1
|
Affiliation(s)
- Beat Ludin
- Friedrich Miescher Institute, Basel, Switzerland
| | - Andrew Matus
- Friedrich Miescher Institute, Basel, Switzerland
| |
Collapse
|
2
|
Burd I, Bentz AI, Chai J, Gonzalez J, Monnerie H, Le Roux PD, Cohen AS, Yudkoff M, Elovitz MA. Inflammation-induced preterm birth alters neuronal morphology in the mouse fetal brain. J Neurosci Res 2010; 88:1872-81. [PMID: 20155801 DOI: 10.1002/jnr.22368] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adverse neurological outcome is a major cause of long-term morbidity in ex-preterm children. To investigate the effect of parturition and inflammation on the fetal brain, we utilized two in vivo mouse models of preterm birth. To mimic the most common human scenario of preterm birth, we used a mouse model of intrauterine inflammation by intrauterine infusion of lipopolysaccharide (LPS). To investigate the effect of parturition on the immature fetal brain, in the absence of inflammation, we used a non-infectious model of preterm birth by administering RU486. Pro-inflammatory cytokines (IL-10, IL-1beta, IL-6 and TNF-alpha) in amniotic fluid and inflammatory biomarkers in maternal serum and amniotic fluid were compared between the two models using ELISA. Pro-inflammatory cytokine expression was evaluated in the whole fetal brains from the two models. Primary neuronal cultures from the fetal cortex were established from the different models and controls in order to compare the neuronal morphology. Only the intrauterine inflammation model resulted in an elevation of inflammatory biomarkers in the maternal serum and amniotic fluid. Exposure to inflammation-induced preterm birth, but not non-infectious preterm birth, also resulted in an increase in cytokine mRNA in whole fetal brain and in disrupted fetal neuronal morphology. In particular, Microtubule-associated protein 2 (MAP2) staining was decreased and the number of dendrites was reduced (P < 0.001, ANOVA between groups). These results suggest that inflammation-induced preterm birth and not the process of preterm birth may result in neuroinflammation and alter fetal neuronal morphology.
Collapse
Affiliation(s)
- Irina Burd
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA 19104-6142, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Burd I, Chai J, Gonzalez J, Ofori E, Monnerie H, Le Roux PD, Elovitz MA. Beyond white matter damage: fetal neuronal injury in a mouse model of preterm birth. Am J Obstet Gynecol 2009; 201:279.e1-8. [PMID: 19733279 DOI: 10.1016/j.ajog.2009.06.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 04/26/2009] [Accepted: 06/01/2009] [Indexed: 01/13/2023]
Abstract
OBJECTIVE The purpose of this study was to elucidate possible mechanisms of fetal neuronal injury in inflammation-induced preterm birth. STUDY DESIGN With the use of a mouse model of preterm birth, the following primary cultures were prepared from fetal brains: (1) control neurons (CNs), (2) lipopolysaccharide-exposed neurons (LNs), (3) control coculture (CCC) that consisted of neurons and glia, and (4) lipopolysaccharide-exposed coculture (LCC) that consisted of lipopolysaccharide-exposed neurons and glia. CNs and LNs were treated with culture media from CN, LN, CCC, and LCC after 24 hours in vitro. Immunocytochemistry was performed for culture characterization and neuronal morphologic evidence. Quantitative polymerase chain reaction was performed for neuronal differentiation marker, microtubule-associated protein 2, and for cell death mediators, caspases 1, 3, and 9. RESULTS Lipopolysaccharide exposure in vivo did not influence neuronal or glial content in cocultures but decreased the expression of microtubule-associated protein 2 in LNs. Media from LNs and LCCs induced morphologic changes in control neurons that were comparable with LNs. The neuronal damage caused by in vivo exposure (LNs) could not be reversed by media from control groups. CONCLUSION Lipopolysaccharide-induced preterm birth may be responsible for irreversible neuronal injury.
Collapse
|
4
|
Proteomic analysis reveals selective impediment of neuronal remodeling upon Borna disease virus infection. J Virol 2008; 82:12265-79. [PMID: 18829749 DOI: 10.1128/jvi.01615-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The neurotropic virus Borna disease virus (BDV) persists in the central nervous systems of a wide variety of vertebrates and causes behavioral disorders. BDV represents an intriguing example of a virus whose persistence in neurons leads to altered brain function in the absence of overt cytolysis and inflammation. The bases of BDV-induced behavioral impairment remain largely unknown. To better characterize the neuronal response to BDV infection, we compared the proteomes of primary cultures of cortical neurons with and without BDV infection. We used two-dimensional liquid chromatography fractionation, followed by protein identification by nanoliquid chromatography-tandem mass spectrometry. This analysis revealed distinct changes in proteins implicated in neurotransmission, neurogenesis, cytoskeleton dynamics, and the regulation of gene expression and chromatin remodeling. We also demonstrated the selective interference of BDV with processes related to the adaptative response of neurons, i.e., defects in proteins regulating synaptic function, global rigidification of the cytoskeleton network, and altered expression of transcriptional and translational repressors. Thus, this work provides a global view of the neuronal changes induced by BDV infection together with new clues to understand the mechanisms underlying the selective interference with neuronal plasticity and remodeling that characterizes BDV persistence.
Collapse
|
5
|
Wang Y, Rubel EW. Rapid regulation of microtubule-associated protein 2 in dendrites of nucleus laminaris of the chick following deprivation of afferent activity. Neuroscience 2008; 154:381-9. [PMID: 18440716 DOI: 10.1016/j.neuroscience.2008.02.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/21/2008] [Accepted: 02/21/2008] [Indexed: 11/15/2022]
Abstract
Differential innervation of segregated dendritic domains in the chick nucleus laminaris (NL), composed of third-order auditory neurons, provides a unique model to study synaptic regulation of dendritic structure. Altering the synaptic input to one dendritic domain affects the structure and length of the manipulated dendrites while leaving the other set of unmanipulated dendrites largely unchanged. Little is known about the effects of neuronal input on the cytoskeletal structure of NL dendrites and whether changes in the cytoskeleton are responsible for dendritic remodeling following manipulations of synaptic input. In this study, we investigate changes in the immunoreactivity of high-molecular weight microtubule associated protein 2 (MAP2) in NL dendrites following two different manipulations of their afferent input. Unilateral cochlea removal eliminates excitatory synaptic input to the ventral dendrites of the contralateral NL and the dorsal dendrites of the ipsilateral NL. This manipulation produced a dramatic decrease in MAP2 immunoreactivity in the deafferented dendrites. This decrease was detected as early as 3 h following the surgery, well before any degeneration of afferent axons. A similar decrease in MAP2 immunoreactivity in deafferented NL dendrites was detected following a midline transection that silences the excitatory synaptic input to the ventral dendrites on both sides of the brain. These changes were most distinct in the caudal portion of the nucleus where individual deafferented dendritic branches contained less immunoreactivity than intact dendrites. Our results suggest that the cytoskeletal protein MAP2, which is distributed in dendrites, perikarya, and postsynaptic densities, may play a role in deafferentation-induced dendritic remodeling.
Collapse
Affiliation(s)
- Y Wang
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Box 357923, Seattle, WA 98195, USA
| | | |
Collapse
|
6
|
King AE, Chung RS, Vickers JC, Dickson TC. Localization of glutamate receptors in developing cortical neurons in culture and relationship to susceptibility to excitotoxicity. J Comp Neurol 2006; 498:277-94. [PMID: 16856139 DOI: 10.1002/cne.21053] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Overactivation of glutamate receptors leading to excitotoxicity has been implicated in the neurodegenerative alterations of a range of central nervous system (CNS) disorders. We have investigated the cell-type-specific changes in glutamate receptor localization in developing cortical neurons in culture, as well as the relationship between glutamate receptor subunit distribution with synapse formation and susceptibility to excitotoxicity. Glutamate receptor subunit clustering was present prior to the formation of synapses. However, different receptor types showed distinctive temporal patterns of subunit clustering, localization to spines, and apposition to presynaptic terminals. N-methyl-D-aspartate (NMDA) receptor subunit immunolabelling was present in puncta along dendrites prior to the formation of synapses, with relatively little localization to spines. Vulnerability to NMDA receptor-mediated excitotoxicity occurred before receptor subunits became localized in apposition to presynaptic terminals. Clustering of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors occurred concurrently with development of vulnerability to excitotoxicity and was related to localization of AMPA receptors at synapses and in spines. Different AMPA receptor subunits demonstrated cell-type-specific localization as well as distribution to spines, dendrites, and extrasynaptic subunit clusters. A subclass of neurons demonstrated substantial perineuronal synaptic innervation, and these neurons expressed relatively high levels of GluR1 and/or GluR4 at receptor puncta, indicating the presence of calcium-permeable AMPA receptors and suggesting alternative synaptic signalling mechanisms and vulnerability to excitotoxicity. These data demonstrate the relationship between glutamate receptor subunit expression and localization with synaptogenesis and development of neuronal susceptibility to excitotoxicity. These data also suggest that excitotoxicity can be mediated through extrasynaptic receptor subunit complexes along dendrites.
Collapse
Affiliation(s)
- A E King
- NeuroRepair Group, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | | | | | |
Collapse
|
7
|
Slemmer JE, De Zeeuw CI, Weber JT. Don't get too excited: mechanisms of glutamate-mediated Purkinje cell death. PROGRESS IN BRAIN RESEARCH 2005; 148:367-90. [PMID: 15661204 DOI: 10.1016/s0079-6123(04)48029-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purkinje cells (PCs) present a unique cellular profile in both the cerebellum and the brain. Because they represent the only output cell of the cerebellar cortex, they play a vital role in the normal function of the cerebellum. Interestingly, PCs are highly susceptible to a variety of pathological conditions that may involve glutamate-mediated 'excitotoxicity', a term coined to describe an excessive release of glutamate, and a subsequent over-activation of excitatory amino acid (NMDA, AMPA, and kainite) receptors. Mature PCs, however, lack functional NMDA receptors, the means by which Ca(2+) enters the cell in classic hippocampal and cortical models of excitotoxicity. In PCs, glutamate predominantly mediates its effects, first via a rapid influx of Ca(2+)through voltage-gated calcium channels, caused by the depolarization of the membrane after AMPA receptor activation (and through Ca(2+)-permeable AMPA receptors themselves), and second, via a delayed release of Ca(2+) from intracellular stores. Although physiological levels of intracellular free Ca(2+) initiate vital second messenger signaling pathways in PCs, excessive Ca(2+) influx can detrimentally alter dendritic spine morphology via interactions with the neuronal cytoskeleton, and thus can perturb normal synaptic function. PCs possess various calcium-binding proteins, such as calbindin-D28K and parvalbumin, and glutamate transporters, in order to prevent glutamate from exerting deleterious effects. Bergmann glia are gaining recognition as key players in the clearance of extracellular glutamate; these cells are also high in S-100beta, a protein with both neurodegenerative and neuroprotective abilities. In this review, we discuss PC-specific mechanisms of glutamate-mediated excitotoxic cell death, the relationship between Ca(2+) and cytoskeleton, and the implications of glutamate, and S-100beta for pathological conditions, such as traumatic brain injury.
Collapse
Affiliation(s)
- Jennifer E Slemmer
- Department of Neuroscience, Erasmus Medical Center, Dr. Molenwaterplein 50, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | |
Collapse
|
8
|
Fujimoto T, Tanaka H, Kumamaru E, Okamura K, Miki N. Arc interacts with microtubules/microtubule-associated protein 2 and attenuates microtubule-associated protein 2 immunoreactivity in the dendrites. J Neurosci Res 2004; 76:51-63. [PMID: 15048929 DOI: 10.1002/jnr.20056] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Arc, activity-regulated cytoskeleton-associated gene, is an immediate early gene, and its expression is regulated by a variety of stimuli, such as electric stimulation and methamphetamine. The function of Arc, however, is unknown. To explore this function, we carried out expression experiments by transfecting green fluorescent protein (GFP)-Arc constructs or by using a protein transduction system in hippocampal cultured neurons. We found that the overexpression of Arc as well as Arc induction by seizure in vivo decreased microtubule-associated protein 2 (MAP2) staining in the dendrites by immunocytochemistry, although MAP2 content was not changed on Western blot. Furthermore, Arc interacted with newly polymerized microtubules and MAP2, leading to blocking of the epitope of MAP2. The data suggest that Arc increased by synaptic activities would trigger dendritic remodeling by interacting with cytoskeletal proteins.
Collapse
Affiliation(s)
- Takahiro Fujimoto
- Department of Pharmacology, Osaka University Medical School, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
9
|
Nishino K, Nowak TS. Time course and cellular distribution of hsp27 and hsp72 stress protein expression in a quantitative gerbil model of ischemic injury and tolerance: thresholds for hsp72 induction and hilar lesioning in the context of ischemic preconditioning. J Cereb Blood Flow Metab 2004; 24:167-78. [PMID: 14747743 DOI: 10.1097/01.wcb.0000100853.67976.8b] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The distribution and time course of expression of the heat shock/stress proteins, hsp27 and hsp72, were evaluated in a highly controlled gerbil model of ischemic injury and tolerance induction, in which the duration of ischemic depolarization in each hippocampus provides a precise quantitative index of insult severity. Gerbils were subjected to brief priming insults (2- to 3.5-minute depolarization) that produce optimal preconditioning, to severe test insults (6- to 8.5-minute depolarization) that produce complete CA1 neuron loss in naive animals, or to combined insults administered 1 week apart, after which almost complete tolerance to CA1 neuron injury is observed. Immunoreactivities of hsp27, hsp72, glial fibrillary acidic protein and microtubule-associated protein 2 (MAP2) were evaluated in animals perfused at defined intervals after the final insult in each treatment group, using a variation of established antigen-retrieval procedures that significantly improves detection of many proteins in vibratome brain sections. Hsp72 was detected in CA1 neurons of some hippocampi 2 to 4 days after preconditioning, but this was only seen after the longest priming depolarizations, whereas shorter insults that still induced optimal tolerance failed to induce hsp72. Hsp72 was induced after test insults in preconditioned hippocampi, but at a higher depolarization threshold than observed for naive animals. An astrocytic localization of hsp27 was observed in regions of neuron injury, as indicated by reduced MAP2 immunoreactivity, and was primarily restricted to dentate hilus after preconditioning insults. These results establish that limited hilar lesions are characteristic of optimal preconditioning, whereas prior neuronal expression of either hsp72 or hsp27 is not required for ischemic tolerance.
Collapse
Affiliation(s)
- Kazuhiko Nishino
- Department of Neurology, University of Tennessee, Memphis, 38163, USA
| | | |
Collapse
|
10
|
Monnerie H, Shashidhara S, Le Roux PD. Effect of excess extracellular glutamate on dendrite growth from cerebral cortical neurons at 3 days in vitro: Involvement of NMDA receptors. J Neurosci Res 2004; 74:688-700. [PMID: 14635220 DOI: 10.1002/jnr.10797] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glutamate is an important regulator of dendrite development; however, during cerebral ischemia, massive glutamate release can lead to neurodegeneration and death. An early consequence of glutamate excitotoxicity is dendrite injury, which often precedes cell death. We examined the effect of glutamate on dendrite growth from embryonic day 18 (E18) mouse cortical neurons grown for 3 days in vitro (DIV) and immunolabeled with anti-microtubule-associated protein (MAP)2 and anti-neurofilament (NF)-H, to identify dendrites and axons, respectively. Cortical neurons exposed to excess extracellular glutamate (100 microM) displayed reduced dendrite growth, which occurred in the absence of cell death. This effect was mimicked by the ionotropic glutamate receptor agonist N-methyl-D-aspartate (NMDA) and blocked by the ionotropic glutamate receptor antagonist kynurenic acid and the NMDA receptor-specific antagonist MK-801. The non-NMDA receptor agonist AMPA, however, did not affect process growth. Neither NMDA nor AMPA influenced neuron survival. Immunolabeling and Western blot analysis of NMDA receptors using antibodies against the NR1 subunit, demonstrated that immature cortical neurons used in this study, express NMDA receptors. These results suggest that excess glutamate decreases dendrite growth through a mechanism resulting from NMDA receptor subclass activation. Furthermore, these data support the possibility that excess glutamate activation of NMDA receptors mediate both cell death in mature neurons and the inhibitory effect of excess glutamate on dendrite growth in immature neurons or in the absence of cell death.
Collapse
Affiliation(s)
- Hubert Monnerie
- Department of Neurosurgery, University of Pennsylvania, Philadelphia
| | | | | |
Collapse
|
11
|
Arkaravichien T, Sattayasai N, Daduang S, Sattayasai J. Dose-dependent effects of glutamate in pyridoxine-induced neuropathy. Food Chem Toxicol 2003; 41:1375-80. [PMID: 12909271 DOI: 10.1016/s0278-6915(03)00142-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In order to explore the effects of glutamate in a pyridoxine megadose-induced neuropathy, rats were received glutamate either 0.5 or 1 g/kg/day orally with or without pyridoxine 0.8 g/kg/day intraperitoneally for 14 days. The animal's motor coordination, the muscle power and the thermal threshold were observed daily. The nerve conduction velocity was measured at day 0 and day 15 of the treatment. Glutamate either 0.5 or 1 g/kg/day appeared to have no effect on motor coordination, the nerve conduction velocity and the muscle power score compared with control. However, the thermal response latency was significantly decreased (from day 9) in animals treated with 1 g/kg/day glutamate. In pyridoxine-induced neuropathy rats, glutamate 0.5 g/kg/day significantly decreased the effects of pyridoxine on the sciatic nerve conduction velocity, the muscle power score and the motor coordination. Interestingly, glutamate at a dose of 1 g/kg/day worsened the neurotoxic effects cause by pyridoxine.
Collapse
|
12
|
Poluch S, Drian MJ, Durand M, Astier C, Benyamin Y, König N. AMPA receptor activation leads to neurite retraction in tangentially migrating neurons in the intermediate zone of the embryonic rat neocortex. J Neurosci Res 2001; 63:35-44. [PMID: 11169612 DOI: 10.1002/1097-4547(20010101)63:1<35::aid-jnr5>3.0.co;2-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In rat (König et al. [1998] 28th Annual Meeting of the Society of Neuroscience, Los Angeles. 24:314.6) and mouse (Métin et al. [2000] J. Neurosci. 20:696-708), neurons migrating tangentially in the intermediate zone (IZ) of the neocortical anlage express functional AMPA receptors permeable to calcium. The role of these receptors is as yet unknown. We exposed organotypic cultures of rat telencephalon (embryonic day 15) to AMPA receptor agonists or antagonists, and analyzed the effects of these treatments on cells in the IZ labeled with antibodies against the isoforms a, b and c of microtubule associated protein 2 (MAP2) and the polysialylated neural cell adhesion molecule (PSA-NCAM). The presence of functional AMPA receptors permeable to calcium was checked by cobalt-loading. After exposure to AMPA alone for at least 6 hr, we observed a significant increase in the number of rounded, MAP2 positive cells in the IZ close to the migratory front. When AMPA was combined with cyclothiazide, the increase was already significant after 3 hr. These effects were dose-dependent and could be partially or totally blocked by DNQX or GYKI 53655 respectively, that suggests that they are mediated by AMPA receptors. Paracrine AMPA receptor activation might participate, together with other signals, in guiding the migratory stream, or provide stop signals for migrating cells.
Collapse
Affiliation(s)
- S Poluch
- EPHE Biologie Cellulaire Quantitative/INSERM U336, University Montpellier, Place E. Bataillon, 34095 Montpellier Cedex, France
| | | | | | | | | | | |
Collapse
|
13
|
Palmer GC, Cregan EF, Bialobok P, Sydserff SG, Hudzik TJ, McCarthy DJ. The low-affinity, use-dependent NMDA receptor antagonist AR-R 15896AR. An update of progress in stroke. Ann N Y Acad Sci 2000; 890:406-20. [PMID: 10668446 DOI: 10.1111/j.1749-6632.1999.tb08020.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Use-dependent N-methyl-D-aspartate (NMDA) receptor antagonists protect neurons from the lethal consequences of excessive stimulation by excitatory amino acids. Clinical development of high-affinity compounds such as MK801 have been limited due to untoward side effects. Toward this end, the lower-affinity use-dependent NMDA antagonists have greater margins of safety and have advanced to clinical trials for stroke, epilepsy, head trauma and chronic neurodegenerative disorders. AR-R 15896AR is currently in Phase II trials for stroke and has been repeatedly demonstrated to afford neuroprotection in a variety of in vivo and in vitro models associated with ischemia/excitotoxic conditions.
Collapse
Affiliation(s)
- G C Palmer
- Astra Arcus USA, Rochester, New York 14602, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
We analysed physical forces that act on synaptic receptor-channels following the release of neurotransmitter. These forces are: 1) electrostatic interaction between receptors, 2) stochastic Brownian diffusion in the membrane, 3) transient electric field force generated by currents through open channels, 4) viscous drag force elicited by the flowing molecules and 5) strong in-membrane friction. By considering alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type receptors, we show that, depending on the size and electrophoretic charge of the extracellular receptor domain, release of an excitatory neurotransmitter (glutamate) can induce receptor clustering towards the release site on a fast time scale (8-100 ms). This clustering progresses whenever repetitive synaptic activation exceeds a critical frequency (20-100 s(-1), depending on the currents through individual channels). As a result, a higher proportion of the receptors is exposed to higher glutamate levels. This should increase by 50-100% the peak synaptic current induced by the same amount of released neurotransmitter. In order for this mechanism to contribute to long-term changes of synaptic efficacy, we consider the possibility that the in-membrane motility of the AMPA receptors is transiently increased during synaptic activity, e. g., through the breakage of receptor anchors in the postsynaptic membrane due to activation of N-methyl-d-aspartic acid receptors.
Collapse
Affiliation(s)
- L P Savtchenko
- Laboratory of Biophysics and Bioelectronics, Dnepropetrovsk State University and International Center for Molecular Physiology, National Academy of Sciences of Ukraine, Dnepropetrovsk, Ukraine
| | | | | |
Collapse
|
15
|
van Rossum D, Hanisch UK. Cytoskeletal dynamics in dendritic spines: direct modulation by glutamate receptors? Trends Neurosci 1999; 22:290-5. [PMID: 10370249 DOI: 10.1016/s0166-2236(99)01404-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A wide heterogeneity in dendritic-spine morphology is observed and ultrastructural changes can be induced following experimental stimulation of neurons. Morphological adaptation of a given spine might, thus, reflect its history or the current state of synaptic activity. These changes could conceivably result from rearrangements of the cytoskeleton that is subjacent to excitatory synapses. This article dicusses the direct and indirect interactions, between glutamate receptors and the cytoskeletal proteins, which include PDZ-containing proteins, actin and tubulin, as well as associated proteins. In fact, the synaptic-activity-controlled balancing of monomeric, dimeric and polymeric forms of actin and tubulin might underlie the changes in spine shape. These continuous adaptations could be relevant for physiological events, such as learning and the formation of memory.
Collapse
Affiliation(s)
- D van Rossum
- Max Delbrück Centre for Molecular Medicine, 13092 Berlin-Buch, Germany
| | | |
Collapse
|
16
|
van Rossum D, Kuhse J, Betz H. Dynamic interaction between soluble tubulin and C-terminal domains of N-methyl-D-aspartate receptor subunits. J Neurochem 1999; 72:962-73. [PMID: 10037467 DOI: 10.1046/j.1471-4159.1999.0720962.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cytoplasmic C-terminal domains (CTs) of the NR1 and NR2 subunits of the NMDA receptor have been implicated in its anchoring to the subsynaptic cytoskeleton. Here, we used affinity chromatography with glutathione S-transferase-NR1-CT and -NR2B-CT fusion proteins to identify novel binding partner(s) of these NMDA receptor subunits. Upon incubation with rat brain cytosolic protein fraction, both NR1-CT and NR2B-CT, but not glutathione S-transferase, specifically bound tubulin. The respective fusion proteins also bound tubulin purified from brain, suggesting a direct interaction between the two binding partners. In tubulin polymerization assays, NR1-CT and NR2B-CT significantly decreased the rate of microtubule formation without destabilizing preformed microtubules. Moreover, only minor fractions of either fusion protein coprecipitated with the newly formed microtubules. Consistent with these findings, ultrastructural analysis of the newly formed microtubules revealed a limited association only with the CTs of the NR1 and NR2B. These data suggest a direct interaction of the NMDA receptor channel subunit CTs and tubulin dimers or soluble forms of tubulin. The efficient modulation of microtubule dynamics by the NR1 and NR2 cytoplasmic domains suggests a functional interaction of the receptor and the subsynaptic cytoskeletal network that may play a role during morphological adaptations, as observed during synaptogenesis and in adult CNS plasticity.
Collapse
Affiliation(s)
- D van Rossum
- Department of Neurochemistry, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | | | | |
Collapse
|
17
|
Kicliter E, Bengoa F, Herrera JA, González M, Ortíz-Goveo E, Rodríguez V, Lugo N. Two groups of TH-like immunoreactive neurons in the frog (Rana pipiens) retina. Brain Res 1999; 816:149-57. [PMID: 9878714 DOI: 10.1016/s0006-8993(98)01145-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The morphology and distribution of TH-like immunoreactive (TH-IR) cells in the retina of Rana pipiens were studied in retinal whole mounts and in radial and horizontal sections. A large majority (96%) of the immunoreactive cells were found in the inner nuclear layer while a few cells were found in the ganglion cell layer. All TH-IR cells had round to oval somata with average diameter of 10 microm. The 2-4 primary processes of these cells distributed extensively to sublamina 1 of the inner plexiform layer (IPL) and sparsely to sublamina 5. Two groups of TH-IR cells were distinguished: one, designated thin cells, had only thin (<2 microm diameter) primary processes; the second, designated thick cells, had one or more primary processes with diameter(s) exceeding 2 microm for a distance of 5 microm or more from the soma. The thin cells did not significantly differ from the thick cells in soma diameter, number of primary processes, horizontal spread of processes or vertical lamination of processes. Nearest neighbor analyses of the two types revealed that the population of TH-IR cells (thick and thin together) have an orderly distribution while the thick cells alone are more randomly distributed, indicating that the thick cells do not comprise a functional population. The total number of TH-IR cells varied between retinas; the variability was due principally to variation of thin cell density. It is hypothesized that the thick cells are a subpopulation of the TH-IR cells which are in a particular physiological state at the time of fixation.
Collapse
Affiliation(s)
- E Kicliter
- Institute of Neurobiology and Department of Anatomy, University of Puerto Rico Medical Sciences Campus, 201 Boulevard del Valle, San Juan, 00901, Puerto Rico
| | | | | | | | | | | | | |
Collapse
|
18
|
Identification of a survival-promoting peptide in medium conditioned by oxidatively stressed cell lines of nervous system origin. J Neurosci 1998. [PMID: 9736629 DOI: 10.1523/jneurosci.18-18-07047.1998] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A survival-promoting peptide has been purified from medium conditioned by Y79 human retinoblastoma cells and a mouse hippocampal cell line (HN 33.1) exposed to H2O2. A 30 residue synthetic peptide was made on the basis of N-terminal sequences obtained during purification, and it was found to exhibit gel mobility and staining properties similar to the purified molecules. The peptide maintains cells and their processes in vitro for the HN 33.1 cell line treated with H2O2, and in vivo for cortical neurons after lesions of the cerebral cortex. It has weak homology with a fragment of a putative bacterial antigen and, like that molecule, binds IgG. The peptide also contains a motif reminiscent of a critical sequence in the catalytic region of calcineurin-type phosphatases; surprisingly, like several members of this family, the peptide catalyzes the hydrolysis of para-nitrophenylphosphate in the presence of Mn2+. Application of the peptide to one side of bilateral cerebral cortex lesions centered on area 2 in rats results in an increase in IgG immunoreactivity in the vicinity of the lesions 7 d after surgery. Microglia immunopositive for IgG and ED-1 are, however, dramatically reduced around the lesions in the treated hemisphere. Furthermore, pyramidal neurons that would normally shrink, die, or disintegrate were maintained, as determined by MAP2 immunocytochemistry and Nissl staining. These survival effects were often found in both hemispheres. The results suggest that this peptide operates by diffusion to regulate the immune response and thereby rescue neurons that would usually degenerate after cortical lesions. The phosphatase activity of this molecule also suggests the potential for direct neuron survival-promoting effects.
Collapse
|
19
|
Morris BJ. Stabilization of dendritic mRNAs by nitric oxide allows localized, activity-dependent enhancement of hippocampal protein synthesis. Eur J Neurosci 1997; 9:2334-9. [PMID: 9464927 DOI: 10.1111/j.1460-9568.1997.tb01650.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A small number of mRNA species are not restricted to the neuronal cell body, but are also present in neuronal dendrites. The levels of two of these dendritic mRNAs, encoding the microtubule-associated protein MAP2 and the alpha subunit of calcium/calmodulin-dependent protein kinase II (CamKIIalpha), are increased rapidly by high-frequency synaptic activity or by release of nitric oxide. To test the hypothesis that post-transcriptional mechanisms might contribute to this modulation, primary cultures of rat hippocampal neurons were exposed to s-nitroso-N-acetyl penicillamine (SNAP, 200 microM) or vehicle, and mRNA stability was determined. The stability of both CamKIIalpha mRNA and MAP2 mRNA was increased by SNAP treatment, whereas the stabilities of tubulin T26 mRNA and proenkephalin mRNA were unaffected. When the intensity of staining for MAP2 immunoreactivity and CamKIIalpha immunoreactivity was monitored in cultured hippocampal neurons, nitric oxide-releasing agents induced increases in staining intensity that were dependent on protein synthesis but not on mRNA synthesis. These results show that nitric oxide can selectively stabilize CamKIIalpha mRNA and MAP2 mRNA, leading to increased synthesis of the corresponding proteins. This demonstrates a mechanism whereby the presence of a particular mRNA in the vicinity of a synapse permits the levels of the protein product to be regulated by synaptic activity in a manner that is both prolonged and also highly localized to the region of stimulation. Thus, the dependence of sustained synaptic plasticity on de novo protein synthesis need not entail a loss of anatomical specificity.
Collapse
Affiliation(s)
- B J Morris
- Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, Glasgow University, UK
| |
Collapse
|
20
|
Sánchez C, Ulloa L, Montoro RJ, López-Barneo J, Avila J. NMDA-glutamate receptors regulate phosphorylation of dendritic cytoskeletal proteins in the hippocampus. Brain Res 1997; 765:141-8. [PMID: 9310405 DOI: 10.1016/s0006-8993(97)00563-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Most forms of synaptic potentiation need the activation of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors which generate changes in dendritic morphology of postsynaptic neurons. Since microtubule proteins have an essential role in dendritic morphology, they may be involved and regulated during the modifications of dendritic morphology associated with synaptic potentiation. The phosphorylation of the microtubule-associated proteins (MAPs) has been analyzed in situ after activation or blockade of NMDA-glutamate receptors in hippocampal slices. The phosphorylation of MAP1B and MAP2 has been studied by using several antibodies raised against phosphorylation-sensitive epitopes. Whereas antibodies 125 and 305 recognize phosphorylated epitopes on MAP1B and MAP2, respectively, Ab 842 recognizes a phosphorylatable sequence on MAP1B only when it is dephosphorylated. NMDA treatment decreased the phosphorylation state of the epitope recognized by the antibody 305 on MAP2 and caused a slight dephosphorylation of MAP1B sequences recognized by Ab 125 and 842. Moreover, exposure to APV (an antagonist of NMDA-glutamate receptors) counteracted the effect of NMDA and induced an increase in the phosphorylation state of these sequences in MAP2. Since phosphorylation regulates the interaction of MAPs with cytoskeleton, the results suggest that the modulation of the phosphorylated state of MAP2 by NMDA-glutamate receptors may be implicated in dendritic plasticity.
Collapse
Affiliation(s)
- C Sánchez
- Centro de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | | | | | | | | |
Collapse
|
21
|
O'Hanlon GM, Lowrie MB. The effects of neonatal dorsal root section on the survival and dendritic development of lumbar motoneurons in the rat. Eur J Neurosci 1996; 8:1072-7. [PMID: 8752576 DOI: 10.1111/j.1460-9568.1996.tb01274.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Peripheral nerve crush during the early neonatal period results in the death of a large proportion of affected motoneurons and abnormal dendritic development in those which survive. The present study reports the effects of neonatal dorsal root section on motoneurons supplying the extensor digitorum longus muscle of the rat. This lesion did not result in motoneuron death, but did disrupt subsequent dendritic development. In cells retrogradely labelled with cholera toxin subunit B conjugated to horseradish peroxidase, there was little change in adult dendritic morphology in the transverse plane, where abnormalities associated with loss of efferent contact and cell death have been found. However, there was a caudal expansion of the dendritic field, an effect seen following nerve crush but not after blockade of neuromuscular transmission alone. The results show that disruption of dorsal root sensory inputs alone can affect the dendritic development of motoneurons but does not cause their death. In conjunction with our earlier findings, it is clear that both afferent and efferent connections are required for normal dendritic development, and disruption of either has a characteristic effect on survival and dendritic morphology.
Collapse
Affiliation(s)
- G M O'Hanlon
- Department of Anatomy and Cell Biology, St Mary's Hospital Medical School, Imperial College, Norfolk Place, London W2 1PG, UK
| | | |
Collapse
|
22
|
Touri F, Hawkes R, Riederer BM. Differential distribution of MAP1a and aldolase c in adult mouse cerebellum. Eur J Neurosci 1996; 8:61-8. [PMID: 8713450 DOI: 10.1111/j.1460-9568.1996.tb01167.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
MAP1a is a microtubule-associated protein with an apparent molecular weight of 360 kDa that is found in the axonal and dendritic processes of neurons. Two monoclonal anti-MAP1a antibodies anti-A and anti-BW6, revealed different epitope distributions in the adult mouse cerebellum. Anti-A stained Purkinje and granule cells uniformly throughout the cerebellum. In contrast, anti-BW6 selectively stained the dendriites of a subset of Purkinje cells, revealing parasagittal bands of immunoreactivity in the molecular layer. The compartmentation of the BW6 epitope was compared to the Purkine cells as revealed by immunostaining with anti-zebrin II, a well known antigen expressed selectively by bands of Purkinje cells. The anti-BW6 staining pattern was complementary to the zebrin II bands, the zebrin II- Purkinjke cells having BW6+ dendrites. These results demonstrate that MAP1a is present in two forms in the mouse cerebellum, one of which is segregated into parasagittal bands. This may indicate a unique MAP1a isoform or may reflect differences in the metabolic states of Purkinje cell classes, and regional differences in their functions.
Collapse
Affiliation(s)
- F Touri
- Institute of Anatomy, University of Lausanne, Switzerland
| | | | | |
Collapse
|
23
|
Mantyh PW, DeMaster E, Malhotra A, Ghilardi JR, Rogers SD, Mantyh CR, Liu H, Basbaum AI, Vigna SR, Maggio JE. Receptor endocytosis and dendrite reshaping in spinal neurons after somatosensory stimulation. Science 1995; 268:1629-32. [PMID: 7539937 DOI: 10.1126/science.7539937] [Citation(s) in RCA: 371] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In vivo somatosensory stimuli evoked the release of substance P from primary afferent neurons that terminate in the spinal cord and stimulated endocytosis of substance P receptors in rat spinal cord neurons. The distal dendrites that showed substance P receptor internalization underwent morphological reorganization, changing from a tubular structure to one characterized by swollen varicosities connected by thin segments. This internalization and dendritic structural reorganization provided a specific image of neurons activated by substance P. Thus receptor internalization can drive reversible structural changes in central nervous system neurons in vivo. Both of these processes may be involved in neuronal plasticity.
Collapse
Affiliation(s)
- P W Mantyh
- Molecular Neurobiology Laboratory, Veterans Administration Medical Center, Minneapolis, MN 55417, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Johnston HM, Morris BJ. Selective regulation of dendritic MAP2 mRNA levels in hippocampal granule cells by nitric oxide. Neurosci Lett 1994; 177:5-10. [PMID: 7824180 DOI: 10.1016/0304-3940(94)90031-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Application of NMDA, or agents releasing nitric oxide (NO), onto the dendrites of hippocampal granule cells increased the levels of the mRNA encoding MAP2, a cytoskeletal component induced during periods of neurite outgrowth. Furthermore, local increases in the hybridisation signal in the molecular layer, representing dendritic MAP2 mRNA, occurred independently of changes in MAP2 mRNA levels in the cell body layer. The selective modulation of MAP2 mRNA in dendrites reveals a mechanism allowing a sustained stimulation of dendritic outgrowth to be confined to those regions of a neuron's dendritic arbour local to glutamate receptor stimulation.
Collapse
Affiliation(s)
- H M Johnston
- Department of Pharmacology, University of Glasgow, UK
| | | |
Collapse
|
25
|
Eshhar N, Petralia RS, Winters CA, Niedzielski AS, Wenthold RJ. The segregation and expression of glutamate receptor subunits in cultured hippocampal neurons. Neuroscience 1993; 57:943-64. [PMID: 8309554 DOI: 10.1016/0306-4522(93)90040-m] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The distribution and expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-selective glutamate receptor subunits (GluR1-4) were studied in cultured hippocampal neurons using antibodies generated against peptides corresponding to the C-termini of GluR1, GluR2/3 and GluR4, and with a set of oligonucleotide probes designed complementary to specific pan, flip and flop GluR1-4 messenger RNA sequences. GluR1-4 subunit proteins were localized in fixed hippocampal neurons (2 h to three weeks after plating) by immunocytochemistry with light and electron microscopy. At early stages in culture, moderate staining with antibodies to GluR1 and GluR2/3 and very light staining with antibody to GluR4 was observed in cell bodies and proximal portions of all neurites of some neurons. Upon establishment of identified axons and dendrites by seven days in culture, staining was intense with specific antibodies to GluR1 and GluR2/3 and light with anti-GluR4 antibody in cell bodies and dendrites. Little or no staining was observed in axons. Cells at seven days in culture exhibited a variety of morphologies. However, we could not assign a pattern of staining to a particular type. As the cultures matured over two and three weeks, staining was limited to the somatodendritic compartment. The intensity of glutamate receptor subunit staining increased and the extent of staining proceeded to the distal extreme of many dendrites. Moreover, antibodies to GluR1-4 subunits were co-localized in neurons. Immunocytochemistry on living neurons did not result in any significant labeling, suggesting that the epitope is either not expressed on the surface of the neurons, or is present, but inaccessible to the antibody. Electron microscopy demonstrated receptor localization similar to that found in brain, with staining of postsynaptic membrane and density, dendritic cytoplasm and cell body, but not within the synaptic cleft. We examined the possible role of "cellular compartmentation" in the pattern of glutamate receptor expression in hippocampal neurons. Compartmentalization studies of the subcellular distribution of messenger RNAs encoding GluR1-4 subunits was determined in mature cultures by in situ hybridization. Significant silver grain appearance was restricted to the cell body, indicating that the synthesis of glutamate receptor subunits is limited largely to the neuronal cell body. The expression of microtubule-associated protein 2 was studied in parallel. Microtubule-associated protein 2 expression appeared 6 h after plating, while glutamate receptor subunit expression was present at 2 h. This indicates that microtubule-associated protein 2 does not regulate the initial distribution of glutamate receptor subunits into neurites.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- N Eshhar
- Laboratory of Neurochemistry, NIDCD, NIH, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
26
|
Burgoyne RD, Graham ME, Cambray-Deakin M. Neurotrophic effects of NMDA receptor activation on developing cerebellar granule cells. JOURNAL OF NEUROCYTOLOGY 1993; 22:689-95. [PMID: 7903688 DOI: 10.1007/bf01181314] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glutamate acting on N-methyl-D-aspartate (NMDA) receptors controls a variety of aspects of neuronal plasticity in the adult and developing brain. This review summarizes its effects on developing cerebellar granule cells. The glutamatergic mossy fibre input to cerebellar granule cells exerts a neurotrophic effect on these cells during development. The investigation of potential neurotrophic agents can be carried out using enriched granule cell cultures. Considerable evidence now indicates that glutamate acting on N-methyl-D-aspartate receptors is an important neurotrophic factor that regulates granule cell development. In culture, neurite growth, differentiation and cell survival are all stimulated by N-methyl-D-aspartate receptor activation. The intracellular pathways involved following Ca2+ entry through the N-methyl-D-aspartate receptor channel are beginning to be elucidated. The cerebellar granule cell culture system may provide an ideal model to investigate the molecular mechanisms involved in long term N-methyl-D-aspartate receptor-mediated changes in neuronal function.
Collapse
Affiliation(s)
- R D Burgoyne
- Physiological Laboratory, University of Liverpool, UK
| | | | | |
Collapse
|
27
|
Kerwin RW. Glutamate receptors, microtubule associated proteins and developmental anomaly in schizophrenia: an hypothesis. Psychol Med 1993; 23:547-551. [PMID: 7901861 DOI: 10.1017/s0033291700025319] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
28
|
Rusakov DA, Berezovskaya OL, Skibo GG. Cytoskeleton-mediated, age-dependent lateral topography of lectin-gold-labelled molecules on the plasma membrane of cultured neurons: a statistical view. Neuroscience 1993; 52:369-79. [PMID: 8450951 DOI: 10.1016/0306-4522(93)90164-b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In dissociated spinal cord neurons (12-day-old mouse embryo, monolayer culture), an electron microscopic study was carried out to examine quantitatively the rearrangement of wheat-germ agglutinin-gold-labelled molecules on the neuronal somatic surface at two developmental stages (on the fifth and 15th days in vitro), and after cytoskeletal interruptions. In tests, before labelling the cultures were incubated with colchicine or cytochalasin in order to affect microtubules or mostly actin filaments, respectively. Samples of electron micrographs that display soma membrane (profile) fragments were quantified. A set of stochastic geometry approaches was accomplished, which allowed statistical and stereological analysis of labelling. Images that illustrate the lateral (surface) patterns of label were simulated. On the fifth day in vitro, both colchicine and cytochalasin were found to cause an increase in the surface density and aggregation of wheat-germ agglutinin label relative to controls, the effect of cytochalasin being significantly more profound. By the 15th day in vitro, treatment with both drugs led to a similar tendency towards heavy aggregation of wheat-germ agglutinin labels. In contrast, neuron processes showed an opposite tendency of label rearrangement, which suggests lateral migration of labelled molecules, as a result of drug action. Possible molecular mechanisms involved in the phenomena are discussed.
Collapse
Affiliation(s)
- D A Rusakov
- Bogomoletz Institute of Physiology, Academy of Science, Kiev, Ukraine
| | | | | |
Collapse
|
29
|
Johnson GV, Jope RS. The role of microtubule-associated protein 2 (MAP-2) in neuronal growth, plasticity, and degeneration. J Neurosci Res 1992; 33:505-12. [PMID: 1484385 DOI: 10.1002/jnr.490330402] [Citation(s) in RCA: 245] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microtubule associated protein 2 (MAP-2) historically has been perceived primarily as a static, structural protein, necessary along with other cytoskeletal proteins to maintain neuroarchitecture but somewhat removed from the "mainstream" of neuronal response mechanisms. Quite to the contrary, MAP-2 is exquisitely sensitive to many inputs and recent investigations have revealed dynamic functions for MAP-2 in the growth, differentiation, and plasticity of neurons, with key roles in neuronal responses to growth factors, neurotransmitters, synaptic activity, and neurotoxins. These discoveries indicate that modification and rearrangement of MAP-2 is an early obligatory step in many processes which modify neuronal function.
Collapse
Affiliation(s)
- G V Johnson
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham
| | | |
Collapse
|
30
|
Leterrier JF, Eyer J. Age-dependent changes in the ultrastructure and in the molecular composition of rat brain microtubules. J Neurochem 1992; 59:1126-37. [PMID: 1322968 DOI: 10.1111/j.1471-4159.1992.tb08355.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An age-dependent increase of a cathepsin D-like protease activity that preferentially degrades high molecular weight microtubule-associated proteins (MAPs) has been previously described. Microtubules (MT) purified from rat brain of different ages in the presence of several protease inhibitors retained undegraded MAPs through cycles of polymerization, and revealed several age-dependent changes in the relative amounts of MAPs and MT-associated kinases. MAP2 immunoreactivity was found significantly lower in MT preparations from aged animals in contrast with a relative increase of tau molecules. In addition, the phosphorylation of MAP2 by its associated cyclic AMP-dependent protein kinase was also altered, consecutively to the partial loss of the enzyme during polymerization cycles and an age-dependent decrease in the ability of the cyclic nucleotide to stimulate MAP2-bound kinase activity. The evidence of an unusually high packing density of sedimented MT from old rat brains further suggested the modification with aging of the physical structure of the arm-like projections of MAPs, in addition to a lower amount in high molecular weight MAPs. These results support the hypothesis of a selective alteration with aging of the mechanical and regulatory properties of brain MT, consecutive to a change in the composition and/or the structure of MAPs.
Collapse
|
31
|
Rashid NA, Cambray-Deakin MA. N-methyl-D-aspartate effects on the growth, morphology and cytoskeleton of individual neurons in vitro. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1992; 67:301-8. [PMID: 1355016 DOI: 10.1016/0165-3806(92)90231-k] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Short-term (up to 5 h post-plating) cerebellar granule cell cultures were prepared from the week-old rat and maintained in a micro-incubator during time lapse video microscopy to examine normal and N-methyl-D-aspartate (NMDA)-evoked neurite extension. In untreated cultures growth of neurites was stochastic but proceeded at an average rate of 12.0 +/- 1.4 microns/h. Growth cone morphology was variable. The classical filopodia and lamellipodia possessing tips were motile or non-motile, while those processes ending in a club shape were rarely seen to extend. Individual growth cones passed through several different morphologies during growth. New processes extended more rapidly (13.0 +/- 1.7 microns/h) than those already present (9.0 +/- 0.5 microns/h). Addition of the NMDA receptor antagonist, aminophosphonovalerate (APV), caused a marked retraction of pre-existing processes. Stimulation of the receptor with 50 microM NMDA caused a marked increase in growth rate compared to controls (15.0 microns/h and 1.7 microns/h, respectively). When the presence of actin-rich structures was examined using rhodamine-phalloidin labelling it was found that NMDA increased the proportion of neuronal processes that possessed a growth cone by 28%. Conversely, inhibition of NMDA receptor activity with APV reduced the formation of lamellipodia from neuronal cell bodies.
Collapse
Affiliation(s)
- N A Rashid
- Department of Biomedical Science, University of Sheffield, UK
| | | |
Collapse
|