1
|
Kamidaki Y, Hosokawa T, Abe N, Fujita E, Yamaoka B, Ono K, Goto S, Kazama T, Matsumoto T, Uehara S. Muscle regeneration therapy using dedifferentiated fat cell (DFAT) for anal sphincter dysfunction. Pediatr Surg Int 2024; 40:238. [PMID: 39167102 DOI: 10.1007/s00383-024-05812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE We investigated the effects of mouse-derived DFAT on the myogenic differentiation of a mouse-derived myoblast cell line (C2C12) and examined the therapeutic effects of rat-derived DFAT on anal sphincter injury using a rat model. METHODS C2C12 cells were cultured using DMEM and DFAT-conditioned medium (DFAT-CM), evaluating MyoD and Myogenin gene expression via RT-PCR. DFAT was locally administered to model rats with anorectal sphincter dysfunction 3 days post-CTX injection. Therapeutic effects were assessed through functional assessment, including anal pressure measurement using solid-state manometry pre/post-CTX, and on days 1, 3, 7, 10, 14, 17, and 21 post-DFAT administration. Histological evaluation involved anal canal excision on days 1, 3, 7, 14, and 21 after CTX administration, followed by hematoxylin-eosin staining. RESULTS C2C12 cells cultured with DFAT-CM exhibited increased MyoD and Myogenin gene expression compared to control. Anal pressure measurements revealed early recovery of resting pressure in the DFAT-treated group. Histologically, DFAT-treated rats demonstrated an increase in mature muscle cells within newly formed muscle fibers on days 14 and 21 after CTX administration, indicating enhanced muscle tissue repair. CONCLUSION DFAT demonstrated the potential to enhance histological and functional muscle tissue repair. These findings propose DFAT as a novel therapeutic approach for anorectal sphincter dysfunction treatment.
Collapse
Affiliation(s)
- Yusuke Kamidaki
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Takashi Hosokawa
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Naoko Abe
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Eri Fujita
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Bin Yamaoka
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Kako Ono
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Shumpei Goto
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Tomohiko Kazama
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
| | - Shuichiro Uehara
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan.
| |
Collapse
|
2
|
Liang Z, He Y, Tang H, Li J, Cai J, Liao Y. Dedifferentiated fat cells: current applications and future directions in regenerative medicine. Stem Cell Res Ther 2023; 14:207. [PMID: 37605289 PMCID: PMC10441730 DOI: 10.1186/s13287-023-03399-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/13/2023] [Indexed: 08/23/2023] Open
Abstract
Stem cell therapy is the most promising treatment option for regenerative medicine. Therapeutic effect of different stem cells has been verified in various disease model. Dedifferentiated fat (DFAT) cells, derived from mature adipocytes, are induced pluripotent stem cells. Compared with ASCs and other stem cells, the DFAT cells have unique advantageous characteristics in their abundant sources, high homogeneity, easily harvest and low immunogenicity. The DFAT cells have shown great potential in tissue engineering and regenerative medicine for the treatment of clinical problems such as cardiac and kidney diseases, autoimmune disease, soft and hard tissue defect. In this review, we summarize the current understanding of DFAT cell properties and focus on the relevant practical applications of DFAT cells in cell therapy in recent years.
Collapse
Affiliation(s)
- Zhuokai Liang
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yufei He
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haojing Tang
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jian Li
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Junrong Cai
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yunjun Liao
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Sawada H, Kazama T, Nagaoka Y, Arai Y, Kano K, Uei H, Tokuhashi Y, Nakanishi K, Matsumoto T. Bone marrow-derived dedifferentiated fat cells exhibit similar phenotype as bone marrow mesenchymal stem cells with high osteogenic differentiation and bone regeneration ability. J Orthop Surg Res 2023; 18:191. [PMID: 36906634 PMCID: PMC10007822 DOI: 10.1186/s13018-023-03678-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/04/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are known to have different differentiation potential depending on the tissue of origin. Dedifferentiated fat cells (DFATs) are MSC-like multipotent cells that can be prepared from mature adipocytes by ceiling culture method. It is still unknown whether DFATs derived from adipocytes in different tissue showed different phenotype and functional properties. In the present study, we prepared bone marrow (BM)-derived DFATs (BM-DFATs), BM-MSCs, subcutaneous (SC) adipose tissue-derived DFATs (SC-DFATs), and adipose tissue-derived stem cells (ASCs) from donor-matched tissue samples. Then, we compared their phenotypes and multilineage differentiation potential in vitro. We also evaluated in vivo bone regeneration ability of these cells using a mouse femoral fracture model. METHODS BM-DFATs, SC-DFATs, BM-MSCs, and ASCs were prepared from tissue samples of knee osteoarthritis patients who received total knee arthroplasty. Cell surface antigens, gene expression profile, and in vitro differentiation capacity of these cells were determined. In vivo bone regenerative ability of these cells was evaluated by micro-computed tomography imaging at 28 days after local injection of the cells with peptide hydrogel (PHG) in the femoral fracture model in severe combined immunodeficiency mice. RESULTS BM-DFATs were successfully generated at similar efficiency as SC-DFATs. Cell surface antigen and gene expression profiles of BM-DFATs were similar to those of BM-MSCs, whereas these profiles of SC-DFATs were similar to those of ASCs. In vitro differentiation analysis revealed that BM-DFATs and BM-MSCs had higher differentiation tendency toward osteoblasts and lower differentiation tendency toward adipocytes compared to SC-DFATs and ASCs. Transplantation of BM-DFATs and BM-MSCs with PHG enhanced bone mineral density at the injection sites compared to PHG alone in the mouse femoral fracture model. CONCLUSIONS We showed that phenotypic characteristics of BM-DFATs were similar to those of BM-MSCs. BM-DFATs exhibited higher osteogenic differentiation potential and bone regenerative ability compared to SC-DFATs and ASCs. These results suggest that BM-DFATs may be suitable sources of cell-based therapies for patients with nonunion bone fracture.
Collapse
Affiliation(s)
- Hirokatsu Sawada
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Tomohiko Kazama
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Yuki Nagaoka
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Yoshinori Arai
- Department of Oral and Maxillofacial Radiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Hiroshi Uei
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuaki Tokuhashi
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Kazuyoshi Nakanishi
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-Ku, Tokyo, 173-8610, Japan.
| |
Collapse
|
4
|
Wang J, Cai J, Zhang Q, Wen J, Liao Y, Lu F. Fat transplantation induces dermal adipose regeneration and reverses skin fibrosis through dedifferentiation and redifferentiation of adipocytes. Stem Cell Res Ther 2022; 13:499. [PMID: 36210466 PMCID: PMC9549649 DOI: 10.1186/s13287-022-03127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/07/2022] [Indexed: 11/18/2022] Open
Abstract
Background Localized scleroderma causes cosmetic disfigurement, joint contractures, and other functional impairment, but no currently available medications can reverse the resulting skin lesions. Fat grafting is beneficial for reversing skin fibrosis; however, the mechanism by which adipose tissue transplantation contributes to lesion improvement has not been fully clarified. The purpose of our study was to verify the therapeutic effect of fat grafts in reversing skin fibrosis. Methods Inguinal fat pads from AdipoqCreER+;mT/mG mice, which were treated with tamoxifen, were transplanted to the skin lesion in bleomycin-treated wild-type C57 mice. Tdtomato transgenic mice-derived adipocytes, adipose-derived stem cells (ASCs), dedifferentiated adipocytes (DAs) were embedded in matrigel and transplanted beneath the skin lesion of bleomycin-treated wild-type C57 mice. A transwell co‐culture system was used to verify the effect of ASCs, adipocytes or DAs on scleroderma fibroblasts or monocytes. Results Adipocytes from the fat grafts could undergo dedifferentiation and redifferentiation for dermal adipose tissue re-accumulation within the skin lesion. Moreover, compared with ASCs and adipocytes, DAs show greater potency of inducing adipogenesis. ASCs and DAs showed comparable effect on inducing angiogenesis and suppressing macrophage infiltration in fibrotic skin. Co-culture assay showed that DAs and ASCs were able to reduce fibrosis-related genes in human scleroderma fibroblasts and drive M2 macrophage polarization. Conclusion Our results indicated that adipocytes would transform into a more functional and dedifferentiated state and reverse dermal fibrosis, by promoting dermal adipose tissue regeneration, improving angiogenesis, suppressing macrophage-mediated inflammation and myofibroblast accumulation.
Collapse
|
5
|
Murata Y, Obinata D, Matsumoto T, Ikado Y, Kano K, Fukuda N, Yamaguchi K, Takahashi S. Urethral injection of dedifferentiated fat cells ameliorates sphincter damage and voiding dysfunction in a rat model of persistence stress urinary incontinence. Int Urol Nephrol 2022; 54:789-797. [PMID: 35175498 PMCID: PMC8924144 DOI: 10.1007/s11255-021-03083-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022]
Abstract
Purpose Dedifferentiated fat (DFAT) cells are mature adipocyte-derived multipotent cells that can be applicable to cell-based therapy for stress urinary incontinence (SUI). This study developed a persistence SUI model that allows long-term evaluation using a combination of vaginal distention (VD) and bilateral ovariectomy (OVX) in rats. Then, the therapeutic effects of DFAT cell transplantation in the persistence SUI model was examined. Methods In total, 48 Sprague–Dawley rats were divided into four groups and underwent VD (VD group), bilateral OVX (OVX group), VD and bilateral OVX (VD + OVX group), or sham operation (Control group). At 2, 4, and 6 weeks after injury, leak point pressure (LPP) and histological changes of the urethral sphincter were evaluated. Next, 14 rats undergoing VD and bilateral OVX were divided into two groups and administered urethral injection of DFAT cells (DFAT group) or fibroblasts (Fibroblast group). At 6 weeks after the injection, LPP and histology of the urethral sphincter were evaluated. Results The VD + OVX group retained a decrease in LPP with sphincter muscle atrophy at least until 6 weeks after injury. The LPP and urethral sphincter muscle atrophy in the DFAT group recovered better than those in the fibroblast group. Conclusions The persistence SUI model was created by a combination of VD and bilateral OVX in rats. Urethral injection of DFAT cells inhibited sphincter muscle atrophy and improved LPP in the persistence SUI model. These findings suggest that the DFAT cells may be an attractive cell source for cell-based therapy to treat SUI.
Collapse
Affiliation(s)
- Yasutaka Murata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Yuichiro Ikado
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Science, Nihon University, Fujisawa, Japan
| | - Noboru Fukuda
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Kenya Yamaguchi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Transplantation of Mature Adipocyte-Derived Dedifferentiated Fat Cells Facilitates Periodontal Tissue Regeneration of Class II Furcation Defects in Miniature Pigs. MATERIALS 2022; 15:ma15041311. [PMID: 35207844 PMCID: PMC8875781 DOI: 10.3390/ma15041311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 12/10/2022]
Abstract
Adipose tissue is composed mostly of adipocytes that are in contact with capillaries. By using a ceiling culture method based on buoyancy, lipid-free fibroblast-like cells, also known as dedifferentiated fat (DFAT) cells, can be separated from mature adipocytes with a large single lipid droplet. DFAT cells can re-establish their active proliferation ability and transdifferentiate into various cell types under appropriate culture conditions. Herein, we sought to compare the regenerative potential of collagen matrix alone (control) with autologous DFAT cell-loaded collagen matrix transplantation in adult miniature pigs (microminipigs; MMPs). We established and transplanted DFAT cells into inflammation-inducing periodontal class II furcation defects. At 12 weeks after cell transplantation, a marked attachment gain was observed based on the clinical parameters of probing depth (PD) and clinical attachment level (CAL). Additionally, micro computed tomography (CT) revealed hard tissue formation in furcation defects of the second premolar. The cemento-enamel junction and alveolar bone crest distance was significantly shorter following transplantation. Moreover, newly formed cellular cementum, well-oriented periodontal ligament-like fibers, and alveolar bone formation were observed via histological analysis. No teratomas were found in the internal organs of recipient MMPs. Taken together, these findings suggest that DFAT cells can safely enhance periodontal tissue regeneration.
Collapse
|
7
|
Takabatake K, Matsubara M, Yamachika E, Fujita Y, Arimura Y, Nakatsuji K, Nakano K, Nagatsuka H, Iida S. Comparing the Osteogenic Potential and Bone Regeneration Capacities of Dedifferentiated Fat Cells and Adipose-Derived Stem Cells In Vitro and In Vivo: Application of DFAT Cells Isolated by a Mesh Method. Int J Mol Sci 2021; 22:12392. [PMID: 34830277 PMCID: PMC8620969 DOI: 10.3390/ijms222212392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND We investigated and compared the osteogenic potential and bone regeneration capacities of dedifferentiated fat cells (DFAT cells) and adipose-derived stem cells (ASCs). METHOD We isolated DFAT cells and ASCs from GFP mice. DFAT cells were established by a new culture method using a mesh culture instead of a ceiling culture. The isolated DFAT cells and ASCs were incubated in osteogenic medium, then alizarin red staining, alkaline phosphatase (ALP) assays, and RT-PCR (for RUNX2, osteopontin, DLX5, osterix, and osteocalcin) were performed to evaluate the osteoblastic differentiation ability of both cell types in vitro. In vivo, the DFAT cells and ASCs were incubated in osteogenic medium for four weeks and seeded on collagen composite scaffolds, then implanted subcutaneously into the backs of mice. We then performed hematoxylin and eosin staining and immunostaining for GFP and osteocalcin. RESULTS The alizarin red-stained areas in DFAT cells showed weak calcification ability at two weeks, but high calcification ability at three weeks, similar to ASCs. The ALP levels of ASCs increased earlier than in DFAT cells and showed a significant difference (p < 0.05) at 6 and 9 days. The ALP levels of DFATs were higher than those of ASCs after 12 days. The expression levels of osteoblast marker genes (osterix and osteocalcin) of DFAT cells and ASCs were higher after osteogenic differentiation culture. CONCLUSION DFAT cells are easily isolated from a small amount of adipose tissue and are readily expanded with high purity; thus, DFAT cells are applicable to many tissue-engineering strategies and cell-based therapies.
Collapse
Affiliation(s)
- Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.T.); (K.N.); (H.N.)
| | - Masakazu Matsubara
- Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.A.); (K.N.); (S.I.)
| | - Eiki Yamachika
- Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.A.); (K.N.); (S.I.)
- Department of Dentistry, National Hospital Organization Okayama Medical Center, Okayama 701-1192, Japan
| | - Yuki Fujita
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Hospital, Okayama 700-8525, Japan;
| | - Yuki Arimura
- Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.A.); (K.N.); (S.I.)
| | - Kazuki Nakatsuji
- Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.A.); (K.N.); (S.I.)
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.T.); (K.N.); (H.N.)
| | - Histoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.T.); (K.N.); (H.N.)
| | - Seiji Iida
- Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.A.); (K.N.); (S.I.)
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Hospital, Okayama 700-8525, Japan;
| |
Collapse
|
8
|
Caneparo C, Sorroza-Martinez L, Chabaud S, Fradette J, Bolduc S. Considerations for the clinical use of stem cells in genitourinary regenerative medicine. World J Stem Cells 2021; 13:1480-1512. [PMID: 34786154 PMCID: PMC8567446 DOI: 10.4252/wjsc.v13.i10.1480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
The genitourinary tract can be affected by several pathologies which require repair or replacement to recover biological functions. Current therapeutic strategies are challenged by a growing shortage of adequate tissues. Therefore, new options must be considered for the treatment of patients, with the use of stem cells (SCs) being attractive. Two different strategies can be derived from stem cell use: Cell therapy and tissue therapy, mainly through tissue engineering. The recent advances using these approaches are described in this review, with a focus on stromal/mesenchymal cells found in adipose tissue. Indeed, the accessibility, high yield at harvest as well as anti-fibrotic, immunomodulatory and proangiogenic properties make adipose-derived stromal/SCs promising alternatives to the therapies currently offered to patients. Finally, an innovative technique allowing tissue reconstruction without exogenous material, the self-assembly approach, will be presented. Despite advances, more studies are needed to translate such approaches from the bench to clinics in urology. For the 21st century, cell and tissue therapies based on SCs are certainly the future of genitourinary regenerative medicine.
Collapse
Affiliation(s)
- Christophe Caneparo
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
| | - Luis Sorroza-Martinez
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
| | - Julie Fradette
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec G1V0A6, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec G1V0A6, Canada
| |
Collapse
|
9
|
Fujisaki S, Kajiya H, Yanagi T, Maeshiba M, Kakura K, Kido H, Ohno J. Enhancement of jaw bone regeneration via ERK1/2 activation using dedifferentiated fat cells. Cytotherapy 2021; 23:608-616. [PMID: 33863640 DOI: 10.1016/j.jcyt.2021.02.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AIMS Mesenchymal stem/stromal cells (MSCs) are multipotent and self-renewing cells that are extensively used in tissue engineering. Adipose tissues are known to be the source of two types of MSCs; namely, adipose tissue-derived MSCs (ASCs) and dedifferentiated fat (DFAT) cells. Although ASCs are sometimes transplanted for clinical cytotherapy, the effects of DFAT cell transplantation on mandibular bone healing remain unclear. METHODS The authors assessed whether DFAT cells have osteogenerative potential compared with ASCs in rats in vitro. In addition, to elucidate the ability of DFAT cells to regenerate the jaw bone, the authors examined the effects of DFAT cells on new bone formation in a mandibular defect model in (i) 30-week-old rats and (ii) ovariectomy-induced osteoporotic rats in vivo. RESULTS Osteoblast differentiation with bone morphogenetic protein 2 (BMP-2) or osteogenesis-induced medium upregulated the osteogenesis-related molecules in DFAT cells compared with those in ASCs. BMP-2 activated the phosphorylation signaling pathways of ERK1/2 and Smad2 in DFAT cells, but minor Smad1/5/9 activation was noted in ASCs. The transplantation of DFAT cells into normal or ovariectomy-induced osteoporotic rats with mandibular defects promoted new bone formation compared with that seen with ASCs. CONCLUSIONS DFAT cells promoted osteoblast differentiation and new bone formation through ERK1/2 and Smad2 signaling pathways in vitro. The transplantation of DFAT cells promoted new mandibular bone formation in vivo compared with that seen with ASCs. These results suggest that transplantation of ERK1/2-activated DFAT cells shorten the mandibular bone healing process in cytotherapy.
Collapse
Affiliation(s)
- Seiichi Fujisaki
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan; Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Hiroshi Kajiya
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan; Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan.
| | - Tsukasa Yanagi
- Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Munehisa Maeshiba
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan; Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Kae Kakura
- Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Hirofumi Kido
- Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Jun Ohno
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
10
|
Fujimaki H, Matsumine H, Osaki H, Ueta Y, Kamei W, Shimizu M, Hashimoto K, Fujii K, Kazama T, Matsumoto T, Niimi Y, Miyata M, Sakurai H. Corrigendum to "Dedifferentiated fat cells in polyglycolic acid-collagen nerve conduits promote rat facial nerve regeneration" [Regen Ther 11 (2019) 240-248]. Regen Ther 2020; 15:35-43. [PMID: 32551339 DOI: 10.1016/j.reth.2020.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
[This corrects the article DOI: 10.1016/j.reth.2019.08.004.].
Collapse
Affiliation(s)
- Hiroshi Fujimaki
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hajime Matsumine
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hironobu Osaki
- Department of Physiology, Division of Neurophysiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Yoshifumi Ueta
- Department of Physiology, Division of Neurophysiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Wataru Kamei
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Mari Shimizu
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Kazuki Hashimoto
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Kaori Fujii
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Tomohiko Kazama
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, 30-1 Ohyaguchikami-cho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Taro Matsumoto
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, 30-1 Ohyaguchikami-cho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Yosuke Niimi
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Mariko Miyata
- Department of Physiology, Division of Neurophysiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hiroyuki Sakurai
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
11
|
Tansriratanawong K, Tabei I, Ishikawa H, Ohyama A, Toyomura J, Sato S. Characterization and comparative DNA methylation profiling of four adipogenic genes in adipose-derived stem cells and dedifferentiated fat cells from aging subjects. Hum Cell 2020; 33:974-989. [PMID: 32495194 PMCID: PMC7505878 DOI: 10.1007/s13577-020-00379-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/14/2020] [Indexed: 12/20/2022]
Abstract
Adipose-derived stem cells (ASCs) and dedifferentiated fat (DFAT) cells are alternative cell sources in tissue engineering and regeneration because they are easily obtained and exhibit multilineage differentiation. However, aging may attenuate their regenerative potential and metabolic functions. Reports characterizing DFAT cells derived from aging donors are rare, and comparisons of DNA methylation profiles between aging ASCs and DFAT cells are poorly understood. Therefore, this study aimed to characterize DFAT cells relative to ASCs derived from aging subjects and compare the DNA methylation profiles of four adipogenic genes in these cells. ASCs and DFAT cells from aging donors exhibited characteristics similar to those of stem cells, including colony formation, proliferation, and multilineage differentiation abilities. However, compared with ASCs, DFAT cells exhibited increased proliferation, smooth muscle actin alpha (SMA-α) expression and decreased cellular senescence. DNA methylation profiling of ASCs and DFAT cells by combined bisulfite restriction analysis (COBRA) demonstrated hypermethylation patterns in three potent adipogenic genes—peroxisome proliferator-activated receptor gamma 2 (PPARγ2), fatty acid-binding protein 4 (FABP4), and lipoprotein lipase (LPL)—but hypomethylation of CCAAT/enhancer binding protein alpha (C/EBPα) in the aging group. Statistically significant differences were observed between the aging group and the young group. Epigenetic regulation maintains the stability of ASCs and DFAT cells in an age-dependent manner. Our findings suggested that although the DNA methylation patterns of three adipogenic genes correlated with hypermethylation and aging, ASCs and DFAT cells exhibited cellular stability and several stem cell characteristics, offering further opportunities for personalized regeneration and energy maintenance by adipogenesis during aging.
Collapse
Affiliation(s)
- Kallapat Tansriratanawong
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University, 6 Yothi Street Rajthevi, Bangkok, 10400, Thailand.
| | - Isao Tabei
- Department of Surgery, Jikei University School of Medicine, Tokyo, 105-0003, Japan
| | - Hiroshi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Akihiro Ohyama
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Junko Toyomura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Soh Sato
- Department of Periodontology, Nippon Dental University, Niigata, 951-1500, Japan
| |
Collapse
|
12
|
Yu Z, Liu S, Cui J, Song Y, Wang T, Song B, Peng P, Ma X. Early histological and ultrastructural changes in expanded murine scalp. Ultrastruct Pathol 2020; 44:141-152. [PMID: 31989853 DOI: 10.1080/01913123.2020.1720876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhou Yu
- Department of Plastic Surgery, Xijing Hospital; Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Shiqiang Liu
- Department of Plastic Surgery, Xijing Hospital; Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Jiangbo Cui
- Department of Plastic Surgery, Xijing Hospital; Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital; Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Tong Wang
- Department of Plastic Surgery, Xijing Hospital; Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Baoqiang Song
- Department of Plastic Surgery, Xijing Hospital; Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Pai Peng
- Department of Plastic Surgery, Xijing Hospital; Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Xianjie Ma
- Department of Plastic Surgery, Xijing Hospital; Air Force Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
13
|
Tateno A, Asano M, Akita D, Toriumi T, Tsurumachi-Iwasaki N, Kazama T, Arai Y, Matsumoto T, Kano K, Honda M. Transplantation of dedifferentiated fat cells combined with a biodegradable type I collagen-recombinant peptide scaffold for critical-size bone defects in rats. J Oral Sci 2019; 61:534-538. [PMID: 31631097 DOI: 10.2334/josnusd.18-0458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Tissue engineering is a promising approach to supplement existing treatment strategies for craniofacial bone regeneration. In this study, a type I collagen scaffold made from a recombinant peptide (RCP) with an Arg-Gly-Asp motif was developed, and its effect on regeneration in critical-size mandibular bone defects was evaluated. Additionally, the combined effect of the scaffold and lipid-free dedifferentiated fat (DFAT) cells was assessed. Briefly, DFAT cells were separated from mature adipocytes by using a ceiling culture technique based on buoyancy. A 3 cm × 4 cm critical-size bone defect was created in the rat mandible, and regeneration was evaluated by using RCP with DFAT cells. Then, cultured DFAT cells and adipose-derived stem cells (ASCs) were seeded onto RCP scaffolds (DFAT/RCP and ASC/RCP) and implanted into the bone defects. Micro-computed tomography imaging at 8 weeks after implantation showed significantly greater bone regeneration in the DFAT/RCP group than in the ASC/RCP and RCP-alone groups. Similarly, histological analysis showed significantly greater bone width in the DFAT/RCP group than in the ASC/RCP and RCP-alone groups. These findings suggest that DFAT/RCP is effective for bone formation in critical-size bone defects and that DFAT cells are a promising source for bone regeneration.
Collapse
Affiliation(s)
- Atsushi Tateno
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Masatake Asano
- Department of Pathology, Nihon University School of Dentistry.,Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry
| | - Daisuke Akita
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry
| | - Taku Toriumi
- Department of Oral Anatomy, Aichi Gakuin University School of Dentistry
| | | | - Tomohiko Kazama
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine
| | - Yoshinori Arai
- Department of Oral and Maxillofacial Radiology, Nihon University School of Dentistry
| | - Taro Matsumoto
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University
| | - Masaki Honda
- Department of Oral Anatomy, Aichi Gakuin University School of Dentistry
| |
Collapse
|
14
|
Fujimaki H, Matsumine H, Osaki H, Ueta Y, Kamei W, Shimizu M, Hashimoto K, Fujii K, Kazama T, Matsumoto T, Niimi Y, Miyata M, Sakurai H. Dedifferentiated fat cells in polyglycolic acid-collagen nerve conduits promote rat facial nerve regeneration. Regen Ther 2019; 11:240-248. [PMID: 31534987 PMCID: PMC6744597 DOI: 10.1016/j.reth.2019.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/22/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022] Open
Abstract
Introduction Polyglycolic acid (PGA) nerve conduits, an artificial biodegradable nerve regeneration-inducing tube currently used in clinical practice, are effective in regenerating peripheral nerves. Dedifferentiated fat (DFAT) cells differentiate into various cells including adipocytes, osteoblasts, chondrocytes, skeletal muscle cells, and myofibroblasts, when cultured in appropriate differentiation-inducing conditioned culture medium. This study made a hybrid artificial nerve conduit by filling a PGA conduit with DFAT cells, applied the conduit to a rat facial nerve defect model, and investigated the facial nerve regenerative ability of the conduit. Methods Under inhalational anesthesia, the buccal branch of the facial nerve in Lewis rats was exposed, and a 7-mm nerve defect was created. PGA nerve conduits were filled with DFAT cells, which were prepared from rat subcutaneous adipose tissue with type I collagen as a scaffold, and then grafted into the nerve defect sites in rats with a microscope (DFAT group) (n = 10). In other rats, PGA artificial nerve conduits alone were similarly grafted into the nerve defect sites (the control group) (n = 10). Reinnervation was confirmed at 13 weeks postoperatively by a retrograde tracer, followed by histological and physiological comparative studies. Results The mean number of myelinated fibers was significantly higher in DFAT group (1605 ± 806.23) than in the control group (543.6 ± 478.66). Myelin thickness was also significantly lager in DFAT group (0.57 ± 0.17 μm) than in the control group. (0.46 ± 0.14 μm). Although no significant difference was found in the amplitude of compound muscle action potential (CMAP) between DFAT group (2.84 ± 2.47 mV) and the control group (0.88 ± 0.56 mV), whisker motion was lager in DFAT group (9.22° ± 0.65°) than in the control group (1.9° ± 0.84°). Conclusions DFAT cell-filled PGA conduits were found to promote nerve regeneration in an experimental rat facial nerve defect model. PGA artificial conduits containing DFAT cells were made in this study. The facial nerve regenerative ability of conduits was evaluated in a rat model. Reinnervation was confirmed at 13 weeks postoperatively. The nerve regeneration promoting effect of DFAT cells was found in the model.
Collapse
Affiliation(s)
- Hiroshi Fujimaki
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hajime Matsumine
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
- Corresponding author. Fax: +81-3-3225-0940.
| | - Hironobu Osaki
- Department of Physiology, Division of Neurophysiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Yoshifumi Ueta
- Department of Physiology, Division of Neurophysiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Wataru Kamei
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Mari Shimizu
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Kazuki Hashimoto
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Kaori Fujii
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Tomohiko Kazama
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, 30-1 Ohyaguchikami-cho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Taro Matsumoto
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, 30-1 Ohyaguchikami-cho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Yosuke Niimi
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Mariko Miyata
- Department of Physiology, Division of Neurophysiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hiroyuki Sakurai
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
15
|
Côté JA, Ostinelli G, Gauthier MF, Lacasse A, Tchernof A. Focus on dedifferentiated adipocytes: characteristics, mechanisms, and possible applications. Cell Tissue Res 2019; 378:385-398. [DOI: 10.1007/s00441-019-03061-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 06/06/2019] [Indexed: 02/06/2023]
|
16
|
Kishimoto N, Honda Y, Momota Y, Tran SD. Dedifferentiated Fat (DFAT) cells: A cell source for oral and maxillofacial tissue engineering. Oral Dis 2018; 24:1161-1167. [PMID: 29356251 DOI: 10.1111/odi.12832] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 12/26/2022]
Abstract
Tissue engineering is a promising method for the regeneration of oral and maxillofacial tissues. Proper selection of a cell source is important for the desired application. This review describes the discovery and usefulness of dedifferentiated fat (DFAT) cells as a cell source for tissue engineering. Dedifferentiated Fat cells are a highly homogeneous cell population (high purity), highly proliferative, and possess a multilineage potential for differentiation into various cell types under proper in vitro inducing conditions and in vivo. Moreover, DFAT cells have a higher differentiation capability of becoming osteoblasts, chondrocytes, and adipocytes than do bone marrow-derived mesenchymal stem cells and/or adipose tissue-derived stem cells. The usefulness of DFAT cells in vivo for periodontal tissue, bone, peripheral nerve, muscle, cartilage, and fat tissue regeneration was reported. Dedifferentiated Fat cells obtained from the human buccal fat pad (BFP) are a minimally invasive procedure with limited esthetic complications for patients. The BFP is a convenient and accessible anatomical site to harvest DFAT cells for dentists and oral surgeons, and thus is a promising cell source for oral and maxillofacial tissue engineering.
Collapse
Affiliation(s)
- N Kishimoto
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Y Honda
- Institute of Dental Research, Osaka Dental University, Osaka, Japan
| | - Y Momota
- Department of Anesthesiology, Osaka Dental University, Osaka, Japan
| | - S D Tran
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Aragón IM, Imbroda BH, Lara MF. Cell Therapy Clinical Trials for Stress Urinary Incontinence: Current Status and Perspectives. Int J Med Sci 2018; 15:195-204. [PMID: 29483809 PMCID: PMC5820847 DOI: 10.7150/ijms.22130] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/22/2017] [Indexed: 12/11/2022] Open
Abstract
Stress urinary incontinence (SUI) affects 200 million people worldwide. Standard therapies often provide symptomatic relief, but without targeting the underlying etiology, and show tremendous patient-to-patient variability, limited success and complications associated with the procedures. We review in this article the latest clinical trials performed to treat SUI using cell-based therapies. These therapies, despite typically including only a small number of patients and short term evaluation of results, have proven to be feasible and safe. However, there is not yet a consensus for the best cell source to be used to treat SUI and not all patients may be suitable for these therapies. Therefore, more clinical trials should be promoted recruiting large number of patients and evaluating long term results.
Collapse
Affiliation(s)
- Isabel María Aragón
- Department of Urology, Virgen de la Victoria University Hospital, Campus Universitario de Teatinos, Málaga, Spain
| | - Bernardo Herrera Imbroda
- Department of Urology, Virgen de la Victoria University Hospital, Campus Universitario de Teatinos, Málaga, Spain
| | - María Fernanda Lara
- Department of Urology, Virgen de la Victoria University Hospital, Campus Universitario de Teatinos, Málaga, Spain
| |
Collapse
|
18
|
Buccal Fat Pad as a Potential Source of Stem Cells for Bone Regeneration: A Literature Review. Stem Cells Int 2017; 2017:8354640. [PMID: 28757880 PMCID: PMC5516750 DOI: 10.1155/2017/8354640] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/17/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022] Open
Abstract
Adipose tissues hold great promise in bone tissue engineering since they are available in large quantities as a waste material. The buccal fat pad (BFP) is a specialized adipose tissue that is easy to harvest and contains a rich blood supply, and its harvesting causes low complications for patients. This review focuses on the characteristics and osteogenic capability of stem cells derived from BFP as a valuable cell source for bone tissue engineering. An electronic search was performed on all in vitro and in vivo studies that used stem cells from BFP for the purpose of bone tissue engineering from 2010 until 2016. This review was organized according to the PRISMA statement. Adipose-derived stem cells derived from BFP (BFPSCs) were compared with adipose tissues from other parts of the body (AdSCs). Moreover, the osteogenic capability of dedifferentiated fat cells (DFAT) derived from BFP (BFP-DFAT) has been reported in comparison with BFPSCs. BFP is an easily accessible source of stem cells that can be obtained via the oral cavity without injury to the external body surface. Comparing BFPSCs with AdSCs indicated similar cell yield, morphology, and multilineage differentiation. However, BFPSCs proliferate faster and are more prone to producing colonies than AdSCs.
Collapse
|
19
|
Ikado Y, Obinata D, Matsumoto T, Murata Y, Kano K, Fukuda N, Yamaguchi K, Takahashi S. Transplantation of mature adipocyte-derived dedifferentiated fat cells for the treatment of vesicoureteral reflux in a rat model. Int Urol Nephrol 2016; 48:1951-1960. [PMID: 27683029 DOI: 10.1007/s11255-016-1426-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/21/2016] [Indexed: 01/19/2023]
Abstract
PURPOSE Autologous cells potentially provide an ideal injectable substance for management in vesicoureteral reflux (VUR). The aim of this study is to examine the effects of mature adipocyte-derived dedifferentiated fat (DFAT) cell transplantation on VUR in a rat bladder pressurization-induced VUR model. METHODS To create VUR, Sprague-Dawley rats underwent urethral clamping and placement of cystostomy followed by intravesical pressurization. Rat DFAT cells (1 × 106 cells, DFAT group, n = 5) or saline (control group, n = 5) was then injected into the bilateral vesicoureteral junctions. Two weeks later, VUR grade was evaluated on cystography. The number of apoptotic cells in the renal pelvic urothelium, the ureteral inner/outer diameter ratio and the area of connective tissue in the posterior bladder wall were measured. RESULTS The reflux grade in the DFAT group was significantly lower than that in the control group. The number of apoptotic cells in the renal pelvic urothelium, ureteral inner/outer diameter ratio and connective tissue area in DFAT group were significantly lower in comparison with the control group. CONCLUSIONS DFAT cell transplantation improved VUR and exerted nephroprotective effects in a rat VUR model.
Collapse
Affiliation(s)
- Yuichiro Ikado
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Yasutaka Murata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Science, Nihon University, Fujisawa, Japan
| | - Noboru Fukuda
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan.,Advanced Medicine and Advanced Research Institute of Sciences and Humanities, Nihon University, Tokyo, Japan
| | - Kenya Yamaguchi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Boissier R, Magalon J, Sabatier F, Veran J, Giraudo L, Giusiano S, Garcia S, Dignat-George F, Arnaud L, Magalon G, Lechevallier E, Berdah S, Karsenty G. Histological and Urodynamic Effects of Autologous Stromal Vascular Fraction Extracted from Fat Tissue with Minimal Ex Vivo Manipulation in a Porcine Model of Intrinsic Sphincter Deficiency. J Urol 2016; 196:934-42. [PMID: 27265221 DOI: 10.1016/j.juro.2016.04.099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2016] [Indexed: 01/28/2023]
Abstract
PURPOSE To evaluate the healing abilities of autologous stem cell therapy (stromal vascular fraction) prepared from adipose tissue we used an automated system without an ex vivo culture phase in a pig model of intrinsic sphincteric deficiency. MATERIALS AND METHODS A total of 15 pigs underwent endoscopic section of the urethral sphincter. Animals were then randomly assigned to 3 groups, including 1) controls without stromal vascular fraction injection, 2) early injection with stromal vascular fraction 2 to 3 days after section and 3) late stromal vascular fraction injection delivery 30 days after injury. Extraction and stromal vascular fraction injection were performed as a single procedure. The stromal vascular fraction was characterized by flow cytometry. Mesenchymal stem cell-like cells were enumerated by clonogenicity (cfu fibroblast) assay. Study end points included histological assessment of the urethral injury surface and urodynamics to determine maximum urethral pressure. RESULTS Flow cytometry analysis revealed a mesenchymal stem cell-like phenotype in a mean ± SD of 47.3% ± 11.8% of stromal vascular fraction cells. The cfu fibroblast frequency was 1.3 to 6.6/100 stromal vascular fraction cells (1.3% to 6.6%). Stromal vascular fraction injection was associated with a reduction of the urethral injury surface in the early and late injection groups compared with the respective controls (7% vs 17% and 1% vs 13%, p = 0.050 and 0.029, respectively). On day 30 after injection maximum urethral pressure was significantly higher in the injected groups than in the control group, that is 64% vs 50% of maximum urethral pressure on day 0 (p = 0.04). CONCLUSIONS These data demonstrate the ability of an autologous stromal vascular fraction to improve the urethral healing process in a large animal model of intrinsic sphincteric deficiency.
Collapse
Affiliation(s)
- Romain Boissier
- Aix-Marseille University, 13284, Marseille, France; Department of Urology and Kidney Transplantation, 13285, Assistance Publique Hôpitaux de Marseille, Marseille, France.
| | - Jeremy Magalon
- Institut national de la santé et de la recherche médicale Unités mixtes de recherche 1076, Aix-Marseille University, 13284, Marseille, France; Department of Cell Therapy, Institut national de la santé et de la recherche médicale Unités mixtes de recherche 1076, 13285, Assistance Publique Hôpitaux de Marseille, Marseille, France; Center for Research and Cliniques en biothérapies 1409, 13285, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Florence Sabatier
- Institut national de la santé et de la recherche médicale Unités mixtes de recherche 1076, Aix-Marseille University, 13284, Marseille, France; Department of Cell Therapy, Institut national de la santé et de la recherche médicale Unités mixtes de recherche 1076, 13285, Assistance Publique Hôpitaux de Marseille, Marseille, France; Center for Research and Cliniques en biothérapies 1409, 13285, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Julie Veran
- Center for Research and Cliniques en biothérapies 1409, 13285, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Laurent Giraudo
- Center for Research and Cliniques en biothérapies 1409, 13285, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Sophie Giusiano
- Aix-Marseille University, 13284, Marseille, France; Center for Research and Cliniques en biothérapies 1409, 13285, Assistance Publique Hôpitaux de Marseille, Marseille, France; Department of Pathology, 13015, Assistance Publique Hôpitaux de Marseille, Nord University Hospital, Marseille, France
| | | | - Françoise Dignat-George
- Department of Biology and Hematology, 13285, Assistance Publique Hôpitaux de Marseille, Hospital Conception, Marseille, France
| | - Laurent Arnaud
- Department of Biology and Hematology, 13285, Assistance Publique Hôpitaux de Marseille, Hospital Conception, Marseille, France
| | - Guy Magalon
- Aix-Marseille University, 13284, Marseille, France; Department of Plastic and Reconstructive Surgery, 13285, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Eric Lechevallier
- Aix-Marseille University, 13284, Marseille, France; Department of Urology and Kidney Transplantation, 13285, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Stephane Berdah
- Center for Research and Teaching in Surgery, Aix-Marseille University, 13284, Marseille, France; Aix-Marseille University, 13284, Marseille, France
| | - Gilles Karsenty
- Aix-Marseille University, 13284, Marseille, France; Department of Urology and Kidney Transplantation, 13285, Assistance Publique Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
21
|
Shimizu Y, Sato S. In vitro study on regeneration of periodontal tissue microvasculature using human dedifferentiated fat cells. J Periodontol 2016; 86:129-36. [PMID: 25102139 DOI: 10.1902/jop.2014.140045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Human dedifferentiated fat cells (HDFATs) may be a new cell type suitable for regenerative therapies. The aim of this study is to assess the potential of HDFATs for vascular regeneration of periodontal tissue. To do this, HDFATs and human gingival endothelial cells (HGECs) were cocultivated, and vascular regeneration was examined in vitro. METHODS HDFATs were isolated from subcutaneous adipose tissue, and HGECs were isolated from gingival cells using anti-cluster of differentiation 31 antibody-coated magnetic beads. HDFATs were cocultured with HGECs in microvascular endothelial cell growth medium-2 (EGM-2MV) for 7 days. Expression of endothelial cell (EC) markers, the formation of capillary-like tubes, and the expression of pericyte markers were determined. RESULTS HDFATs, cultured in EGM-2MV or cocultured with HGECs, expressed EC markers. HDFATs in both conditions initiated tube formation within 5 hours of seeding and formed extensive capillary-like structures within 12 hours. These structures disintegrated within 24 hours when cells were cultured in EGM-2MV alone, whereas cocultured HDFATs maintained tubes for >24 hours. Cocultured HDFATs significantly increased expression of pericyte markers, a cell type associated with microvasculature. CONCLUSION HDFATs possess the ability to express EC markers, and coculture with HGECs promotes differentiation into pericytes involved in the maturation and stabilization of the microvasculature.
Collapse
Affiliation(s)
- Yutaka Shimizu
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | | |
Collapse
|
22
|
Tsurumachi N, Akita D, Kano K, Matsumoto T, Toriumi T, Kazama T, Oki Y, Tamura Y, Tonogi M, Isokawa K, Shimizu N, Honda M. Small Buccal Fat Pad Cells Have High Osteogenic Differentiation Potential. Tissue Eng Part C Methods 2016; 22:250-9. [DOI: 10.1089/ten.tec.2015.0420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Niina Tsurumachi
- Nihon University Graduate School of Dentistry, Chiyoda-ku, Japan
| | - Daisuke Akita
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Taku Toriumi
- Department of Anatomy, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Tomohiko Kazama
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Yoshinao Oki
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Yoko Tamura
- Department of Orthodontics, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Morio Tonogi
- Department of Oral Surgery, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Keitaro Isokawa
- Department of Anatomy, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Noriyoshi Shimizu
- Department of Orthodontics, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Masaki Honda
- Department of Oral Anatomy, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| |
Collapse
|
23
|
Jumabay M, Boström KI. Dedifferentiated fat cells: A cell source for regenerative medicine. World J Stem Cells 2015; 7:1202-1214. [PMID: 26640620 PMCID: PMC4663373 DOI: 10.4252/wjsc.v7.i10.1202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/02/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023] Open
Abstract
The identification of an ideal cell source for tissue regeneration remains a challenge in the stem cell field. The ability of progeny cells to differentiate into other cell types is important for the processes of tissue reconstruction and tissue engineering and has clinical, biochemical or molecular implications. The adaptation of stem cells from adipose tissue for use in regenerative medicine has created a new role for adipocytes. Mature adipocytes can easily be isolated from adipose cell suspensions and allowed to dedifferentiate into lipid-free multipotent cells, referred to as dedifferentiated fat (DFAT) cells. Compared to other adult stem cells, the DFAT cells have unique advantages in their abundance, ease of isolation and homogeneity. Under proper condition in vitro and in vivo, the DFAT cells have exhibited adipogenic, osteogenic, chondrogenic, cardiomyogenc, angiogenic, myogenic, and neurogenic potentials. In this review, we first discuss the phenomena of dedifferentiation and transdifferentiation of cells, and then dedifferentiation of adipocytes in particular. Understanding the dedifferentiation process itself may contribute to our knowledge of normal growth processes, as well as mechanisms of disease. Second, we highlight new developments in DFAT cell culture and summarize the current understanding of DFAT cell properties. The unique features of DFAT cells are promising for clinical applications such as tissue regeneration.
Collapse
|
24
|
Application of Green Tea Catechin for Inducing the Osteogenic Differentiation of Human Dedifferentiated Fat Cells in Vitro. Int J Mol Sci 2015; 16:27988-8000. [PMID: 26602917 PMCID: PMC4691028 DOI: 10.3390/ijms161226081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 12/21/2022] Open
Abstract
Despite advances in stem cell biology, there are few effective techniques to promote the osteogenic differentiation of human primary dedifferentiated fat (DFAT) cells. We attempted to investigate whether epigallocatechin-3-gallate (EGCG), the main component of green tea catechin, facilitates early osteogenic differentiation and mineralization on DFAT cells in vitro. DFAT cells were treated with EGCG (1.25-10 μM) in osteogenic medium (OM) with or without 100 nM dexamethasone (Dex) for 12 days (hereafter two osteogenic media were designated as OM(Dex) and OM). Supplementation of 1.25 μM EGCG to both the media effectively increased the mRNA expression of collagen 1 (COL1A1) and runt-related transcription factor 2 (RUNX2) and also increased proliferation and mineralization. Compared to OM(Dex) with EGCG, OM with EGCG induced earlier expression for COL1A1 and RUNX2 at day 1 and higher mineralization level at day 12. OM(Dex) with 10 μM EGCG remarkably hampered the proliferation of the DFAT cells. These results suggest that OM(without Dex) with EGCG might be a preferable medium to promote proliferation and to induce osteoblast differentiation of DFAT cells. Our findings provide an insight for the combinatory use of EGCG and DFAT cells for bone regeneration and stem cell-based therapy.
Collapse
|
25
|
Abstract
Introduction Adipocytes can dedifferentiate into fibroblast-like cells in vitro and thereby acquire proliferation and multipotent capacities to participate in the repair of various organs and tissues. Whether dedifferentiation occurs under physiological or pathological conditions in vivo is unknown. Methods A tissue expander was placed under the inguinal fat pads of rats and gradually expanded by injection of water. Samples were collected at various time points, and morphological, histological, cytological, ultrastructural, and gene expression analyses were conducted. In a separate experiment, purified green fluorescent protein+ adipocytes were transplanted into C57 mice and collected at various time points. The transplanted adipocytes were assessed by bioluminescence imaging and whole-mount staining. Results The expanded fat pad was obviously thinner than the untreated fat pad on the opposite side. It was also tougher in texture and with more blood vessels attached. Hematoxylin and eosin staining and transmission electron microscopy indicated there were fewer monolocular adipocytes in the expanded fat pad and the morphology of these cells was altered, most notably their lipid content was discarded. Immunohistochemistry showed that the expanded fat pad contained an increased number of proliferative cells, which may have been derived from adipocytes. Following removal of the tissue expander, many small adipocytes were observed. Bioluminescence imaging suggested that some adipocytes survived when transplanted into an ischemic-hypoxic environment. Whole-mount staining revealed that surviving adipocytes underwent a process similar to adipocyte dedifferentiation in vitro. Monolocular adipocytes became multilocular adipocytes and then fibroblast-like cells. Conclusions Mature adipocytes may be able to dedifferentiate in vivo, and this may be an adipose tissue self-repair mechanism. The capacity of adipocytes to dedifferentiate into stem cell-like cells may also have a more general role in the regeneration of many tissues, notably in fat grafting.
Collapse
|
26
|
Lessard J, Côté JA, Lapointe M, Pelletier M, Nadeau M, Marceau S, Biertho L, Tchernof A. Generation of human adipose stem cells through dedifferentiation of mature adipocytes in ceiling cultures. J Vis Exp 2015:52485. [PMID: 25867041 PMCID: PMC4401230 DOI: 10.3791/52485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mature adipocytes have been shown to reverse their phenotype into fibroblast-like cells in vitro through a technique called ceiling culture. Mature adipocytes can also be isolated from fresh adipose tissue for depot-specific characterization of their function and metabolic properties. Here, we describe a well-established protocol to isolate mature adipocytes from adipose tissues using collagenase digestion, and subsequent steps to perform ceiling cultures. Briefly, adipose tissues are incubated in a Krebs-Ringer-Henseleit buffer containing collagenase to disrupt tissue matrix. Floating mature adipocytes are collected on the top surface of the buffer. Mature cells are plated in a T25-flask completely filled with media and incubated upside down for a week. An alternative 6-well plate culture approach allows the characterization of adipocytes undergoing dedifferentiation. Adipocyte morphology drastically changes over time of culture. Immunofluorescence can be easily performed on slides cultivated in 6-well plates as demonstrated by FABP4 immunofluorescence staining. FABP4 protein is present in mature adipocytes but down-regulated through dedifferentiation of fat cells. Mature adipocyte dedifferentiation may represent a new avenue for cell therapy and tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - André Tchernof
- IUCPQ Research Center; CHU de Québec Research Center; Laval University;
| |
Collapse
|
27
|
Hsiao AY, Okitsu T, Onoe H, Kiyosawa M, Teramae H, Iwanaga S, Kazama T, Matsumoto T, Takeuchi S. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology. PLoS One 2015; 10:e0119010. [PMID: 25734774 PMCID: PMC4348165 DOI: 10.1371/journal.pone.0119010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/08/2015] [Indexed: 01/09/2023] Open
Abstract
The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments.
Collapse
Affiliation(s)
- Amy Y. Hsiao
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Teru Okitsu
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- ERATO Takeuchi Biohybrid Innovation Project, Japan Science and Technology Agency, Tokyo, Japan
| | - Hiroaki Onoe
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- ERATO Takeuchi Biohybrid Innovation Project, Japan Science and Technology Agency, Tokyo, Japan
| | - Mahiro Kiyosawa
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- ERATO Takeuchi Biohybrid Innovation Project, Japan Science and Technology Agency, Tokyo, Japan
| | - Hiroki Teramae
- Faculty of Teacher Education, Shumei University, Chiba, Japan
| | - Shintaroh Iwanaga
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- ERATO Takeuchi Biohybrid Innovation Project, Japan Science and Technology Agency, Tokyo, Japan
| | - Tomohiko Kazama
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo, Japan
| | - Taro Matsumoto
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo, Japan
| | - Shoji Takeuchi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- ERATO Takeuchi Biohybrid Innovation Project, Japan Science and Technology Agency, Tokyo, Japan
| |
Collapse
|
28
|
Herrera-Imbroda B, Lara MF, Izeta A, Sievert KD, Hart ML. Stress urinary incontinence animal models as a tool to study cell-based regenerative therapies targeting the urethral sphincter. Adv Drug Deliv Rev 2015; 82-83:106-16. [PMID: 25453264 DOI: 10.1016/j.addr.2014.10.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 01/19/2023]
Abstract
Urinary incontinence (UI) is a major health problem causing a significant social and economic impact affecting more than 200million people (women and men) worldwide. Over the past few years researchers have been investigating cell therapy as a promising approach for the treatment of stress urinary incontinence (SUI) since such an approach may improve the function of a weakened sphincter. Currently, a diverse collection of SUI animal models is available. We describe the features of the different models of SUI/urethral dysfunction and the pros and cons of these animal models in regard to cell therapy applications. We also discuss different cell therapy approaches and cell types tested in preclinical animal models. Finally, we propose new research approaches and perspectives to ensure the use of cellular therapy becomes a real treatment option for SUI.
Collapse
|
29
|
Song N, Kou L, Lu XW, Sugawara A, Shimizu Y, Wu MK, Du L, Wang H, Sato S, Shen JF. The perivascular phenotype and behaviors of dedifferentiated cells derived from human mature adipocytes. Biochem Biophys Res Commun 2015; 457:479-84. [DOI: 10.1016/j.bbrc.2015.01.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 01/10/2015] [Indexed: 01/29/2023]
|
30
|
Adipocyte-derived and dedifferentiated fat cells promoting facial nerve regeneration in a rat model. Plast Reconstr Surg 2014; 134:686-697. [PMID: 25357029 DOI: 10.1097/prs.0000000000000537] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Dedifferentiated fat cells, obtained from the ex vivo ceiling culture of mature adipocytes of mammals, have a high proliferative potential and pluripotency. The authors transplanted dedifferentiated fat cells into a nerve defect created in rat facial nerve and evaluated nerve regeneration ability. METHODS The buccal branch of the facial nerve of rats was exposed, and a 7-mm nerve defect was created. Green fluorescent protein-positive dedifferentiated fat cells prepared from adipocytes were mixed with type 1 collagen scaffold and infused into a silicone tube, which was then transplanted into the nerve defect in a green fluorescent protein-negative rat (the dedifferentiated fat group). Regenerated nerves were excised at 13 weeks after transplantation and examined histologically and physiologically. The findings were compared with those of autografts and silicone tubes loaded with collagen gel alone (the control group) transplanted similarly. RESULTS Axon diameter of regenerated nerve increased significantly in the dedifferentiated fat group compared with the control group, whereas no significant difference was found between the dedifferentiated fat and autograft groups. Myelin thickness was found to be largest in the autograft group, followed by the dedifferentiated fat and the control groups, showing significant differences between all pairs of groups. Evaluation of physiologic function of nerves by compound muscle action potential revealed a significantly better result in the dedifferentiated fat group than in the control group. The regenerated nerves in the dedifferentiated fat group had S100 and green fluorescent protein-double-positive Schwann-like supportive cells. CONCLUSION After being transplanted into a facial nerve defect, dedifferentiated fat cells promoted the maturation of the regenerated nerve.
Collapse
|
31
|
Tansriratanawong K, Tamaki Y, Ishikawa H, Sato S. Co-culture with periodontal ligament stem cells enhances osteogenic gene expression in de-differentiated fat cells. Hum Cell 2014; 27:151-61. [PMID: 24573839 PMCID: PMC4186972 DOI: 10.1007/s13577-014-0091-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/03/2014] [Indexed: 12/19/2022]
Abstract
In recent decades, de-differentiated fat cells (DFAT cells) have emerged in regenerative medicine because of their trans-differentiation capability and the fact that their characteristics are similar to bone marrow mesenchymal stem cells. Even so, there is no evidence to support the osteogenic induction using DFAT cells in periodontal regeneration and also the co-culture system. Consequently, this study sought to evaluate the DFAT cells co-culture with periodontal ligament stem cells (PDLSCs) in vitro in terms of gene expression by comparing runt-related transcription factor 2 (RUNX2) and Peroxisome proliferator-activated receptor gamma 2 (PPARγ2) genes. We isolated DFAT cells from mature adipocytes and compared proliferation with PDLSCs. After co-culture with PDLSCs, we analyzed transcriptional activity implying by DNA methylation in all adipogenic gene promoters using combined bisulfite restriction analysis. We compared gene expression in RUNX2 gene with the PPARγ2 gene using quantitative RT-PCR. After being sub-cultured, DFAT cells demonstrated morphology similar to fibroblast-like cells. At the same time, PDLSCs established all stem cell characteristics. Interestingly, the co-culture system attenuated proliferation while enhancing osteogenic gene expression in RUNX2 gene. Using the co-culture system, DFAT cells could trans-differentiate into osteogenic lineage enhancing, but conversely, their adipogenic characteristic diminished. Therefore, DFAT cells and the co-culture system might be a novel cell-based therapy for promoting osteogenic differentiation in periodontal regeneration.
Collapse
Affiliation(s)
- Kallapat Tansriratanawong
- Department of NDU Life Sciences, Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan,
| | | | | | | |
Collapse
|
32
|
Hyvönen MT, Spalding KL. Maintenance of white adipose tissue in man. Int J Biochem Cell Biol 2014; 56:123-32. [PMID: 25240584 DOI: 10.1016/j.biocel.2014.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/30/2014] [Accepted: 09/09/2014] [Indexed: 12/18/2022]
Abstract
Obesity is increasing in an epidemic manner in most countries and constitutes a public health problem by enhancing the risk for diseases such as diabetes, fatty liver disease and atherosclerosis. Together these diseases form a cluster referred to as the metabolic syndrome. Despite the negative health consequences associated with excess adipose tissue, very little is known about the origin and maintenance of white adipose tissue in man. In this review we discuss what is known about the turnover of adult human adipocytes and their precursors, as well as adipose tissue heterogeneity, plasticity and developmental origins. The focus of this review is human tissue, however in many cases human data are missing and are inferred from animal studies. As such, reference to animal studies are made where human data is not available. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation.
Collapse
Affiliation(s)
- Mervi T Hyvönen
- Department of Cell and Molecular Biology, Karolinska Institute, Berzelius väg 35, Stockholm 171-77, Sweden
| | - Kirsty L Spalding
- Department of Cell and Molecular Biology, Karolinska Institute, Berzelius väg 35, Stockholm 171-77, Sweden.
| |
Collapse
|
33
|
Kou L, Lu XW, Wu MK, Wang H, Zhang YJ, Sato S, Shen JF. The phenotype and tissue-specific nature of multipotent cells derived from human mature adipocytes. Biochem Biophys Res Commun 2014; 444:543-8. [PMID: 24486314 DOI: 10.1016/j.bbrc.2014.01.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 01/20/2014] [Indexed: 02/05/2023]
Abstract
Dedifferentiated fat (DFAT) cells derived from mature adipocytes have been considered to be a homogeneous group of multipotent cells, which present to be an alternative source of adult stem cells for regenerative medicine. However, many aspects of the cellular nature about DFAT cells remained unclarified. This study aimed to elucidate the basic characteristics of DFAT cells underlying their functions and differentiation potentials. By modified ceiling culture technique, DFAT cells were converted from human mature adipocytes from the human buccal fat pads. Flow cytometry analysis revealed that those derived cells were a homogeneous population of CD13(+) CD29(+) CD105(+) CD44(+) CD31(-) CD34(-) CD309(-) α-SMA(-) cells. DFAT cells in this study demonstrated tissue-specific differentiation properties with strong adipogenic but much weaker osteogenic capacity. Neither did they express endothelial markers under angiogenic induction.
Collapse
Affiliation(s)
- Liang Kou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiao-Wen Lu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Min-Ke Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu-Jiao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Soh Sato
- School of Life Dentistry at Niigata, Nippon Dental University, Niigata 951-8580, Japan
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; School of Life Dentistry at Niigata, Nippon Dental University, Niigata 951-8580, Japan.
| |
Collapse
|
34
|
Jumabay M, Abdmaulen R, Ly A, Cubberly MR, Shahmirian LJ, Heydarkhan-Hagvall S, Dumesic DA, Yao Y, Boström KI. Pluripotent stem cells derived from mouse and human white mature adipocytes. Stem Cells Transl Med 2014; 3:161-71. [PMID: 24396033 DOI: 10.5966/sctm.2013-0107] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
White mature adipocytes give rise to so-called dedifferentiated fat (DFAT) cells that spontaneously undergo multilineage differentiation. In this study, we defined stem cell characteristics of DFAT cells as they are generated from adipocytes and the relationship between these characteristics and lineage differentiation. Both mouse and human DFAT cells, prepared from adipose tissue and lipoaspirate, respectively, showed evidence of pluripotency, with a maximum 5-7 days after adipocyte isolation. The DFAT cells spontaneously formed clusters in culture, which transiently expressed multiple stem cell markers, including stage-specific embryonic antigens, and Sca-1 (mouse) and CD105 (human), as determined by real-time polymerase chain reaction, fluorescence-activated cell sorting, and immunostaining. As the stem cell markers decreased, markers characteristic of the three germ layers and specific lineage differentiation, such as α-fetoprotein (endoderm, hepatic), Neurofilament-66 (ectoderm, neurogenic), and Troponin I (mesoderm, cardiomyogenic), increased. However, no teratoma formation was detected after injection in immunodeficient mice. A novel modification of the adipocyte isolation aimed at ensuring the initial purity of the adipocytes and avoiding ceiling culture allowed isolation of DFAT cells with pluripotent characteristics. Thus, the adipocyte-derived DFAT cells represent a plastic stem cell population that is highly responsive to changes in culture conditions and may benefit cell-based therapies.
Collapse
Affiliation(s)
- Medet Jumabay
- Division of Cardiology, Division of Cardiothoracic Surgery, and Department of Obstetrics and Gynecology, David Geffen School of Medicine, and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kono S, Kazama T, Kano K, Harada K, Uechi M, Matsumoto T. Phenotypic and functional properties of feline dedifferentiated fat cells and adipose-derived stem cells. Vet J 2013; 199:88-96. [PMID: 24300011 DOI: 10.1016/j.tvjl.2013.10.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/23/2013] [Accepted: 10/27/2013] [Indexed: 12/17/2022]
Abstract
It has been reported that mature adipocyte-derived dedifferentiated fat (DFAT) cells show multilineage differentiation potential similar to that observed in mesenchymal stem cells. Since DFAT cells can be prepared from a small quantity of adipose tissue, they could facilitate cell-based therapies in small companion animals such as cats. The present study examined whether multipotent DFAT cells can be generated from feline adipose tissue, and the properties of DFAT cells were compared with those of adipose-derived stem cells (ASCs). DFAT cells and ASCs were prepared from the floating mature adipocyte fraction and the stromal vascular fraction, respectively, of collagenase-digested feline omental adipose tissue. Both cell types were evaluated for growth kinetics, colony-forming unit fibroblast (CFU-F) frequency, immunophenotypic properties, and multilineage differentiation potential. DFAT cells and ASCs could be generated from approximately 1g of adipose tissue and were grown and subcultured on laminin-coated dishes. The frequency of CFU-Fs in DFAT cells (35.8%) was significantly higher than that in ASCs (20.8%) at passage 1 (P1). DFAT cells and ASCs displayed similar immunophenotypes (CD44(+), CD90(+), CD105(+), CD14(-), CD34(-) and CD45(-)). Alpha-smooth muscle actin-positive cells were readily detected in ASCs (15.2±7.2%) but were rare in DFAT cells (2.2±3.2%) at P1. Both cell types exhibited adipogenic, osteogenic, chondrogenic, and smooth muscle cell differentiation potential in vitro. In conclusion, feline DFAT cells exhibited similar properties to ASCs but displayed higher CFU-F frequency and greater homogeneity. DFAT cells, like ASCs, may be an attractive source for cell-based therapies in cats.
Collapse
Affiliation(s)
- Shota Kono
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Medicine, College of Bioresource Science, Nihon University, Fujisawa 252-0880, Japan
| | - Tomohiko Kazama
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Science, Nihon University, Fujisawa 252-0880, Japan
| | - Kayoko Harada
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Medicine, College of Bioresource Science, Nihon University, Fujisawa 252-0880, Japan
| | - Masami Uechi
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Medicine, College of Bioresource Science, Nihon University, Fujisawa 252-0880, Japan
| | - Taro Matsumoto
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| |
Collapse
|
36
|
Thaker H, Sharma AK. Regenerative medicine based applications to combat stress urinary incontinence. World J Stem Cells 2013; 5:112-123. [PMID: 24179600 PMCID: PMC3812516 DOI: 10.4252/wjsc.v5.i4.112] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/07/2013] [Accepted: 08/20/2013] [Indexed: 02/06/2023] Open
Abstract
Stress urinary incontinence (SUI), as an isolated symptom, is not a life threatening condition. However, the fear of unexpected urine leakage contributes to a significant decline in quality of life parameters for afflicted patients. Compared to other forms of incontinence, SUI cannot be easily treated with pharmacotherapy since it is inherently an anatomic problem. Treatment options include the use of bio-injectable materials to enhance closing pressures, and the placement of slings to bolster fascial support to the urethra. However, histologic findings of degeneration in the incontinent urethral sphincter invite the use of tissues engineering strategies to regenerate structures that aid in promoting continence. In this review, we will assess the role of stem cells in restoring multiple anatomic and physiological aspects of the sphincter. In particular, mesenchymal stem cells and CD34+ cells have shown great promise to differentiate into muscular and vascular components, respectively. Evidence supporting the use of cytokines and growth factors such as hypoxia-inducible factor 1-alpha, vascular endothelial growth factor, basic fibroblast growth factor, hepatocyte growth factor and insulin-like growth factor further enhance the viability and direction of differentiation. Bridging the benefits of stem cells and growth factors involves the use of synthetic scaffolds like poly (1,8-octanediol-co-citrate) (POC) thin films. POC scaffolds are synthetic, elastomeric polymers that serve as substrates for cell growth, and upon degradation, release growth factors to the microenvironment in a controlled, predictable fashion. The combination of cellular, cytokine and scaffold elements aims to address the pathologic deficits to urinary incontinence, with a goal to improve patient symptoms and overall quality of life.
Collapse
|
37
|
Nakamura T, Shinohara Y, Momozaki S, Yoshimoto T, Noguchi K. Co-stimulation with bone morphogenetic protein-9 and FK506 induces remarkable osteoblastic differentiation in rat dedifferentiated fat cells. Biochem Biophys Res Commun 2013; 440:289-94. [PMID: 24064349 DOI: 10.1016/j.bbrc.2013.09.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 09/13/2013] [Indexed: 12/17/2022]
Abstract
Dedifferentiated fat (DFAT) cells, which are isolated from mature adipocytes using the ceiling culture method, exhibit similar characteristics to mesenchymal stem cells, and possess adipogenic, osteogenic, chondrogenic, and myogenic potentials. Bone morphogenetic protein (BMP)-2 and -9, members of the transforming growth factor-β superfamily, exhibit the most potent osteogenic activity of this growth factor family. However, the effects of BMP-2 and BMP-9 on the osteogenic differentiation of DFAT remain unknown. Here, we examined the effects of BMP-2 and BMP-9 on osteoblastic differentiation of rat DFAT (rDFAT) cells in the presence or absence of FK506, an immunosuppressive agent. Co-stimulation with BMP-9 and FK506 induced gene expression of runx2, osterix, and bone sialoprotein, and ALP activity compared with BMP-9 alone, BMP-2 alone and BMP-2+FK506 in rDFAT cells. Furthermore, it caused mineralization of cultures and phosphorylation of smad1/5/8, compared with BMP-9 alone. The ALP activity induced by BMP-9+FK506 was not influenced by addition of noggin, a BMP antagonist. Our data suggest that the combination of BMP-9 and FK506 potently induces osteoblastic differentiation of rDFAT cells.
Collapse
Affiliation(s)
- Toshiaki Nakamura
- Department of Periodontology, Kagoshima University, Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | | | | | | |
Collapse
|
38
|
Wei S, Du M, Jiang Z, Duarte MS, Fernyhough-Culver M, Albrecht E, Will K, Zan L, Hausman GJ, Elabd EMY, Bergen WG, Basu U, Dodson MV. Bovine dedifferentiated adipose tissue (DFAT) cells: DFAT cell isolation. Adipocyte 2013; 2:148-59. [PMID: 23991361 PMCID: PMC3756103 DOI: 10.4161/adip.24589] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 12/15/2022] Open
Abstract
Dedifferentiated fat cells (DFAT cells) are derived from lipid-containing (mature) adipocytes, which possess the ability to symmetrically or asymmetrically proliferate, replicate, and redifferentiate/transdifferentiate. Robust cell isolation and downstream culture methods are needed to isolate large numbers of DFAT cells from any (one) adipose depot in order to establish population dynamics and regulation of the cells within and across laboratories. In order to establish more consistent/repeatable methodology here we report on two different methods to establish viable DFAT cell cultures: both traditional cell culture flasks and non-traditional (flat) cell culture plates were used for ceiling culture establishment. Adipocytes (maternal cells of the DFAT cells) were easier to remove from flat culture plates than flasks and the flat plates also allowed cloning rings to be utilized for cell/cell population isolation. While additional aspects of usage of flat-bottomed cell culture plates may yet need to be optimized by definition of optimum bio-coating to enhance cell attachment, utilization of flat plate approaches will allow more efficient study of the dedifferentiation process or the DFAT progeny cells. To extend our preliminary observations, dedifferentiation of Wagyu intramuscular fat (IMF)-derived mature adipocytes and redifferentiation ability of DFAT cells utilizing the aforementioned isolation protocols were examined in traditional basal media/differentiation induction media (DMI) containing adipogenic inducement reagents. In the absence of treatment approximately 10% isolated Wagyu IMF-mature adipocytes dedifferentiated spontaneously and 70% DFAT cells displayed protracted adipogenesis 12 d after confluence in vitro. Lipid-free intracellular vesicles in the cytoplasm (vesicles possessing an intact membrane but with no any observable or stainable lipid inside) were observed during redifferentiation. One to 30% DFAT cells redifferentiated into lipid-assimilating adipocytes in the DMI media, with distinct lipid-droplets in the cytoplasm and with no observable lipid-free vesicles inside. Moreover, a high confluence level promoted the redifferentiation efficiency of DFAT cells. Wagyu IMF dedifferentiated DFAT cells exhibited unique adipogenesis modes in vitro, revealing a useful cell model for studying adipogenesis and lipid metabolism.
Collapse
|
39
|
Wei S, Zan L, Hausman GJ, Rasmussen TP, Bergen WG, Dodson MV. Dedifferentiated adipocyte-derived progeny cells (DFAT cells): Potential stem cells of adipose tissue. Adipocyte 2013; 2:122-7. [PMID: 23991357 PMCID: PMC3756099 DOI: 10.4161/adip.23784] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 01/25/2013] [Accepted: 01/25/2013] [Indexed: 02/06/2023] Open
Abstract
Analyses of mature adipocytes have shown that they possess a reprogramming ability in vitro, which is associated with dedifferentiation. The subsequent dedifferentiated fat cells (DFAT cells) are multipotent and can differentiate into adipocytes and other cell types as well. Mature adipocytes can be easily obtained by biopsy, and the cloned progeny cells are homogeneous in vitro. Therefore, DFAT cells (a new type of stem cell) may provide an excellent source of cells for tissue regeneration, engineering and disease treatment. The dedifferentiation of mature adipocytes, the multipotent capacity of DFAT cells and comparisons and contrasts with mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPS) are discussed in this review.
Collapse
|
40
|
Kikuta S, Tanaka N, Kazama T, Kazama M, Kano K, Ryu J, Tokuhashi Y, Matsumoto T. Osteogenic effects of dedifferentiated fat cell transplantation in rabbit models of bone defect and ovariectomy-induced osteoporosis. Tissue Eng Part A 2013; 19:1792-802. [PMID: 23566022 DOI: 10.1089/ten.tea.2012.0380] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have previously reported that mature adipocyte-derived dedifferentiated fat (DFAT) cells have a high proliferative activity and the potential to differentiate into lineages of mesenchymal tissue similar to bone marrow mesenchymal stem cells (MSCs). In the present study, we examined the effects of autologous DFAT cell transplantation on bone regeneration in a rabbit bone defect model and an ovariectomy (OVX)-induced osteoporosis model. The formation of tissue-engineered bone (TEB) was observed when rabbit DFAT cells were loaded onto a β-tricalcium phosphate (TCP)/collagen sponge and cultured in an osteogenic differentiation medium for 3 weeks. Autologous implantation of DFAT cell-mediated TEB constructs promoted bone regeneration in a rabbit tibial defect model. Regenerated bone tissue induced by transplantation of DFAT cell-mediated TEB constructs was histologically well differentiated and exhibited higher bone strength in a three-point bending test compared to that induced by the β-TCP/collagen sponge alone. In OVX-induced osteoporosis model rabbits, DFAT cells were obtained with the osteogenic activity similar to cells from healthy rabbits. Intrabone marrow injection of autologous DFAT cells significantly increased the bone mineral density (BMD) at the injected site in the OVX rabbits. Transplanted DFAT cells remained mainly on the injection side of the bone marrow by at least 28 days after intrabone marrow injection and a part of them expressed osteocalcin. In conclusion, these results demonstrate that autologous implantation of DFAT cells contributed to bone regeneration in a rabbit bone defect model and an OVX-induced osteoporosis model. DFAT cells may be an attractive cell source for cell-based bone tissue engineering to treat nonunion fractures in all patients, including those with osteoporosis.
Collapse
Affiliation(s)
- Shinsuke Kikuta
- Department of Orthopedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Dodson MV, Boudina S, Albrecht E, Bucci L, Culver MF, Wei S, Bergen WG, Amaral AJ, Moustaid-Moussa N, Poulos S, Hausman GJ. A long journey to effective obesity treatments: is there light at the end of the tunnel? Exp Biol Med (Maywood) 2013; 238:491-501. [PMID: 23856900 DOI: 10.1177/1535370213477603] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
As the obesity epidemic continues, more Americans are getting fatter, having more weight-related problems such as cardiovascular disease, and are experiencing new metabolic dysfunctions. For over 50 years, the adipose tissue (AT), commonly referred to as fat, has been of interest to academic and clinical scientists, public health officials and individuals interested in body composition and image including much of the average public, athletes, parents, etc. On one hand, efforts to alter body shape, weight and body fat percentage still include bizarre and scientifically unfounded methods. On the other hand, significant new scientific strides have been made in understanding the growth, function and regulation of anatomical and systemic AT. Markers of transition/conversion of precursor cells that mature to form lipid assimilating adipocytes have been identified. Molecular 'master' regulators such as peroxisome proliferator-activated receptor gamma and CCAAT-enhancer-binding proteins were uncovered and regulatory mechanisms behind variables of adiposity defined and refined. Interventions including pharmaceutical compounds, surgical, psychosocial interventions have also been tested. Has all of the preceding research helped alleviate the adverse physiologies of overweight and/or obese people? Does research to date point to new modalities that should be the focus of efforts to rid the world of obesity-related problems in the 21st century? This review provides a general overview of scientific efforts to date and a provocative view of the future for adiposity.
Collapse
Affiliation(s)
- Michael V Dodson
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wei S, Bergen WG, Hausman GJ, Zan L, Dodson MV. Cell culture purity issues and DFAT cells. Biochem Biophys Res Commun 2013; 433:273-5. [PMID: 23499844 DOI: 10.1016/j.bbrc.2013.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/05/2013] [Indexed: 01/08/2023]
Abstract
Dedifferentiation of mature adipocytes, in vitro, has been pursued/documented for over forty years. The subsequent progeny cells are named dedifferentiated adipocyte-derived progeny cells (DFAT cells). DFAT cells are proliferative and likely to possess mutilineage potential. As a consequence, DFAT cells and their progeny/daughter cells may be useful as a potential tool for various aspects of tissue engineering and as potential vectors for the alleviation of several disease states. Publications in this area have been increasing annually, but the purity of the initial culture of mature adipocytes has seldom been documented. Consequently, it is not always clear whether DFAT cells are derived from dedifferentiated mature (lipid filled) adipocytes or from contaminating cells that reside in an impure culture.
Collapse
Affiliation(s)
- Shengjuan Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | | | | | | | |
Collapse
|
43
|
Boissier R, Karsenty G. [Cellular therapy and urinary incontinence]. Prog Urol 2012; 22:454-61. [PMID: 22732580 DOI: 10.1016/j.purol.2012.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/30/2012] [Accepted: 04/01/2012] [Indexed: 01/05/2023]
Abstract
AIM The objective of the current study was to perform a review of literature concerning stem cells therapy (preclinical and clinical studies) applied to the treatment of stress urinary incontinence (SUI). METHODS Review of literature (Pubmed/Medline) using the following key words: stem cells, urinary incontinence, stress. Among 38 published articles (English or French language), 16 studies were selected (comparative preclinical and clinical studies). RESULTS Multipotentes mesenchymal stem cells (MSC), present in the adults in most of the tissues derived from the mesoderm have been tested in the treatment of SUI. Three sources of MSC have been mainly used in urology: bone marrow, striated muscle and adipose tissue. The general principle consists in extracting the MSC from the source tissue and grafting these MSC in the injured urinary sphincter. The preclinical studies proved the capacity of these transplanted cells to differenciate into contractile myocytes and to reconstitute nerve junctions. Clinical studies are very different in terms of methodology, with sample size ranging from four to 123 subjects and a median follow-up of 1 year; these studies showed success rates (complete continence) ranging from 12 to 79 % and improvement rates (quality of life and/or pad test) from 13 to 66%. Only one study reported two cases of worsening incontinence after cell therapy. CONCLUSION The few available clinical studies have reported that at short-term follow-up, cell therapy was associated with encouraging results with few side effects.
Collapse
Affiliation(s)
- R Boissier
- Service d'urologie et transplantation rénale, Aix-Marseille université, hôpital de la Conception, 147, boulevard Baille, 13005 Marseille, France.
| | | |
Collapse
|
44
|
Pastor-Navarro T. Editorial comment to Transplantation of mature adipocyte-derived dedifferentiated fat (DFAT) cells improves urethral sphincter contractility in a rat model. Int J Urol 2011; 18:835. [PMID: 22011134 DOI: 10.1111/j.1442-2042.2011.02873.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|