1
|
Duan WM, Rodrigures CMP, Zhao LR, Steer CJ, Low WC. Tauroursodeoxycholic Acid Improves the Survival and Function of Nigral Transplants in a Rat Model of Parkinson's Disease. Cell Transplant 2017; 11:195-205. [PMID: 28858601 DOI: 10.3727/096020198389960] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
There is accumulating evidence showing that the majority of cell death in neural grafts results from apoptosis when cells are implanted into the brain. Tauroursodeoxycholic acid (TUDCA), a taurine-conjugated hydrophilic bile acid, has been found to possess antiapoptotic properties. In the present study we have examined whether the supplementation of TUDCA to cell suspensions prior to transplantation can lead to enhanced survival of nigral grafts. We first conducted an in vitro study to examine the effects of TUDCA on the survival of dopamine neurons in serum-free conditions. The number of tyrosine hydroxylase (TH)-positive neurons in the TUDCA-treated cultures was significantly greater than that of control cultures 7 days in vitro. In addition, a terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) assay showed that the number of apoptotic cells in the TUDCA-treated cultures was dramatically smaller than that in the control cultures. In the transplantation study, a 50 μM concentration of TUDCA was added to the media when nigral tissue from Sprague-Dawley (SD) rats was trypsinized and dissociated. Two microliters of cell suspension containing TUDCA was then stereotaxically injected into the striatum of adult SD rats subjected to an extensive unilateral 6-hydroxydopamine lesion of the nigrastriatal dopamine pathway. At 2 weeks after transplantation, the rats that received a cell suspension with TUDCA exhibited a significant reduction in amphetamine-induced rotation scores when compared with pretransplantation value. There was a significant increase (approximately threefold) in the number of TH-positive cells in the neural grafts for the TUDCA-treated group when compared with the controls 6 weeks postgrafting. The number of apoptotic cells was much smaller in the graft areas in the TUDCA-treated groups than in the control group 4 days after transplantation. These data demonstrate that pretreatment of the cell suspension with TUDCA can reduce apoptosis and increase the survival of grafted cells, resulting in an improvement of behavioral recovery.
Collapse
Affiliation(s)
- Wei-Ming Duan
- Departments of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Cecilia M P Rodrigures
- Departments of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455.,Centro de Patogénese Molecular, Faculdade de Farmácia, University of Lisbon, Lisbon, Portugal
| | - Li-Ru Zhao
- Departments of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Clifford J Steer
- Departments of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Walter C Low
- Departments of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
2
|
Panman L, Papathanou M, Laguna A, Oosterveen T, Volakakis N, Acampora D, Kurtsdotter I, Yoshitake T, Kehr J, Joodmardi E, Muhr J, Simeone A, Ericson J, Perlmann T. Sox6 and Otx2 control the specification of substantia nigra and ventral tegmental area dopamine neurons. Cell Rep 2014; 8:1018-25. [PMID: 25127144 DOI: 10.1016/j.celrep.2014.07.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 06/24/2014] [Accepted: 07/14/2014] [Indexed: 10/24/2022] Open
Abstract
Distinct midbrain dopamine (mDA) neuron subtypes are found in the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA), but it is mainly SNc neurons that degenerate in Parkinson's disease. Interest in how mDA neurons develop has been stimulated by the potential use of stem cells in therapy or disease modeling. However, very little is known about how specific dopaminergic subtypes are generated. Here, we show that the expression profiles of the transcription factors Sox6, Otx2, and Nolz1 define subpopulations of mDA neurons already at the neural progenitor cell stage. After cell-cycle exit, Sox6 selectively localizes to SNc neurons, while Otx2 and Nolz1 are expressed in a subset of VTA neurons. Importantly, Sox6 ablation leads to decreased expression of SNc markers and a corresponding increase in VTA markers, while Otx2 ablation has the opposite effect. Moreover, deletion of Sox6 affects striatal innervation and dopamine levels. We also find reduced Sox6 levels in Parkinson's disease patients. These findings identify Sox6 as a determinant of SNc neuron development and should facilitate the engineering of relevant mDA neurons for cell therapy and disease modeling.
Collapse
Affiliation(s)
- Lia Panman
- Ludwig Institute for Cancer Research, 17177 Stockholm, Sweden; MRC Toxicology Unit, Leicester LE1 9HN, UK.
| | | | - Ariadna Laguna
- Ludwig Institute for Cancer Research, 17177 Stockholm, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | | | - Dario Acampora
- Institute of Genetics and Biophysics "A. Buzzati-Traverso," CNR, 80131 Naples, Italy; IRCCS Neuromed, Pozzilli IS 86077, Italy
| | - Idha Kurtsdotter
- Ludwig Institute for Cancer Research, 17177 Stockholm, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Takashi Yoshitake
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jan Kehr
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Eliza Joodmardi
- Ludwig Institute for Cancer Research, 17177 Stockholm, Sweden
| | - Jonas Muhr
- Ludwig Institute for Cancer Research, 17177 Stockholm, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Antonio Simeone
- Institute of Genetics and Biophysics "A. Buzzati-Traverso," CNR, 80131 Naples, Italy; IRCCS Neuromed, Pozzilli IS 86077, Italy
| | - Johan Ericson
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Thomas Perlmann
- Ludwig Institute for Cancer Research, 17177 Stockholm, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
3
|
Cave JW, Wang M, Baker H. Adult subventricular zone neural stem cells as a potential source of dopaminergic replacement neurons. Front Neurosci 2014; 8:16. [PMID: 24574954 PMCID: PMC3918650 DOI: 10.3389/fnins.2014.00016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/22/2014] [Indexed: 01/20/2023] Open
Abstract
Clinical trials engrafting human fetal ventral mesencephalic tissue have demonstrated, in principle, that cell replacement therapy provides substantial long-lasting improvement of motor impairments generated by Parkinson's Disease (PD). The use of fetal tissue is not practical for widespread clinical implementation of this therapy, but stem cells are a promising alternative source for obtaining replacement cells. The ideal stem cell source has yet to be established and, in this review, we discuss the potential of neural stem cells in the adult subventricular zone (SVZ) as an autologous source of replacement cells. We identify three key challenges for further developing this potential source of replacement cells: (1) improving survival of transplanted cells, (2) suppressing glial progenitor proliferation and survival, and (3) developing methods to efficiently produce dopaminergic neurons. Subventricular neural stem cells naturally produce a dopaminergic interneuron phenotype that has an apparent lack of vulnerability to PD-mediated degeneration. We also discuss whether olfactory bulb dopaminergic neurons derived from adult SVZ neural stem cells are a suitable source for cell replacement strategies.
Collapse
Affiliation(s)
- John W Cave
- Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA ; Burke Medical Research Institute White Plains, NY, USA
| | - Meng Wang
- Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA ; Burke Medical Research Institute White Plains, NY, USA
| | - Harriet Baker
- Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA ; Burke Medical Research Institute White Plains, NY, USA
| |
Collapse
|
4
|
Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep 2012; 1:703-14. [PMID: 22813745 DOI: 10.1016/j.celrep.2012.04.009] [Citation(s) in RCA: 488] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/08/2012] [Accepted: 04/23/2012] [Indexed: 12/12/2022] Open
Abstract
To model human neural-cell-fate specification and to provide cells for regenerative therapies, we have developed a method to generate human neural progenitors and neurons from human embryonic stem cells, which recapitulates human fetal brain development. Through the addition of a small molecule that activates canonical WNT signaling, we induced rapid and efficient dose-dependent specification of regionally defined neural progenitors ranging from telencephalic forebrain to posterior hindbrain fates. Ten days after initiation of differentiation, the progenitors could be transplanted to the adult rat striatum, where they formed neuron-rich and tumor-free grafts with maintained regional specification. Cells patterned toward a ventral midbrain (VM) identity generated a high proportion of authentic dopaminergic neurons after transplantation. The dopamine neurons showed morphology, projection pattern, and protein expression identical to that of human fetal VM cells grafted in parallel. VM-patterned but not forebrain-patterned neurons released dopamine and reversed motor deficits in an animal model of Parkinson's disease.
Collapse
|
5
|
Survival, differentiation, and connectivity of ventral mesencephalic dopamine neurons following transplantation. PROGRESS IN BRAIN RESEARCH 2012. [DOI: 10.1016/b978-0-444-59575-1.00004-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Abstract
Although loss of midbrain dopaminergic neurons is associated with one of the most common human neurological disorders, Parkinson's disease, little is known about the specification of this neuronal subtype. Hence, the recent identification of major transcriptional determinants regulating the development of these neurons has brought much excitement and encouragement to this field. These new findings will help to elucidate the genetic program that promotes the generation of midbrain dopaminergic neurons. Importantly, these discoveries will also significantly advance efforts to differentiate stem cells into midbrain dopaminergic neurons that can be used for therapeutic use in treating Parkinson's disease.
Collapse
Affiliation(s)
- Siew-Lan Ang
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
7
|
Thompson L, Barraud P, Andersson E, Kirik D, Björklund A. Identification of dopaminergic neurons of nigral and ventral tegmental area subtypes in grafts of fetal ventral mesencephalon based on cell morphology, protein expression, and efferent projections. J Neurosci 2006; 25:6467-77. [PMID: 16000637 PMCID: PMC6725273 DOI: 10.1523/jneurosci.1676-05.2005] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transplants of fetal ventral mesencephalic tissue are known to contain a mixture of two major dopamine (DA) neuron types: the A9 neurons of the substantia nigra pars compacta (SNpc) and the A10 neurons of the ventral tegmental area (VTA). Previous studies have suggested that these two DA neuron types may differ in their growth characteristics, but, because of technical limitations, it has so far been difficult to identify the two subtypes in fetal ventral mesencephalon (VM) grafts and trace their axonal projections. Here, we have made use of a transgenic mouse expressing green fluorescent protein (GFP) under the tyrosine hydroxylase promoter. The expression of the GFP reporter allowed for visualization of the grafted DA neurons and their axonal projections within the host brain. We show that the SNpc and VTA neuron subtypes in VM grafts can be identified on the basis of their morphology and location within the graft, and their expression of a G-protein-gated inwardly rectifying K+ channel subunit (Girk2) and calbindin, respectively, and also that the axonal projections of the two DA neuron types are markedly different. By retrograde axonal tracing, we show that dopaminergic innervation of the striatum is derived almost exclusively from the Girk2-positive SNpc cells, whereas the calbindin-positive VTA neurons project to the frontal cortex and probably also other forebrain areas. The results suggest the presence of axon guidance and target recognition mechanisms in the DA-denervated forebrain that can guide the growing axons to their appropriate targets and indicate that cell preparations used for cell replacement in Parkinson's disease will be therapeutically useful only if they contain cells capable of generating the correct nigral DA neuron phenotype.
Collapse
Affiliation(s)
- Lachlan Thompson
- Wallenberg Neuroscience Center, Department of Experimental Medical Research, Lund Strategic Center for Stem Cell Biology and Cell Therapy, Lund University, SE-221 84 Lund, Sweden.
| | | | | | | | | |
Collapse
|
8
|
Lohof AM, Mariani J, Sherrard RM. Afferent-target interactions during olivocerebellar development: transcommissural reinnervation indicates interdependence of Purkinje cell maturation and climbing fibre synapse elimination. Eur J Neurosci 2005; 22:2681-8. [PMID: 16324102 DOI: 10.1111/j.1460-9568.2005.04493.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have used a model of postlesional reinnervation to observe the interactions between synaptic partners during neosynaptogenesis to determine how the developmental states of the pre- and postsynaptic cells influence circuit maturation. After unilateral transection of the neonatal rat olivocerebellar pathway (pedunculotomy), axons from the remaining ipsilateral inferior olive grow into the denervated hemicerebellum and develop climbing fibre (CF) terminal arbors on Purkinje cells (PCs) at a later stage of development than normal. However, the significance of delayed CF-PC interactions on subsequent circuit maturation remains poorly defined. To examine this question, we recorded CF-induced currents in PCs and analysed PC morphology during the first two postnatal weeks in control animals and following left unilateral inferior cerebellar pedunculotomy on postnatal day (P)3. Our results show that transcommissural olivary axons multiply-reinnervate PCs in the denervated hemisphere over 4 days following pedunculotomy. Each PC received fewer CFs than did age-matched controls and the maximal multi-reinnervation was reached on P7, 2 days later than in controls. Consequently, the onset of CF synapse elimination in reinnervated PCs was delayed, but then proceeded in parallel with controls so that all PCs were monoinnervated by P15. Furthermore, reinnervated PCs had delayed dendritic maturation and subsequent dendritic abnormalities consistent with the role of CF innervation in PC dendritic growth. Thus, within the olivocerebellar system, our data suggest that target neurons depend upon sufficient afferent investment arriving at the correct time for their normal development, and maturation of the target neuron regulates afferent selection and therefore circuit maturation.
Collapse
Affiliation(s)
- Ann M Lohof
- Laboratoire Développement et Vieillissement du Système Nerveux, UMR 7102 Neurobiologie des Processus Adaptatifs, CNRS et Université Pierre et Marie Curie, Case courrier 14, 9 quai Saint-Bernard, 75005 Paris, France.
| | | | | |
Collapse
|
9
|
Borgkvist A, Puelles E, Carta M, Acampora D, Ang SL, Wurst W, Goiny M, Fisone G, Simeone A, Usiello A. Altered dopaminergic innervation and amphetamine response in adult Otx2 conditional mutant mice. Mol Cell Neurosci 2005; 31:293-302. [PMID: 16256364 DOI: 10.1016/j.mcn.2005.09.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 09/20/2005] [Accepted: 09/26/2005] [Indexed: 11/18/2022] Open
Abstract
Here, we have investigated the neurological consequences of restricted inactivation of Otx2 in adult En1(cre/+); Otx2(flox/flox) mice. In agreement with the crucial role of Otx2 in midbrain patterning, the mutants had a substantial reduction in tyrosine hydroxylase containing neurons. Although the reduction in the number of DAergic neurons was comparable between the SNc and the VTA, we found an unexpected selectivity in the deinnervation of the terminal fields affecting preferentially the ventral striatum and the olfactory tubercle. Interestingly, the mutants showed no abnormalities in exploratory activity or motor coordination. However, the absence of normal DA tone generated significant alterations in DA D1-receptor signalling as indicated by increased mutant striatal levels of phosphorylated DARPP-32 and by an altered motor response to amphetamine. Therefore, we suggest that the En1(cre/+); Otx2(flox/flox) mutant mouse model represents a genetic tool for investigating molecular and behavioural consequences of developmental neuronal dysfunction in the DAergic system.
Collapse
Affiliation(s)
- Anders Borgkvist
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, S-17177 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rodriguez-Pallares J, Parga JA, Rey P, Guerra MJ, Labandeira-Garcia JL. Expanded mesencephalic precursors develop into grafts of densely packed dopaminergic neurons that reinnervate the surrounding striatum and induce functional responses in the striatal neurons. Synapse 2005; 58:13-22. [PMID: 16037947 DOI: 10.1002/syn.20179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The search for alternative sources of dopaminergic cells, other than primary fetal tissue for transplantation in Parkinson's disease has become a major focus of research. Different methodological approaches have led to generation in vitro of cells expressing DA-cell markers, although these cells are frequently unable to survive for a long time in vivo after transplantation and/or induce functional effects in the host brain. In the present study, we grafted cell aggregates treated with antibodies against fibroblast growth factor 4 into dopaminergic-denervated striata in rats. Furthermore, we grafted cell suspensions from primary mesencephalic fetal tissue. Grafts from expanded precursors were able to survive (at least 3 months postgrafting) and most decreased the lesion-induced ipsiversive rotation. In addition, immunolabeling for tyrosine hydroxylase and/or Fos showed that the grafts reinnervated the surrounding striatal tissue with dopaminergic terminals, and induced the expression of Fos in the striatal neurons of the reinnervated area after administration of amphetamine to the host rat. The number of dopaminergic cells in grafts from expanded precursors inducing rotational recovery was usually lower (1,226+/-314) than that in grafts from primary fetal tissue (1,671+/-122), but they were more densely packed in grafts that were of smaller volume and did not have the characteristic central nondopaminergic area observed in grafts from primary fetal tissue. The results suggest that long-term survival and functional integration into the DA-denervated striatum can be achieved with grafts of expanded mesencephalic precursors.
Collapse
Affiliation(s)
- J Rodriguez-Pallares
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
11
|
Volpicelli F, Perrone-Capano C, Da Pozzo P, Colucci-D'Amato L, di Porzio U. Modulation of nurr1 gene expression in mesencephalic dopaminergic neurones. J Neurochem 2004; 88:1283-94. [PMID: 15009684 DOI: 10.1046/j.1471-4159.2003.02254.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The transcription factor/nuclear receptor Nurr1 is essential for the differentiation of midbrain dopaminergic neurones. Here we demonstrate that, during the ontogeny of rat ventral mesencephalon, nurr1 gene expression is developmentally regulated and its levels show a sharp peak between embryonic day E13 and E15, when most dopaminergic neurones differentiate. In addition, in primary cultures from embryonic rat mesencephalon, nurr1 gene follows a temporal pattern of expression comparable to that observed in vivo. We also report that exposure of embryonic mesencephalic cultures to depolarizing stimuli leads to a robust increase in nurr1 mRNA and protein. The depolarizing effect is also detected in mesencephalic cultures enriched in dopaminergic neurones by using a combination of bFGF and Sonic hedgehog. The latter further increases the number of dopaminergic neurones in these 'expanded' cultures, an effect abolished in the presence of anti-Sonic hedgehog antibodies. Our data show that nurr1 gene is highly expressed in midbrain dopaminergic neurones in a sharp temporal window and that its expression is plastic, both in vivo and in vitro. In addition we show that Sonic hedgehog can direct dopaminergic differentiation in proliferating dopaminergic neuroblasts in vitro.
Collapse
Affiliation(s)
- Floriana Volpicelli
- Institute of Genetics and Biophysics, Developmental Neurobiology, Naples, Italy
| | | | | | | | | |
Collapse
|
12
|
Sugihara I, Lohof AM, Letellier M, Mariani J, Sherrard RM. Post-lesion transcommissural growth of olivary climbing fibres creates functional synaptic microzones. Eur J Neurosci 2004; 18:3027-36. [PMID: 14656298 DOI: 10.1111/j.1460-9568.2003.03045.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the adult mammalian central nervous system, reinnervation and recovery from trauma is limited. During development, however, postlesion plasticity may generate alternate paths, providing models to investigate reinnervating axon-target interactions. After unilateral transection of the neonatal rat olivocerebellar path, axons from the ipsilateral inferior olive grow into the denervated hemicerebellum and develop climbing fibre (CF)-like arbors on Purkinje cells (PCs). However, the synaptic function and extent of PC reinnervation remain unknown. In adult rats pedunculotomized on postnatal day 3 the morphological and electrophysiological properties of reinnervating olivocerebellar axons were studied, using axonal reconstruction and patch-clamp PC recording of CF-induced synaptic currents. Reinnervated PCs displayed normal CF currents, and the frequency of PC reinnervation decreased with increasing laterality. Reinnervating CF arbors were predominantly normal but 6% branched within the molecular layer forming smaller secondary arbors. CFs arose from transcommissural olivary axons, which branched extensively near their target PCs to produce on average 36 CFs, which is six times more than normal. Axons terminating in the hemisphere developed more CFs than those terminating in the vermis. However, the precise parasagittal microzone organization was preserved. Transcommissural axons also branched, although to a lesser extent, to the deep cerebellar nuclei and terminated in a distribution indicative of the olivo-cortico-nuclear circuit. These results show that reinnervating olivocerebellar axons are highly plastic in the cerebellum, compensating anatomically and functionally for early postnatal denervation, and that this reparation obeys precise topographic constraints although axonal plasticity is modified by target (PC or deep nuclear neurons) interactions.
Collapse
Affiliation(s)
- Izumi Sugihara
- Department of Systems Neurophysiology, Tokyo Medical and Dental University Graduate School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
13
|
Leo D, Sorrentino E, Volpicelli F, Eyman M, Greco D, Viggiano D, di Porzio U, Perrone-Capano C. Altered midbrain dopaminergic neurotransmission during development in an animal model of ADHD. Neurosci Biobehav Rev 2004; 27:661-9. [PMID: 14624810 DOI: 10.1016/j.neubiorev.2003.08.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To understand the onset and the molecular mechanisms triggering dopaminergic (DA) dysregulation in Attention-Deficit Hyperactivity Disorder (ADHD), we have used the Spontaneously Hypertensive Rats (SHR), the most widely studied animal model for this disease. We have studied the pattern of expression of specific genes involved in DA neuron differentiation, survival and function during postnatal (P) development of the ventral midbrain in SHR males. Our results show that tyrosine hydroxylase and DA transporter gene expression are significantly and transiently reduced in the SHR midbrain during the first month of postnatal development, although with a different kinetic. The other genes analyzed do not show significant variation between SHR and control rats. In addition, high-affinity DA uptake activity is significantly reduced in synaptosomes obtained from the striatum of 1-month-old SHR, when compared to controls. Our data suggest that down-regulation of DA neurotransmission occurs in the midbrain of SHR in a developmentally regulated temporal window during postnatal development, thus strengthening the hypodopaminergic hypothesis in the pathogenesis of ADHD.
Collapse
Affiliation(s)
- Damiana Leo
- Institute of Genetics and Biophysics 'A Buzzati Traverso', CNR, Via P. Castellino 111, Naples 80135, Italy
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Colucci-D'Amato L, Perrone-Capano C, di Porzio U. Chronic activation of ERK and neurodegenerative diseases. Bioessays 2003; 25:1085-95. [PMID: 14579249 DOI: 10.1002/bies.10355] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The extracellular-signal regulated kinases 1/2 (ERK or ERKs) are involved in the regulation of important neuronal functions, including neuronal plasticity in normal and pathological conditions. We present findings that support the notion that the kinetics and localization of ERK are intrinsically linked, in that the duration of ERK activation dictates its subcellular compartmentalization and/or trafficking. The latter, in turn, dictates whether ERK-expressing cells would enter a program of cell death, survival or differentiation. We summarize experimental data showing that chronic activation of ERK plays a role in the mechanisms that trigger neurodegeneration. We also discuss how MKPs, members of the subclass of dual specificity phosphatases, might be the link between ERK kinetics and its subcellular localization.
Collapse
|
15
|
Kim JY, Koh HC, Lee JY, Chang MY, Kim YC, Chung HY, Son H, Lee YS, Studer L, McKay R, Lee SH. Dopaminergic neuronal differentiation from rat embryonic neural precursors by Nurr1 overexpression. J Neurochem 2003; 85:1443-54. [PMID: 12787064 DOI: 10.1046/j.1471-4159.2003.01780.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vitro expanded CNS precursors could provide a renewable source of dopamine (DA) neurons for cell therapy in Parkinson's disease. Functional DA neurons have been derived previously from early midbrain precursors. Here we demonstrate the ability of Nurr1, a nuclear orphan receptor essential for midbrain DA neuron development in vivo, to induce dopaminergic differentiation in naïve CNS precursors in vitro. Independent of gestational age or brain region of origin, Nurr1-induced precursors expressed dopaminergic markers and exhibited depolarization-evoked DA release in vitro. However, these cells were less mature and secreted lower levels of DA than those derived from mesencephalic precursors. Transplantation of Nurr1-induced DA neuron precursors resulted in limited survival and in vivo differentiation. No behavioral improvement in apomorphine-induced rotation scores was observed. These results demonstrate that Nurr1 induces dopaminergic features in naïve CNS precursors in vitro. However, additional factors will be required to achieve in vivo function and to unravel the full potential of neural precursors for cell therapy in Parkinson's disease.
Collapse
Affiliation(s)
- Ju-Yeon Kim
- Department of Biochemistry, and Institute of Mental Health, Hanyang University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kim JH, Auerbach JM, Rodríguez-Gómez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sánchez-Pernaute R, Bankiewicz K, McKay R. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature 2002; 418:50-6. [PMID: 12077607 DOI: 10.1038/nature00900] [Citation(s) in RCA: 1090] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Parkinson's disease is a widespread condition caused by the loss of midbrain neurons that synthesize the neurotransmitter dopamine. Cells derived from the fetal midbrain can modify the course of the disease, but they are an inadequate source of dopamine-synthesizing neurons because their ability to generate these neurons is unstable. In contrast, embryonic stem (ES) cells proliferate extensively and can generate dopamine neurons. If ES cells are to become the basis for cell therapies, we must develop methods of enriching for the cell of interest and demonstrate that these cells show functions that will assist in treating the disease. Here we show that a highly enriched population of midbrain neural stem cells can be derived from mouse ES cells. The dopamine neurons generated by these stem cells show electrophysiological and behavioural properties expected of neurons from the midbrain. Our results encourage the use of ES cells in cell-replacement therapy for Parkinson's disease.
Collapse
Affiliation(s)
- Jong-Hoon Kim
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Strömberg I, Törnqvist N, Johansson S, Bygdeman M, Almqvist PM. Evidence for target-specific outgrowth from subpopulations of grafted human dopamine neurons. Microsc Res Tech 2001; 54:287-97. [PMID: 11514985 DOI: 10.1002/jemt.1141] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Clinical and experimental grafting in Parkinson's disease has shown the need for enhanced survival of dopamine neurons to obtain improved functional recovery. In addition, it has been suggested that a limited number of surviving dopamine neurons project to the dopamine-denervated host striatum. The aim of this study was to investigate if subpopulations of ventral mesencephalic dopamine neurons project to their normal targets, i.e., dorsal vs. ventral striatum. Following implantation of human ventral mesencepahlic tissue into the lateral ventricle of dopamine-depleted rats, human-derived dopamine reinnervation was achieved both in dorsal and ventral striatum. Treatment with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) resulted in a degeneration of tyrosine hydroxylase (TH)-immunoreactive nerve fibers in dorsal striatum but not in ventral areas in some animals, while MPTP was without effect in other animals. TH-immunoreactive neurons were small and appeared shrunken in animals carrying grafts affected by the MPTP treatment. In conclusion, grafted dopamine neurons projected nerve fibers into areas that they normally innervate. Thus, when searching for factors that may enhance survival of grafted dopamine neurons it is important to study which subpopulation(s) of ventral mesencephalic dopamine neurons is affected, such that a proper reinnervation may be achieved.
Collapse
Affiliation(s)
- I Strömberg
- Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
18
|
Pernas-Alonso R, Perrone-Capano C, Volpicelli F, di Porzio U. Regionalized neurofilament accumulation and motoneuron degeneration are linked phenotypes in wobbler neuromuscular disease. Neurobiol Dis 2001; 8:581-9. [PMID: 11493023 DOI: 10.1006/nbdi.2001.0403] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abnormal neurofilament aggregates are pathological hall-mark of most neurodegenerative diseases, although their pathogenic role remains unclear. Increased expression of medium neurofilament (NFM) is an early molecular marker of wobbler mouse, an animal model of motoneuron disease. In the wr/wr, a vacuolar neuronal degeneration (VND) starts at 15 days postnatally, selectively in cervical spinal cord and brain stem motoneurons. Here we show that nfm gene hyperexpression is restricted to the aforementioned motoneurons and is specific for wr mutation. NF proteins accumulate in wr/wr before VND. wr/+ mice, which are asymptomatic, show intermediate NF accumulation between wr/wr and +/+ littermates, suggesting a gene dosage dependence of the wobbler pathology. Altogether our data indicate that NF hyperexpression and regionalized motoneuron degeneration are linked to the wr mutation, although with a still unknown relationship to the mutant gene activity.
Collapse
Affiliation(s)
- R Pernas-Alonso
- International Institute of Genetics and Biophysics, CNR, Naples, Italy
| | | | | | | |
Collapse
|
19
|
Winkler C, Kirik D, Björklund A, Dunnett SB. Transplantation in the rat model of Parkinson's disease: ectopic versus homotopic graft placement. PROGRESS IN BRAIN RESEARCH 2001; 127:233-65. [PMID: 11142030 DOI: 10.1016/s0079-6123(00)27012-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- C Winkler
- Wallenberg Neuroscience Center, Division of Neurobiology, Lund University, Sölvegatan 17, S-223 62 Lund, Sweden
| | | | | | | |
Collapse
|
20
|
Duan WM, Zhao LR, Westerman M, Lovick D, Furcht LT, McCarthy JB, Low WC. Enhancement of nigral graft survival in rat brain with the systemic administration of synthetic fibronectin peptide V. Neuroscience 2001; 100:521-30. [PMID: 11098115 DOI: 10.1016/s0306-4522(00)00299-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A major obstacle in neural transplantation is a severe loss of neurons in grafts soon after implantation. In the present study, we have investigated whether the systemic administration of synthetic fibronectin peptide V can increase the survival of neural grafts. Synthetic fibronectin peptide V is derived from the 33,000 mol. wt carboxyl-terminal heparin-binding domain of fibronectin. Previous studies have shown that these polypeptides possess anti-inflammatory properties. However, it is currently unknown whether this peptide has anti-apoptotic properties. Dissociated neural grafts were prepared from the ventral mesencephalon of pregnant Sprague-Dawley rats and were stereotaxically injected as a cell suspension into the striatum of adult Sprague-Dawley rats. A group of recipient rats received i.v. injections of peptide V (5mg/kg, dissolved in saline) at 24 and 4h prior to transplantation, at the time of transplantation, and 24, 48 and 72h post-transplantation. Saline-treated rats served as controls. The rats were killed at two, four and 42 days post-grafting and the brain tissue was immunologically processed for tyrosine-hydroxylase, major histocompatibility complex class I and class II antigens, complement receptor type 3 and leukocyte common antigen immunocytochemistry, and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay. We found a significant increase (approximately twofold) in the number of dopamine neurons in the grafts for the peptide-treated group at four and 42 days compared with the controls. In contrast, there was no significant difference in the patterns of inflammation using different immunocytochemical markers in the two different groups. The levels of expression for these markers, however, were reduced over time. Interestingly, the number of apoptotic cells in the graft areas was significantly smaller in the peptide-treated group than in the control group two days after grafting. The results demonstrate that the systemic administration of synthetic fibronectin peptide V can dramatically increase the survival of nigral grafts in the brain and substantially reduce the number of apoptotic cells in the graft site, suggesting that this peptide may exert a beneficial effect on survival of nigral grafts through an anti-apoptotic mechanism.
Collapse
Affiliation(s)
- W M Duan
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Björklund A, Lindvall O. Cell replacement therapies for central nervous system disorders. Nat Neurosci 2000; 3:537-44. [PMID: 10816308 DOI: 10.1038/75705] [Citation(s) in RCA: 656] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In animal models, immature neural precursors can replace lost neurons, restore function and promote brain self-repair. Clinical trials in Parkinson's disease suggest that similar approaches may also work in the diseased human brain. But how realistic is it that cell replacement can be developed into effective clinical therapy?
Collapse
Affiliation(s)
- A Björklund
- The authors are at the Wallenberg Neuroscience Center, Lund University, Sölvegatan 17, S-223 62 Lund, Sweden.
| | | |
Collapse
|
22
|
Perrone-Capano C, Da Pozzo P, di Porzio U. Epigenetic cues in midbrain dopaminergic neuron development. Neurosci Biobehav Rev 2000; 24:119-24. [PMID: 10654667 DOI: 10.1016/s0149-7634(99)00054-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Midbrain dopaminergic (DA) neurons subserve complex and varied neural functions in vertebrate CNS. Their progenitors give rise to DA neurons by the action of two extracellular inducers, Sonic Hedgehog and FGF8. After this first commitment, the function of selectively activated transcription factors, like the orphan steroid nuclear receptor Nurr1, is required for DA final determination. Subsequently, DA function is selectively modulated by specific interaction with the developing striatal target tissue. Committed and determined DA neurons express the key genes involved in DA neurotransmission at different times in development. Synthesis and intracellular accumulation of DA is achieved shortly after expression of Nurr1, while high affinity uptake, responsible for ending the neurotransmission, takes place after a few days. Cell contacts between the presynaptic DA neurons and target striatal neurons are apparently necessary for the fine modulation of DA function, in vivo and in vitro.
Collapse
Affiliation(s)
- C Perrone-Capano
- Istituto Internazionale di Genetica e Biofisica, CNR, Naples, Italy.
| | | | | |
Collapse
|
23
|
Abstract
In the mammalian brain dopamine systems play a central role in the control of movement, hormone release, emotional balance and reward. Alteration of dopaminergic neurotransmission is involved in Parkinson's disease and other movement disorders, as well as in some psychotic syndromes. This review summarises recent findings, which shed some light on signals and cellular interactions involved in the specification and maturation of the dopaminergic function during neurogenesis. In particular we will focus on three major issues: (1) the differentiation of dopaminergic neurones triggered by direct contact with the midbrain floor plate cells through the action of sonic hedgehog; (2) the neurotrophic factors acting on dopaminergic neurones; and (3) the role of target striatal cells on the survival and the axonal growth of developing or grafted dopaminergic neurones.
Collapse
Affiliation(s)
- C Perrone-Capano
- International Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, Italy
| | | |
Collapse
|
24
|
Perrone-Capano C, Tino A, Amadoro G, Pernas-Alonso R, di Porzio U. Dopamine transporter gene expression in rat mesencephalic dopaminergic neurons is increased by direct interaction with target striatal cells in vitro. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 39:160-6. [PMID: 8804724 DOI: 10.1016/0169-328x(96)00022-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
By using a semi-quantitative reverse transcriptase-PCR assay (RT-PCR) we have analyzed dopamine transporter (DAT), tyrosine hydroxylase (TH) and synaptic vesicle monoamine transporter (VMAT2) gene expression in rat mesencephalic (MES) primary cultures. Consistent with previous data obtained during rat MES ontogeny, the onset of DAT transcription in vitro is delayed in embryonic day (E)13, but not in E16, MES neurons when compared to that of TH and VMAT2. In co-culture, the addition of target striatal cells (STR) to E13 MES selectively increases DAT mRNA level in DA neurons during the first 3 days in vitro; cortical cells are ineffective. On the contrary, DAT gene does not appear up-regulated in E16 MES co-cultured with target STR cells, indicating that MES DA neurons respond to STR stimulation only at defined developmental stages. Up-regulation of DAT mRNA level by STR in E13 MES seems to require direct cell interactions since target cells do not exert their effect on DAT transcription when are separated from MES cells by a porous barrier, which only allows diffusion of soluble molecules. Thus maturation of DA neurotransmission in vitro appears to follow a developmental program which can be specifically modulated by their target STR cells.
Collapse
Affiliation(s)
- C Perrone-Capano
- Department of General and Environmental Physiology, University of Naples, Italy.
| | | | | | | | | |
Collapse
|
25
|
Vaglini F, Fascetti F, Fornai F, Maggio R, Corsini GU. (+)MK-801 prevents the DDC-induced enhancement of MPTP toxicity in mice. Brain Res 1994; 668:194-203. [PMID: 7704605 DOI: 10.1016/0006-8993(94)90524-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to reach deeper insight into the mechanism of diethyldithiocarbamate (DDC)-induced enhancement of MPTP toxicity in mice, MK-801, a non-competitive antagonist of NMDA receptors, has been used as a tool to study the role of excitatory amino acids. In agreement with previous reports, (+)MK-801 did not significantly affect either striatal dopamine (DA) or tyrosine-hydroxylase (TH) activity in MPTP-treated animals. On the contrary (+)MK-801, but not (-)MK-801 significantly reduced the DDC + MPTP-induced fall in striatal DA and TH activity. A similar preventing effect on DA metabolites (DOPAC and HVA) and HVA/DA ratio was observed. The number of TH+ neurons in the substantia nigra (SN) of (+)MK-801-pretreated mice was not significantly different from that of control animals, indicating that this treatment specifically antagonized the extensive DDC-induced lesion of dopaminergic cell bodies in this brain area. (+)MK-801 treatment did not affect the DDC-induced changes of striatal MPP+ levels, suggesting that the observed antagonism of MK-801 against DDC is not due to MPP+ kinetic modifications. Pretreatment with the MAO-B inhibitor, L-deprenyl, or with the DA uptake blocker, GBR 12909, completely prevented the marked DA depletion elicited by DDC + MPTP within the striatum. Both treatments also protected from the fall in DA metabolites and TH activity as well. This indicates that DDC-induced potentiation is dependent upon MPP+ production and its uptake by the dopaminergic nerve terminals. All these findings suggest that NMDA receptors play a crucial role in the DDC-induced enhancement of MPTP toxicity.
Collapse
Affiliation(s)
- F Vaglini
- Institute of Pharmacology, School of Medicine, University of Pisa, Italy
| | | | | | | | | |
Collapse
|
26
|
Nakao N, Frodl EM, Duan WM, Widner H, Brundin P. Lazaroids improve the survival of grafted rat embryonic dopamine neurons. Proc Natl Acad Sci U S A 1994; 91:12408-12. [PMID: 7809050 PMCID: PMC45447 DOI: 10.1073/pnas.91.26.12408] [Citation(s) in RCA: 175] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In rodent models of Parkinson disease in which transplants of dissociated rodent and human embryonic mesencephalic tissue, rich in dopamine neurons, have been studied, only 5-20% of the dopamine neurons survive the implantation procedure. We have investigated the effects of inhibiting free radical generation with two lazaroids, U-74389G and U-83836E, on the survival of embryonic rat dopamine neurons. U-74389G is a 21-aminosteroid, and U-83836E combines the piperazinyl pyrimidine portion of 21-aminosteroids with the antioxidant ring of alpha-tocopherol. In an initial study, we found that the lazaroids markedly prolonged the period after tissue dissociation that an embryonic mesencephalic cell suspension exhibits high cell viability in vitro, as assessed by using a dye exclusion method. In a second series of experiments, addition of lazaroids to dissociated mesencephalic graft tissue increased the yield of surviving rat dopamine neurons 2.6-fold after implantation in the dopamine-denervated rat striatum. The improved survival correlated with an earlier onset of graft-induced functional effects in the amphetamine-induced rotation test. Thus, inhibition of free radical generation can significantly increase the yield of grafted embryonic dopamine neurons. Addition of lazaroids to the graft preparation is a relatively simple modification of the transplantation protocol and could readily be applied in a clinical setting. Moreover, since iron-dependent lipid peroxidation has been suggested to play a role in the death of nigral dopamine neurons in Parkinson disease and lazaroids are particularly potent inhibitors of such processes, the findings may have implications for the pathogenesis of this disease.
Collapse
Affiliation(s)
- N Nakao
- Department of Neurology, University Hospital, Lund, Sweden
| | | | | | | | | |
Collapse
|
27
|
Herman JP, Abrous ND. Dopaminergic neural grafts after fifteen years: results and perspectives. Prog Neurobiol 1994; 44:1-35. [PMID: 7831470 DOI: 10.1016/0301-0082(94)90055-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J P Herman
- CNRS UMR 9941, Laboratoire des Interactions Cellulaires Neuroendocriniennes, Faculté de Médecine Nord, Marseille, France
| | | |
Collapse
|
28
|
Frodl EM, Duan WM, Sauer H, Kupsch A, Brundin P. Human embryonic dopamine neurons xenografted to the rat: effects of cryopreservation and varying regional source of donor cells on transplant survival, morphology and function. Brain Res 1994; 647:286-98. [PMID: 7922505 DOI: 10.1016/0006-8993(94)91328-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
When grafting human mesencephalic tissue to patients suffering from Parkinson's disease, the number of surviving dopamine (DA) neurons in the graft is probably crucial. It may be possible to increase the number of DA neurons available for grafting to a patient by pooling tissue from many human embryos collected over several days or by obtaining more DA neurons from each embryo. We have addressed these issues by cryopreserving human mesencephalic DA neurons prior to transplantation and also by grafting human embryonic diencephalic DA neurons. The effects of cryopreservation were assessed 4-15 weeks after xenografting ventral mesencephalic tissue into the DA-depleted striatum of immunosuppressed rats with unilateral 6-hydroxydopamine lesions of the mesostriatal pathway. Control rats grafted with fresh mesencephalic tissue displayed robust reductions in amphetamine-induced turning following transplantation. Functional effects of the cryopreserved mesencephalic grafts were only observed in the one rat out of nine which contained the largest graft in this group. The number of tyrosine hydroxylase immunoreactive neurons in animals transplanted with cryopreserved tissue was significantly reduced to 9% of fresh tissue control grafts. Morphological analysis showed that cryopreserved DA neurons were approximately 22% and 28% smaller regarding the length of the long and short axis, respectively, when compared to the neurons found in fresh grafts. In the second part of the study, the survival and function of human embryonic diencephalic DA neurons were examined following xenografting into the DA-depleted rat striatum. A reduction of motor asymmetry was observed in two out of seven diencephalon-grafted rats. This finding was consistent with a good graft survival in these particular rats, which both contained large grafts rich in tyrosine hydroxylase immunoreactive neurons. Moreover, there was immunopositive staining for graft-derived fibers in the rat striatum containing tyrosine hydroxylase and human neurofilament, both in rats grafted with mesencephalic and diencephalic DA neurons. These findings suggest that cryopreservation, using the current technique, is not a suitable storage method for use in clinical trials of DA neuron grafting in Parkinson's disease. On the other hand, the application of alternative sources of DA neurons may in the future develop into a strategy which can increase the number of neurons obtainable from each human embryo.
Collapse
Affiliation(s)
- E M Frodl
- Department of Neurology, University Hospital, Lund, Sweden
| | | | | | | | | |
Collapse
|
29
|
Zuddas A, Oberto G, Vaglini F, Fascetti F, Fornai F, Corsini GU. MK-801 prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in primates. J Neurochem 1992; 59:733-9. [PMID: 1629743 DOI: 10.1111/j.1471-4159.1992.tb09429.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In cynomologus monkeys, systemic administration of MK-801, a noncompetitive antagonist for the N-methyl-D-aspartate receptor, prevented the development of the parkinsonian syndrome induced by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MK-801 also attenuated dopamine depletion in the caudate and putamen and protected dopaminergic neurons in the substantia nigra from the degeneration induced by the neurotoxin. Nevertheless, 7 days after MPTP administration in the caudate and putamen of monkeys also receiving MK-801, the levels of toxic 1-methyl-4-phenylpyridinium were even higher than those measured in monkeys receiving MPTP alone. This indicates that the protective action of MK-801 is not related to MPTP metabolism and strongly suggests that, in primates, the excitatory amino acids could play a crucial role in the mechanism of the selective neuronal death induced by MPTP.
Collapse
Affiliation(s)
- A Zuddas
- Institute of Pharmacology, School of Medicine, University of Pisa, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Zuddas A, Vaglini F, Fornai F, Fascetti F, Saginario A, Corsini GU. Pharmacologic modulation of MPTP toxicity: MK 801 in prevention of dopaminergic cell death in monkeys and mice. Ann N Y Acad Sci 1992; 648:268-71. [PMID: 1386204 DOI: 10.1111/j.1749-6632.1992.tb24553.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- A Zuddas
- Istituto di Farmacologia, Scuola Medica, Università degli Studi di Pisa, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Di Porzio U, Zuddas A. Embryonic dopaminergic neuron transplants in MPTP lesioned mouse striatum. Neurochem Int 1992; 20 Suppl:309S-320S. [PMID: 1365448 DOI: 10.1016/0197-0186(92)90258-s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this work is to study CNS development and plasticity, and to study the mechanisms that allow exogenous embryonic dopaminergic neurons to restore transmitter function in the experimental parkinsonism. Recently, we have developed a new method that produces a selective degeneration of the dopaminergic nigrostriatal system in mice by a combined acetaldehyde/MPTP treatment. This procedure results in a selective and irreversible loss of substantia nigra dopaminergic neurons in C57BL mice, while other dopaminergic areas of the brain are spared. MPTP alone results instead only in a temporary, reversible damage of nigro- striatal dopaminergic functions. Embryonic dopaminergic neurons from ventral mesencephalon or hypothalamus are implanted in lesioned or normal right striata or lateral ventricles. The mesencephalic neurons implanted in a lesioned host form a dense network of fibers which establish functional reinnervation of the striatum (or caudate-putamen complex). After several months about the entire striatal parenchyma appears reinnervated; on average, 20% of the grafted mesencephalic dopaminergic cells survive. Implants of embryonic HYP neurons instead, show little or no survival. Moreover, dopaminergic mesencephalic neurons in control non-lesioned animals show a poor development with little fiber outgrowth. These data indicate that interactions between embryonic dopaminergic neurons and adult striatal neurons is specific. They also suggest that this specificity is sustained by trophic and/or tropic factors possibly produced by the lesioned striatum and by putative inhibitory mechanisms of cell migration and neuritic outgrowth.
Collapse
Affiliation(s)
- U Di Porzio
- Istituto Internazionale di Genetica e Biofisica, CNR, Naples, Italy
| | | |
Collapse
|