case Rep 2022; 8:183. [PMID: 36163599 PMCID: PMC9512950 DOI: 10.1186/s40792-022-01542-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
Background Emphysematous pancreatitis is acute pancreatitis associated with emphysema based on imaging studies and has been considered a subtype of necrotizing pancreatitis. Although some recent studies have reported the successful use of conservative treatment, it is still considered a serious condition. Computed tomography (CT) scan is useful in identifying emphysema associated with acute pancreatitis; however, whether the presence of emphysema correlates with the severity of pancreatitis remains controversial. In this study, we managed two cases of severe acute pancreatitis complicated with retroperitoneal emphysema successfully by treatment with lavage and drainage. Case presentation Case 1: A 76-year-old man was referred to our hospital after being diagnosed with acute pancreatitis. At post-admission, his abdominal symptoms worsened, and a repeat CT scan revealed increased retroperitoneal gas. Due to the high risk for gastrointestinal tract perforation, emergent laparotomy was performed. Fat necrosis was observed on the anterior surface of the pancreas, and a diagnosis of acute necrotizing pancreatitis with retroperitoneal emphysema was made. Thus, retroperitoneal drainage was performed. Case 2: A 50-year-old woman developed anaphylactic shock during the induction of general anesthesia for lumbar spine surgery, and peritoneal irritation symptoms and hypotension occurred on the same day. Contrast-enhanced CT scan showed necrotic changes in the pancreatic body and emphysema surrounding the pancreas. Therefore, she was diagnosed with acute necrotizing pancreatitis with retroperitoneal emphysema, and retroperitoneal cavity lavage and drainage were performed. In the second case, the intraperitoneal abscess occurred postoperatively, requiring time for drainage treatment. Both patients showed no significant postoperative course problems and were discharged on postoperative days 18 and 108, respectively. Conclusion Acute pancreatitis with emphysema from the acute phase highly indicates severe necrotizing pancreatitis. Surgical drainage should be chosen without hesitation in necrotizing pancreatitis with emphysema from early onset.
Collapse
|
34
|
Kim K, Song M, Liu Y, Ji P. Enterotoxigenic Escherichia coli infection of weaned pigs: Intestinal challenges and nutritional intervention to enhance disease resistance. Front Immunol 2022; 13:885253. [PMID: 35990617 PMCID: PMC9389069 DOI: 10.3389/fimmu.2022.885253] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) infection induced post-weaning diarrhea is one of the leading causes of morbidity and mortality in newly weaned pigs and one of the significant drivers for antimicrobial use in swine production. ETEC attachment to the small intestine initiates ETEC colonization and infection. The secretion of enterotoxins further disrupts intestinal barrier function and induces intestinal inflammation in weaned pigs. ETEC infection can also aggravate the intestinal microbiota dysbiosis due to weaning stress and increase the susceptibility of weaned pigs to other enteric infectious diseases, which may result in diarrhea or sudden death. Therefore, the amount of antimicrobial drugs for medical treatment purposes in major food-producing animal species is still significant. The alternative practices that may help reduce the reliance on such antimicrobial drugs and address animal health requirements are needed. Nutritional intervention in order to enhance intestinal health and the overall performance of weaned pigs is one of the most powerful practices in the antibiotic-free production system. This review summarizes the utilization of several categories of feed additives or supplements, such as direct-fed microbials, prebiotics, phytochemicals, lysozyme, and micro minerals in newly weaned pigs. The current understanding of these candidates on intestinal health and disease resistance of pigs under ETEC infection are particularly discussed, which may inspire more research on the development of alternative practices to support food-producing animals.
Collapse
Affiliation(s)
- Kwangwook Kim
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, Davis, CA, United States
- *Correspondence: Yanhong Liu, ; Peng Ji,
| | - Peng Ji
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- *Correspondence: Yanhong Liu, ; Peng Ji,
| |
Collapse
|
35
|
Microbiota succession throughout life from the cradle to the grave. Nat Rev Microbiol 2022; 20:707-720. [PMID: 35906422 DOI: 10.1038/s41579-022-00768-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 11/08/2022]
Abstract
Associations between age and the human microbiota are robust and reproducible. The microbial composition at several body sites can predict human chronological age relatively accurately. Although it is largely unknown why specific microorganisms are more abundant at certain ages, human microbiota research has elucidated a series of microbial community transformations that occur between birth and death. In this Review, we explore microbial succession in the healthy human microbiota from the cradle to the grave. We discuss the stages from primary succession at birth, to disruptions by disease or antibiotic use, to microbial expansion at death. We address how these successions differ by body site and by domain (bacteria, fungi or viruses). We also review experimental tools that microbiota researchers use to conduct this work. Finally, we discuss future directions for studying the microbiota's relationship with age, including designing consistent, well-powered, longitudinal studies, performing robust statistical analyses and improving characterization of non-bacterial microorganisms.
Collapse
|
36
|
Ma L, Zhang X, Zhang C, Hou B, Zhao H. FOSL1 knockdown ameliorates DSS‑induced inflammation and barrier damage in ulcerative colitis via MMP13 downregulation. Exp Ther Med 2022; 24:551. [PMID: 35978937 PMCID: PMC9366272 DOI: 10.3892/etm.2022.11488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/19/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Lizhuan Ma
- Department of Gastroenterology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Xiujing Zhang
- Department of Gastroenterology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Chao Zhang
- Department of Gastroenterology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Bingxu Hou
- Department of Gastroenterology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Hongtao Zhao
- Department of Gastroenterology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
37
|
Candida Worsens Klebsiella pneumoniae Induced-Sepsis in a Mouse Model with Low Dose Dextran Sulfate Solution through Gut Dysbiosis and Enhanced Inflammation. Int J Mol Sci 2022; 23:ijms23137050. [PMID: 35806054 PMCID: PMC9266745 DOI: 10.3390/ijms23137050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen and a commensal organism that is possibly enhanced in several conditions with gut dysbiosis, and frequently detectable together with Candida overgrowth. Here, K. pneumoniae with or without Candida albicans was daily orally administered for 3 months in 0.8% dextran sulfate solution-induced mucositis mice and also tested in vitro. As such, Candida worsened Klebsiella-DSS-colitis as demonstrated by mortality, leaky gut (FITC-dextran assay, bacteremia, endotoxemia, and serum beta-glucan), gut dysbiosis (increased Deferribacteres from fecal microbiome analysis), liver pathology (histopathology), liver apoptosis (activated caspase 3), and cytokines (in serum and in the internal organs) when compared with Klebsiella-administered DSS mice. The combination of heat-killed Candida plus Klebsiella mildly facilitated inflammation in enterocytes (Caco-2), hepatocytes (HepG2), and THP-1-derived macrophages as indicated by supernatant cytokines or the gene expression. The addition of heat-killed Candida into Klebsiella preparations upregulated TLR-2, reduced Occludin (an intestinal tight junction molecule), and worsened enterocyte integrity (transepithelial electrical resistance) in Caco-2 and enhanced casp8 and casp9 (apoptosis genes) in HepG2 when compared with heat-killed Klebsiella alone. In conclusion, Candida enhanced enterocyte inflammation (partly through TLR-2 upregulation and gut dysbiosis) that induced gut translocation of endotoxin and beta-glucan causing hyper-inflammatory responses, especially in hepatocytes and macrophages.
Collapse
|
38
|
Moore-Ott JA, Chiu S, Amchin DB, Bhattacharjee T, Datta SS. A biophysical threshold for biofilm formation. eLife 2022; 11:e76380. [PMID: 35642782 PMCID: PMC9302973 DOI: 10.7554/elife.76380] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteria are ubiquitous in our daily lives, either as motile planktonic cells or as immobilized surface-attached biofilms. These different phenotypic states play key roles in agriculture, environment, industry, and medicine; hence, it is critically important to be able to predict the conditions under which bacteria transition from one state to the other. Unfortunately, these transitions depend on a dizzyingly complex array of factors that are determined by the intrinsic properties of the individual cells as well as those of their surrounding environments, and are thus challenging to describe. To address this issue, here, we develop a generally-applicable biophysical model of the interplay between motility-mediated dispersal and biofilm formation under positive quorum sensing control. Using this model, we establish a universal rule predicting how the onset and extent of biofilm formation depend collectively on cell concentration and motility, nutrient diffusion and consumption, chemotactic sensing, and autoinducer production. Our work thus provides a key step toward quantitatively predicting and controlling biofilm formation in diverse and complex settings.
Collapse
Affiliation(s)
- Jenna A Moore-Ott
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - Selena Chiu
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - Daniel B Amchin
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - Tapomoy Bhattacharjee
- Andlinger Center for Energy and the Environment, Princeton UniversityPrincetonUnited States
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| |
Collapse
|
39
|
Amchin DB, Ott JA, Bhattacharjee T, Datta SS. Influence of confinement on the spreading of bacterial populations. PLoS Comput Biol 2022; 18:e1010063. [PMID: 35533196 PMCID: PMC9119553 DOI: 10.1371/journal.pcbi.1010063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 05/19/2022] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
The spreading of bacterial populations is central to processes in agriculture, the environment, and medicine. However, existing models of spreading typically focus on cells in unconfined settings—despite the fact that many bacteria inhabit complex and crowded environments, such as soils, sediments, and biological tissues/gels, in which solid obstacles confine the cells and thereby strongly regulate population spreading. Here, we develop an extended version of the classic Keller-Segel model of bacterial spreading via motility that also incorporates cellular growth and division, and explicitly considers the influence of confinement in promoting both cell-solid and cell-cell collisions. Numerical simulations of this extended model demonstrate how confinement fundamentally alters the dynamics and morphology of spreading bacterial populations, in good agreement with recent experimental results. In particular, with increasing confinement, we find that cell-cell collisions increasingly hinder the initial formation and the long-time propagation speed of chemotactic pulses. Moreover, also with increasing confinement, we find that cellular growth and division plays an increasingly dominant role in driving population spreading—eventually leading to a transition from chemotactic spreading to growth-driven spreading via a slower, jammed front. This work thus provides a theoretical foundation for further investigations of the influence of confinement on bacterial spreading. More broadly, these results help to provide a framework to predict and control the dynamics of bacterial populations in complex and crowded environments. The spreading of bacteria through their environments critically impacts our everyday lives; it can be harmful, underlying the progression of infections and spoilage of foods, or can be beneficial, enabling the delivery of therapeutics, sustaining plant growth, and remediating polluted terrain. In all these cases, bacteria typically inhabit crowded environments, such as soils, sediments, and biological tissues/gels, in which solid obstacles confine the cells and regulate their spreading. However, existing models of spreading typically focus on cells in unconfined settings, and thus are frequently not applicable to cells in more complex environments. Here, we address this gap in knowledge by extending the classic Keller-Segel model of bacterial spreading via motility to also incorporate cellular growth and division, and explicitly consider the influence of confinement. Through numerical simulations of this extended model, we show how confinement fundamentally alters the dynamics and morphology of spreading bacterial populations—in particular, driving a transition from chemotactic spreading of motile cells to growth-driven spreading via a slower, jammed front. These results provide a foundation for further investigations of the influence of confinement on bacterial spreading, both by yielding testable predictions for future experiments, and by providing guidelines to predict and control the dynamics of bacterial populations in complex and crowded environments.
Collapse
Affiliation(s)
- Daniel B. Amchin
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Jenna A. Ott
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Tapomoy Bhattacharjee
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey, United States of America
| | - Sujit S. Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
40
|
Glisic M, Flueck JL, Ruettimann B, Hertig-Godeschalk A, Valido E, Bertolo A, Stucki G, Stoyanov J. The feasibility of a crossover, randomized controlled trial design to assess the effect of probiotics and prebiotics on health of elite Swiss para-athletes: a study protocol. Pilot Feasibility Stud 2022; 8:94. [PMID: 35477496 PMCID: PMC9044645 DOI: 10.1186/s40814-022-01048-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) may cause an autonomic imbalance in the gastrointestinal tract, leading to deficits in colonic motility, mucosal secretions, vascular tone, and an increase of intestinal barrier permeability. Autonomic denervation and factors such as age, physical activity, antibiotic use and stress may cause intestinal bacterial translocation, decreased microbiota diversity, known as gut dysbiosis and thus increase susceptibility to experiencing gastrointestinal discomfort. Probiotic treatment in individuals with SCI may normalize the gut microbiota and improve overall health. We aim to assess the feasibility of probiotic and prebiotic intervention in athletes with SCI and collect information necessary for sample size calculation of a definite trial on improving health outcomes in para-athletes. METHODS AND ANALYSIS Elite Swiss para-athletes (aged> 18 years), being shortlisted for the Paralympic Games 2021 in Tokyo or a member of a national team (n = 43), will be invited to participate in this single-center randomized crossover trial. Athletes suffering from chronic inflammatory bowel diseases, those currently taking antibiotics or other medication to alleviate gastro-intestinal complaints will not be eligible to be included in the study. Athletes will be randomized (1:1) to receive for 4 weeks a daily dose of either 3 g of probiotic preparation or 5 g of prebiotic (organic oat bran) supplementation in addition to usual diet, followed by a 4-week washout period or vice versa. The primary outcome is the feasibility of the study, measured by recruitment and dropout rates, feasibility of the measurements, acceptability and adherence to the intervention. Secondary outcomes include gastrointestinal health assessment, diet and training information, handgrip strength, blood diagnostic parameters, and intestinal microbiome characterization. The changes in clinically relevant secondary outcome values will be used to make a power calculation for definite trial. DISCUSSION This pilot trial will address two common challenges in SCI research: the difficulty to recruit enough participants for a sufficiently powered study and the ability to collect data within the limits of a realistic budget and time frame. Upon demonstrated feasibility of the intervention and study procedures, the intervention will be evaluated in a definitive controlled trial comprising a larger sample of para-athletes (elite, engaged, or recreationally active) individuals with a SCI. TRIAL REGISTRATION NCT04659408.
Collapse
Affiliation(s)
- Marija Glisic
- Swiss Paraplegic Research, Guido A. Zäch Strasse 4, CH-6207, Nottwil, Switzerland.,Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, CH-3012, Bern, Switzerland
| | - Joelle L Flueck
- Sports Medicine, Swiss Paraplegic Centre, CH-6207, Nottwil, Switzerland
| | | | | | - Ezra Valido
- Swiss Paraplegic Research, Guido A. Zäch Strasse 4, CH-6207, Nottwil, Switzerland
| | - Alessandro Bertolo
- Swiss Paraplegic Research, Guido A. Zäch Strasse 4, CH-6207, Nottwil, Switzerland
| | - Gerold Stucki
- Swiss Paraplegic Research, Guido A. Zäch Strasse 4, CH-6207, Nottwil, Switzerland
| | - Jivko Stoyanov
- Swiss Paraplegic Research, Guido A. Zäch Strasse 4, CH-6207, Nottwil, Switzerland. .,Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, CH-3012, Bern, Switzerland.
| |
Collapse
|
41
|
Di Domenico M, Ballini A, Boccellino M, Scacco S, Lovero R, Charitos IA, Santacroce L. The Intestinal Microbiota May Be a Potential Theranostic Tool for Personalized Medicine. J Pers Med 2022; 12:523. [PMID: 35455639 PMCID: PMC9024566 DOI: 10.3390/jpm12040523] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
The human intestine is colonized by a huge number of microorganisms from the moment of birth. This set of microorganisms found throughout the human body, is called the microbiota; the microbiome indicates the totality of genes that the microbiota can express, i.e., its genetic heritage. Thus, microbiota participates in and influences the proper functioning of the organism. The microbiota is unique for each person; it differs in the types of microorganisms it contains, the number of each microorganism, and the ratio between them, but mainly it changes over time and under the influence of many factors. Therefore, the correct functioning of the human body depends not only on the expression of its genes but also on the expression of the genes of the microorganisms it coexists with. This fact makes clear the enormous interest of community science in studying the relationship of the human microbiota with human health and the incidence of disease. The microbiota is like a unique personalized "mold" for each person; it differs quantitatively and qualitatively for the microorganisms it contains together with the relationship between them, and it changes over time and under the influence of many factors. We are attempting to modulate the microbial components in the human intestinal microbiota over time to provide positive feedback on the health of the host, from intestinal diseases to cancer. These interventions to modulate the intestinal microbiota as well as to identify the relative microbiome (genetic analysis) can range from dietary (with adjuvant prebiotics or probiotics) to fecal transplantation. This article researches the recent advances in these strategies by exploring their advantages and limitations. Furthermore, we aim to understand the relationship between intestinal dysbiosis and pathologies, through the research of resident microbiota, that would allow the personalization of the therapeutic antibiotic strategy.
Collapse
Affiliation(s)
- Marina Di Domenico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (M.B.)
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (M.B.)
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.D.D.); (M.B.)
| | - Salvatore Scacco
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Roberto Lovero
- AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, Clinical Pathology Unit, Policlinico University Hospital of Bari, 70124 Bari, Italy;
| | - Ioannis Alexandros Charitos
- Department of Emergency and Urgency, National Poisoning Centre, Riuniti University Hospital of Foggia, 71122 Foggia, Italy;
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
42
|
Preventing Bacterial Translocation in Patients with Leaky Gut Syndrome: Nutrition and Pharmacological Treatment Options. Int J Mol Sci 2022; 23:ijms23063204. [PMID: 35328624 PMCID: PMC8949204 DOI: 10.3390/ijms23063204] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 12/11/2022] Open
Abstract
Leaky gut syndrome is a medical condition characterized by intestinal hyperpermeability. Since the intestinal barrier is one of the essential components maintaining homeostasis along the gastrointestinal tract, loss of its integrity due to changes in bacterial composition, decreased expression levels of tight junction proteins, and increased concentration of pro-inflammatory cytokines may lead to intestinal hyperpermeability followed by the development of gastrointestinal and non-gastrointestinal diseases. Translocation of microorganisms and their toxic metabolites beyond the gastrointestinal tract is one of the fallouts of the leaky gut syndrome. The presence of intestinal bacteria in sterile tissues and distant organs may cause damage due to chronic inflammation and progression of disorders, including inflammatory bowel diseases, liver cirrhosis, and acute pancreatitis. Currently, there are no medical guidelines for the treatment or prevention of bacterial translocation in patients with the leaky gut syndrome; however, several studies suggest that dietary intervention can improve barrier function and restrict bacteria invasion. This review contains current literature data concerning the influence of diet, dietary supplements, probiotics, and drugs on intestinal permeability and bacterial translocation.
Collapse
|
43
|
Majumder S, Shivaji UN, Kasturi R, Sigamani A, Ghosh S, Iacucci M. Inflammatory bowel disease-related colorectal cancer: Past, present and future perspectives. World J Gastrointest Oncol 2022; 14:547-567. [PMID: 35321275 PMCID: PMC8919014 DOI: 10.4251/wjgo.v14.i3.547] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/21/2021] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease-related colorectal cancer (IBD-CRC) is one of the most serious complications of IBD contributing to significant mortality in this cohort of patients. IBD is often associated with diet and lifestyle-related gut microbial dysbiosis, the interaction of genetic and environmental factors, leading to chronic gut inflammation. According to the “common ground hypothesis”, microbial dysbiosis and intestinal barrier impairment are at the core of the chronic inflammatory process associated with IBD-CRC. Among the many underlying factors known to increase the risk of IBD-CRC, perhaps the most important factor is chronic persistent inflammation. The persistent inflammation in the colon results in increased proliferation of cells necessary for repair but this also increases the risk of dysplastic changes due to chromosomal and microsatellite instability. Multiple pathways have been identified, regulated by many positive and negative factors involved in the development of cancer, which in this case follows the ‘inflammation-dysplasia-carcinoma’ sequence. Strategies to lower this risk are extremely important to reduce morbidity and mortality due to IBD-CRC, among which colonoscopic surveillance is the most widely accepted and implemented modality, forming part of many national and international guidelines. However, the effectiveness of surveillance in IBD has been a topic of much debate in recent years for multiple reasons — cost-benefit to health systems, resource requirements, and also because of studies showing conflicting long-term data. Our review provides a comprehensive overview of past, present, and future perspectives of IBD-CRC. We explore and analyse evidence from studies over decades and current best practices followed globally. In the future directions section, we cover emerging novel endoscopic techniques and artificial intelligence that could play an important role in managing the risk of IBD-CRC.
Collapse
Affiliation(s)
- Snehali Majumder
- Department of Clinical Research, Narayana Health, Bangalore 560099, Karnataka, India
| | - Uday Nagesh Shivaji
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham, Birmingham B15 2TH, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TH, United Kingdom
| | - Rangarajan Kasturi
- Department of Gastroenterology, Narayana Health, Bangalore 560099, India
| | - Alben Sigamani
- Department of Clinical Research, Narayana Health, Bangalore 560099, Karnataka, India
| | - Subrata Ghosh
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham, Birmingham B15 2TH, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TH, United Kingdom
| | - Marietta Iacucci
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham, Birmingham B15 2TH, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TH, United Kingdom
| |
Collapse
|
44
|
Liu H, Zhang Y, Chen G, Sun S, Wang J, Chen F, Liu C, Zhuang Q. Diagnostic Significance of Metagenomic Next-Generation Sequencing for Community-Acquired Pneumonia in Southern China. Front Med (Lausanne) 2022; 9:807174. [PMID: 35242783 PMCID: PMC8885724 DOI: 10.3389/fmed.2022.807174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Background The morbidity and mortality of community-acquired pneumonia are relatively high, but many pneumonia pathogens cannot be identified accurately. As a new pathogen detection technology, metagenomic next-generation sequencing (mNGS) has been applied more and more clinically. We aimed to evaluate the diagnostic significance of mNGS for community-acquired pneumonia (CAP) in the south of China. Methods Our study selected CAP patients who visited the 3rd Xiangya Hospital from May 2019 to April 2021. Pathogens in bronchoalveolar lavage fluid (BALF) specimens were detected using mNGS and traditional microbiological culture. mNGS group: detected by both mNGS and BALF culture; control group: detected only by BALF or sputum culture. The diagnostic performance of pathogens and the antibiotic adjustments were compared within mNGS group. Results The incidence of acute respiratory distress syndrome (ARDS) was 28.3% in the mNGS group and 17.3% in the control group. Within the mNGS group, the positive rate of pathogens detected by mNGS was 64%, thus by BALF culture was only 28%. Pathogens detected by mNGS were consisted of bacteria (55%), fungi (18%), special pathogens (18%), and viruses (9%). The most detected pathogen by mNGS was Chlamydia psittaci. Among the pathogen-positive cases, 26% was not pathogen-covered by empirical antibiotics, so most of which were made an antibiotic adjustment. Conclusions mNGS can detect pathogens in a more timely and accurate manner and assist clinicians to adjust antibiotics in time. Therefore, we recommend mNGS as the complementary diagnosis of severe pneumonia or complicated infections.
Collapse
Affiliation(s)
- Hanying Liu
- Department of Respiratory Diseases, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Ying Zhang
- Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Guiyang Chen
- Department of Cardiology, Hunan Aerospace Hospital, Changsha, China
| | - Shenghua Sun
- Department of Respiratory Diseases, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Jiangang Wang
- Department of Health Management, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | | | - Chun Liu
- Department of Respiratory Diseases, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Quan Zhuang
- Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| |
Collapse
|
45
|
Feng Z, Zhong Y, He G, Sun H, Chen Y, Zhou W, Lin S. Yeast culture improved the growth performance, liver function, intestinal barrier and microbiota of juvenile largemouth bass (Micropterus salmoides) fed high-starch diet. FISH & SHELLFISH IMMUNOLOGY 2022; 120:706-715. [PMID: 34954371 DOI: 10.1016/j.fsi.2021.12.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 05/27/2023]
Abstract
The present study was conducted to investigate the effects of yeast culture on the growth, health and microflora of the juvenile largemouth bass fed high-starch diet. The experiment set three isonitrogenous and isolipidic diets, control (high-starch diet), HSY1 (high-starch diet with 1% yeast culture) and HSY3 (high-starch diet with 3% yeast culture). A feeding trial was conducted in largemouth bass juveniles for 8 weeks. The results indicated fish fed with 3% yeast culture not only could improve specific growth rate (SGR), but also significantly decreased hepatic lipid content, hepatic glycogen content, and hepatopancreas somatic index (HSI) compared with the control group (p<0.05). The total superoxide dismutase (T-SOD) and catalase (CAT) activities of HSY3 group significantly increased while malondialdehyde (MDA) content significantly reduced in liver compared with the control group (p<0.05). Meanwhile, the mRNA expression levels of hepatic Sod and Cat were up-regulated (p<0.05), and liver metabolism showed 111 metabolites were significantly changed in HSY3 group, liver lipid metabolism pathway remarkably changed. Besides, the intestinal anti-inflammatory cytokines were significantly up-regulated, and the pro-inflammatory cytokines were significantly down-regulated as the inclusion of yeast culture (p<0.05). Notably, HSY3 group diet up-regulated the expression of Zo-1, Claudin and Occludin in intestine compared with the other groups (p<0.05). Serum d-lactate (D-lac), diamine oxidase (DAO) and lipopolysaccharide (LPS) decreased significantly with the inclusion of yeast culture (p<0.05). Furthermore, the abundance of probiotics (such as Lactobacillus, Bacillus and Bifidobacterium) increased significantly, and the abundance of intestinal potential pathogenic bacteria (Plesiomonas) decreased in HSY3 group (p<0.05). The phenotypic analysis showed that gram-negative bacteria significantly decreased while gram-positive bacteria increased in HSY3 group (p<0.05). All in all, this study revealed that supplementation of 3% yeast culture can improve the growth performance and the health of juvenile largemouth bass, and has the potential to be used as an effective synbiotics for M. salmoides.
Collapse
Affiliation(s)
- Zhuandong Feng
- College of Fisheries, Southwest University, Chongqing, 400715, PR China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University, Chongqing, 400715, PR China.
| | - Yunfei Zhong
- College of Fisheries, Southwest University, Chongqing, 400715, PR China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University, Chongqing, 400715, PR China
| | - Guanglun He
- College of Fisheries, Southwest University, Chongqing, 400715, PR China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University, Chongqing, 400715, PR China
| | - Hao Sun
- College of Fisheries, Southwest University, Chongqing, 400715, PR China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University, Chongqing, 400715, PR China
| | - Yongjun Chen
- College of Fisheries, Southwest University, Chongqing, 400715, PR China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University, Chongqing, 400715, PR China
| | - Wenhao Zhou
- Beijing Enhalor Institute of Biotechnology, Beijing, 100081, PR China
| | - Shimei Lin
- College of Fisheries, Southwest University, Chongqing, 400715, PR China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
46
|
Adsorption of extracellular proteases and pyocyanin produced by Pseudomonas aeruginosa using a macroporous magnesium oxide-templated carbon decreases cytotoxicity. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100160. [DOI: 10.1016/j.crmicr.2022.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
|
47
|
Guo D, Dai W, Shen J, Zhang M, Shi Y, Jiang K, Guo L. Assessment of Prophylactic Carbapenem Antibiotics Administration for Severe Acute Pancreatitis: An Updated Systematic Review and Meta-Analysis. Digestion 2022; 103:183-191. [PMID: 35026770 DOI: 10.1159/000520892] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/11/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND The effectiveness of prophylactic antibiotics in severe acute pancreatitis (SAP) remains a debatable issue. This meta-analysis aimed to determine the efficacy of prophylactic carbapenem antibiotics in SAP. METHODS This meta-analysis of prophylactic carbapenem antibiotics for SAP was conducted in PubMed, EMBASE, Web of Science, MEDLINE, and Cochrane Library up to February 2021. The related bibliographies were manually searched. The primary outcomes involved infected pancreatic or peripancreatic necrosis, mortality, complications, infections, and organ failure. RESULTS Seven articles comprised 5 randomized controlled trials and 2 retrospective observational studies, including 3,864 SAP participants. Prophylactic carbapenem antibiotics in SAP were associated with a statistically significant reduction in the incidence of infections (odds ratio [OR]: 0.27; p = 0.03) and complications (OR: 0.48; p = 0.009). Nevertheless, no statistically significant difference was demonstrated in the incidence of infected pancreatic or peripancreatic necrosis (OR: 0.74; p = 0.24), mortality (OR: 0.69; p = 0.17), extrapancreatic infection (OR: 0.64, p = 0.54), pulmonary infection (OR: 1.23; p = 0.69), blood infection (OR: 0.60; p = 0.35), urinary tract infection (OR: 0.97; p = 0.97), pancreatic pseudocyst (OR: 0.59; p = 0.28), fluid collection (OR: 0.91; p = 0.76), organ failure (OR: 0.63; p = 0.19), acute respiratory distress syndrome (OR: 0.80; p = 0.61), surgical intervention (OR: 0.97; p = 0.93), dialysis (OR: 2.34; p = 0.57), use of respirator or ventilator (OR: 1.90; p = 0.40), intensive care unit treatment (OR: 2.97; p = 0.18), and additional antibiotics (OR: 0.59; p = 0.28) between the experimental and control groups. CONCLUSIONS It is not recommended to administer routine prophylactic carbapenem antibiotics in SAP.
Collapse
Affiliation(s)
- Daxin Guo
- Department of Gastroenterology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Wei Dai
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingyi Shen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengting Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yetan Shi
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ke Jiang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Luyong Guo
- The Emergency Department, Zhuji People's Hospital, Shaoxing, China
| |
Collapse
|
48
|
Creagh-Brown BC. Prevention and Treatment of Postoperative Pulmonary Complications. Perioper Med (Lond) 2022. [DOI: 10.1016/b978-0-323-56724-4.00020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
49
|
Che B, Zhang W, Xu S, Yin J, He J, Huang T, Li W, Yu Y, Tang K. Prostate Microbiota and Prostate Cancer: A New Trend in Treatment. Front Oncol 2021; 11:805459. [PMID: 34956913 PMCID: PMC8702560 DOI: 10.3389/fonc.2021.805459] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023] Open
Abstract
Although the incidence and mortality of prostate cancer have gradually begun to decline in the past few years, it is still one of the leading causes of death from malignant tumors in the world. The occurrence and development of prostate cancer are affected by race, family history, microenvironment, and other factors. In recent decades, more and more studies have confirmed that prostate microflora in the tumor microenvironment may play an important role in the occurrence, development, and prognosis of prostate cancer. Microorganisms or their metabolites may affect the occurrence and metastasis of cancer cells or regulate anti-cancer immune surveillance. In addition, the use of tumor microenvironment bacteria in interventional targeting therapy of tumors also shows a unique advantage. In this review, we introduce the pathway of microbiota into prostate cancer, focusing on the mechanism of microorganisms in tumorigenesis and development, as well as the prospect and significance of microorganisms as tumor biomarkers and tumor prevention and treatment.
Collapse
Affiliation(s)
- Bangwei Che
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenjun Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shenghan Xu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jingju Yin
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun He
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Yu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kaifa Tang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Institute of Medical Science of Guizhou Medical University, Guiyang, China
| |
Collapse
|
50
|
Association of circulating short chain fatty acid levels with colorectal adenomas and colorectal cancer. Clin Nutr ESPEN 2021; 46:297-304. [PMID: 34857211 DOI: 10.1016/j.clnesp.2021.09.740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/02/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Short chain fatty acid (SCFAs) are bacterially derived metabolites suggested to have protective roles against colorectal cancer (CRC) development. However, there is sparse evidence from epidemiological studies in this context. Here, we assessed whether circulating SCFA concentrations varied in patients with colorectal adenomas (CRA) and CRC. METHODS Levels of seven SCFAs were extracted from plasma samples and determined by gas chromatography for 213 individuals from Ireland and the Czech Republic (CRC, n = 84; CRA, n = 66; controls, n = 63). RESULTS In the Irish CRA/CRC cohort, only levels of 2-MethylButyric acid were significantly higher in cancers compared to the adenoma and control groups (p-values = 0.016 and 0.043). Using regression analysis, we observed that levels of Acetic and Propionic acid were associated with an increased CRC risk in the Czech cohort (Odd Ratio (OR): 1.02; 95% Confidence interval (CI): 1.00-1.03; OR: 1.29; 95% CI: 1.05-1.59, respectively), while i-Valeric and Valeric acid levels were associated with a decreased cancer risk (OR: 0.92; 95% CI: 0.86-0.99; OR: 0.67; 95% CI: 0.44-1.00). In the Irish cohort, levels of SCFAs were not associated with CRC risk. CONCLUSIONS The association with colorectal neoplasia varied between the studied SCFAs. Future studies need to confirm these findings and address the mechanism of how these acids may promote or prevent colorectal carcinogenesis.
Collapse
|