1
|
He GS, Xia JK, Li QH, Zheng Y, Shi CR, Li R, Hong Q, Chen XM. Specnuezhenide: Comprehensive review of pharmacology, pharmacokinetics and ethnomedicinal uses. Fitoterapia 2025; 181:106389. [PMID: 39805507 DOI: 10.1016/j.fitote.2025.106389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND Specnuezhenide (SPN) is a bioactive iridoid terpenoid compound mainly found in Ligustri Lucidi Fructus (LLF), that has a broad spectrum of pharmacological effects, including anti-neoplastic, hepatoprotective, anti-aging, anti-inflammatory, immune-modulatory properties. PURPOSE The present review provides a comprehensive summary of natural medicinal plants, traditional Chinese medicine compounds containing SPN, and their corresponding pharmacological mechanisms. METHODS Using several globally recognized databases such as Web of Science, Google Scholar, PubMed, ScienceDirect, Wiley, ACS, Springer, and CNKI until December 2024, A comprehensive literature search and analysis was carried out with the keywords "Specnuezhenide", " Pharmacology ", "Pharmacokinetics" and " Chinese herbal compound". RESULTS The results indicated that SPN is present in a diverse range of plants, including LLF, Osmanthus fragrans seeds and Naked barley. SPN plays an anti-inflammatory role by regulating the NF-κB and MAPK signaling pathways, down-regulating the expression of TNF-α, IL-1β, IL-6 and other cytokines. Furthermore, many Chinese herbal compounds have been found to contain SPN, such as treatment of spleen and kidney deficiency of compound Shenhua tablet, treatment of liver-kidney Yin deficiency of Er Zhi Wan, treatment of pulmonray abscess of Qidongning and treatment of stagnation of QI due to depression of the liver of Shuganzhi Tablet. SPN is primarily distributed in the stomach, intestine, and liver. However, due to its limited absorption in the gastrointestinal tract and low blood concentration, its bioavailability is significantly reduced. CONCLUSIONS Thereby, SPN holds immense potential in the prevention and treatment of liver, lung and kidney complications. This review intends to provide a novel insight for further development of SPN, hoping to reveal the potential of SPN and necessity of further studies in this field.
Collapse
Affiliation(s)
- Guo-Sen He
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, State Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Key Disciplines of National Administration of Traditional Chinese Medicine(zyyzdxk-2023310), Beijing 100853, China
| | - Ji-Kai Xia
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, State Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Key Disciplines of National Administration of Traditional Chinese Medicine(zyyzdxk-2023310), Beijing 100853, China; School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qi-Hu Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, State Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Key Disciplines of National Administration of Traditional Chinese Medicine(zyyzdxk-2023310), Beijing 100853, China; School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Zheng
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, State Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Key Disciplines of National Administration of Traditional Chinese Medicine(zyyzdxk-2023310), Beijing 100853, China
| | - Chun-Ru Shi
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, State Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Key Disciplines of National Administration of Traditional Chinese Medicine(zyyzdxk-2023310), Beijing 100853, China
| | - Run Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, State Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Key Disciplines of National Administration of Traditional Chinese Medicine(zyyzdxk-2023310), Beijing 100853, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, State Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Key Disciplines of National Administration of Traditional Chinese Medicine(zyyzdxk-2023310), Beijing 100853, China.
| | - Xiang-Mei Chen
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, State Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Key Disciplines of National Administration of Traditional Chinese Medicine(zyyzdxk-2023310), Beijing 100853, China.
| |
Collapse
|
2
|
Sultana M, Islam MA, Khairnar R, Kumar S. A guide to pathophysiology, signaling pathways, and preclinical models of liver fibrosis. Mol Cell Endocrinol 2025; 598:112448. [PMID: 39755140 DOI: 10.1016/j.mce.2024.112448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Liver fibrosis is potentially a reversible form of liver disease that evolved from the early stage of liver scarring as a consequence of chronic liver injuries. Recurrent injuries in the liver without any appropriate medication cause the injuries to get intense and deeper, which gradually leads to the progression of irreversible cirrhosis or carcinoma. Unfortunately, there are no approved treatment strategies for reversing hepatic fibrosis, making it one of the significant risk factors for developing advanced liver disorders and liver disease-associated mortality. Consequently, the interpretation of the fundamental mechanisms, etiology, and pathogenesis is crucial for identifying the potential therapeutic target as well as evaluating novel anti-fibrotic therapy. However, despite innumerable research, the functional mechanism and disease characteristics are still obscure. To accelerate the understanding of underlying disease pathophysiology, molecular pathways and disease progression mechanism, it is crucial to mimic human liver disease through the formation of precise disease models. Although various in vitro and in vivo liver fibrotic models have emerged and developed already, a perfect clinical model replicating human liver diseases is yet to be established, which is one of the major challenges in discovering proper therapeutics. This review paper will shed light on pathophysiology, signaling pathways, preclinical models of liver fibrosis, and their limitations.
Collapse
Affiliation(s)
- Mehonaz Sultana
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Md Asrarul Islam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Rhema Khairnar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|
3
|
Mao GJ, Yang TT, Gong Y, Ma N, Wang P, Li CY, Wang K, Zhang G. Hypochlorous Acid-Activatable NIR Fluorescence/Photoacoustic Dual-Modal Probe with High Signal-to-Background Ratios for Imaging of Liver Injury and Plasma Diagnosis of Sepsis. ACS Sens 2025; 10:1032-1042. [PMID: 39813236 DOI: 10.1021/acssensors.4c02872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Hypochlorous acid can be employed as a biomarker for blood infection (such as sepsis) and tissue damage (such as drug-induced liver injury, DILI), and the diagnosis of tissue damage or blood infection can be achieved through the detection of hypochlorous acid in relevant biological samples. Considering the complex environment and the diverse interferences in living organisms and blood plasma, developing new detection methods for HClO with high signal-to-background ratios is particularly important, and it can improve the accuracy of detection and quality of imaging based on a higher contrast, which makes the detection of HClO clearer and more accurate. Here, based on the advantages of the NIR fluorescence/photoacoustic dual-modal probe, we reported a hypochlorous acid-activatable NIR fluorescence/photoacoustic dual-modal probe (NIRF-PA-HClO) based on the spirolactam ring-opening strategy in this paper. NIRF-PA-HClO showed excellent NIRF/PA dual-modal responses with high SBRs for HClO in solution, cells, and mice. Moreover, NIRF-PA-HClO was successfully applied for high-contrast imaging of DILI. Finally, NIRF-PA-HClO was employed for the blood plasma diagnosis of sepsis with satisfactory results. In summary, the above results proved that NIRF-PA-HClO would be a potentially useful tool for the study of physiological and pathological roles of HClO, the investigation of the pathology and therapeutic mechanisms of hepatotoxicity, and the diagnosis of blood infection. Also, the development of NIRF-PA-HClO provides new design mentality for constructing other analyte-activatable NIRF/PA dual-modal probes with high SBRs.
Collapse
Affiliation(s)
- Guo-Jiang Mao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Tian-Tian Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yijun Gong
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Nana Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Peng Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou, Zhejiang 310022, P. R. China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Kui Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
4
|
Banjan B, Raju R, Keshava Prasad TS, Abhinand CS. Computational identification of potential bioactive compounds from Triphala against alcoholic liver injury by targeting alcohol dehydrogenase. Mol Divers 2025; 29:623-638. [PMID: 38743308 DOI: 10.1007/s11030-024-10879-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Alcoholic liver injury resulting from excessive alcohol consumption is a significant social concern. Alcohol dehydrogenase (ADH) plays a critical role in the conversion of alcohol to acetaldehyde, leading to tissue damage. The management of alcoholic liver injury encompasses nutritional support and, in severe cases liver transplantation, but potential adverse effects exist, and effective medications are currently unavailable. Natural products with their potential benefits and historical use in traditional medicine emerge as promising alternatives. Triphala, a traditional polyherbal formula demonstrates beneficial effects in addressing diverse health concerns, with a notable impact on treating alcoholic liver damage through enhanced liver metabolism. The present study aims to identify potential active phytocompounds in Triphala targeting ADH to prevent alcoholic liver injury. Screening 119 phytocompounds from the Triphala formulation revealed 62 of them showing binding affinity to the active site of the ADH1B protein. Promising lipid-like molecule from Terminalia bellirica, (4aS, 6aR, 6aR, 6bR, 7R, 8aR, 9R, 10R, 11R, 12aR, 14bS)-7, 10, 11-trihydroxy-9-(hydroxymethyl)-2, 2, 6a, 6b, 9, 12a-hexamethyl-1, 3, 4, 5, 6, 6a, 7, 8, 8a, 10, 11, 12, 13, 14b-tetradecahydropicene-4a-carboxylic acid showed high binding efficiency to a competitive ADH inhibitor, 4-Methylpyrazole. Pharmacokinetic analysis further confirmed the drug-likeness and non-hepatotoxicity of the top-ranked compound. Molecular dynamics simulation and MM-PBSA studies revealed the stability of the docked complexes with minimal fluctuation and consistency of the hydrogen bonds throughout the simulation. Together, computational investigations suggest that (4aS, 6aR, 6aR, 6bR, 7R, 8aR, 9R, 10R, 11R, 12aR, 14bS)-7, 10, 11-trihydroxy-9-(hydroxymethyl)-2, 2, 6a, 6b, 9, 12a-hexamethyl-1, 3, 4, 5, 6, 6a, 7, 8, 8a, 10, 11, 12, 13, 14b-tetradecahydropicene-4a-carboxylic acid from the Triphala formulation holds promise as an ADH inhibitor, suggesting an alternative therapy for alcoholic liver injury.
Collapse
Affiliation(s)
- Bhavya Banjan
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
5
|
Wu Z, Shi J, Zhang Y, Shi R, Guo Q, Zhang J, Lu B, Huang Z, Ji L. Uncovering the pharmacological mechanism and the main herbal medicine contributing to the efficacy of Xiaoyanlidan Tablet (XYLDT) in treating cholestatic liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119163. [PMID: 39613007 DOI: 10.1016/j.jep.2024.119163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoyanlidan Tablet (XYLDT) is a Chinese patent medicine consisted of three traditional Chinese medicines (TCMs) including Andrographis Herba (AH), Linearstripe Rabdosia Herba (LRH) and Picrasmae Ramulus et Folium (PRF). In Chinese traditional medicine theory, XYLDT has the "heat-clearing, dampness-dispelling and gallbladder function promoting" properties, and was widely used in the clinic for decades to treat pain in the subcostal region or bitter taste in the mouth, which were induced by liver-gallbladder dampness-heat. Meanwhile, it was also used for the therapy of acute cholecystitis and cholangitis. AIM OF THE STUDY To explore the mechanism of XYLDT in alleviating the alpha-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury (CLI), and to find out which TCM consisted in XYLDT contributed the most to the therapeutic efficacy of XYLDT. METHODS ANIT was orally given to mice to induce CLI in vivo. Each TCM in XYLDT alone, XYLDT-without one TCM or XYLDT was orally given to mice before or after ANIT administration. Serum biochemical indicators were measured by using commercial kits. Liver histopathology was observed. Clinical data analysis was used to predict molecules and signal pathways involved in the XYLDT-provided improvement on CLI, which was further verified by using RT-PCR and Western-blot assay. RESULTS The alleviation of XYLDT on ANIT-induced CLI was proved by the data of serum biochemical indicators and liver histological observation. Results from clinical data analysis indicated that XYLDT improved CLI via improving mitochondrial function, oxidative phosphorylation, oxidative stress. XYLDT reduced the ROS level, MDA content, and increased GSH content. Meanwhile XYLDT improved the level of Nrf2 into the nucleus and mRNA expression of Nqo1, Gclc, Gclm. Andrographis Herba was proved to be the most crucial for the XYLDT-provided therapeutic efficacy on CLI. Moreover, andrographolide and neoandrographolide, two main active compounds in Andrographis Herba, had the apparent anti-inflammatory ability in LPS-stimulated RAW264.7 cells. Andrographolide also promoted nuclear translocation activation of Nrf2 in antioxidant response elements (ARE)-luciferin transfected L-02 cells. CONCLUSION XYLDT alleviated the ANIT-induced CLI via improving oxidative stress and activated Nrf2-related signaling pathways. Andrographis Herba was important for the XYLDT-provided alleviation on CLI.
Collapse
Affiliation(s)
- Zeqi Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jionghua Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ruijia Shi
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qian Guo
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jingnan Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
6
|
Ismail R, Habib HA, Anter AF, Amin A, Heeba GH. Modified citrus pectin ameliorates methotrexate-induced hepatic and pulmonary toxicity: role of Nrf2, galectin-3/TLR-4/NF-κB/TNF-α and TGF-β signaling pathways. Front Pharmacol 2025; 16:1528978. [PMID: 39917614 PMCID: PMC11798997 DOI: 10.3389/fphar.2025.1528978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
Introduction Methotrexate (MTX) is a frequently utilized anti-inflammatory and anticancer agent. Its potential liver and lung toxicity often limits its clinical effectiveness. We conducted this study to demonstrate the possible protective impacts of a natural galectin-3 (Gal-3) inhibitor, modified citrus pectin (MCP), against MTX-induced liver and lung toxicity and verify the potential signaling pathways of these suggested effects. In vitro, the cytotoxicity of MCP and its modulatory effect on MTX cytotoxic efficacy were assessed. Methods Four groups of rats were used: control, MTX (40 mg/kg, single intraperitoneal injection on day 9), MTX + MCP (200 mg/kg/day, orally, for 2 weeks), and MCP alone. MCF7, Nalm6, and JEG3 cell lines were used for the in vitro cytotoxicity assay. Results MCP counteracted liver and lung toxicity evidenced by ameliorating the markers of liver and lung functions. Moreover, MCP minimized oxidative stress elicited by MTX in lung and liver tissues, as indicated by reduced malondialdehyde levels, elevated levels of reduced glutathione, increased superoxide dismutase activity, and upregulated Nrf2 protein expression. In hepatic and pulmonary tissues, MCP downregulated the inflammatory signaling pathway, Gal-3/TLR-4/NF-κB/TNF-α. MCP pretreatment decreased TGF-β, collagen content, and cleaved caspase-3 levels. MCP enhanced the cytotoxicity of MTX in Nalm6 and JEG3 and did not interfere with its cytotoxicity in the MCF7 cell lines. Discussion MCP attenuated MTX-induced liver and lung toxicity through antioxidant, anti-fibrotic, anti-inflammatory, and anti-apoptotic influences, as demonstrated by the improved histopathological changes induced by MTX in pulmonary and hepatic tissues. Moreover, it increased MTX cytotoxicity in different human cell lines.
Collapse
Affiliation(s)
- Randa Ismail
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Heba A. Habib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Aliaa F. Anter
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Amr Amin
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Gehan H. Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| |
Collapse
|
7
|
Cai X, Deng J, Zhou X, Wang K, Cai H, Yan Y, Jiang J, Yang J, Gu J, Zhang Y, Ding Y, Sun Q, Wang W. Comprehensive analysis of cuproptosis-related genes involved in immune infiltration and their use in the diagnosis of hepatic ischemia-reperfusion injury: an experimental study. Int J Surg 2025; 111:242-256. [PMID: 38935114 PMCID: PMC11745764 DOI: 10.1097/js9.0000000000001893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Hepatic ischemia-reperfusion injury (HIRI) is a common injury not only during liver transplantation but also during major hepatic surgery. HIRI causes severe complications and affects the prognosis and survival of patients. Cuproptosis, a newly identified form of cell death, plays an important role in a variety of illnesses. However, its role in HIRI remains unknown. MATERIALS AND METHODS The GSE151648 dataset was mined from the Gene Expression Omnibus (GEO) database, and differences were analyzed for intersections. Based on the differentially expressed genes (DEGs), functional annotation, differentially expressed cuproptosis-related genes (DE-CRGs) identification and lasso logistic regression were conducted. Correlation analysis of DE-CRGs and immune infiltration was further conducted, and DE-CRGs were applied to construct an HIRI diagnostic model. The hierarchical clustering method was used to classify the specimens of HIRI, and functional annotation was conducted to verify the accuracy of these DE-CRGs in predicting HIRI progression. The GSE14951 microarray dataset and GSE171539 single-cell sequencing dataset were chosen as validation datasets. At the same time, the significance of DE-CRGs was verified using a mouse model of HIRI with cuproptosis inhibitors and inducers. Finally, a network of transcription-factor-DE-CRGs and miRNA-DE-CRGs was constructed to reveal the regulation mechanisms. And potential drugs for DE-CRGs were predicted using Drug-Gene Interaction Database (DGIdb). RESULTS Overall, 2390 DEGs and 19 DE-CRGs were identified. Through machine learning algorithms, 8 featured DE-CRGs (GNL3, ALAS1, TSC22D2, KLF5, GTF2B, DNTTIP2, SLFN11 and HNRNPU) were screened, and 2 cuproptosis-related subclusters were defined. Based on the 8 DE-CRGs obtained from the HIRI model [area under the curve (AUC)=0.97], the nomogram model demonstrated accuracy in predicting HIRI. Eight DE-CRGs were highly expressed in HIRI samples and were negatively related to immune cell infiltration. A higher level of immune infiltration and expression of CRG group B was found in the HIRI population. Differences in cell death and immune regulation were found between the 2 groups. The diagnostic value of the 8 DE-CRGs was confirmed in the validation of two datasets. The identification of 7 DE-CRGs (SLFN11 excluded) by HIRI animal model experiments was also confirmed. Using hTFtarget, miRWalk and DGIDB database, we predicted that 17 transcription factors, 192 miRNAs and 10 drugs might interact with the DE-CRGs. CONCLUSION This study shows that cuproptosis may occur in HIRI and is correlated with immune infiltration. Additionally, a cuproptosis-related predictive model was constructed for studying the causes of HIRI and developing targeted treatment options for HIRI.
Collapse
Affiliation(s)
- Xiaopeng Cai
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province
- National Innovation Center for Fundamental Research on Cancer Medicine
- Cancer Center, Zhejiang University
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease
| | - Jingwen Deng
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou
| | - Xiaohu Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province
- National Innovation Center for Fundamental Research on Cancer Medicine
- Cancer Center, Zhejiang University
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease
| | - Kaiyue Wang
- Department of surgery and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Huiqiang Cai
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Yingcai Yan
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province
- National Innovation Center for Fundamental Research on Cancer Medicine
- Cancer Center, Zhejiang University
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease
| | - Jun Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province
- National Innovation Center for Fundamental Research on Cancer Medicine
- Cancer Center, Zhejiang University
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease
| | - Jia Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province
- National Innovation Center for Fundamental Research on Cancer Medicine
- Cancer Center, Zhejiang University
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease
| | - Jin Gu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province
- National Innovation Center for Fundamental Research on Cancer Medicine
- Cancer Center, Zhejiang University
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease
| | - Yuan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province
- National Innovation Center for Fundamental Research on Cancer Medicine
- Cancer Center, Zhejiang University
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province
- National Innovation Center for Fundamental Research on Cancer Medicine
- Cancer Center, Zhejiang University
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease
| | - Qiang Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province
- National Innovation Center for Fundamental Research on Cancer Medicine
- Cancer Center, Zhejiang University
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province
- National Innovation Center for Fundamental Research on Cancer Medicine
- Cancer Center, Zhejiang University
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease
| |
Collapse
|
8
|
Garcia KB, Hussein A, Satish S, Wehrle CJ, Karakaya O, Panconesi R, Sun K, Jiao C, Fernandes E, Pinna A, Hashimoto K, Miller C, Aucejo F, Schlegel A. Machine Perfusion as a Strategy to Decrease Ischemia-Reperfusion Injury and Lower Cancer Recurrence Following Liver Transplantation. Cancers (Basel) 2024; 16:3959. [PMID: 39682147 DOI: 10.3390/cancers16233959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
Liver transplantation (LT) is a key treatment for primary and secondary liver cancers, reducing tumor burden with concurrent improvement of liver function. While significant improvement in survival is noted with LT, cancer recurrence rates remain high. Mitochondrial dysfunction caused by ischemia-reperfusion injury (IRI) is known to drive tumor recurrence by creating a favorable microenvironment rich in pro-inflammatory and angiogenic factors. Therefore, strategies that decrease reperfusion injury and mitochondrial dysfunction may also decrease cancer recurrence following LT. Machine perfusion techniques are increasingly used in routine clinical practice of LT with improved post-transplant outcomes and increased use of marginal grafts. Normothermic (NMP) and hypothermic oxygenated machine perfusion (HOPE) provide oxygen to ischemic tissues, and impact IRI and potential cancer recurrence through different mechanisms. This article discussed the link between IRI-associated inflammation and tumor recurrence after LT. The current literature was screened for the role of machine perfusion as a strategy to mitigate the risk of cancer recurrence. Upfront NMP ("ischemia free organ transplantation") and end-ischemic HOPE were shown to reduce hepatocellular carcinoma recurrence in retrospective studies. Three prospective randomized controlled trials are ongoing in Europe to provide robust evidence on the impact of HOPE on cancer recurrence in LT.
Collapse
Affiliation(s)
- Karla Bracho Garcia
- Department of Liver Transplantation, Cleveland Clinic Weston Hospital, Weston, FL 33331, USA
| | - Ahmed Hussein
- Department of Liver Transplantation, Cleveland Clinic Weston Hospital, Weston, FL 33331, USA
| | - Sangeeta Satish
- Transplantation Center, Department of Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Chase J Wehrle
- Transplantation Center, Department of Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Omer Karakaya
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rebecca Panconesi
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Keyue Sun
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Chunbao Jiao
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Eduardo Fernandes
- Department of Liver Transplantation, Cleveland Clinic Weston Hospital, Weston, FL 33331, USA
| | - Antonio Pinna
- Department of Liver Transplantation, Cleveland Clinic Weston Hospital, Weston, FL 33331, USA
| | - Koji Hashimoto
- Transplantation Center, Department of Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charles Miller
- Transplantation Center, Department of Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Federico Aucejo
- Transplantation Center, Department of Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Andrea Schlegel
- Transplantation Center, Department of Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
9
|
Almalki WH, Almujri SS. Aging, ROS, and cellular senescence: a trilogy in the progression of liver fibrosis. Biogerontology 2024; 26:10. [PMID: 39546058 DOI: 10.1007/s10522-024-10153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Ageing is an inevitable and multifaceted biological process that impacts a wide range of cellular and molecular mechanisms, leading to the development of various diseases, such as liver fibrosis. Liver fibrosis progresses to cirrhosis, which is an advanced form due to high amounts of extracellular matrix and restoration of normal liver structure with failure to repair damaged tissue and cells, marking the end of liver function and total liver failure, ultimately death. The most important factors are reactive oxygen species (ROS) and cellular senescence. Oxidative stress is defined as an impairment by ROS, which are by-products of the mitochondrial electron transport chain and other key molecular pathways that induce cell damage and can activate cellular senescence pathways. Cellular senescence is characterized by pro-inflammatory cytokines, growth factors, and proteases secreted by senescent cells, collectively known as the senescence-associated secretory phenotype (SASP). The presence of senescent cells, which disrupt tissue architecture and function and increase senescent cell production in liver tissues, contributes to fibrogenesis. Hepatic stellate cells (HSCs) are activated in response to chronic liver injury, oxidative stress, and senescence signals that drive excessive production and deposition of extracellular matrix. This review article aims to provide a comprehensive overview of the pathogenic role of ROS and cellular senescence in the aging liver and their contribution to fibrosis.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Abha, Aseer, Saudi Arabia.
| |
Collapse
|
10
|
Zheng Y, Zhang X, Wang Z, Zhang R, Wei H, Yan X, Jiang X, Yang L. MCC950 as a promising candidate for blocking NLRP3 inflammasome activation: A review of preclinical research and future directions. Arch Pharm (Weinheim) 2024; 357:e2400459. [PMID: 39180246 DOI: 10.1002/ardp.202400459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
The NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome is a key component of the innate immune system that triggers inflammation and pyroptosis and contributes to the development of several diseases. Therefore, blocking the activation of the NLRP3 inflammasome has therapeutic potential for the treatment of these diseases. MCC950, a selective small molecule inhibitor, has emerged as a promising candidate for blocking NLRP3 inflammasome activation. Ongoing research is focused on elucidating the specific targets of MCC950 as well as assessfing its metabolism and safety profile. This review discusses the diseases that have been studied in relation to MCC950, with a focus on stroke, Alzheimer's disease, liver injury, atherosclerosis, diabetes mellitus, and sepsis, using bibliometric analysis. It then summarizes the potential pharmacological targets of MCC950 and discusses its toxicity. Furthermore, it traces the progression from preclinical to clinical research for the treatment of these diseases. Overall, this review provides a solid foundation for the clinical therapeutic potential of MCC950 and offers insights for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Yujia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Ziyu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Huayuan Wei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xu Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Lin Yang
- School of Medicial Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, Jinghai, China
| |
Collapse
|
11
|
Czaja AJ. Cellular senescence and its pathogenic and therapeutic implications in autoimmune hepatitis. Expert Rev Gastroenterol Hepatol 2024; 18:725-743. [PMID: 39575891 DOI: 10.1080/17474124.2024.2432480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Senescent cells are characterized by replicative arrest and phenotypes that produce diverse pro-inflammatory and pro-oxidant mediators. The senescence of diverse hepatic cell types could constitute an unrecognized pathogenic mechanism and prognostic determinant in autoimmune hepatitis. The impact of cellular senescence in autoimmune hepatitis is unknown, and it may suggest adjunctive management strategies. AREAS COVERED This review describes the molecular mechanisms of cellular senescence, indicates its diagnostic features, suggests its consequences, presents possible therapeutic interventions, and encourages investigations of its pathogenic role and management in autoimmune hepatitis. Treatment prospects include elimination or reversal of senescent cells, generation of ectopic telomerase, reactivation of dormant telomerase, neutralization of specific pro-inflammatory secretory products, and mitigation of the effects of mitochondrial dysfunction. EXPERT OPINION The occurrence, nature, and consequences of cellular senescence in autoimmune hepatitis must be determined. The senescence of diverse hepatic cell types could affect the outcome of autoimmune hepatitis by impairing hepatic regeneration, intensifying liver inflammation, and worsening hepatic fibrosis. Cellular senescence could contribute to suboptimal responses during conventional glucocorticoid-based therapy. Interventions that target specific pro-inflammatory products of the senescent phenotype or selectively promote apoptosis of senescent cells may be preferred adjunctive treatments for autoimmune hepatitis depending on the cancer risk.
Collapse
Affiliation(s)
- Albert J Czaja
- Mayo Clinic, Department of Medicine, Division of Gastroenterology and Hepatology, Rochester, MN, USA
| |
Collapse
|
12
|
Alamri ZZ. Apigenin attenuates indomethacin-induced gastric ulcer in rats: emphasis on antioxidant, anti-inflammatory, anti-apoptotic, and TGF-β1 enhancing activities. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8803-8814. [PMID: 38842560 DOI: 10.1007/s00210-024-03200-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Gastric ulcer disease is associated with significant morbidity and mortality rates. The most two common causes of the ulcer are Helicobacter pylori infection and non-steroidal anti-inflammatory drugs. In the past few decades, a significant decrease in the morbidity and mortality rate has been observed probably due to the discovery of proton pump inhibitors. However, the medications used to treat gastric ulcers impose several nauseous side effects. Therefore, recent studies focus on the use of natural products to treat gastric ulcers. In the current study, gastric ulcer was effectively induced using indomethacin, and the protective effect of apigenin, a potent antioxidant flavonoid, was assessed in comparison to omeprazole. The administration of a single oral indomethacin (50 mg/kg) induced gastric ulcer as manifested by hemorrhagic lesions in the gastric mucosa, increased ulcer index, and histopathological alterations. Indomethacin also increased lipid peroxidation, decreased the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase, increased the immunoreactivity of the inflammatory markers cyclo-oxygenase-2 (COX-2), tumor necrosis factor-alpha (TNF-α), and nuclear factor-kappa B (NF-κB), increased the transcription of the apoptotic marker, Bax, and decreased that of the antiapoptotic Bcl-2. Indomethacin also decreased the immunoreactivity of transforming growth factor-beta 1 (TGF-β1). On the other hand, pretreatment with apigenin (10 and 20 mg/kg) resulted in a dose-dependent improvement in the macroscopic and microscopic features of the gastric mucosa in a manner comparable to that of omeprazole. The gastroprotective effects of apigenin may be attributed to its anti-inflammatory, anti-antioxidant, and anti-apoptotic activities as well as enhancing the expression of TGF-β1. Further experimental and clinical research is required to confirm activity of apigenin as anti-ulcer agent.
Collapse
Affiliation(s)
- Zaenah Zuhair Alamri
- Department of Biological Sciences, College of Science, University of Jeddah, Saudi Arabia, P.O.Box 80327, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
13
|
Alaaeldin R, Eisa YA, El-Rehany MA, Fathy M. Vincamine alleviates intrahepatic cholestasis in rats through modulation of NF-kB/PDGF/klf6/PPARγ and PI3K/Akt pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7981-7994. [PMID: 38761209 PMCID: PMC11449999 DOI: 10.1007/s00210-024-03119-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
The defect in the hepatobiliary transport system results in an impairment of bile flow, leading to accumulation of toxic compounds with subsequent liver disorders. Vincamine, a plant indole alkaloid that is utilized as a dietary supplement, has been known for its promising pharmacological activities. For the first time, the present study was planned to estimate, at the molecular level, the potentiality of vincamine against alfa-naphthyl isothiocyanate (ANIT)-induced hepatic cholestasis. Liver function tests were analyzed. Hepatic activity of SOD and levels of GSH and MDA were assessed. Hepatic contents of bax, bcl2, NF-kB, PPARγ, catalase, heme-oxygenase-1, NTCP, and BSEP were evaluated using ELISA. mRNA levels of NF-kB, IL-1β, IL-6, TNFα, PDGF, klf6, PPARγ, and P53 were examined using qRT-PCR. PI3K, Akt and cleaved caspase-3 proteins were assessed using western blotting. Histopathological analyses were performed using hematoxylin & eosin staining. ANIT-induced hepatic cholestasis elevated liver function tests, including AST, ALT, GGT, ALP, and total bilirubin. ANIT reduced the protein expression of NTCP and BSEP hepatic transporters. It induced the expression of the inflammatory genes, TNFα, IL-6, IL-1β, and PDGF, and the expression of NF-kB at the genetic and protein level and suppressed the anti-inflammatory genes, klf6 and PPARγ. Also, antioxidant markers were reduced during ANIT induction such as GSH, SOD, catalase, heme-oxygenase-1 and PI3K/Akt pathway, while MDA levels were elevated. Furthermore, the expression of P53 gene, bax and cleaved caspase 3 proteins were activated, while bcl2 was inhibited. Also, the histopathological analysis showed degeneration of hepatocytes and inflammatory cellular infiltrates. However, vincamine treatment modulated all these markers. It improved liver function tests. It inhibited the expression of NF-kB, TNFα, IL-6, IL-1β and PDGF and activated the expression of klf6 and PPARγ. Furthermore, vincamine reduced MDA levels and induced GSH, SOD, catalase, heme-oxygenase-1 and PI3K/Akt pathway. Additionally, it inhibited expression of P53 gene, bax and cleaved caspase 3 proteins. More interestingly, vincamine showed better outcomes on the hepatic histopathological analysis and improved the alterations induced by ANIT. Vincamine alleviated hepatic dysfunction during ANIT-induced intrahepatic cholestasis through its anti-inflammatory and antioxidant efficacies by the modulation of NF-kB/PDGF/klf6/PPARγ and PI3K/Akt pathways.
Collapse
Affiliation(s)
- Rania Alaaeldin
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt
| | - Yusra A Eisa
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt
| | - Mahmoud A El-Rehany
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
14
|
Eggenhofer E, Proneth B. Ferroptosis Inhibition: A Key Opportunity for the Treatment of Ischemia/Reperfusion Injury in Liver Transplantation. Transplantation 2024:00007890-990000000-00874. [PMID: 39294870 DOI: 10.1097/tp.0000000000005199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The outcome after liver transplantation has improved in recent years, which can be attributed to superior storage and transportation conditions of the organs, as well as better peri- and postoperative management and advancements in surgical techniques. Nevertheless, there is an increasing discrepancy between the need for organs and their availability. Consequently, the mortality rate on the waiting list is high and continues to rise. One way of counteracting this trend is to increase the use of "expanded criteria donors." This means that more and more donors will be included, especially those who are older and having additional comorbidities (eg, steatosis). A major complication of any transplantation is the occurrence of ischemia/reperfusion injury (IRI), which often leads to liver dysfunction and failure. However, there have been various promising approaches to minimize IRI in recent years, but an effective and clinically applicable method to achieve a better outcome for patients after liver transplantation is still missing. Thereby, the so-called marginal organs are predominantly affected by IRI; thus, it is crucial to develop suitable and effective treatment options for patients. Recently, regulated cell death mechanisms, particularly ferroptosis, have been implicated to play a major role in IRI, including the liver. Therefore, inhibiting this kind of cell death modality presents a promising therapeutic approach for the management of this yet untreatable condition. Thus, this review provides an overview of the role of ferroptosis in liver IRI and transplantation and discusses possible therapeutic solutions based on ferroptosis inhibition to restrain IRI in marginal organs (especially steatosis and donation after circulatory death organs).
Collapse
Affiliation(s)
- Elke Eggenhofer
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Bettina Proneth
- Institute of Metabolism and Cell Death, Helmholtz Munich, Neuherberg, Germany
| |
Collapse
|
15
|
Xie Y, Lin L, Sun C, Chen L, Lv W. Association between serum alkaline phosphatase and clinical prognosis in patients with acute liver failure following cardiac arrest: a retrospective cohort study. Eur J Med Res 2024; 29:453. [PMID: 39252119 PMCID: PMC11382480 DOI: 10.1186/s40001-024-02049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Acute liver failure (ALF) following cardiac arrest (CA) poses a significant healthcare challenge, characterized by high morbidity and mortality rates. This study aims to assess the correlation between serum alkaline phosphatase (ALP) levels and poor outcomes in patients with ALF following CA. METHODS A retrospective analysis was conducted utilizing data from the Dryad digital repository. The primary outcomes examined were intensive care unit (ICU) mortality, hospital mortality, and unfavorable neurological outcome. Multivariable logistic regression analysis was employed to assess the relationship between serum ALP levels and clinical prognosis. The predictive value was evaluated using receiver operator characteristic (ROC) curve analysis. Two prediction models were developed, and model comparison was performed using the likelihood ratio test (LRT) and the Akaike Information Criterion (AIC). RESULTS A total of 194 patients were included in the analysis (72.2% male). Multivariate logistic regression analysis revealed that a one-standard deviation increase of ln-transformed ALP were independently associated with poorer prognosis: ICU mortality (odds ratios (OR) = 2.49, 95% confidence interval (CI) 1.31-4.74, P = 0.005), hospital mortality (OR = 2.21, 95% CI 1.18-4.16, P = 0.014), and unfavorable neurological outcome (OR = 2.40, 95% CI 1.25-4.60, P = 0.009). The area under the ROC curve for clinical prognosis was 0.644, 0.642, and 0.639, respectively. Additionally, LRT analyses indicated that the ALP-combined model exhibited better predictive efficacy than the model without ALP. CONCLUSIONS Elevated serum ALP levels upon admission were significantly associated with poorer prognosis of ALF following CA, suggesting its potential as a valuable marker for predicting prognosis in this patient population.
Collapse
Affiliation(s)
- Yuequn Xie
- Department of Emergency, The Third Affiliated to Shanghai University, Wenzhou People's Hospital, No. 299 Guan Road, Louqiao Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Liangen Lin
- Department of Emergency, The Third Affiliated to Shanghai University, Wenzhou People's Hospital, No. 299 Guan Road, Louqiao Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Congcong Sun
- Department of Scientific Research Center, The Third Affiliated to Shanghai University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China
| | - Linglong Chen
- Department of Emergency, The Third Affiliated to Shanghai University, Wenzhou People's Hospital, No. 299 Guan Road, Louqiao Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Wang Lv
- Department of Emergency, The Third Affiliated to Shanghai University, Wenzhou People's Hospital, No. 299 Guan Road, Louqiao Street, Ouhai District, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
16
|
Khasanah U, Nurrahmah QI, Amalia T, Putri ZN, Imrokatul Mufidah, Napik R, Lyrawati D, Pratita Ihsan BR, Febrianti ME. Oral acute toxicity study and in vivo antimalarial activity of Strychnos lucida R. Br. tablet. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118200. [PMID: 38621467 DOI: 10.1016/j.jep.2024.118200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Malaria eradication has been a major goal of the Indonesian government since 2020. Medicinal plants, such as Strychnos lucida R. Br., are empirically used to treat malaria through traditional preparation methods. However, the safety and efficacy of these plants have not yet been confirmed. Therefore, further investigations are necessary to confirm the safety and efficacy of S. lucida as an antimalarial agent. AIMS OF THE STUDY To quantify the concentration of brucine in the S. lucida extract, determine the acute oral toxicity of the standardized extract, and evaluate the in vivo antimalarial potency of S. lucida tablet (SLT). MATERIALS AND METHODS Acute oral toxicity of S.lucida extract was determined using the Organization for Economic Co-operation and Development 420 procedure, and the analytical method for brucine quantification was validated using high-performance liquid chromatography. In addition, antimalarial activity was determined using the Peter's four-day suppressive method. RESULTS Acute toxicity analysis revealed S. lucida as a low-toxicity compound with a cut-off median lethal dose of 2000-5000 mg/kg body weight [BW], which was supported by the hematological and biochemical profiles of the kidneys, liver, and pancreas (p > 0.05). Extract standardization revealed that S. lucida contained 3.91 ± 0.074% w/w brucine, adhering to the limit specified in the Indonesian Herbal Pharmacopeia. Antimalarial test revealed that SLT inhibited the growth of Plasmodium berghei by 27.74-45.27%. Moreover, SLT improved the hemoglobin and hematocrit levels. White blood cell and lymphocyte counts were lower in the SLT-treated group than in the K (+) group (p < 0.05). CONCLUSION Histopathological and biochemical evaluations revealed that S. lucida extract was safe at a dose of 2000 mg/kg BW with low toxicity. SLT inhibited Plasmodium growth and improved the hemoglobin, hematocrit, and red blood cell profiles. Additionally, SLT reduced the lymphocyte and WBC counts and increased the monocyte and thrombocyte counts as part of the immune system response against Plasmodium infection.
Collapse
Affiliation(s)
- Uswatun Khasanah
- Department of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia.
| | - Queen Intan Nurrahmah
- Department of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia.
| | - Thia Amalia
- Department of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia.
| | - Zada Nabila Putri
- Undergraduate Study Program of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia.
| | - Imrokatul Mufidah
- Undergraduate Study Program of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia.
| | - Roisatun Napik
- Undergraduate Study Program of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia.
| | - Diana Lyrawati
- Department of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia.
| | | | - Maya Eka Febrianti
- Undergraduate Study Program of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia.
| |
Collapse
|
17
|
Alqabandi W, Dhaunsi GS. L-Glutamine mitigates bile acid-induced inhibition of growth factor activity in rat hepatocyte cultures. Growth Factors 2024; 42:120-127. [PMID: 39320940 DOI: 10.1080/08977194.2024.2407566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Bile acid-induced hepatotoxicity is inevitable in Cholestasis pathogenesis and L-Glutamine (L-Gln) has been reported to prevent total parenteral nutrition (TPN)-induced cholestasis in premature neonates. While mechanisms remain unknown, we hypothesize that bile acids impair growth factor (GF) function in hepatocytes which L-glutamine prevents through NAPDH oxidase (NOX) modulation. Glycochenodeoxycholic acid (GCDC, 0-100 µM) when added to primary hepatocyte cultures significantly (p < 0.01) decreased the FBS-induced BrdU incorporation, however inhibition of Fibroblast Growth factor (FGF)- or Hepatocyte growth factor (HGF)-induced DNA synthesis was more pronounced (p < 0.001). L-Gln markedly attenuated GCDC-mediated inhibition of DNA synthesis in both FBS and GF-treated cells. GCDC significantly increased the NADPH oxidase activity and NOX-1 protein expression that were markedly reduced by L-Gln and protein kinase c (PKC) inhibitor, LY-333531. Apocynin (APCN) and diphenyliodonium (DPI) significantly blocked the GCDC-mediated inhibition of GF-induced DNA synthesis. This study demonstrates that bile acid-induced hepatotoxicity involves dysfunction of certain growth factors via protein kinase c (PKC)- mediated NOX modulation which can be corrected, at least partly, by L-glutamine.
Collapse
|
18
|
Hegde M, Girisa S, Devanarayanan TN, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Network of Extracellular Traps in the Pathogenesis of Sterile Chronic Inflammatory Diseases: Role of Oxidative Stress and Potential Clinical Applications. Antioxid Redox Signal 2024; 41:396-427. [PMID: 37725535 DOI: 10.1089/ars.2023.0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Thulasidharan Nair Devanarayanan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
19
|
Sharma K, Sharma V. Allium sativum Essential Oil Supplementation Reverses the Hepatic Inflammation, Genotoxicity and Apoptotic Effects in Swiss Albino Mice Intoxicated with the Lead Nitrate. Biol Trace Elem Res 2024; 202:3258-3277. [PMID: 37964042 DOI: 10.1007/s12011-023-03924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023]
Abstract
Prolonged lead (Pb) exposure impairs human health due to its interference with physiological and biochemical processes. Therefore, it is necessary to investigate natural therapeutics to alleviate Pb-induced intoxication. In the current investigation, essential oil extracted from the fresh bulbs of Allium sativum was considered as a natural remedy. Initially, in vitro antioxidant and anti-inflammatory activity of A. sativum essential oil (ASEO) were explored. The results reported that ASEO exhibits potent antioxidant and anti-inflammatory potential. Additionally, an in vivo study was conducted to elucidate its preventive role against Lead-nitrate (LN)-induced hepatic damage in Swiss albino mice. The experimental mice were allocated into six groups: Control, LN-intoxicated group (50 mg/kg), LN + ASEO (50 mg/kg), LN + ASEO (80 mg/kg), LN + Silymarin (25 mg/kg), and LN + vehicle oil control group. The entire duration of the study was of 30 days. From the results, it was determined that LN exposure elevated the Pb content in hepatic tissues which subsequently increased the serum biomarkers, inflammatory cytokines (NF-kB, TNF-α, IL-6) as well as apoptotic factors (caspase-3, BAX), all of which contribute to DNA damage. Meanwhile, it reduced anti-inflammatory (IFN-γ and IL-10) and anti-apoptotic factors (Bcl-2). Furthermore, Pb accumulation in hepatic tissues changed the histological architecture, which was linked to necrosis, central vein dilation, inflammatory cell infiltration and Kupffer cell activation. In contrast to this, ASEO administration decreased the Pb content, which in turn reduced the level of serum biomarkers, inflammatory and apoptotic factors. At the same time, it increased the anti-inflammatory and anti-apoptotic factors, thereby reduced DNA damage and restored the hepatic histology. In conclusion, exhaustive research is of the utmost demand to elucidate the precise defense mechanisms of ASEO against LN-induced hepatotoxicity.
Collapse
Affiliation(s)
- Kusum Sharma
- Banasthali Vidyapith, Department of Bioscience and Biotechnology, Tonk, Rajasthan, 304022, India
| | - Veena Sharma
- Banasthali Vidyapith, Department of Bioscience and Biotechnology, Tonk, Rajasthan, 304022, India.
| |
Collapse
|
20
|
Ma R, Shi G, Li Y, Shi H. Trimethylamine N-oxide, choline and its metabolites are associated with the risk of non-alcoholic fatty liver disease. Br J Nutr 2024; 131:1915-1923. [PMID: 38443197 DOI: 10.1017/s0007114524000631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
It is inconclusive whether trimethylamine N-oxide (TMAO) and choline and related metabolites, namely trimethylamine (TMA), l-carnitine, betaine and dimethylglycine (DMG), are associated with non-alcoholic fatty liver disease (NAFLD). Our objective was to investigate these potential associations. Additionally, we sought to determine the mediating role of TMAO. In this 1:1 age- and sex-matched case-control study, a total of 150 pairs comprising NAFLD cases and healthy controls were identified. According to the fully adjusted model, after the highest tertile was compared with the lowest tertile, the plasma TMAO concentration (OR = 2·02 (95 % CI 1·04, 3·92); P trend = 0·003), l-carnitine concentration (OR = 1·79 (1·01, 3·17); P trend = 0·020) and DMG concentration (OR = 1·81 (1·00, 3·28); P trend = 0·014) were significantly positively associated with NAFLD incidence. However, a significantly negative association was found for plasma betaine (OR = 0. 50 (0·28, 0·88); P trend = 0·001). The restricted cubic splines model consistently indicated positive dose-response relationships between exposure to TMAO, l-carnitine, and DMG and NAFLD risk, with a negative association being observed for betaine. The corresponding AUC increased significantly from 0·685 (0·626, 0·745) in the traditional risk factor model to 0·769 (0·716, 0·822) when TMAO and its precursors were included (l-carnitine, betaine and choline) (P = 0·032). Mediation analyses revealed that 14·7 and 18·6 % of the excess NAFLD risk associated with l-carnitine and DMG, respectively, was mediated by TMAO (the P values for the mediating effects were 0·021 and 0·036, respectively). These results suggest that a higher concentration of TMAO is associated with increased NAFLD risk among Chinese adults and provide evidence of the possible mediating role of TMAO.
Collapse
Affiliation(s)
- Rong Ma
- Department of Infectious Diseases, the First Affiliated Hospital of Chengdu Medical College, Chengdu610500, People's Republic of China
| | - Guangying Shi
- Department of Hepatology, Xinjiang Corps Hospital, Xinjiang832104, People's Republic of China
| | - Yanfang Li
- Department of Infectious Diseases, the First Affiliated Hospital of Chengdu Medical College, Chengdu610500, People's Republic of China
| | - Han Shi
- Department of Infectious Diseases, the First Affiliated Hospital of Chengdu Medical College, Chengdu610500, People's Republic of China
| |
Collapse
|
21
|
Deng RM, Zhou J. Targeting NF-κB in Hepatic Ischemia-Reperfusion Alleviation: from Signaling Networks to Therapeutic Targeting. Mol Neurobiol 2024; 61:3409-3426. [PMID: 37991700 DOI: 10.1007/s12035-023-03787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a major complication of liver trauma, resection, and transplantation that can lead to liver dysfunction and failure. Scholars have proposed a variety of liver protection methods aimed at reducing ischemia-reperfusion damage, but there is still a lack of effective treatment methods, which urgently needs to find new effective treatment methods for patients. Many studies have reported that signaling pathway plays a key role in HIRI pathological process and liver function recovery mechanism, among which nuclear transfer factor-κB (NF-κB) signaling pathway is one of the signal transduction closely related to disease. NF-κB pathway is closely related to HIRI pathologic process, and inhibition of this pathway can delay oxidative stress, inflammatory response, cell death, and mitochondrial dysfunction. In addition, NF-κB can also interact with PI3K/Akt, MAPK, and Nrf2 signaling pathways to participate in HIRI regulation. Based on the role of NF-κB pathway in HIRI, it may be a potential target pathway for HIRI. This review emphasizes the role of inhibiting the NF-κB signaling pathway in oxidative stress, inflammatory response, cell death, and mitochondrial dysfunction in HIRI, as well as the effects of related drugs or inhibitors targeting NF-κB on HIRI. The objective of this review is to elucidate the role and mechanism of NF-κB pathway in HIRI, emphasize the important role of NF-κB pathway in the prevention and treatment of HIRI, and provide a theoretical basis for the target NF-κB pathway as a therapy for HIRI.
Collapse
Affiliation(s)
- Rui-Ming Deng
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Juan Zhou
- The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- Department of Thyroid and Breast Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| |
Collapse
|
22
|
Yao S, Kasargod A, Chiu R, Torgerson TR, Kupiec-Weglinski JW, Dery KJ. The Coming Age of Antisense Oligos for the Treatment of Hepatic Ischemia/Reperfusion (IRI) and Other Liver Disorders: Role of Oxidative Stress and Potential Antioxidant Effect. Antioxidants (Basel) 2024; 13:678. [PMID: 38929116 PMCID: PMC11200799 DOI: 10.3390/antiox13060678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Imbalances in the redox state of the liver arise during metabolic processes, inflammatory injuries, and proliferative liver disorders. Acute exposure to intracellular reactive oxygen species (ROS) results from high levels of oxidative stress (OxS) that occur in response to hepatic ischemia/reperfusion injury (IRI) and metabolic diseases of the liver. Antisense oligonucleotides (ASOs) are an emerging class of gene expression modulators that target RNA molecules by Watson-Crick binding specificity, leading to RNA degradation, splicing modulation, and/or translation interference. Here, we review ASO inhibitor/activator strategies to modulate transcription and translation that control the expression of enzymes, transcription factors, and intracellular sensors of DNA damage. Several small-interfering RNA (siRNA) drugs with N-acetyl galactosamine moieties for the liver have recently been approved. Preclinical studies using short-activating RNAs (saRNAs), phosphorodiamidate morpholino oligomers (PMOs), and locked nucleic acids (LNAs) are at the forefront of proof-in-concept therapeutics. Future research targeting intracellular OxS-related pathways in the liver may help realize the promise of precision medicine, revolutionizing the customary approach to caring for and treating individuals afflicted with liver-specific conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Kenneth J. Dery
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
Popescu M, Bratu A, Agapie M, Borjog T, Jafal M, Sima RM, Orban C. The Use and Potential Benefits of N-Acetylcysteine in Non-Acetaminophen Acute Liver Failure: An Etiology-Based Review. Biomedicines 2024; 12:676. [PMID: 38540289 PMCID: PMC10967777 DOI: 10.3390/biomedicines12030676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 08/13/2024] Open
Abstract
Acute liver failure represents a life-threatening organ dysfunction with high mortality rates and an urgent need for liver transplantation. The etiology of the disease varies widely depending on various socio-economic factors and is represented mainly by paracetamol overdose and other drug-induced forms of liver dysfunction in the developed world and by viral hepatitis and mushroom poisoning in less developed countries. Current medical care constitutes either specific antidotes or supportive measures to ensure spontaneous recovery. Although it has been proven to have beneficial effects in paracetamol-induced liver failure, N-acetylcysteine is widely used for all forms of acute liver failure. Despite this, few well-designed studies have been conducted on the assessment of the potential benefits, dose regimens, or route of administration of N-acetylcysteine in non-acetaminophen liver failure. This review aims to summarize the current evidence behind the use of this drug in different forms of liver failure.
Collapse
Affiliation(s)
- Mihai Popescu
- Department of Anaesthesia and Intensive Care, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (M.A.); (T.B.); (M.J.); (C.O.)
- Department of Anaesthesia and Intensive Care, Bucharest University Emergency Hospital, 169 Independentei Street, 050098 Bucharest, Romania;
| | - Angelica Bratu
- Department of Anaesthesia and Intensive Care, Bucharest University Emergency Hospital, 169 Independentei Street, 050098 Bucharest, Romania;
| | - Mihaela Agapie
- Department of Anaesthesia and Intensive Care, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (M.A.); (T.B.); (M.J.); (C.O.)
- Department of Anaesthesia and Intensive Care, Bucharest University Emergency Hospital, 169 Independentei Street, 050098 Bucharest, Romania;
| | - Tudor Borjog
- Department of Anaesthesia and Intensive Care, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (M.A.); (T.B.); (M.J.); (C.O.)
- Department of Anaesthesia and Intensive Care, Bucharest University Emergency Hospital, 169 Independentei Street, 050098 Bucharest, Romania;
| | - Mugurel Jafal
- Department of Anaesthesia and Intensive Care, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (M.A.); (T.B.); (M.J.); (C.O.)
- Department of Anaesthesia and Intensive Care, Bucharest University Emergency Hospital, 169 Independentei Street, 050098 Bucharest, Romania;
| | - Romina-Marina Sima
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania;
| | - Carmen Orban
- Department of Anaesthesia and Intensive Care, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (M.A.); (T.B.); (M.J.); (C.O.)
- Department of Anaesthesia and Intensive Care, Bucharest University Emergency Hospital, 169 Independentei Street, 050098 Bucharest, Romania;
| |
Collapse
|
24
|
Chuang SH, Kuo YJ, Huang SW, Zhang HW, Peng HC, Chen YP. Association Between Long‑Term Exposure to Air Pollution and the Rate of Mortality After Hip Fracture Surgery in Patients Older Than 60 Years: Nationwide Cohort Study in Taiwan. JMIR Public Health Surveill 2024; 10:e46591. [PMID: 38342504 PMCID: PMC10985614 DOI: 10.2196/46591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/08/2023] [Accepted: 02/08/2024] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND To enhance postoperative patient survival, particularly in older adults, understanding the predictors of mortality following hip fracture becomes paramount. Air pollution, a prominent global environmental issue, has been linked to heightened morbidity and mortality across a spectrum of diseases. Nevertheless, the precise impact of air pollution on hip fracture outcomes remains elusive. OBJECTIVE This retrospective study aims to comprehensively investigate the profound influence of a decade-long exposure to 12 diverse air pollutants on the risk of post-hip fracture mortality among older Taiwanese patients (older than 60 years). We hypothesized that enduring long-term exposure to air pollution would significantly elevate the 1-year mortality rate following hip fracture surgery. METHODS From Taiwan's National Health Insurance Research Database, we obtained the data of patients who underwent hip fracture surgery between July 1, 2003, and December 31, 2013. Using patients' insurance registration data, we estimated their cumulative exposure levels to sulfur dioxide (SO2), carbon dioxide (CO2), carbon monoxide (CO), ozone (O3), particulate matter having a size of <10 μm (PM10), particulate matter having a size of <2.5 μm (PM2.5), nitrogen oxides (NOX), nitrogen monoxide (NO), nitrogen dioxide (NO2), total hydrocarbons (THC), nonmethane hydrocarbons (NMHC), and methane (CH4). We quantified the dose-response relationship between these air pollutants and the risk of mortality by calculating hazard ratios associated with a 1 SD increase in exposure levels over a decade. RESULTS Long-term exposure to SO2, CO, PM10, PM2.5, NOX, NO, NO2, THC, NMHC, and CH4 demonstrated significant associations with heightened all-cause mortality risk within 1 year post hip fracture surgery among older adults. For older adults, each 1 SD increment in the average exposure levels of SO2, CO, PM10, PM2.5, NOX, NO, NO2, THC, NMHC, and CH4 corresponded to a substantial escalation in mortality risk, with increments of 14%, 49%, 18%, 12%, 41%, 33%, 38%, 20%, 9%, and 26%, respectively. We further noted a 35% reduction in the hazard ratio for O3 exposure suggesting a potential protective effect, along with a trend of potentially protective effects of CO2. CONCLUSIONS This comprehensive nationwide retrospective study, grounded in a population-based approach, demonstrated that long-term exposure to specific air pollutants significantly increased the risk of all-cause mortality within 1 year after hip fracture surgery in older Taiwanese adults. A reduction in the levels of SO2, CO, PM10, PM2.5, NOX, NO, NO2, THC, NMHC, and CH4 may reduce the risk of mortality after hip fracture surgery. This study provides robust evidence and highlights the substantial impact of air pollution on the outcomes of hip fractures.
Collapse
Affiliation(s)
- Shu-Han Chuang
- Division of General Practice, Department of Medical Education, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Jie Kuo
- Department of Orthopedics, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shu-Wei Huang
- Department of Applied Science, National Taitung University, Taitung City, Taitung County, Taiwan
| | - Han-Wei Zhang
- MetaTrial Research Center, Biomedica Corporation, New Taipei, Taiwan
- Program for Aging, China Medical University, Taichung, Taiwan
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Department of Electrical and Computer Engineering, Institute of Electrical Control Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hsiao-Ching Peng
- MetaTrial Research Center, Biomedica Corporation, New Taipei, Taiwan
| | - Yu-Pin Chen
- Department of Orthopedics, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
25
|
Islam Shawon S, Nargis Reyda R, Qais N. Medicinal herbs and their metabolites with biological potential to protect and combat liver toxicity and its disorders: A review. Heliyon 2024; 10:e25340. [PMID: 38356556 PMCID: PMC10864916 DOI: 10.1016/j.heliyon.2024.e25340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
The liver is an essential organ that helps the body with immunity, metabolism, and detoxification, among other functions. Worldwide, liver illnesses are a leading cause of mortality and disability. There are few effective treatment choices, but they frequently have unfavorable side effects. Investigating the potential of medicinal plants and their bioactive phytoconstituents in the prevention and treatment of liver disorders has gained more attention in recent years. An assessment of the hepatoprotective potential of medicinal plants and their bioactive secondary metabolites is the goal of this thorough review paper. To determine their hepatoprotective activity, these plants were tested against liver toxicity artificially induced in rats, mice and rabbits by chemical agents such as carbon tetrachloride (CCl4), paracetamol (PCM), thioacetamide (TAA), N-nitrosodiethylamine, d-galactosamine/lipopolysaccharide, antitubercular medicines (rifampin, isoniazid) and alcohol. To find pertinent research publications published between 1989 and 2022, a comprehensive search of electronic bibliographic databases (including Web of Science, SpringerLink, ScienceDirect, Google Scholar, PubMed, Scopus, and others) was carried out. The investigation comprised 203 plant species from 81 families in total. A thorough discussion was mentioned regarding the hepatoprotective qualities of plants belonging to several families, such as Fabaceae, Asteraceae, Lamiaceae, and Euphorbiaceae. The plant groups Asteraceae and Fabaceae were the most frequently shown to have hepatoprotective properties. The phytochemical constituents namely flavonoids, phenolic compounds, and alkaloids exhibited the highest frequency of hepatoprotective action. Also, some possible mechanism of action of some active constituents from medicinal plants was discussed in brief which were found in some studies. In summary, the information on medicinal plants and their potentially hepatoprotective bioactive phytoconstituents has been consolidated in this review which emphasizes the importance of further research to explore the efficacy and safety of these natural remedies for various liver ailments.
Collapse
Affiliation(s)
- Shahparan Islam Shawon
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Rashmia Nargis Reyda
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Nazmul Qais
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
26
|
Bao HL, Chen CZ, Ren CZ, Sun KY, Liu H, Song SH, Fu ZR. Polydatin ameliorates hepatic ischemia-reperfusion injury by modulating macrophage polarization. Hepatobiliary Pancreat Dis Int 2024; 23:25-34. [PMID: 36058783 DOI: 10.1016/j.hbpd.2022.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/08/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Polydatin, a glucoside of resveratrol, has shown protective effects against various diseases. However, little is known about its effect on hepatic ischemia-reperfusion (I/R) injury. This study aimed to elucidate whether polydatin protects liver against I/R-induced injury and to explore the underlying mechanism. METHODS After gavage feeding polydatin once daily for a week, mice underwent a partial hepatic I/R procedure. Serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST), hematoxylin-eosin (H&E) and TdT-mediated dUTP nick-end labeling (TUNEL) staining were used to evaluate liver injury. The severity related to the inflammatory response and reactive oxygen species (ROS) production was also investigated. Furthermore, immunofluorescence and Western blotting were used to detect macrophage polarization and the NF-κB signaling pathway in macrophages. RESULTS Compared with the I/R group, polydatin pretreatment significantly attenuated I/R-induced liver damage and apoptosis. The oxidative stress marker (dihydroethidium fluorescence, malondialdehyde, superoxide dismutase and glutathione peroxidase) and I/R related inflammatory cytokines (interleukin-1β, interleukin-10 and tumor necrosis factor-α) were significantly suppressed after polydatin treatment. In addition, the result of immunofluorescence indicated that polydatin reduced the polarization of macrophages toward M1 macrophages both in vivo and in vitro. Western blotting showed that polydatin inhibited the pro-inflammatory function of RAW264.7 via down-regulating the NF-κB signaling pathway. CONCLUSIONS Polydatin protects the liver from I/R injury by remodeling macrophage polarization via NF-κB signaling.
Collapse
Affiliation(s)
- Hai-Li Bao
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai 200003, China
| | - Chuan-Zhi Chen
- Department of Surgical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chang-Zhen Ren
- Department of Cardiology, Shanghai Changzheng Hospital, Naval Military Medical University, Shanghai 200003, China
| | - Ke-Yan Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hao Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shao-Hua Song
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhi-Ren Fu
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai 200003, China.
| |
Collapse
|
27
|
Amir-Ata JS, Mohammad-Reza V, Malekinejad H. The Benzene-induced Hepatic Cytochrome P450 2E1 Expression and Activity are Reduced by Quercetin Administration in Mice. Curr Pharm Des 2024; 30:676-682. [PMID: 38424425 DOI: 10.2174/0113816128285832240216120053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Benzene as an environmental and industrial agent induces adverse effects that are mainly metabolism-dependent. OBJECTIVES Effects of Quercetin (QCN) on Benzene (BNZ)-induced changes in the hepatic Cytochrome P450 2E1 expression and activity were investigated. METHODS Thirty-six adult male mice were divided into 6 groups (n = 6) and nominated as control, BNZ (exposed to BNZ: 30 ppm), QCN (received QCN: 50 mg/kg, orally), and the fourth, fifth and sixth groups were exposed to 30 ppm BNZ and received 10, 50 and 100 mg/kg QCN respectively, for 28 days. The microsomal subcellular fraction was isolated from the liver samples and the activity of CYP 2E1 was measured based on the hydroxylation rate of 4-nitrophenol. The hepatic activity of myeloperoxidase also was assessed. Total antioxidant capacity and nitric oxide contents of the liver were determined. Expression changes of CYP 2E1 at the mRNA level were examined by qPCR technique. RESULTS QCN lowered significantly (p < 0.05) the BNZ-increased hepatic nitric oxide levels and restored the BNZ-reduced antioxidant capacity. The BNZ-elevated activity of myeloperoxidase was declined in QCN-received mice. QCN downregulated the expression and activity of hepatic CYP 2E1 in BNZ-exposed animals. CONCLUSION Our results suggest that QCN could be a novel hepatoprotective compound for BNZ-induced hepatotoxicities, which is attributed to its capability in the down-regulation of CYP 2E1 expression and activity.
Collapse
Affiliation(s)
- Jambour-Shabestary Amir-Ata
- Department of Pharmacology & Toxicology, Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Vardast Mohammad-Reza
- Department of Medicinal Chemistry, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Hassan Malekinejad
- Department of Pharmacology & Toxicology, Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology & Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
28
|
Alhareth DY, Alanazi A, Alanazi WA, Ansari MA, Nagi MN, Ahmad SF, Attia MSM, Nadeem A, Bakheet SA, Attia SM. Carfilzomib Mitigates Lipopolysaccharide/D-Galactosamine/Dimethylsulfoxide-Induced Acute Liver Failure in Mice. Biomedicines 2023; 11:3098. [PMID: 38002097 PMCID: PMC10669466 DOI: 10.3390/biomedicines11113098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Acute liver failure (ALF) is a disease accompanied by severe liver inflammation. No effective therapy is available yet apart from liver transplantation; therefore, developing novel treatments for ALF is urgently required. Inflammatory mediators released by NF-кB activation play an essential role in ALF. Proteasome inhibitors have many medical uses, such as reducing inflammation and NF-кB inhibition, which are believed to account for most of their repurposing effects. This study was undertaken to explore the possible protective effects and the underlying mechanisms of carfilzomib, a proteasome inhibitor, in a mouse model of ALF induced by lipopolysaccharide/D-galactosamine/dimethylsulfoxide (LPS/GalN/DMSO). Carfilzomib dose-dependently protected mice from LPS/GalN/DMSO-induced liver injury, as indicated by the decrease in serum alanine aminotransferase and aspartate aminotransferase levels. LPS/GalN/DMSO increased TNF-α, NF-кB, lipid peroxidation, NO, iNOS, cyclooxygenase-II, myeloperoxidase, and caspase-3 levels. Carfilzomib administration mitigated LPS/GalN/DMSO-induced liver damage by decreasing the elevated levels of TNF-α, NF-кB, lipid peroxidation, nitric oxide, iNOS, cyclooxygenase-II, myeloperoxidase, caspase-3, and histopathological changes. A restored glutathione level was also observed in the carfilzomib-treated LPS/GalN/DMSO mice. Our results demonstrate that carfilzomib protects against LPS/GalN/DMSO-induced ALF by inhibiting NF-кB, decreasing inflammatory mediators, oxidative/nitrosative stress, neutrophil recruitment, and apoptosis, suggesting that carfilzomib may be a potential therapeutic agent for ALF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| |
Collapse
|
29
|
Yan M, Xie Y, Yao J, Li X. The Dual-Mode Transition of Myofibroblasts Derived from Hepatic Stellate Cells in Liver Fibrosis. Int J Mol Sci 2023; 24:15460. [PMID: 37895138 PMCID: PMC10607848 DOI: 10.3390/ijms242015460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatic stellate cells (HSCs) are the key promoters of liver fibrosis. In response to liver-fibrosis-inducing factors, HSCs express alpha smooth muscle actin (α-SMA) and obtain myofibroblast phenotype. Collagen secretion and high expression of α-SMA with related high cell tension and migration limitation are the main characteristics of myofibroblasts. How these two characteristics define the role of myofibroblasts in the initiation and progression of liver fibrosis is worth exploring. From this perspective, we explored the correlation between α-SMA expression and collagen secretion in myofibroblasts and the characteristics of collagen deposition in liver fibrosis. Based on a reasonable hypothesis and experimental verification, we believe that the myofibroblast with the α-SMAhighcollagenhigh model do not effectively explain the initial stage and progression characteristics of liver fibrosis. Therefore, we propose a myofibroblast dual-mode transition model in fibrotic liver (DMTM model). In the DMTM model, myofibroblasts have dual modes. Myofibroblasts obtain enhanced α-SMA expression, accompanied by collagen expression inhibition in the high-concentration region of TGF-β. At the edge of the TGF-β positive region, myofibroblasts convert to a high-migration and high-collagen secretion phenotype. This model reasonably explains collagen deposition and expansion in the initial stage of liver fibrosis.
Collapse
Affiliation(s)
- Mengchao Yan
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- The School of Medical, Lanzhou University, Lanzhou 730000, China
| | - Ye Xie
- The School of Medical, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, China
| | - Jia Yao
- The School of Medical, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, China
| | - Xun Li
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- The School of Medical, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, China
| |
Collapse
|
30
|
Szczepanik K, Oczkowicz M, Dobrowolski P, Świątkiewicz M. The Protective Effects of Astaxanthin (AST) in the Liver of Weaned Piglets. Animals (Basel) 2023; 13:3268. [PMID: 37893992 PMCID: PMC10603637 DOI: 10.3390/ani13203268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
During the weaning period, piglets are exposed to high levels of stress, which often causes problems with the digestive system. This stress also promotes the production of free radicals, resulting in oxidative stress. Astaxanthin (AST) stands out as one of the most potent antioxidants. Its resistance to light and heat makes it particularly valuable in compound feed production. This study was to determine the effect of AST impact on liver histology and gene expression in piglets. For our experiment, we used 16 weaned piglets of the PL breed, which we divided into two groups: Group I (control group with no AST supplementation) and Group II (supplemented with AST at 0.025 g/kg). Both feed mixtures were iso-proteins and iso-energetic, meeting the nutritional requirements of the piglets. The experiment lasted from day 35 to day 70 of the piglets' age, during which they had ad libitum access. The results indicate that the addition of AST prevents liver fibrosis due to reduced collagen deposition in the tissue. Analysis of gene expression supported these results. In the AST-supplemented group, we noted a decrease in NR1H3 expression, an increase in CYP7A1 expression, and reductions in the expression of NOTCH1 and CREB genes.
Collapse
Affiliation(s)
- Kinga Szczepanik
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Krakowska St. 1, 32-083 Balice, Poland; (K.S.); (M.Ś.)
| | - Maria Oczkowicz
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska St. 1, 32-083 Balice, Poland
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland;
| | - Małgorzata Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Krakowska St. 1, 32-083 Balice, Poland; (K.S.); (M.Ś.)
| |
Collapse
|
31
|
El-Nagar MMF, Elsisi AE. Exposure to bromoxynil octanoate herbicide induces oxidative stress, inflammation, and apoptosis in testicular tissue via modulating NF-кB pathway. Food Chem Toxicol 2023; 180:114008. [PMID: 37660944 DOI: 10.1016/j.fct.2023.114008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Bromoxynil octanoate (BO) is a herbicide necessary for plant growth and production. However, it may cause damage to environment and humans. This study aimed to investigate the potential testicular toxicity of BO and its possible underlying mechanisms. Male Albino (Sprague Dawley) rats were administered BO in different doses (5, 10, 20, and 40 mg/kg/BW; P.O.) daily for 21 days. Testicular function was evaluated by determining count and viability of epididymal sperm, and testosterone. In addition, the following parameters were assessed; MDA, NO, and H2O2 as oxidative stress markers; SOD, CAT, GPx, GST, and GSH as antioxidant markers; NF-ĸB-P65 and IL-18 as inflammatory markers; caspase-9 and caspase-3 as apoptotic markers; gene expression of NF-ĸB-P65, TNF-α, BAX, Bcl-2, and caspase-3; and histopathological examination of epididymis and testis sections. The results showed a significant (P < 0.05) increase in MDA, NO, H2O2, IL-18, and caspase-9 content, NF-ĸB-P65, TNF-α, Bax, and Caspase-3 expression as compared to control. Furthermore, the count and viability of epididymal sperm, testosterone level, SOD, CAT, GPx, GST, and GSH content, and Bcl-2 expression showed a significant (P < 0.05) decrease as compared to control. In conclusion BO-induced testicular damage by altering oxidation, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Maysa M F El-Nagar
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Alaa E Elsisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
32
|
Li H, Niu X, Zhang D, Qu MH, Yang K. The role of the canonical nf-κb signaling pathway in the development of acute liver failure. Biotechnol Genet Eng Rev 2023; 39:775-795. [PMID: 36578157 DOI: 10.1080/02648725.2022.2162999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
As a clinical emergency with a high mortality rate, the treatment of acute liver failure has been paid attention to by society. At present, liver transplantation is the most effective treatment for acute liver failure, but there is still an insufficient supply of liver sources and a poor prognosis. In view of the current therapeutic development of this disease, more researchers have turned their attention to the research of drugs related to the NF-κB pathway. The NF-κB canonical pathway has been proven to play a role in a variety of diseases, regulating inflammation, apoptosis, and other physiological processes. More and more evidence shows that the NF-κB canonical pathway regulates the pathogenesis of acute liver failure. In this review, we will summarize the regulation process of the NF-κB canonical pathway on acute liver failure, and develop a new way to treat acute liver failure by targeting the components of the pathway.
Collapse
Affiliation(s)
- Hanyue Li
- Biopharmaceutical Laboratory, Key Laboratory of Shandong Province Colleges and Universities, School of life science and Technology, Weifang Medical University, Weifang, China
| | - Xiao Niu
- Biopharmaceutical Laboratory, Key Laboratory of Shandong Province Colleges and Universities, School of life science and Technology, Weifang Medical University, Weifang, China
| | - Dajin Zhang
- Translational Medical Center, Weifang Second People's Hospital, Weifang Respiratory Disease Hospital, Weifang, China
| | - Mei-Hua Qu
- Biopharmaceutical Laboratory, Key Laboratory of Shandong Province Colleges and Universities, School of life science and Technology, Weifang Medical University, Weifang, China
| | - Kunning Yang
- Translational Medical Center, Weifang Second People's Hospital, Weifang Respiratory Disease Hospital, Weifang, China
| |
Collapse
|
33
|
Tang S, Zhang J, Zhang L, Zhao Y, Xiao L, Zhang F, Li Q, Yang Y, Liu Q, Xu J, Li L. Knockdown of CXCL1 improves ACLF by reducing neutrophil recruitment to attenuate ROS production and hepatocyte apoptosis. Hepatol Commun 2023; 7:e0257. [PMID: 37708451 PMCID: PMC10503672 DOI: 10.1097/hc9.0000000000000257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/12/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Acute-on-chronic liver failure (ACLF) is an acute decompensated syndrome based on chronic liver disease, while neutrophil recruitment is the most critical early step. C-X-C motif chemokine ligand 1 (CXCL1), a cytokine that recruits neutrophils, was significantly upregulated in both ACLF mice and patients with ACLF. This present study aims to explore the role of CXCL1 in the pathogenesis of ACLF. METHODS We established an ACLF mouse model induced by carbon tetrachloride, lipopolysaccharide, and D-galactosamine, and used adeno-associated virus to achieve overexpression and knockdown of Cxcl1. We employed mass cytometry, flow cytometry, multiplex cytokine and chemokine analysis, Western blot, and reactive oxygen species (ROS) detection in mice blood and liver. ACLF patients (n = 10) and healthy controls (n = 5) were included, and their liver samples were stained using multiplex immunohistochemistry techniques. RESULTS CXCL1 was significantly elevated in both ACLF mice and patients. CXCL1 recruits neutrophils by binding to the C-X-C motif chemokine receptor 2 on the surface of neutrophils, affects ACLF prognosis by generating ROS and mitochondrial depolarization and modulating caspase3-related apoptotic pathways. We found that the knockdown of CXCL1 attenuated the infiltration of neutrophils in the mouse liver, reduced the expression of inflammatory cytokines, and also significantly downregulated ROS production and caspase3-related hepatocyte apoptosis, thereby ameliorating the liver injury of ACLF. CONCLUSIONS CXCL1 is a core player in the mobilization of neutrophils in ACLF, and the knockdown of Cxcl1 improves neutrophil infiltration, reduces ROS levels, and reduces hepatocyte apoptosis, thereby attenuating inflammation and liver injury in ACLF. Our results revealed a previously unknown link between CXCL1-induced neutrophil recruitment and ACLF, providing evidencing for potential therapies targeting ACLF.
Collapse
Affiliation(s)
- Shima Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junlei Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingjian Zhang
- Department of Infectious Diseases, The Affiliated Hangzhou First People’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yalei Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lanlan Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fen Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiuhong Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinxian Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
34
|
Stojanović NM, Randjelović PJ, Maslovarić A, Kostić M, Raičević V, Sakač M, Bjedov S. How do different bile acid derivatives affect rat macrophage function - Friends or foes? Chem Biol Interact 2023; 383:110688. [PMID: 37648052 DOI: 10.1016/j.cbi.2023.110688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/13/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Due to an increased need for new immunomodulatory agents, many previously known molecules have been structurally modified in order to obtain new drugs, preserving at the same time some of the benevolent characteristics of the parent molecule. This study aimed to evaluate the immunomodulatory potential of a selected library of bile acid derivatives (BAD) using a broad spectrum of assays, evaluating rat peritoneal macrophages viability, cell membrane damage, lysosomal and adhesion function, and nitric oxide and cytokine production as a response to lipopolysaccharide stimulation. Also, in silico studies on two bile acid-activated receptors were conducted and the results were related to the observed in vitro effects. All tested BAD exerted significant toxicity in concentrations higher than 10 μM, which was determined based on mitochondria and cell membrane damage in a panel of assays. On the other hand, at lower concentrations, the tested BAD proved to be immunomodulatory since they affected lysosomal function, cell adhesion capacities and the ability to produce inflammatory cytokines in response to a stimulus. One of the compounds proved to exhibit significant toxicity toward macrophages, but also caused a concentration-dependent decrease in nitric oxide levels and was identified as a potential farnesoid X receptor agonist.
Collapse
Affiliation(s)
- Nikola M Stojanović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000, Niš, Serbia.
| | - Pavle J Randjelović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000, Niš, Serbia
| | | | - Miloš Kostić
- Department of Immunology, Faculty of Medicine, University of Niš, 18000, Niš, Serbia
| | - Vidak Raičević
- Department of Chemistry, Biochemistry, and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000, Novi Sad, Serbia
| | - Marija Sakač
- Department of Chemistry, Biochemistry, and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000, Novi Sad, Serbia
| | - Srđan Bjedov
- Department of Chemistry, Biochemistry, and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000, Novi Sad, Serbia
| |
Collapse
|
35
|
Faujo Nintewoue GF, Tali Nguefak LD, Ngatcha G, Tagni SM, Talla P, Menzy Moungo‐Ndjole CM, Kouitcheu Mabeku LB. Helicobacter pylori infection-A risk factor for lipid peroxidation and superoxide dismutase over-activity: A cross-sectional study among patients with dyspepsia in Cameroon. JGH Open 2023; 7:618-628. [PMID: 37744703 PMCID: PMC10517442 DOI: 10.1002/jgh3.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/23/2023] [Accepted: 08/12/2023] [Indexed: 09/26/2023]
Abstract
Background and Aim There is an intimate relationship between oxidative stress and inflammation. Helicobacter pylori (H. pylori) infection leads to gastritis in almost all the hosts. So, we hypothesize that gastritis in H. pylori infection may be described as the accumulation of continuous oxidative damage. Methods The study was conducted from October 2020 to October 2021 at three reference health facilities in Cameroon. A total of 266 participants (131 males and 135 females) ranging from 15 to 88 years old with 48.28 ± 17.29 years as mean age were enrolled. Each participant gave a written informed consent and ethical committees approved the protocol. Biopsies samples were collected for H. pylori detection using histological examination and rapid urease test. Malondialdehyde (MDA) and glutathione (GSH) content, and catalase (CAT) and superoxide dismutase (SOD) activities were evaluated in serum as biomarkers of oxidative stress. Results Helicobacter pylori was detected in 71.80% of our sample population. Low income level was associated with higher GSH level (P = 0.0249) and having family history of gastric cancer to higher SOD activity (P = 0.0156). A significant higher MDA content (P < 0.0001) and SOD activity (P = 0.0235) was recorded among infected individuals compared with noninfected ones. A significantly higher MDA content and SOD activity was recorded among smokers (P = 0.0461) and participants older than 50 years old (P = 0.0491) with H. pylori positivity. Conclusion Our findings showed that H. pylori infection is associated with overproduction of reactive oxygen species and oxidative stress. The presence of this pathogen in elderly individuals or in smokers increased their risk for oxidative stress.
Collapse
Affiliation(s)
| | - Lionel Danny Tali Nguefak
- Microbiology and Pharmacology Laboratory, Department of Biochemistry, Faculty of ScienceUniversity of DschangDschangCameroon
| | | | | | | | | | - Laure Brigitte Kouitcheu Mabeku
- Microbiology and Pharmacology Laboratory, Department of Biochemistry, Faculty of ScienceUniversity of DschangDschangCameroon
- Medical Microbiology Laboratory, Department of Microbiology, Faculty of ScienceUniversity of Yaoundé IYaoundéCameroon
| |
Collapse
|
36
|
Qin LQ, Sun JY, Chen NY, Li XW, Gao DF, Wang W, Mo DL, Su JC, Su GF, Pan CX. Design and synthesis of pseudo-rutaecarpines as potent anti-inflammatory agents via regulating MAPK/NF-κB pathways to relieve inflammation-induced acute liver injury in mice. Bioorg Chem 2023; 138:106611. [PMID: 37236073 DOI: 10.1016/j.bioorg.2023.106611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
Pseudo-natural products (PNPs) design strategy provides a great valuable entrance to effectively identify of novel bioactive scaffolds. In this report, novel pseudo-rutaecarpines were designed via the combination of several privileged structure units and 46 target compounds were synthesized. Most of them display moderate to potent inhibitory effect on LPS-induced NO production and low cytotoxicity in RAW264.7 macrophage. The results of the anti-inflammatory efficacy and action mechanism of compounds 7l and 8c indicated that they significantly reduced the release of IL-6, IL-1β and TNF-α. Further studies revealed that they can strongly inhibit the activation of NF-κB and MAPK signal pathways. The LPS-induced acute liver injury mice model studies not only confirmed their anti-inflammatory efficacy in vivo but also could effectively relieve the liver injury in mice. The results suggest that compounds 7l and 8c might serve as lead compounds to develop therapeutic drugs for treatment of inflammation.
Collapse
Affiliation(s)
- Li-Qing Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China; Department of Chemistry and Pharmaceutical Science, Guilin Normal College, 9 Feihu Road, Gulin 541199, China
| | - Jia-Yi Sun
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Nan-Ying Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Xin-Wei Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - De-Feng Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Wang Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Jun-Cheng Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| | - Gui-Fa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| | - Cheng-Xue Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| |
Collapse
|
37
|
Pei Q, Yi Q, Tang L. Liver Fibrosis Resolution: From Molecular Mechanisms to Therapeutic Opportunities. Int J Mol Sci 2023; 24:ijms24119671. [PMID: 37298621 DOI: 10.3390/ijms24119671] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The liver is a critical system for metabolism in human beings, which plays an essential role in an abundance of physiological processes and is vulnerable to endogenous or exogenous injuries. After the damage to the liver, a type of aberrant wound healing response known as liver fibrosis may happen, which can result in an excessive accumulation of extracellular matrix (ECM) and then cause cirrhosis or hepatocellular carcinoma (HCC), seriously endangering human health and causing a great economic burden. However, few effective anti-fibrotic medications are clinically available to treat liver fibrosis. The most efficient approach to liver fibrosis prevention and treatment currently is to eliminate its causes, but this approach's efficiency is too slow, or some causes cannot be fully eliminated, which causes liver fibrosis to worsen. In cases of advanced fibrosis, the only available treatment is liver transplantation. Therefore, new treatments or therapeutic agents need to be explored to stop the further development of early liver fibrosis or to reverse the fibrosis process to achieve liver fibrosis resolution. Understanding the mechanisms that lead to the development of liver fibrosis is necessary to find new therapeutic targets and drugs. The complex process of liver fibrosis is regulated by a variety of cells and cytokines, among which hepatic stellate cells (HSCs) are the essential cells, and their continued activation will lead to further progression of liver fibrosis. It has been found that inhibiting HSC activation, or inducing apoptosis, and inactivating activated hepatic stellate cells (aHSCs) can reverse fibrosis and thus achieve liver fibrosis regression. Hence, this review will concentrate on how HSCs become activated during liver fibrosis, including intercellular interactions and related signaling pathways, as well as targeting HSCs or liver fibrosis signaling pathways to achieve the resolution of liver fibrosis. Finally, new therapeutic compounds targeting liver fibrosis are summarized to provide more options for the therapy of liver fibrosis.
Collapse
Affiliation(s)
- Qiying Pei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
38
|
Kim D, Kim SW, Charchoghlyan H, Jeong H, Han GD. Combinatorial Herbal Extracts Alleviate Alcohol-Induced Hepatic Disorders. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:432-438. [PMID: 37326941 DOI: 10.1007/s11130-023-01057-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 06/17/2023]
Abstract
Plant-derived compounds can be useful for the management of liver disease. Traditionally, hepatic disorders have been treated with herbal extracts. Although many herbal extracts in Eastern medicine have been shown to possess hepatoprotective activities, single-origin herbal extracts primarily demonstrate either antioxidant or anti-inflammatory activities. The current study investigated the effects of combinatorial herbal extracts on alcohol-induced hepatic disorders in an ethanol-fed mouse model. Sixteen herbal combinations were evaluated as hepatoprotective formulations; the active constituents in these herbal extracts were daidzin, peonidin-3-glucoside, hesperidin, glycyrrhizin, and phosphatidylcholine. RNA sequencing analysis showed that exposure to ethanol altered hepatic gene expression profiles (compared to those of the non-alcohol-fed group), resulting in 79 differentially expressed genes. A majority of the differentially expressed genes in alcohol-induced hepatic disorders were associated with dysfunction of the normal cellular homeostasis in the liver; however, these genes were repressed by treatment with herbal extracts. Moreover, following treatment with herbal extracts, there were neither acute inflammatory responses in the liver tissue nor abnormalities in the cholesterol profile. These results suggest that combinatorial herbal extracts may alleviate alcohol-induced hepatic disorders by modulating the inflammatory response and lipid metabolism in the liver.
Collapse
Affiliation(s)
- Dongyeop Kim
- Department of Preventive Dentistry, School of Dentistry, Institute of Medical Information Convergence Research, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sang Wook Kim
- Department of Food Science and Technology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 58541, Gyeongbuk, Republic of Korea
| | - Haykuhi Charchoghlyan
- Department of Food Science and Technology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 58541, Gyeongbuk, Republic of Korea
| | - Hojeong Jeong
- Department of Food Science and Technology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 58541, Gyeongbuk, Republic of Korea
| | - Gi Dong Han
- Department of Food Science and Technology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 58541, Gyeongbuk, Republic of Korea.
| |
Collapse
|
39
|
Zeng J, Fan J, Zhou H. Bile acid-mediated signaling in cholestatic liver diseases. Cell Biosci 2023; 13:77. [PMID: 37120573 PMCID: PMC10149012 DOI: 10.1186/s13578-023-01035-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
Chronic cholestatic liver diseases, such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), are associated with bile stasis and gradually progress to fibrosis, cirrhosis, and liver failure, which requires liver transplantation. Although ursodeoxycholic acid is effective in slowing the disease progression of PBC, it has limited efficacy in PSC patients. It is challenging to develop effective therapeutic agents due to the limited understanding of disease pathogenesis. During the last decade, numerous studies have demonstrated that disruption of bile acid (BA) metabolism and intrahepatic circulation promotes the progression of cholestatic liver diseases. BAs not only play an essential role in nutrition absorption as detergents but also play an important role in regulating hepatic metabolism and modulating immune responses as key signaling molecules. Several excellent papers have recently reviewed the role of BAs in metabolic liver diseases. This review focuses on BA-mediated signaling in cholestatic liver disease.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Microbiology and Immunology, Medical College of Virginia and Richmond VA Medical Center, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA, 23298-0678, USA
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Medical College of Virginia and Richmond VA Medical Center, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA, 23298-0678, USA.
| |
Collapse
|
40
|
Qin T, Chen X, Meng J, Guo Q, Xu S, Hou S, Yuan Z, Zhang W. The role of curcumin in the liver-gut system diseases: from mechanisms to clinical therapeutic perspective. Crit Rev Food Sci Nutr 2023; 64:8822-8851. [PMID: 37096460 DOI: 10.1080/10408398.2023.2204349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Natural products have provided abundant sources of lead compounds for new drug discovery and development over the past centuries. Curcumin is a lipophilic polyphenol isolated from turmeric, a plant used in traditional Asian medicine for centuries. Despite the low oral bioavailability, curcumin exhibits profound medicinal value in various diseases, especially liver and gut diseases, bringing an interest in the paradox of its low bioavailability but high bioactivity. Several latest studies suggest that curcumin's health benefits may rely on its positive gastrointestinal effects rather than its poor bioavailability solely. Microbial antigens, metabolites, and bile acids regulate metabolism and immune responses in the intestine and liver, suggesting the possibility that the liver-gut axis bidirectional crosstalk controls gastrointestinal health and diseases. Accordingly, these pieces of evidence have evoked great interest in the curcumin-mediated crosstalk among liver-gut system diseases. The present study discussed the beneficial effects of curcumin against common liver and gut diseases and explored the underlying molecular targets, as well as collected evidence from human clinical studies. Moreover, this study summarized the roles of curcumin in complex metabolic interactions in liver and intestine diseases supporting the application of curcumin in the liver-gut system as a potential therapeutic option, which opens an avenue for clinical use in the future.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiuying Chen
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiahui Meng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shan Xu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shanshan Hou
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Ziqiao Yuan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
41
|
Ahmedy OA, Kamel MW, Abouelfadl DM, Shabana ME, Sayed RH. Berberine attenuates epithelial mesenchymal transition in bleomycin-induced pulmonary fibrosis in mice via activating A 2aR and mitigating the SDF-1/CXCR4 signaling. Life Sci 2023; 322:121665. [PMID: 37028546 DOI: 10.1016/j.lfs.2023.121665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023]
Abstract
AIMS Berberine is endowed with anti-oxidant, anti-inflammatory and anti-fibrotic effects. This study explored the role of adenosine A2a receptor (A2aR) activation and SDF-1/CXCR4 signaling suppression in the protective effects of berberine in bleomycin-induced pulmonary fibrosis in mice. MAIN METHODS Pulmonary fibrosis was generated in mice by injecting bleomycin (40 U/kg, i.p.) on days 0, 3, 7, 10 and 14. Mice were treated with berberine (5 mg/kg, i.p.) from day 15 to day 28. KEY FINDINGS Severe lung fibrosis and increased collagen content were observed in the bleomycin-challenged mice. Pulmonary A2aR downregulation was documented in bleomycin-induced pulmonary fibrosis animals and was accompanied by enhanced expression of SDF-1/CXCR4. Moreover, TGF-β1elevation and pSmad2/3 overexpression were reported in parallel with enhanced epithelial mesenchymal transition (EMT) markers expression, vimentin and α-SMA. Besides, bleomycin significantly elevated the inflammatory and pro-fibrogenic mediator NF-κB p65, TNF-α and IL-6. Furthermore, bleomycin administration induced oxidative stress as depicted by decreased Nrf2, SOD, GSH and catalase levels. Interestingly, berberine administration markedly ameliorated the fibrotic changes in lungs by modulating the purinergic system through the inhibition of A2aR downregulation, mitigating EMT and effectively suppressing inflammation and oxidative stress. Strikingly, A2aR blockade by SCH 58261, impeded the pulmonary protective effect of berberine. SIGNIFICANCE These findings indicated that berberine could attenuate the pathological processes of bleomycin-induced pulmonary fibrosis at least partially via upregulating A2aR and mitigating the SDF-1/CXCR4 related pathway, suggesting A2aR as a potential therapeutic target for the management of pulmonary fibrosis.
Collapse
Affiliation(s)
- Omaima A Ahmedy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt.
| | - Marwa W Kamel
- Department of Cancer Biology, Pharmacology Unit, National Cancer Institute, Cairo University, 11796, Egypt
| | - Dalia M Abouelfadl
- Department of Pathology, Medical and Clinical Studies, Research Institute, National Research Center, Egypt
| | - Marwa E Shabana
- Department of Pathology, Medical and Clinical Studies, Research Institute, National Research Center, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| |
Collapse
|
42
|
Zhai Y, Tang H, Zhang Q, Peng Y, Zhao L, Zhang B, Yang Y, Ma J, Zhu J, Zhang D. The Protective Effect of Lycium barbarum Betaine and Effervescent Tablet Against Carbon Tetrachloride-Induced Acute Liver Injury in Rats. Nat Prod Commun 2023. [DOI: 10.1177/1934578x231161419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
The liver is essential for animals and humans. Because of their low side effects and high safety, natural products have recently become a research hotspot for human health-related issues that can damage the liver. In this study, we investigated the protective effects in rats of Lycium barbarum betaine (LBB) and Lycium barbarum betaine Effervescent Tablet (LBBET) against liver injury caused by carbon tetrachloride (CCl4). The results showed that LBB and LBBET pretreatment significantly reduced the serum levels of alanine aminotransferase, aspartate transaminase (AST), and alkaline phosphatase, as well as the liver tissue levels of malondialdehyde. Meanwhile, glutathione peroxidase, and superoxide dismutase levels were significantly increased in liver tissues. In addition, LBB and LBBET may effectively alleviate CCl4-induced liver injury by a mechanism related to the activation of the Nrf2 signaling pathway. In conclusion, LBB and LBBET may serve as potential mitigators of CCl4-induced liver injury. Effervescent Tablet can be used as either a new formulation or practical product for patients who have difficulty swallowing regular tablets or capsules. This study provides a basis and new ideas for the development of functional foods or drugs related to the field of liver protection.
Collapse
Affiliation(s)
- Yuqing Zhai
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Huaqiang Tang
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Qunhui Zhang
- College of Medical, Qinghai University, Xining, China
| | - Yanfeng Peng
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Linlin Zhao
- College of Medical, Qinghai University, Xining, China
| | - Benyin Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Yongjing Yang
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Jing Ma
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Ji Zhu
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Dejun Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| |
Collapse
|
43
|
Kasztelan-Szczerbinska B, Rycyk-Bojarzynska A, Szczerbinska A, Cichoz-Lach H. Selected Aspects of the Intricate Background of Immune-Related Cholangiopathies-A Critical Overview. Nutrients 2023; 15:760. [PMID: 36771465 PMCID: PMC9921714 DOI: 10.3390/nu15030760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC) are rare immune-related cholangiopathies with still poorly explained pathogenesis. Although triggers of chronic inflammation with subsequent fibrosis that affect cholangiocytes leading to obliteration of bile ducts and conversion to liver cirrhosis are unclear, both disorders are regarded to be multifactorial. Different factors can contribute to the development of hepatocellular injury in the course of progressive cholestasis, including (1) body accumulation of bile acids and their toxicity, (2) decreased food intake and nutrient absorption, (3) gut microbiota transformation, and (4) reorganized host metabolism. Growing evidence suggests that intestinal microbiome composition not only can be altered by liver dysfunction, but in turn, it actively impacts hepatic conditions. In this review, we highlight the role of key factors such as the gut-liver axis, intestinal barrier integrity, bile acid synthesis and circulation, and microbiome composition, which seem to be strongly related to PBC and PSC outcome. Emerging treatments and future therapeutic strategies are also presented.
Collapse
Affiliation(s)
- Beata Kasztelan-Szczerbinska
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| | - Anna Rycyk-Bojarzynska
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| | | | - Halina Cichoz-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| |
Collapse
|
44
|
A Bidirectional Association Between Obstructive Sleep Apnea and Metabolic-Associated Fatty Liver Disease. Endocrinol Metab Clin North Am 2023. [PMID: 37495341 DOI: 10.1016/j.ecl.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Obesity is considered a twentieth-century epidemic and is a growing concern among health professionals. Obesity and its complications contribute to multiple chronic illnesses, such as type 2 diabetes (T2D), metabolic syndrome, obstructive sleep apnea (OSA), malignancy, and cardiovascular and liver diseases. In the last two decades, a bidirectional association between OSA and metabolic-associated fatty liver disease (MAFLD), independent of obesity, has been established. Both conditions have similar risk factors and metabolic comorbidities that may imply a common disease pathway. This review compiles the evidence and delineates the relationship between OSA and MAFLD from a clinical and diagnostic aspect.
Collapse
|
45
|
Chen C, Wu H, Li Q, Liu M, Yin F, Wu M, Wei X, Wang H, Zha Z, Wang F. Manganese Prussian blue nanozymes with antioxidant capacity prevent acetaminophen-induced acute liver injury. Biomater Sci 2023; 11:2348-2358. [PMID: 36722889 DOI: 10.1039/d2bm01968j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
As one of the leading cases of acute liver failure triggered by excessive Acetaminophen (APAP), breakdown of the antioxidant system, inflammatory response, and inescapable apoptosis following overaccumulation of reactive oxygen species (ROS) play crucial roles in the mechanisms of APAP-induced liver injury (AILI). Therefore, cutting off ROS overproduction at the source is considered promising. Here, manganese Prussian blue nanozymes (MPBZs) with superior antioxidant enzyme-like activity are prepared as an effective strategy for hepatocyte protection, in which MPBZs accumulated in the liver show anti-oxidation properties by scavenging superfluous ROS. Importantly, in addition to alleviating oxidative stress, bioactive MPBZs with abundant variable valence states as a natural antioxidant enzymes mediated the responses of multi-biological signaling pathways in vitro and in vivo, including Nrf2-Keap1, NF-κB, and mitochondrial-induced apoptosis signaling pathways, enhancing tolerance for imminent AILI. Taking nanomedicine, hepatology, and catalytic chemistry into consideration, the revealed superior performance of AILI prevention suggests that MPBZ-based nano-detoxification therapy may offer an effective alternative against AILI.
Collapse
Affiliation(s)
- Chongqing Chen
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Haitao Wu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China. .,School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Qianhui Li
- China Guangdong Provincial Key Laboratory of Digestive Cancer Research and The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Menghua Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Fan Yin
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Miaomiao Wu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Xiaoli Wei
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Fei Wang
- China Guangdong Provincial Key Laboratory of Digestive Cancer Research and The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
46
|
El-Kashef DH, Sewilam HM. Empagliflozin mitigates methotrexate-induced hepatotoxicity: Targeting ASK-1/JNK/Caspase-3 pathway. Int Immunopharmacol 2023; 114:109494. [PMID: 36462340 DOI: 10.1016/j.intimp.2022.109494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
Methotrexate (MTX) administration causes hepatotoxicity, a serious side effect limiting its clinical use. Therefore, this study was performed to investigate the beneficial effect of empagliflozin (Empa) against MTX-induced hepatotoxicity. Adult male albino mice were pre-treated with Empa (at 10 or 25 mg/kg/d, orally) for 6 days and then received a single MTX injection (at 20 mg/kg, intraperitoneally). Empa effectively ameliorated MTX-induced structural and functional alterations. It significantly decreased transaminase, alkaline phosphatase, and gamma-glutamyl transferase levels and increased albumin levels in the serum. Moreover, Empa restored the oxidant/antioxidant balance as indicated by reduced malondialdehyde and total nitrite/nitrate contents and elevated reduced glutathione level and superoxide dismutase activity. Additionally, Empa (10 and 25 mg/kg) markedly suppressed the elevated levels of tumor necrosis factor-alpha, interleukin-6, apoptosis signal-regulating kinase1, c-Jun N-terminal kinase, BCL2 associated X protein, and Caspase-3 in hepatic tissues and increased the hepatic interleukin-10 levels. Furthermore, Empa substantially decreased nuclear factor kappa B expression in hepatic tissues. These biochemical findings were further confirmed by histopathological and transmission electron microscopy observations. Therefore, Empa might be used as an adjuvant to ameliorate MTX-induced hepatotoxicity after further clinical evaluation.
Collapse
Affiliation(s)
- Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Haitham M Sewilam
- Department of Histology, Faculty of Medicine, Helwan University, Cairo, Egypt
| |
Collapse
|
47
|
Zhang B, Fan C, Tan Q, Zhang Y, Jiang Q, Yu Q, Zhang B, Zheng K, Yan C. rCsHscB Derived from Clonorchis sinensis: A Carcinogenic Liver Fluke Ameliorates LPS-Induced Acute Hepatic Injury by Repression of Inflammation. Pathogens 2022; 11:pathogens11121548. [PMID: 36558882 PMCID: PMC9782140 DOI: 10.3390/pathogens11121548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Sepsis-associated acute liver injury caused by spillovers of bacteria and endotoxins (lipopolysaccharide, LPS) into the liver remains a public health issue due to the lack of specific therapeutic approaches. Previous studies showed that the recombinant protein HscB (rCsHscB) of Clonorchis sinensis, a carcinogenic liver fluke, had an anti-inflammatory effect and could alleviate inflammatory diseases such as enteritis; however, whether it can prevent sepsis-associated acute liver injury induced by LPS is still unknown. In our current study, the therapeutic effects and the potential mechanisms of rCsHscB on LPS-induced acute liver injury were investigated both in vivo and in vitro. The data showed that rCsHscB prevented LPS-induced liver damage, as demonstrated by histopathological observation and hepatic damage markers (the activities of serum ALT and AST) in a murine model of sepsis-associated acute liver injury. rCsHscB also significantly reversed the high levels of serum IL-6 and MCP-1 induced by LPS. In addition, rCsHscB attenuated the production of LPS-induced proinflammatory cytokines, including IL-6 and TNF-α, in a macrophage cell line-RAW264.7, through possible mediation by the MAPK signaling pathway in vitro. In conclusion, the present study demonstrates that rCsHscB derived from a fluke C. sinensis protects against sepsis-associated acute liver injury induced by LPS, which may be attributed to the inhibition of the MAPK signaling pathway. Our present study provides a potential therapeutic strategy for sepsis-associated acute liver injury.
Collapse
Affiliation(s)
- Bo Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
- National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou 221004, China
| | - Chunyang Fan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
- National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou 221004, China
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Qi Tan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
- National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou 221004, China
| | - Yuzhao Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
| | - Qing Jiang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
- National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
| | - Beibei Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
- National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou 221004, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
- National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou 221004, China
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
- National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou 221004, China
- Correspondence:
| |
Collapse
|
48
|
Liu MX, Li T, Wang WG, Guo J, Wang RR, He HP, Li SQ, Li YP. Regulatory effect of isovitexin on MAPK/NF- κB signal in mice with acute ulcerative colitis. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022:1-18. [PMID: 36394271 DOI: 10.1080/10286020.2022.2142121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to investigate the anti-inflammatory effects and mechanism of isovitexin on ulcerative colitis mice and RAW264.7 cells. The results showed that isovitexin had strong antioxidant and anti-inflammatory effects, and could restore intestinal barrier integrity (p < 0.01). In addition, isovitexin inhibited the expression of MyD88, TLR4 and NF-κB p65 proteins. At the same time, isovitexin can inhibit the activation of MAPK/NF-κB signaling pathway in RAW264.7 cells. In conclusion, isovitexin has a protective effect on UC mice, and its improvement mechanism of UC might be related to MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ming-Xiu Liu
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Ting Li
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Wei-Guang Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, China
| | - Jing Guo
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Rui-Rui Wang
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Hong-Ping He
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Shu-Quan Li
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yan-Ping Li
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
49
|
Ramos-Tovar E, Muriel P. Free radicals, antioxidants, nuclear factor-E2-related factor-2 and liver damage. VITAMINS AND HORMONES 2022; 121:271-292. [PMID: 36707137 DOI: 10.1016/bs.vh.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The liver performs various biochemical and molecular functions. Its location as a portal to blood arriving from the intestines makes it susceptible to several insults, leading to diverse pathologies, including alcoholic liver disease, viral infections, nonalcoholic steatohepatitis, and hepatocellular carcinoma, which are causes of death worldwide. Illuminating the molecular mechanism underlying hepatic injury will provide targets to develop new therapeutic strategies to fight liver maladies. In this regard, reactive oxygen species (ROS) are well-recognized mediators of liver damage. ROS induce nuclear factor-κB and the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 inflammasome, which are the main proinflammatory signaling pathways that upregulate several proinflammatory and profibrogenic mediators. Additionally, oxygen-derived free radicals induce hepatic stellate cell activation to produce exacerbated quantities of extracellular matrix proteins, leading to fibrosis, cirrhosis and eventually hepatocellular carcinoma. Exogenous and endogenous antioxidants counteract the harmful effects of ROS, preventing liver necroinflammation and fibrogenesis. Therefore, several researchers have demonstrated that the administration of antioxidants, mainly derived from plants, affords beneficial effects on the liver. Notably, nuclear factor-E2-related factor-2 (Nrf2) is a major factor against oxidative stress in the liver. Increasing evidence has demonstrated that Nrf2 plays an important role in liver necroinflammation and fibrogenesis via the induction of antioxidant response element genes. The use of Nrf2 inducers seems to be an interesting approach to prevent/attenuate hepatic disorders, particularly under conditions where ROS play a causative role.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Postgraduate Studies and Research Section, School of Higher Education in Medicine-IPN, Mexico City, Mexico.
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico.
| |
Collapse
|
50
|
Zhou Y, Tian N, Li P, He Y, Tong L, Xie W. The correlation between neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio with nonalcoholic fatty liver disease: a cross-sectional study. Eur J Gastroenterol Hepatol 2022; 34:1158-1164. [PMID: 36166298 PMCID: PMC9521580 DOI: 10.1097/meg.0000000000002439] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/27/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The aim of this study is to investigate the correlation between neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) with nonalcoholic fatty liver disease (NAFLD). METHODS All subjects underwent medical check-ups, which included the measurement of basic clinical, biochemical tests and imaging tests. Univariate and multivariate logistic regression models and piece-wise linear regression were used to assess the relationship between NLR and PLR with NAFLD. RESULTS All participants were divided into two groups: the Non-NAFLD group and the NAFLD group. Univariate analysis model indicated PLR was negatively correlated with NAFLD (P < 0.001) and NLR was not significantly associated with NAFLD (P > 0.05). Multiple logistic regression showed that no correlation between NLR and PLR with NAFLD after adjusting all covariates (P > 0.05). Interestingly, a nonlinear association was detected between NLR and PLR with NAFLD by piece-wise linear regression adjusting for all confounding factors. The inflection points of NLR and PLR were 1.23 and 42.29, respectively. On the left side of the inflection point (NLR < 1.23), a positive correlation was detected between NLR and NAFLD (β = 2.35, 95% CI: 1.20~4.61, P = 0.013). And PLR was found to be negatively associated with NAFLD on the right side of the inflection point (β = 0.99, 95% CI: 0.98~0.99, P < 0.001). CONCLUSION This study demonstrated that the relationship between NLR and PLR with NAFLD was nonlinear after adjusting for potential confounding factors. The result suggested that PLR ≥ 42.29 might be a protective factor of NAFLD, while NLR < 1.23 might be a risk factor of NAFLD.
Collapse
Affiliation(s)
- Yuge Zhou
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan City, Guangdong Province, People’s Republic of China
| | - Ning Tian
- Preventive Healthcare Center, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Foshan City, Guangdong Province, People’s Republic of China
| | - Peiling Li
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan City, Guangdong Province, People’s Republic of China
| | - Yanting He
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan City, Guangdong Province, People’s Republic of China
| | - Lijun Tong
- Preventive Healthcare Center, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Foshan City, Guangdong Province, People’s Republic of China
| | - Weining Xie
- Department of Scientific Research, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Foshan City, Guangdong Province, People’s Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, People’s Republic of China
| |
Collapse
|