1
|
Zichó K, Sos KE, Papp P, Barth AM, Misák E, Orosz Á, Mayer MI, Sebestény RZ, Nyiri G. Fear memory recall involves hippocampal somatostatin interneurons. PLoS Biol 2023; 21:e3002154. [PMID: 37289847 DOI: 10.1371/journal.pbio.3002154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Fear-related memory traces are encoded by sparse populations of hippocampal principal neurons that are recruited based on their inhibitory-excitatory balance during memory formation. Later, the reactivation of the same principal neurons can recall the memory. The details of this mechanism are still unclear. Here, we investigated whether disinhibition could play a major role in this process. Using optogenetic behavioral experiments, we found that when fear was associated with the inhibition of mouse hippocampal somatostatin positive interneurons, the re-inhibition of the same interneurons could recall fear memory. Pontine nucleus incertus neurons selectively inhibit hippocampal somatostatin cells. We also found that when fear was associated with the activity of these incertus neurons or fibers, the reactivation of the same incertus neurons or fibers could also recall fear memory. These incertus neurons showed correlated activity with hippocampal principal neurons during memory recall and were strongly innervated by memory-related neocortical centers, from which the inputs could also control hippocampal disinhibition in vivo. Nonselective inhibition of these mouse hippocampal somatostatin or incertus neurons impaired memory recall. Our data suggest a novel disinhibition-based memory mechanism in the hippocampus that is supported by local somatostatin interneurons and their pontine brainstem inputs.
Collapse
Affiliation(s)
- Krisztián Zichó
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Katalin E Sos
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Péter Papp
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Albert M Barth
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Erik Misák
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Áron Orosz
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Márton I Mayer
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Réka Z Sebestény
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Gábor Nyiri
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
2
|
Perrenoud Q, Leclerc C, Geoffroy H, Vitalis T, Richetin K, Rampon C, Gallopin T. Molecular and electrophysiological features of GABAergic neurons in the dentate gyrus reveal limited homology with cortical interneurons. PLoS One 2022; 17:e0270981. [PMID: 35802727 PMCID: PMC9269967 DOI: 10.1371/journal.pone.0270981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
GABAergic interneurons tend to diversify into similar classes across telencephalic regions. However, it remains unclear whether the electrophysiological and molecular properties commonly used to define these classes are discriminant in the hilus of the dentate gyrus. Here, using patch-clamp combined with single cell RT-PCR, we compare the relevance of commonly used electrophysiological and molecular features for the clustering of GABAergic interneurons sampled from the mouse hilus and primary sensory cortex. While unsupervised clustering groups cortical interneurons into well-established classes, it fails to provide a convincing partition of hilar interneurons. Statistical analysis based on resampling indicates that hilar and cortical GABAergic interneurons share limited homology. While our results do not invalidate the use of classical molecular marker in the hilus, they indicate that classes of hilar interneurons defined by the expression of molecular markers do not exhibit strongly discriminating electrophysiological properties.
Collapse
Affiliation(s)
- Quentin Perrenoud
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Clémence Leclerc
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, France
| | - Hélène Geoffroy
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Tania Vitalis
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Kevin Richetin
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, France
| | - Thierry Gallopin
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
- * E-mail:
| |
Collapse
|
3
|
Kriener B, Hu H, Vervaeke K. Parvalbumin interneuron dendrites enhance gamma oscillations. Cell Rep 2022; 39:110948. [PMID: 35705055 DOI: 10.1016/j.celrep.2022.110948] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/07/2022] [Accepted: 05/21/2022] [Indexed: 11/24/2022] Open
Abstract
Dendrites are essential determinants of the input-output relationship of single neurons, but their role in network computations is not well understood. Here, we use a combination of dendritic patch-clamp recordings and in silico modeling to determine how dendrites of parvalbumin (PV)-expressing basket cells contribute to network oscillations in the gamma frequency band. Simultaneous soma-dendrite recordings from PV basket cells in the dentate gyrus reveal that the slope, or gain, of the dendritic input-output relationship is exceptionally low, thereby reducing the cell's sensitivity to changes in its input. By simulating gamma oscillations in detailed network models, we demonstrate that the low gain is key to increase spike synchrony in PV basket cell assemblies when cells are driven by spatially and temporally heterogeneous synaptic inputs. These results highlight the role of inhibitory neuron dendrites in synchronized network oscillations.
Collapse
Affiliation(s)
- Birgit Kriener
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway
| | - Hua Hu
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway
| | - Koen Vervaeke
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
Yen TY, Huang X, MacLaren DAA, Schlesiger MI, Monyer H, Lien CC. Inhibitory projections connecting the dentate gyri in the two hemispheres support spatial and contextual memory. Cell Rep 2022; 39:110831. [PMID: 35584671 DOI: 10.1016/j.celrep.2022.110831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/17/2021] [Accepted: 04/27/2022] [Indexed: 12/01/2022] Open
Abstract
The dentate gyrus (DG) receives substantial input from the homologous brain area of the contralateral hemisphere. This input is by and large excitatory. Viral-tracing experiments provided anatomical evidence for the existence of GABAergic connectivity between the two DGs, but the function of these projections has remained elusive. Combining electrophysiological and optogenetic approaches, we demonstrate that somatostatin-expressing contralateral DG (SOM+ cDG)-projecting neurons preferentially engage dendrite-targeting interneurons over principal neurons. Single-unit recordings from freely moving mice reveal that optogenetic stimulation of SOM+ cDG projections modulates the activity of GABAergic neurons and principal neurons over multiple timescales. Importantly, we demonstrate that optogenetic silencing of SOM+ cDG projections during spatial memory encoding, but not during memory retrieval, results in compromised DG-dependent memory. Moreover, optogenetic stimulation of SOM+ cDG projections is sufficient to disrupt contextual memory recall. Collectively, our findings reveal that SOM+ long-range projections mediate inter-DG inhibition and contribute to learning and memory.
Collapse
Affiliation(s)
- Ting-Yun Yen
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan; Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Xu Huang
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Duncan Archibald Allan MacLaren
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Magdalene Isabell Schlesiger
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Cheng-Chang Lien
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan; Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| |
Collapse
|
5
|
Hauser D, Behr K, Konno K, Schreiner D, Schmidt A, Watanabe M, Bischofberger J, Scheiffele P. Targeted proteoform mapping uncovers specific Neurexin-3 variants required for dendritic inhibition. Neuron 2022; 110:2094-2109.e10. [PMID: 35550065 PMCID: PMC9275415 DOI: 10.1016/j.neuron.2022.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/05/2022] [Accepted: 04/15/2022] [Indexed: 12/21/2022]
Abstract
The diversification of cell adhesion molecules by alternative splicing is proposed to underlie molecular codes for neuronal wiring. Transcriptomic approaches mapped detailed cell-type-specific mRNA splicing programs. However, it has been hard to probe the synapse-specific localization and function of the resulting protein splice isoforms, or “proteoforms,” in vivo. We here apply a proteoform-centric workflow in mice to test the synapse-specific functions of the splice isoforms of the synaptic adhesion molecule Neurexin-3 (NRXN3). We uncover a major proteoform, NRXN3 AS5, that is highly expressed in GABAergic interneurons and at dendrite-targeting GABAergic terminals. NRXN3 AS5 abundance significantly diverges from Nrxn3 mRNA distribution and is gated by translation-repressive elements. Nrxn3 AS5 isoform deletion results in a selective impairment of dendrite-targeting interneuron synapses in the dentate gyrus without affecting somatic inhibition or glutamatergic perforant-path synapses. This work establishes cell- and synapse-specific functions of a specific neurexin proteoform and highlights the importance of alternative splicing regulation for synapse specification. Translational regulation guides alternative Neurexin proteoform expression NRXN3 AS5 proteoforms are concentrated at dendrite-targeting interneuron synapses A proteome-centric workflow uncovers NRXN3 AS5 interactors in vivo Loss of NRXN3 AS5 leads to selective impairments in dendritic inhibition
Collapse
Affiliation(s)
- David Hauser
- Biozentrum of the University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Katharina Behr
- Department of Biomedicine, University of Basel, Pestalozzistrasse 20, 4056 Basel, Switzerland
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Dietmar Schreiner
- Biozentrum of the University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Alexander Schmidt
- Biozentrum of the University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Josef Bischofberger
- Department of Biomedicine, University of Basel, Pestalozzistrasse 20, 4056 Basel, Switzerland
| | - Peter Scheiffele
- Biozentrum of the University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| |
Collapse
|
6
|
Urrutia-Piñones J, Morales-Moraga C, Sanguinetti-González N, Escobar AP, Chiu CQ. Long-Range GABAergic Projections of Cortical Origin in Brain Function. Front Syst Neurosci 2022; 16:841869. [PMID: 35392440 PMCID: PMC8981584 DOI: 10.3389/fnsys.2022.841869] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
The study of long-range GABAergic projections has traditionally been focused on those with subcortical origin. In the last few years, cortical GABAergic neurons have been shown to not only mediate local inhibition, but also extend long-range axons to remote cortical and subcortical areas. In this review, we delineate the different types of long-range GABAergic neurons (LRGNs) that have been reported to arise from the hippocampus and neocortex, paying attention to the anatomical and functional circuits they form to understand their role in behavior. Although cortical LRGNs are similar to their interneuron and subcortical counterparts, they comprise distinct populations that show specific patterns of cortico-cortical and cortico-fugal connectivity. Functionally, cortical LRGNs likely induce timed disinhibition in target regions to synchronize network activity. Thus, LRGNs are emerging as a new element of cortical output, acting in concert with long-range excitatory projections to shape brain function in health and disease.
Collapse
Affiliation(s)
- Jocelyn Urrutia-Piñones
- Ph.D. Program in Neuroscience, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Camila Morales-Moraga
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Nicole Sanguinetti-González
- Ph.D. Program in Neuroscience, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Angelica P. Escobar
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Neurobiología y Fisiopatología Integrativa, Universidad de Valparaíso, Valparaíso, Chile
| | - Chiayu Q. Chiu
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
7
|
Cheng Q, Lamb P, Stevanovic K, Bernstein BJ, Fry SA, Cushman JD, Yakel JL. Differential signalling induced by α7 nicotinic acetylcholine receptors in hippocampal dentate gyrus in vitro and in vivo. J Physiol 2021; 599:4687-4704. [PMID: 34487349 DOI: 10.1113/jp280505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/03/2021] [Indexed: 11/08/2022] Open
Abstract
The activation of α7 nicotinic acetylcholine receptors (nAChRs) has been shown to improve hippocampus-dependent learning and memory. α7 nAChRs are densely expressed among several different cell types in the hippocampus, with high Ca2+ permeability, although it is unclear if α7 nAChRs mobilize differential signalling mechanisms among distinct neuronal populations. To address this question, we compared α7 nAChR agonist-induced responses (i.e. calcium and cAMP changes) between granule cells and GABAergic neurons in the hippocampal dentate gyrus both in vitro and in vivo. In cultured organotypic hippocampal slices, we observed robust intracellular calcium and cAMP increases in dentate granule cells upon activation of α7 nAChRs. In contrast, GABAergic interneurons displayed little change in either calcium or cAMP concentration after α7 nAChR activation, even though they displayed much larger α7 nAChR current responses than those of dentate granule cells. We found that this was due to smaller α7 nAChR-induced Ca2+ rises in GABAergic interneurons. Thus, the regulation of the Ca2+ transients in different cell types resulted in differential subsequent intracellular signalling cascades and likely the ultimate outcome of α7 nAChR activation. Furthermore, we monitored neuronal activities of dentate granule cells and GABAergic interneurons in vivo via optic fibre photometry. We observed enhancement of neuronal activities after nicotine administration in dentate granule cells, but not in GABAergic neurons, which was absent in α7 nAChR-deficient granule cells. In summary, we reveal a mechanism for α7 nAChR-mediated increase of neuronal activity via cell type-specific intracellular signalling pathways. KEY POINTS: α7 nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system and regulate a variety of brain functions including learning and memory. Understanding the cellular signalling mechanisms of their activations among different neuronal populations is important for delineating their actions in cognitive function, and developing effective treatment strategies for cognitive deficits. We report that α7 nAChR activation leads to Ca2+ and cAMP increases in granule cells (but not in GABAergic interneurons) in hippocampal dentate gyrus in vitro, a key region for pattern separation during learning. We also found that nicotine enhanced granule cell (but not in GABAergic interneurons) activity in an α7 nAChR-dependent manner via in vivo fibre photometry recording. Based on our findings, we propose that differential responses to α7 nAChR activation between granule cells and GABAergic interneurons is responsible for the increase of excitation by α7 nAChR agonists in hippocampal circuits synergistically.
Collapse
Affiliation(s)
- Qing Cheng
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA.,Biological/Biomedical Research Institute, North Carolina Central University, Durham, NC, USA
| | - Patricia Lamb
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA
| | - Korey Stevanovic
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA
| | - Briana J Bernstein
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA
| | - Sydney A Fry
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA
| | - Jesse D Cushman
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA
| |
Collapse
|
8
|
Wei YT, Wu JW, Yeh CW, Shen HC, Wu KP, Vida I, Lien CC. Morpho-physiological properties and connectivity of vasoactive intestinal polypeptide-expressing interneurons in the mouse hippocampal dentate gyrus. J Comp Neurol 2021; 529:2658-2675. [PMID: 33484471 DOI: 10.1002/cne.25116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 11/08/2022]
Abstract
The hippocampus is a key brain structure for cognitive and emotional functions. Among the hippocampal subregions, the dentate gyrus (DG) is the first station that receives multimodal sensory information from the cortex. Local-circuit inhibitory GABAergic interneurons (INs) regulate the excitation-inhibition balance in the DG principal neurons (PNs) and therefore are critical for information processing. Similar to PNs, GABAergic INs also receive distinct inhibitory inputs. Among various classes of INs, vasoactive intestinal polypeptide-expressing (VIP+ ) INs preferentially target other INs in several brain regions and thereby directly modulate the GABAergic system. However, the morpho-physiological characteristics and postsynaptic targets of VIP+ INs in the DG are poorly understood. Here, we report that VIP+ INs in the mouse DG are highly heterogeneous based on their morpho-physiological characteristics. In approximately two-thirds of morphologically reconstructed cells, their axons ramify in the hilus. The remaining cells project their axons exclusively to the molecular layer (15%), to both the molecular layer and hilus (10%), or throughout the entire DG layers (8%). Generally, VIP+ INs display variable intrinsic properties and discharge patterns without clear correlation with their morphologies. Finally, VIP+ INs are recruited with a long latency in response to theta-band cortical inputs and preferentially innervate GABAergic INs over glutamatergic PNs. In summary, VIP+ INs in the DG are composed of highly diverse subpopulations and control the DG output via disinhibition.
Collapse
Affiliation(s)
- Yu-Ting Wei
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Jei-Wei Wu
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Wei Yeh
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Hung-Chang Shen
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Kun-Pin Wu
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Imre Vida
- Institute for Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cheng-Chang Lien
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
9
|
Sabet N, Soltani Z, Khaksari M. Multipotential and systemic effects of traumatic brain injury. J Neuroimmunol 2021; 357:577619. [PMID: 34058510 DOI: 10.1016/j.jneuroim.2021.577619] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/07/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of disability and mortality of people at all ages. Biochemical, cellular and physiological events that occur during primary injury lead to a delayed and long-term secondary damage that can last from hours to years. Secondary brain injury causes tissue damage in the central nervous system and a subsequent strong and rapid inflammatory response that may lead to persistent inflammation. However, this inflammatory response is not limited to the brain. Inflammatory mediators are transferred from damaged brain tissue to the bloodstream and produce a systemic inflammatory response in peripheral organs, including the cardiovascular, pulmonary, gastrointestinal, renal and endocrine systems. Complications of TBI are associated with its multiple and systemic effects that should be considered in the treatment of TBI patients. Therefore, in this review, an attempt was made to examine the systemic effects of TBI in detail. It is hoped that this review will identify the mechanisms of injury and complications of TBI, and open a window for promising treatment in TBI complications.
Collapse
Affiliation(s)
- Nazanin Sabet
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Khaksari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Botterill JJ, Gerencer KJ, Vinod KY, Alcantara‐Gonzalez D, Scharfman HE. Dorsal and ventral mossy cells differ in their axonal projections throughout the dentate gyrus of the mouse hippocampus. Hippocampus 2021; 31:522-539. [PMID: 33600026 PMCID: PMC8247909 DOI: 10.1002/hipo.23314] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 11/14/2022]
Abstract
Glutamatergic hilar mossy cells (MCs) have axons that terminate both near and far from their cell body but stay within the DG, making synapses primarily in the molecular layer. The long-range axons are considered the primary projection, and extend throughout the DG ipsilateral to the soma, and project to the contralateral DG. The specificity of MC axons for the inner molecular layer (IML) has been considered to be a key characteristic of the DG. In the present study, we made the surprising finding that dorsal MC axons are an exception to this rule. We used two mouse lines that allow for Cre-dependent viral labeling of MCs and their axons: dopamine receptor D2 (Drd2-Cre) and calcitonin receptor-like receptor (Crlr-Cre). A single viral injection into the dorsal DG to label dorsal MCs resulted in labeling of MC axons in both the IML and middle molecular layer (MML). Interestingly, this broad termination of dorsal MC axons occurred throughout the septotemporal DG. In contrast, long-range axons of ventral MCs terminated in the IML, consistent with the literature. Taken together, these results suggest that dorsal and ventral MCs differ significantly in their axonal projections. Since MC projections in the ML are thought to terminate primarily on GCs, the results suggest a dorsal-ventral difference in MC activation of GCs. The surprising difference in dorsal and ventral MC projections should therefore be considered when evaluating dorsal-ventral differences in DG function.
Collapse
Affiliation(s)
- Justin J. Botterill
- Center for Dementia ResearchThe Nathan Kline Institute for Psychiatric ResearchOrangeburgNew YorkUSA
| | - Kathleen J. Gerencer
- Center for Dementia ResearchThe Nathan Kline Institute for Psychiatric ResearchOrangeburgNew YorkUSA
| | - K. Yaragudri Vinod
- Department of Analytical PsychopharmacologyThe Nathan Kline Institute for Psychiatric ResearchOrangeburgNew YorkUSA
- Emotional Brain InstituteThe Nathan Kline Institute for Psychiatric ResearchOrangeburgNew YorkUSA
- Department of Child & Adolescent Psychiatry, Neuroscience & Physiology and Psychiatry and the New York University Neuroscience InstituteNew York University Langone HealthNew YorkNew YorkUSA
| | - David Alcantara‐Gonzalez
- Center for Dementia ResearchThe Nathan Kline Institute for Psychiatric ResearchOrangeburgNew YorkUSA
| | - Helen E. Scharfman
- Center for Dementia ResearchThe Nathan Kline Institute for Psychiatric ResearchOrangeburgNew YorkUSA
- Department of Child & Adolescent Psychiatry, Neuroscience & Physiology and Psychiatry and the New York University Neuroscience InstituteNew York University Langone HealthNew YorkNew YorkUSA
| |
Collapse
|
11
|
Morales C, Morici JF, Espinosa N, Sacson A, Lara-Vasquez A, García-Pérez MA, Bekinschtein P, Weisstaub NV, Fuentealba P. Dentate Gyrus Somatostatin Cells are Required for Contextual Discrimination During Episodic Memory Encoding. Cereb Cortex 2021; 31:1046-1059. [PMID: 33026440 DOI: 10.1093/cercor/bhaa273] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 11/12/2022] Open
Abstract
Memory systems ought to store and discriminate representations of similar experiences in order to efficiently guide future decisions. This problem is solved by pattern separation, implemented in the dentate gyrus (DG) by granule cells to support episodic memory formation. Pattern separation is enabled by tonic inhibitory bombardment generated by multiple GABAergic cell populations that strictly maintain low activity levels in granule cells. Somatostatin-expressing cells are one of those interneuron populations, selectively targeting the distal dendrites of granule cells, where cortical multimodal information reaches the DG. Nonetheless, somatostatin cells have very low connection probability and synaptic efficacy with both granule cells and other interneuron types. Hence, the role of somatostatin cells in DG circuitry, particularly in the context of pattern separation, remains uncertain. Here, by using optogenetic stimulation and behavioral tasks in mice, we demonstrate that somatostatin cells are required for the acquisition of both contextual and spatial overlapping memories.
Collapse
Affiliation(s)
- Cristian Morales
- Departamento de Psiquiatria, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile
| | - Juan Facundo Morici
- Instituto de Neurociencia Cognitiva y Traslacional, Instituto de Neurologia Cognitiva, Consejo Nacional de Investigaciones Cientificas y Tecnicas Fundacion INECO, Universidad Favaloro, 1078 Buenos Aires, Argentina
| | - Nelson Espinosa
- Departamento de Psiquiatria, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile
| | - Agostina Sacson
- Instituto de Neurociencia Cognitiva y Traslacional, Instituto de Neurologia Cognitiva, Consejo Nacional de Investigaciones Cientificas y Tecnicas Fundacion INECO, Universidad Favaloro, 1078 Buenos Aires, Argentina
| | - Ariel Lara-Vasquez
- Departamento de Psiquiatria, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile
| | - M A García-Pérez
- Departamento de Psiquiatria, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile
| | - Pedro Bekinschtein
- Instituto de Neurociencia Cognitiva y Traslacional, Instituto de Neurologia Cognitiva, Consejo Nacional de Investigaciones Cientificas y Tecnicas Fundacion INECO, Universidad Favaloro, 1078 Buenos Aires, Argentina
| | - Noelia V Weisstaub
- Instituto de Neurociencia Cognitiva y Traslacional, Instituto de Neurologia Cognitiva, Consejo Nacional de Investigaciones Cientificas y Tecnicas Fundacion INECO, Universidad Favaloro, 1078 Buenos Aires, Argentina
| | - Pablo Fuentealba
- Departamento de Psiquiatria, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile.,Centro de Investigacion en Nanotecnologia y Materiales Avanzados, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile
| |
Collapse
|
12
|
Comprehensive Estimates of Potential Synaptic Connections in Local Circuits of the Rodent Hippocampal Formation by Axonal-Dendritic Overlap. J Neurosci 2020; 41:1665-1683. [PMID: 33361464 DOI: 10.1523/jneurosci.1193-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/19/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022] Open
Abstract
A quantitative description of the hippocampal formation synaptic architecture is essential for understanding the neural mechanisms of episodic memory. Yet the existing knowledge of connectivity statistics between different neuron types in the rodent hippocampus only captures a mere 5% of this circuitry. We present a systematic pipeline to produce first-approximation estimates for most of the missing information. Leveraging the www.Hippocampome.org knowledge base, we derive local connection parameters between distinct pairs of morphologically identified neuron types based on their axonal-dendritic overlap within every layer and subregion of the hippocampal formation. Specifically, we adapt modern image analysis technology to determine the parcel-specific neurite lengths of every neuron type from representative morphologic reconstructions obtained from either sex. We then compute the average number of synapses per neuron pair using relevant anatomic volumes from the mouse brain atlas and ultrastructurally established interaction distances. Hence, we estimate connection probabilities and number of contacts for >1900 neuron type pairs, increasing the available quantitative assessments more than 11-fold. Connectivity statistics thus remain unknown for only a minority of potential synapses in the hippocampal formation, including those involving long-range (23%) or perisomatic (6%) connections and neuron types without morphologic tracings (7%). The described approach also yields approximate measurements of synaptic distances from the soma along the dendritic and axonal paths, which may affect signal attenuation and delay. Overall, this dataset fills a substantial gap in quantitatively describing hippocampal circuits and provides useful model specifications for biologically realistic neural network simulations, until further direct experimental data become available.SIGNIFICANCE STATEMENT The hippocampal formation is a crucial functional substrate for episodic memory and spatial representation. Characterizing the complex neuron type circuit of this brain region is thus important to understand the cellular mechanisms of learning and navigation. Here we present the first numerical estimates of connection probabilities, numbers of contacts per connected pair, and synaptic distances from the soma along the axonal and dendritic paths, for more than 1900 distinct neuron type pairs throughout the dentate gyrus, CA3, CA2, CA1, subiculum, and entorhinal cortex. This comprehensive dataset, publicly released online at www.Hippocampome.org, constitutes an unprecedented quantification of the majority of the local synaptic circuit for a prominent mammalian neural system and provides an essential foundation for data-driven, anatomically realistic neural network models.
Collapse
|
13
|
Silkis IG, Markevich VA. Possible Mechanisms of the Influence of the Supramillary Nucleus on the Functioning of the Dentate Gyrus and the CA2 Field of the Hippocamsus (Role of Disinhibition). NEUROCHEM J+ 2020. [DOI: 10.1134/s181971242004011x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
An axon-specific expression of HCN channels catalyzes fast action potential signaling in GABAergic interneurons. Nat Commun 2020; 11:2248. [PMID: 32382046 PMCID: PMC7206118 DOI: 10.1038/s41467-020-15791-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
During high-frequency network activities, fast-spiking, parvalbumin-expressing basket cells (PV+-BCs) generate barrages of fast synaptic inhibition to control the probability and precise timing of action potential (AP) initiation in principal neurons. Here we describe a subcellular specialization that contributes to the high speed of synaptic inhibition mediated by PV+-BCs. Mapping of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel distribution in rat hippocampal PV+-BCs with subcellular patch-clamp methods revealed that functional HCN channels are exclusively expressed in axons and completely absent from somata and dendrites. HCN channels not only enhance AP initiation during sustained high-frequency firing but also speed up the propagation of AP trains in PV+-BC axons by dynamically opposing the hyperpolarization produced by Na+-K+ ATPases. Since axonal AP signaling determines the timing of synaptic communication, the axon-specific expression of HCN channels represents a specialization for PV+-BCs to operate at high speed. The precise subcellular location of ion channels is a key determinant of their functions. Here, subcellular patch-clamp recordings demonstrate that an axon-specific expression of HCN channels facilitates the initiation and propagation of action potentials in parvalbumin-expressing basket cells.
Collapse
|
15
|
Elgueta C, Bartos M. Dendritic inhibition differentially regulates excitability of dentate gyrus parvalbumin-expressing interneurons and granule cells. Nat Commun 2019; 10:5561. [PMID: 31804491 PMCID: PMC6895125 DOI: 10.1038/s41467-019-13533-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 11/11/2019] [Indexed: 11/25/2022] Open
Abstract
Fast-spiking parvalbumin-expressing interneurons (PVIs) and granule cells (GCs) of the dentate gyrus receive layer-specific dendritic inhibition. Its impact on PVI and GC excitability is, however, unknown. By applying whole-cell recordings, GABA uncaging and single-cell-modeling, we show that proximal dendritic inhibition in PVIs is less efficient in lowering perforant path-mediated subthreshold depolarization than distal inhibition but both are highly efficient in silencing PVIs. These inhibitory effects can be explained by proximal shunting and distal strong hyperpolarizing inhibition. In contrast, GC proximal but not distal inhibition is the primary regulator of their excitability and recruitment. In GCs inhibition is hyperpolarizing along the entire somato-dendritic axis with similar strength. Thus, dendritic inhibition differentially controls input-output transformations in PVIs and GCs. Dendritic inhibition in PVIs is suited to balance PVI discharges in dependence on global network activity thereby providing strong and tuned perisomatic inhibition that contributes to the sparse representation of information in GC assemblies. Fast-spiking parvalbumin-expressing interneurons (PVIs) and granule cells of the dentate gyrus receive layer-specific dendritic inhibition. The authors show that distal and proximal dendritic inhibition differentially control input-output transformations in PVIs and granule cells.
Collapse
Affiliation(s)
- Claudio Elgueta
- Institute for Physiology I, Cellular and Systemic Neurophysiology, Medical Faculty of the University of Freiburg, 79104, Freiburg, Germany.
| | - Marlene Bartos
- Institute for Physiology I, Cellular and Systemic Neurophysiology, Medical Faculty of the University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
16
|
Complementary Tuning of Na + and K + Channel Gating Underlies Fast and Energy-Efficient Action Potentials in GABAergic Interneuron Axons. Neuron 2019; 98:156-165.e6. [PMID: 29621485 PMCID: PMC5896255 DOI: 10.1016/j.neuron.2018.02.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/12/2018] [Accepted: 02/23/2018] [Indexed: 12/13/2022]
Abstract
Fast-spiking, parvalbumin-expressing GABAergic interneurons (PV+-BCs) express a complex machinery of rapid signaling mechanisms, including specialized voltage-gated ion channels to generate brief action potentials (APs). However, short APs are associated with overlapping Na+ and K+ fluxes and are therefore energetically expensive. How the potentially vicious combination of high AP frequency and inefficient spike generation can be reconciled with limited energy supply is presently unclear. To address this question, we performed direct recordings from the PV+-BC axon, the subcellular structure where active conductances for AP initiation and propagation are located. Surprisingly, the energy required for the AP was, on average, only ∼1.6 times the theoretical minimum. High energy efficiency emerged from the combination of fast inactivation of Na+ channels and delayed activation of Kv3-type K+ channels, which minimized ion flux overlap during APs. Thus, the complementary tuning of axonal Na+ and K+ channel gating optimizes both fast signaling properties and metabolic efficiency.
Collapse
|
17
|
Cayco-Gajic NA, Silver RA. Re-evaluating Circuit Mechanisms Underlying Pattern Separation. Neuron 2019; 101:584-602. [PMID: 30790539 PMCID: PMC7028396 DOI: 10.1016/j.neuron.2019.01.044] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/07/2019] [Accepted: 01/18/2019] [Indexed: 11/22/2022]
Abstract
When animals interact with complex environments, their neural circuits must separate overlapping patterns of activity that represent sensory and motor information. Pattern separation is thought to be a key function of several brain regions, including the cerebellar cortex, insect mushroom body, and dentate gyrus. However, recent findings have questioned long-held ideas on how these circuits perform this fundamental computation. Here, we re-evaluate the functional and structural mechanisms underlying pattern separation. We argue that the dimensionality of the space available for population codes representing sensory and motor information provides a common framework for understanding pattern separation. We then discuss how these three circuits use different strategies to separate activity patterns and facilitate associative learning in the presence of trial-to-trial variability.
Collapse
Affiliation(s)
- N Alex Cayco-Gajic
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - R Angus Silver
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
18
|
Function of local circuits in the hippocampal dentate gyrus-CA3 system. Neurosci Res 2018; 140:43-52. [PMID: 30408501 DOI: 10.1016/j.neures.2018.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 11/20/2022]
Abstract
Anatomical observations, theoretical work and lesioning experiments have supported the idea that the CA3 in the hippocampus is important for encoding, storage and retrieval of memory while the dentate gyrus (DG) is important for the pattern separation of the incoming inputs from the entorhinal cortex. Study of the presumed function of the dentate gyrus in pattern separation has been hampered by the lack of reliable methods to identify different excitatory cell types in the DG. Recent papers have identified different cell types in the DG, in awake behaving animals, with more reliable methods. These studies have revealed each cell type's spatial representation as well as their involvement in pattern separation. Moreover, chronic electrophysiological recording from sleeping and waking animals also provided more insights into the operation of the DG-CA3 system for memory encoding and retrieval. This article will review the local circuit architectures and physiological properties of the DG-CA3 system and discuss how the local circuit in the DG-CA3 may function, incorporating recent physiological findings in the DG-CA3 system.
Collapse
|
19
|
Newell AJ, Lalitsasivimol D, Willing J, Gonzales K, Waters EM, Milner TA, McEwen BS, Wagner CK. Progesterone receptor expression in cajal-retzius cells of the developing rat dentate gyrus: Potential role in hippocampus-dependent memory. J Comp Neurol 2018; 526:2285-2300. [PMID: 30069875 PMCID: PMC6193812 DOI: 10.1002/cne.24485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/03/2018] [Accepted: 05/23/2018] [Indexed: 12/16/2022]
Abstract
The development of medial temporal lobe circuits is critical for subsequent learning and memory functions later in life. The present study reports the expression of progesterone receptor (PR), a powerful transcription factor of the nuclear steroid receptor superfamily, in Cajal-Retzius cells of the molecular layer of the dentate gyrus of rats. PR was transiently expressed from the day of birth through postnatal day 21, but was absent thereafter. Although PR immunoreactive (PR-ir) cells did not clearly express typical markers of mature neurons, they possessed an ultrastructural morphology consistent with neurons. PRir cells did not express markers for GABAergic neurons, neuronal precursor cells, nor radial glia. However, virtually all PR cells co-expressed the calcium binding protein, calretinin, and the glycoprotein, reelin, both reliable markers for Cajal-Retzius neurons, a transient population of developmentally critical pioneer neurons that guide synaptogenesis of perforant path afferents and histogenesis of the dentate gyrus. Indeed, inhibition of PR activity during the first two weeks of life impaired adult performance on both the novel object recognition and object placement memory tasks, two behavioral tasks hypothesized to describe facets of episodic-like memory in rodents. These findings suggest that PR plays an unexplored and important role in the development of hippocampal circuitry and adult memory function.
Collapse
Affiliation(s)
- Andrew J. Newell
- Department of Psychology, Center for Neuroscience Research’, 1400 Washington Ave., University at Albany, Albany, NY 12222
| | - Diana Lalitsasivimol
- Department of Psychology, Center for Neuroscience Research’, 1400 Washington Ave., University at Albany, Albany, NY 12222
| | - Jari Willing
- Department of Psychology, Behavioral Neuroscience Program, 603 E Daniel St., University of Illinois at Urbana-Champaign, Champaign, IL 61820
| | - Keith Gonzales
- Department of Psychology, Center for Neuroscience Research’, 1400 Washington Ave., University at Albany, Albany, NY 12222
| | - Elizabeth M. Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Teresa A. Milner
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61, St New York, NY 1006521
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Christine K. Wagner
- Department of Psychology, Center for Neuroscience Research’, 1400 Washington Ave., University at Albany, Albany, NY 12222
| |
Collapse
|
20
|
Scharfman HE. Advances in understanding hilar mossy cells of the dentate gyrus. Cell Tissue Res 2018; 373:643-652. [PMID: 29222692 PMCID: PMC5993616 DOI: 10.1007/s00441-017-2750-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/21/2017] [Indexed: 02/01/2023]
Abstract
Hilar mossy cells (MCs) of the dentate gyrus (DG) distinguish the DG from other hippocampal subfields (CA1-3) because there are two glutamatergic cell types in the DG rather than one. Thus, in the DG, the main cell types include glutamatergic granule cells (GCs) and MCs, whereas in CA1-3, the only glutamatergic cell type is the pyramidal cell. In contrast to GCs, MCs are different in morphology, intrinsic electrophysiological properties, afferent input and axonal projections, so their function is likely to be very different from GCs. Why are MCs necessary to the DG? In past studies, the answer has been unclear because MCs not only excite GCs directly but also inhibit them disynaptically, by exciting GABAergic neurons that project to GCs. Results of new studies are discussed that shed light on this issue. These studies take advantage of recently available transgenic mice with Cre recombinase expression mostly in MCs and techniques such as optogenetics and DREADDs (designer receptors exclusively activated by designer drugs). The recent studies also address in vivo behavioral functions of MCs. Some of the results support past hypotheses whereas others suggest new conceptualizations of how the MCs contribute to DG circuitry and function. While substantial progess has been made, additional research is still needed to clarify the characteristics and functions of these unique cells.
Collapse
Affiliation(s)
- Helen E Scharfman
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, Psychiatry, and the New York University Neuroscience Institute, New York University Langone Medical Center, One Park Avenue, 7th floor, New York, NY, 10016, USA.
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Building 39, Orangeburg, NY, 10962, USA.
| |
Collapse
|
21
|
Booker SA, Vida I. Morphological diversity and connectivity of hippocampal interneurons. Cell Tissue Res 2018; 373:619-641. [PMID: 30084021 PMCID: PMC6132631 DOI: 10.1007/s00441-018-2882-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022]
Abstract
The mammalian forebrain is constructed from ensembles of neurons that form local microcircuits giving rise to the exquisite cognitive tasks the mammalian brain can perform. Hippocampal neuronal circuits comprise populations of relatively homogenous excitatory neurons, principal cells and exceedingly heterogeneous inhibitory neurons, the interneurons. Interneurons release GABA from their axon terminals and are capable of controlling excitability in every cellular compartment of principal cells and interneurons alike; thus, they provide a brake on excess activity, control the timing of neuronal discharge and provide modulation of synaptic transmission. The dendritic and axonal morphology of interneurons, as well as their afferent and efferent connections within hippocampal circuits, is central to their ability to differentially control excitability, in a cell-type- and compartment-specific manner. This review aims to provide an up-to-date compendium of described hippocampal interneuron subtypes, with respect to their morphology, connectivity, neurochemistry and physiology, a full understanding of which will in time help to explain the rich diversity of neuronal function.
Collapse
Affiliation(s)
- Sam A Booker
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, UK.
| | - Imre Vida
- Institute for Integrative Neuroanatomy, Charité - Universitätmedizin Berlin, Berlin, Germany.
| |
Collapse
|
22
|
Dubovyk V, Manahan‐Vaughan D. Less means more: The magnitude of synaptic plasticity along the hippocampal dorso-ventral axis is inversely related to the expression levels of plasticity-related neurotransmitter receptors. Hippocampus 2018; 28:136-150. [PMID: 29171922 PMCID: PMC5814924 DOI: 10.1002/hipo.22816] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/12/2017] [Accepted: 11/21/2017] [Indexed: 11/16/2022]
Abstract
The dorsoventral axis of the hippocampus exhibits functional differentiations with regard to (spatial Vs emotional) learning and information retention (rapid encoding Vs long-term storage), as well as its sensitivity to neuromodulation and information received from extrahippocampal structures. The mechanisms that underlie these differentiations remain unclear. Here, we explored neurotransmitter receptor expression along the dorsoventral hippocampal axis and compared hippocampal synaptic plasticity in the CA1 region of the dorsal (DH), intermediate (IH) and ventral hippocampi (VH). We observed a very distinct gradient of expression of the N-methyl-D-aspartate receptor GluN2B subunit in the Stratum radiatum (DH< IH< VH). A similar distribution gradient (DH< IH< VH) was evident in the hippocampus for GluN1, the metabotropic glutamate receptors mGlu1 and mGlu2/3, GABAB and the dopamine-D1 receptor. GABAA exhibited the opposite expression relationship (DH > IH > VH). Neurotransmitter release probability was lowest in DH. Surprisingly, identical afferent stimulation conditions resulted in hippocampal synaptic plasticity that was the most robust in the DH, compared with IH and VH. These data suggest that differences in hippocampal information processing and synaptic plasticity along the dorsoventral axis may relate to specific differences in the expression of plasticity-related neurotransmitter receptors. This gradient may support the fine-tuning and specificity of hippocampal synaptic encoding.
Collapse
Affiliation(s)
- Valentyna Dubovyk
- Department of NeurophysiologyMedical Faculty, Ruhr University BochumBochum, 44780Germany
- International Graduate School of NeuroscienceRuhr University BochumBochum, 44780Germany
| | - Denise Manahan‐Vaughan
- Department of NeurophysiologyMedical Faculty, Ruhr University BochumBochum, 44780Germany
| |
Collapse
|
23
|
Zhang BL, Fan YS, Wang JW, Zhou ZW, Wu YG, Yang MC, Sun DD, Zhang JN. Cognitive impairment after traumatic brain injury is associated with reduced long-term depression of excitatory postsynaptic potential in the rat hippocampal dentate gyrus. Neural Regen Res 2018; 13:1753-1758. [PMID: 30136690 PMCID: PMC6128047 DOI: 10.4103/1673-5374.238618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury can cause loss of neuronal tissue, remote symptomatic epilepsy, and cognitive deficits. However, the mechanisms underlying the effects of traumatic brain injury are not yet clear. Hippocampal excitability is strongly correlated with cognitive dysfunction and remote symptomatic epilepsy. In this study, we examined the relationship between traumatic brain injury-induced neuronal loss and subsequent hippocampal regional excitability. We used hydraulic percussion to generate a rat model of traumatic brain injury. At 7 days after injury, the mean modified neurological severity score was 9.5, suggesting that the neurological function of the rats was remarkably impaired. Electrophysiology and immunocytochemical staining revealed increases in the slope of excitatory postsynaptic potentials and long-term depression (indicating weakened long-term inhibition), and the numbers of cholecystokinin and parvalbumin immunoreactive cells were clearly reduced in the rat hippocampal dentate gyrus. These results indicate that interneuronal loss and changes in excitability occurred in the hippocampal dentate gyrus. Thus, traumatic brain injury-induced loss of interneurons appears to be associated with reduced long-term depression in the hippocampal dentate gyrus.
Collapse
Affiliation(s)
- Bao-Liang Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yue-Shan Fan
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Ji-Wei Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Zi-Wei Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yin-Gang Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Meng-Chen Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Dong-Dong Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jian-Ning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
24
|
Gilbride CJ. The hyperexcitability of dentate granule neurons in organotypic hippocampal slice cultures is due to reorganization of synaptic inputs in vitro. Physiol Rep 2017; 4:4/19/e12889. [PMID: 27707779 PMCID: PMC5064129 DOI: 10.14814/phy2.12889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 07/15/2016] [Indexed: 11/24/2022] Open
Abstract
Organotypic hippocampal slice cultures (OHSCs) provide the experimental flexibility of cell culture while leaving much of the natural neuronal connectivity intact. Previously, it was shown that the functional and morphological features of CA1 pyramidal neurons in OHSCs resemble, to a surprising extent, those of CA1 neurons in the acute brain slice preparation. However, the extent to which the characteristics of other principle hippocampal neurons change or are preserved in cultured slices remains to be determined. In the present study, I initially sought to understand whether and how the synaptic inputs and morphology of cultured dentate granule neurons (GCs) differ from GCs that have developed in vivo. To this end, I compared GCs in OHSCs and GCs in acute slices at two equivalent developmental time points (P14 vs. DIV7 and P21 vs. DIV21). The findings suggest that there is considerable reorganization of synaptic input to the organotypic GCs, such that these cells are more susceptible to hyperexcitation than GCs in acute slices after 3 weeks. It appears that this hyperexcitability emerges through an increase in the proportion of mature synapses at proximal dendritic sites and is accompanied by an increase in inhibitory neuron activity. These alterations appear to arise in a coordinated manner such that the substantial increase in excitatory synaptic drive received by the DIV21 GCs in OHSCs remains local and is not translated into excessive output possibly leading to damage or major morphological alterations of downstream pyramidal neurons.
Collapse
Affiliation(s)
- Charlie J Gilbride
- Depatment of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
25
|
Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ. Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev 2017; 97:1619-1747. [PMID: 28954853 DOI: 10.1152/physrev.00007.2017] [Citation(s) in RCA: 538] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10-15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ramesh Chittajallu
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Michael T Craig
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ludovic Tricoire
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Jason C Wester
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Chris J McBain
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
26
|
Paterno R, Folweiler KA, Cohen AS. Pathophysiology and Treatment of Memory Dysfunction After Traumatic Brain Injury. Curr Neurol Neurosci Rep 2017; 17:52. [PMID: 28500417 PMCID: PMC5861722 DOI: 10.1007/s11910-017-0762-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Memory is fundamental to everyday life, and cognitive impairments resulting from traumatic brain injury (TBI) have devastating effects on TBI survivors. A contributing component to memory impairments caused by TBI is alteration in the neural circuits associated with memory function. In this review, we aim to bring together experimental findings that characterize behavioral memory deficits and the underlying pathophysiology of memory-involved circuits after TBI. While there is little doubt that TBI causes memory and cognitive dysfunction, it is difficult to conclude which memory phase, i.e., encoding, maintenance, or retrieval, is specifically altered by TBI. This is most likely due to variation in behavioral protocols and experimental models. Additionally, we review a selection of experimental treatments that hold translational potential to mitigate memory dysfunction following injury.
Collapse
Affiliation(s)
- Rosalia Paterno
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Abramson Research Center, Rm. 816-h, Philadelphia, PA, 19104, USA.
| | - Kaitlin A Folweiler
- Department of Anesthesiology and Critical Care Medicine, Joseph Stokes, Jr. Research Institute, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center, Rm. 816-h, Philadelphia, PA, 19104, USA
| | - Akiva S Cohen
- Department of Anesthesiology and Critical Care Medicine, Joseph Stokes, Jr. Research Institute, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center, Rm. 816-h, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Abramson Research Center, Rm. 816-h, Philadelphia, PA, 19104, USA
| |
Collapse
|
27
|
Yuan M, Meyer T, Benkowitz C, Savanthrapadian S, Ansel-Bollepalli L, Foggetti A, Wulff P, Alcami P, Elgueta C, Bartos M. Somatostatin-positive interneurons in the dentate gyrus of mice provide local- and long-range septal synaptic inhibition. eLife 2017; 6. [PMID: 28368242 PMCID: PMC5395294 DOI: 10.7554/elife.21105] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 04/01/2017] [Indexed: 01/16/2023] Open
Abstract
Somatostatin-expressing-interneurons (SOMIs) in the dentate gyrus (DG) control formation of granule cell (GC) assemblies during memory acquisition. Hilar-perforant-path-associated interneurons (HIPP cells) have been considered to be synonymous for DG-SOMIs. Deviating from this assumption, we show two functionally contrasting DG-SOMI-types. The classical feedback-inhibitory HIPPs distribute axon fibers in the molecular layer. They are engaged by converging GC-inputs and provide dendritic inhibition to the DG circuitry. In contrast, SOMIs with axon in the hilus, termed hilar interneurons (HILs), provide perisomatic inhibition onto GABAergic cells in the DG and project to the medial septum. Repetitive activation of glutamatergic inputs onto HIPP cells induces long-lasting-depression (LTD) of synaptic transmission but long-term-potentiation (LTP) of synaptic signals in HIL cells. Thus, LTD in HIPPs may assist flow of spatial information from the entorhinal cortex to the DG, whereas LTP in HILs may facilitate the temporal coordination of GCs with activity patterns governed by the medial septum. DOI:http://dx.doi.org/10.7554/eLife.21105.001
Collapse
Affiliation(s)
- Mei Yuan
- Systemic and Cellular Neurophysiology, Institute for Physiology I, University of Freiburg, Freiburg, Germany.,Faculty for Biology, University of Freiburg, Freiburg, Germany
| | - Thomas Meyer
- Systemic and Cellular Neurophysiology, Institute for Physiology I, University of Freiburg, Freiburg, Germany
| | - Christoph Benkowitz
- Systemic and Cellular Neurophysiology, Institute for Physiology I, University of Freiburg, Freiburg, Germany
| | - Shakuntala Savanthrapadian
- Systemic and Cellular Neurophysiology, Institute for Physiology I, University of Freiburg, Freiburg, Germany
| | | | | | - Peer Wulff
- Institute for Physiology, University of Kiel, Kiel, Germany
| | - Pepe Alcami
- Systemic and Cellular Neurophysiology, Institute for Physiology I, University of Freiburg, Freiburg, Germany
| | - Claudio Elgueta
- Systemic and Cellular Neurophysiology, Institute for Physiology I, University of Freiburg, Freiburg, Germany
| | - Marlene Bartos
- Systemic and Cellular Neurophysiology, Institute for Physiology I, University of Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Physiological Properties and Behavioral Correlates of Hippocampal Granule Cells and Mossy Cells. Neuron 2017; 93:691-704.e5. [PMID: 28132824 DOI: 10.1016/j.neuron.2016.12.011] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/31/2016] [Accepted: 12/07/2016] [Indexed: 02/04/2023]
Abstract
The hippocampal dentate gyrus is often viewed as a segregator of upstream information. Physiological support for such function has been hampered by a lack of well-defined characteristics that can identify granule cells and mossy cells. We developed an electrophysiology-based classification of dentate granule cells and mossy cells in mice that we validated by optogenetic tagging of mossy cells. Granule cells exhibited sparse firing, had a single place field, and showed only modest changes when the mouse was tested in different mazes in the same room. In contrast, mossy cells were more active, had multiple place fields and showed stronger remapping of place fields under the same conditions. Although the granule cell-mossy cell synapse was strong and facilitating, mossy cells rarely "inherited" place fields from single granule cells. Our findings suggest that the granule cells and mossy cells could be modulated separately and their joint action may be critical for pattern separation.
Collapse
|
29
|
Song J, Olsen RHJ, Sun J, Ming GL, Song H. Neuronal Circuitry Mechanisms Regulating Adult Mammalian Neurogenesis. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a018937. [PMID: 27143698 DOI: 10.1101/cshperspect.a018937] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The adult mammalian brain is a dynamic structure, capable of remodeling in response to various physiological and pathological stimuli. One dramatic example of brain plasticity is the birth and subsequent integration of newborn neurons into the existing circuitry. This process, termed adult neurogenesis, recapitulates neural developmental events in two specialized adult brain regions: the lateral ventricles of the forebrain. Recent studies have begun to delineate how the existing neuronal circuits influence the dynamic process of adult neurogenesis, from activation of quiescent neural stem cells (NSCs) to the integration and survival of newborn neurons. Here, we review recent progress toward understanding the circuit-based regulation of adult neurogenesis in the hippocampus and olfactory bulb.
Collapse
Affiliation(s)
- Juan Song
- Department of Pharmacology and Pharmacology Training Program, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599 Neuroscience Center and Neurobiology Curriculum, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Reid H J Olsen
- Department of Pharmacology and Pharmacology Training Program, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jiaqi Sun
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130-2685
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130-2685
| |
Collapse
|
30
|
Abstract
Mossy cells comprise a large fraction of the cells in the hippocampal dentate gyrus, suggesting that their function in this region is important. They are vulnerable to ischaemia, traumatic brain injury and seizures, and their loss could contribute to dentate gyrus dysfunction in such conditions. Mossy cell function has been unclear because these cells innervate both glutamatergic and GABAergic neurons within the dentate gyrus, contributing to a complex circuitry. It has also been difficult to directly and selectively manipulate mossy cells to study their function. In light of the new data generated using methods to preferentially eliminate or activate mossy cells in mice, it is timely to ask whether mossy cells have become any less enigmatic than they were in the past.
Collapse
Affiliation(s)
- Helen E Scharfman
- Departments of Child and Adolescent Psychiatry, Physiology and Neuroscience, and Psychiatry, New York University Langone Medical Center, New York 10016, USA.,Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA
| |
Collapse
|
31
|
Wang X, Song X, Wu L, Nadler JV, Zhan RZ. Persistent Hyperactivity of Hippocampal Dentate Interneurons After a Silent Period in the Rat Pilocarpine Model of Epilepsy. Front Cell Neurosci 2016; 10:94. [PMID: 27092056 PMCID: PMC4824773 DOI: 10.3389/fncel.2016.00094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/24/2016] [Indexed: 12/15/2022] Open
Abstract
Profile of GABAergic interneuron activity after pilocarpine-induced status epilepticus (SE) was examined in the rat hippocampal dentate gyrus by analyzing immediate early gene expression and recording spontaneous firing at near resting membrane potential (REM). SE for exact 2 h or more than 2 h was induced in the male Sprague-Dawley rats by an intraperitoneal injection of pilocarpine. Expression of immediate early genes (IEGs) was examined at 1 h, 1 week, 2 weeks or more than 10 weeks after SE. For animals to be examined at 1 h after SE, SE lasted for exact 2 h was terminated by an intraperitoneal injection of diazepam. Spontaneous firing at near the REM was recorded in interneurons located along the border between the granule cell layer and the hilus more than 10 weeks after SE. Results showed that both c-fos and activity-regulated cytoskeleton associated protein (Arc) in hilar GABAergic interneurons were up-regulated after SE in a biphasic manner; they were increased at 1 h and more than 2 weeks, but not at 1 week after SE. Ten weeks after SE, nearly 60% of hilar GABAergic cells expressed c-fos. With the exception of calretinin (CR)-positive cells, percentages of hilar neuronal nitric oxide synthase (nNOS)-, neuropeptide Y (NPY)-, parvalbumin (PV)-, and somatostatin (SOM)-positive cells with c-fos expression are significantly higher than those of controls more than 10 weeks after SE. Without the REM to be more depolarizing and changed threshold potential level in SE-induced rats, cell-attached recording revealed that nearly 90% of hilar interneurons fired spontaneously at near the REM while only 22% of the same cell population did so in the controls. In conclusion, pilocarpine-induced SE eventually leads to a state in which surviving dentate GABAergic interneurons become hyperactive with a subtype-dependent manner; this implies that a fragile balance between excitation and inhibition exists in the dentate gyrus and in addition, the activity-dependent up-regulation of IEGs may underlie plastic changes seen in some types of GABAergic cells in the pilocarpine model of epilepsy.
Collapse
Affiliation(s)
- Xiaochen Wang
- Department of Physiology, Shandong University School of Medicine Jinan, China
| | - Xinyu Song
- Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University Binzhou, Shandong, China
| | - Lin Wu
- Department of Physiology, Shandong University School of Medicine Jinan, China
| | - J Victor Nadler
- Department of Pharmacology and Cancer Biology, Duke University Medical Center Durham, NC, USA
| | - Ren-Zhi Zhan
- Department of Physiology, Shandong University School of Medicine Jinan, China
| |
Collapse
|
32
|
Kann O. The interneuron energy hypothesis: Implications for brain disease. Neurobiol Dis 2015; 90:75-85. [PMID: 26284893 DOI: 10.1016/j.nbd.2015.08.005] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/22/2015] [Accepted: 08/12/2015] [Indexed: 12/12/2022] Open
Abstract
Fast-spiking, inhibitory interneurons - prototype is the parvalbumin-positive (PV+) basket cell - generate action potentials at high frequency and synchronize the activity of numerous excitatory principal neurons, such as pyramidal cells, during fast network oscillations by rhythmic inhibition. For this purpose, fast-spiking, PV+ interneurons have unique electrophysiological characteristics regarding action potential kinetics and ion conductances, which are associated with high energy expenditure. This is reflected in the neural ultrastructure by enrichment with mitochondria and cytochrome c oxidase, indicating the dependence on oxidative phosphorylation for adenosine-5'-triphosphate (ATP) generation. The high energy expenditure is most likely required for membrane ion transport in dendrites and the extensive axon arbor as well as for presynaptic release of neurotransmitter, gamma-aminobutyric acid (GABA). Fast-spiking, PV+ interneurons are central for the emergence of gamma oscillations (30-100Hz) that provide a fundamental mechanism of complex information processing during sensory perception, motor behavior and memory formation in networks of the hippocampus and the neocortex. Conversely, shortage in glucose and oxygen supply (metabolic stress) and/or excessive formation of reactive oxygen and nitrogen species (oxidative stress) may render these interneurons to be a vulnerable target. Dysfunction in fast-spiking, PV+ interneurons might set a low threshold for impairment of fast network oscillations and thus higher brain functions. This pathophysiological mechanism might be highly relevant for cerebral aging as well as various acute and chronic brain diseases, such as stroke, vascular cognitive impairment, epilepsy, Alzheimer's disease and schizophrenia.
Collapse
Affiliation(s)
- Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
33
|
John D, Shelukhina I, Yanagawa Y, Deuchars J, Henderson Z. Functional alpha7 nicotinic receptors are expressed on immature granule cells of the postnatal dentate gyrus. Brain Res 2014; 1601:15-30. [PMID: 25553616 PMCID: PMC4350854 DOI: 10.1016/j.brainres.2014.12.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 12/19/2014] [Indexed: 02/07/2023]
Abstract
Neurogenesis occurs throughout life in the subgranular zone of the dentate gyrus, and postnatal-born granule cells migrate into the granule cell layer and extend axons to their target areas. The α7*nicotinic receptor has been implicated in neuronal maturation during development of the brain and is abundant in interneurons of the hippocampal formation of the adult brain. Signalling through these same receptors is believed also to promote maturation and integration of adult-born granule cells in the hippocampal formation. We therefore aimed to determine whether functional α7*nicotinic receptors are expressed in developing granule cells of the postnatal dentate gyrus. For these experiments we used 2-3 week-old Wistar rats, and 2-9 week old transgenic mice in which GABAergic interneurons were marked by expression of green fluorescent protein. Immunohistochemistry indicated the presence of α7*nicotinic receptor subunits around granule cells close around the subgranular zone which correlated with the distribution of developmental markers for immature granule cells. Whole-cell patch clamp recording showed that a proportion of granule cells responded to puffed ACh in the presence of atropine, and that these cells possessed electrophysiological properties found in immature granule cells. The nicotinic responses were potentiated by an allosteric α7*nicotinic receptor modulator, which were blocked by a specific α7*nicotinic receptor antagonist and were not affected by ionotropic glutamate or GABA receptor antagonists. These results suggest the presence of functional somato-dendritic α7*nicotinic receptors on immature granule cells of the postnatal dentate gyrus, consistent with studies implicating α7*nicotinic receptors in dendritic maturation of dentate gyrus neurons in adult brain.
Collapse
Affiliation(s)
- Danielle John
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Irina Shelukhina
- Department of Molecular Basis of Neurosignaling, Laboratory of Molecular Toxinology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow V-437, Russia
| | - Yuchio Yanagawa
- Department of Genetic and Behavioural Neuroscience, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; Japan Science and Technology Agency, CREST, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Jim Deuchars
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Zaineb Henderson
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
34
|
Dentate Gyrus Local Circuit is Implicated in Learning Under Stress--a Role for Neurofascin. Mol Neurobiol 2014; 53:842-850. [PMID: 25511445 DOI: 10.1007/s12035-014-9044-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/02/2014] [Indexed: 02/01/2023]
Abstract
The inhibitory synapses at the axon initial segment (AIS) of dentate gyrus granular cells are almost exclusively innervated by the axo-axonic chandelier interneurons. However, the role of chandelier neurons in local circuitry is poorly understood and controversially discussed. The cell adhesion molecule neurofascin is specifically expressed at the AIS. It is crucially required for the stabilization of axo-axonic synapses. Knockdown of neurofascin is therefore a convenient tool to interfere with chandelier input at the AIS of granular neurons of the dentate gyrus. In the current study, feedback and feedforward inhibition of granule cells was measured in the dentate gyrus after knockdown of neurofascin and concomitant reduction of axo-axonic input. Results show increased feedback inhibition as a result of neurofascin knockdown, while feedforward inhibition remained unaffected. This suggests that chandelier neurons are predominantly involved in feedback inhibition. Neurofascin knockdown rats also exhibited impaired learning under stress in the two-way shuttle avoidance task. Remarkably, this learning impairment was not accompanied by differences in electrophysiological measurements of dentate gyrus LTP. This indicates that the local circuit may be involved in (certain types) of learning.
Collapse
|
35
|
Yamawaki R, Thind K, Buckmaster PS. Blockade of excitatory synaptogenesis with proximal dendrites of dentate granule cells following rapamycin treatment in a mouse model of temporal lobe epilepsy. J Comp Neurol 2014; 523:281-97. [PMID: 25234294 DOI: 10.1002/cne.23681] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 12/13/2022]
Abstract
Inhibiting the mammalian target of rapamycin (mTOR) signaling pathway with rapamycin blocks granule cell axon (mossy fiber) sprouting after epileptogenic injuries, including pilocarpine-induced status epilepticus. However, it remains unclear whether axons from other types of neurons sprout into the inner molecular layer and synapse with granule cell dendrites despite rapamycin treatment. If so, other aberrant positive-feedback networks might develop. To test this possibility stereological electron microscopy was used to estimate the numbers of excitatory synapses in the inner molecular layer per hippocampus in pilocarpine-treated control mice, in mice 5 days after pilocarpine-induced status epilepticus, and after status epilepticus and daily treatment beginning 24 hours later with rapamycin or vehicle for 2 months. The optical fractionator method was used to estimate numbers of granule cells in Nissl-stained sections so that numbers of excitatory synapses in the inner molecular layer per granule cell could be calculated. Control mice had an average of 2,280 asymmetric synapses in the inner molecular layer per granule cell, which was reduced to 63% of controls 5 days after status epilepticus, recovered to 93% of controls in vehicle-treated mice 2 months after status epilepticus, but remained at only 63% of controls in rapamycin-treated mice. These findings reveal that rapamycin prevented excitatory axons from synapsing with proximal dendrites of granule cells and raise questions about the recurrent excitation hypothesis of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Ruth Yamawaki
- Department of Comparative Medicine, Stanford University, Stanford, CA, 94305
| | | | | |
Collapse
|
36
|
Hosp JA, Strüber M, Yanagawa Y, Obata K, Vida I, Jonas P, Bartos M. Morpho-physiological criteria divide dentate gyrus interneurons into classes. Hippocampus 2014; 24:189-203. [PMID: 24108530 PMCID: PMC4165310 DOI: 10.1002/hipo.22214] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/13/2013] [Accepted: 10/02/2013] [Indexed: 12/14/2022]
Abstract
GABAergic inhibitory interneurons control fundamental aspects of neuronal network function. Their functional roles are assumed to be defined by the identity of their input synapses, the architecture of their dendritic tree, the passive and active membrane properties and finally the nature of their postsynaptic targets. Indeed, interneurons display a high degree of morphological and physiological heterogeneity. However, whether their morphological and physiological characteristics are correlated and whether interneuron diversity can be described by a continuum of GABAergic cell types or by distinct classes has remained unclear. Here we perform a detailed morphological and physiological characterization of GABAergic cells in the dentate gyrus, the input region of the hippocampus. To achieve an unbiased and efficient sampling and classification we used knock-in mice expressing the enhanced green fluorescent protein (eGFP) in glutamate decarboxylase 67 (GAD67)-positive neurons and performed cluster analysis. We identified five interneuron classes, each of them characterized by a distinct set of anatomical and physiological parameters. Cross-correlation analysis further revealed a direct relation between morphological and physiological properties indicating that dentate gyrus interneurons fall into functionally distinct classes which may differentially control neuronal network activity.
Collapse
Affiliation(s)
- Jonas A Hosp
- Institute for Physiology I, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 779104, Freiburg, Germany
- Clinical Neurorehabilitation, Department of Neurology, University of Zurich8091, Zurich, Switzerland
| | - Michael Strüber
- Institute for Physiology I, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 779104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM) and Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg79104, Freiburg, Germany
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University3-39-22, Showa-Machi, Japan
| | - Kunihiko Obata
- Laboratory of Neurochemistry, National Institute for Physiological Sciences444-8585, Myodaiji, Okazaki, Japan
| | - Imre Vida
- Institute for Integrative Neuroanatomy, Charité Berlin, Phillipstraße 1210115, Berlin, Germany
| | - Peter Jonas
- IST Austria (Institute of Science and Technology Austria), Am Campus 13400, Klosterneuburg, Austria
| | - Marlene Bartos
- Institute for Physiology I, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 779104, Freiburg, Germany
- *Correspondence to: Prof. Dr. M. Bartos, Institut für Physiologie I, Universität Freiburg, Hermann-Herder Strasse 7, D-79108 Freiburg, Germany. E-mail:
| |
Collapse
|
37
|
Highly energized inhibitory interneurons are a central element for information processing in cortical networks. J Cereb Blood Flow Metab 2014; 34:1270-82. [PMID: 24896567 PMCID: PMC4126088 DOI: 10.1038/jcbfm.2014.104] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/09/2014] [Accepted: 05/21/2014] [Indexed: 01/09/2023]
Abstract
Gamma oscillations (∼30 to 100 Hz) provide a fundamental mechanism of information processing during sensory perception, motor behavior, and memory formation by coordination of neuronal activity in networks of the hippocampus and neocortex. We review the cellular mechanisms of gamma oscillations about the underlying neuroenergetics, i.e., high oxygen consumption rate and exquisite sensitivity to metabolic stress during hypoxia or poisoning of mitochondrial oxidative phosphorylation. Gamma oscillations emerge from the precise synaptic interactions of excitatory pyramidal cells and inhibitory GABAergic interneurons. In particular, specialized interneurons such as parvalbumin-positive basket cells generate action potentials at high frequency ('fast-spiking') and synchronize the activity of numerous pyramidal cells by rhythmic inhibition ('clockwork'). As prerequisites, fast-spiking interneurons have unique electrophysiological properties and particularly high energy utilization, which is reflected in the ultrastructure by enrichment with mitochondria and cytochrome c oxidase, most likely needed for extensive membrane ion transport and γ-aminobutyric acid metabolism. This supports the hypothesis that highly energized fast-spiking interneurons are a central element for cortical information processing and may be critical for cognitive decline when energy supply becomes limited ('interneuron energy hypothesis'). As a clinical perspective, we discuss the functional consequences of metabolic and oxidative stress in fast-spiking interneurons in aging, ischemia, Alzheimer's disease, and schizophrenia.
Collapse
|
38
|
Savanthrapadian S, Meyer T, Elgueta C, Booker SA, Vida I, Bartos M. Synaptic properties of SOM- and CCK-expressing cells in dentate gyrus interneuron networks. J Neurosci 2014; 34:8197-209. [PMID: 24920624 PMCID: PMC6608234 DOI: 10.1523/jneurosci.5433-13.2014] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 11/21/2022] Open
Abstract
Hippocampal GABAergic cells are highly heterogeneous, but the functional significance of this diversity is not fully understood. By using paired recordings of synaptically connected interneurons in slice preparations of the rat and mouse dentate gyrus (DG), we show that morphologically identified interneurons form complex neuronal networks. Synaptic inhibitory interactions exist between cholecystokinin (CCK)-expressing hilar commissural associational path (HICAP) cells and among somatostatin (SOM)-containing hilar perforant path-associated (HIPP) interneurons. Moreover, both interneuron types inhibit parvalbumin (PV)-expressing perisomatic inhibitory basket cells (BCs), whereas BCs and HICAPs rarely target HIPP cells. HICAP and HIPP cells produce slow, weak, and unreliable inhibition onto postsynaptic interneurons. The time course of inhibitory signaling is defined by the identity of the presynaptic and postsynaptic cell. It is the slowest for HIPP-HIPP, intermediately slow for HICAP-HICAP, but fast for BC-BC synapses. GABA release at interneuron-interneuron synapses also shows cell type-specific short-term dynamics, ranging from multiple-pulse facilitation at HICAP-HICAP, biphasic modulation at HIPP-HIPP to depression at BC-BC synapses. Although dendritic inhibition at HICAP-BC and HIPP-BC synapses appears weak and slow, channelrhodopsin 2-mediated excitation of SOM terminals demonstrates that they effectively control the activity of target interneurons. They markedly reduce the discharge probability but sharpen the temporal precision of action potential generation. Thus, dendritic inhibition seems to play an important role in determining the activity pattern of GABAergic interneuron populations and thereby the flow of information through the DG circuitry.
Collapse
Affiliation(s)
- Shakuntala Savanthrapadian
- Physiologisches Institut I, Systemic and Cellular Neuroscience, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany, and
| | - Thomas Meyer
- Physiologisches Institut I, Systemic and Cellular Neuroscience, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany, and
| | - Claudio Elgueta
- Physiologisches Institut I, Systemic and Cellular Neuroscience, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany, and
| | - Sam A Booker
- Institute for Integrative Neuroanatomy and NeuroCure Cluster, Charité Berlin, 10115 Berlin, Germany
| | - Imre Vida
- Institute for Integrative Neuroanatomy and NeuroCure Cluster, Charité Berlin, 10115 Berlin, Germany
| | - Marlene Bartos
- Physiologisches Institut I, Systemic and Cellular Neuroscience, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany, and
| |
Collapse
|
39
|
Hu H, Jonas P. A supercritical density of Na(+) channels ensures fast signaling in GABAergic interneuron axons. Nat Neurosci 2014; 17:686-93. [PMID: 24657965 PMCID: PMC4286295 DOI: 10.1038/nn.3678] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/13/2014] [Indexed: 12/11/2022]
Abstract
Fast-spiking, parvalbumin-expressing GABAergic interneurons, a large proportion of which are basket cells (BCs), have a key role in feedforward and feedback inhibition, gamma oscillations and complex information processing. For these functions, fast propagation of action potentials (APs) from the soma to the presynaptic terminals is important. However, the functional properties of interneuron axons remain elusive. We examined interneuron axons by confocally targeted subcellular patch-clamp recording in rat hippocampal slices. APs were initiated in the proximal axon ~20 μm from the soma and propagated to the distal axon with high reliability and speed. Subcellular mapping revealed a stepwise increase of Na(+) conductance density from the soma to the proximal axon, followed by a further gradual increase in the distal axon. Active cable modeling and experiments with partial channel block revealed that low axonal Na(+) conductance density was sufficient for reliability, but high Na(+) density was necessary for both speed of propagation and fast-spiking AP phenotype. Our results suggest that a supercritical density of Na(+) channels compensates for the morphological properties of interneuron axons (small segmental diameter, extensive branching and high bouton density), ensuring fast AP propagation and high-frequency repetitive firing.
Collapse
Affiliation(s)
- Hua Hu
- IST Austria, Klosterneuburg, Austria
| | | |
Collapse
|
40
|
Scharfman HE, Brooks-Kayal AR. Is plasticity of GABAergic mechanisms relevant to epileptogenesis? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:133-50. [PMID: 25012373 DOI: 10.1007/978-94-017-8914-1_11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Numerous changes in GABAergic neurons, receptors, and inhibitory mechanisms have been described in temporal lobe epilepsy (TLE), either in humans or in animal models. Nevertheless, there remains a common assumption that epilepsy can be explained by simply an insufficiency of GABAergic inhibition. Alternatively, investigators have suggested that there is hyperinhibition that masks an underlying hyperexcitability. Here we examine the status epilepticus (SE) models of TLE and focus on the dentate gyrus of the hippocampus, where a great deal of data have been collected. The types of GABAergic neurons and GABAA receptors are summarized under normal conditions and after SE. The role of GABA in development and in adult neurogenesis is discussed. We suggest that instead of "too little or too much" GABA there is a complexity of changes after SE that makes the emergence of chronic seizures (epileptogenesis) difficult to understand mechanistically, and difficult to treat. We also suggest that this complexity arises, at least in part, because of the remarkable plasticity of GABAergic neurons and GABAA receptors in response to insult or injury.
Collapse
Affiliation(s)
- Helen E Scharfman
- The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA,
| | | |
Collapse
|
41
|
Czéh B, Abrahám H, Tahtakran S, Houser CR, Seress L. Number and regional distribution of GAD65 mRNA-expressing interneurons in the rat hippocampal formation. ACTA BIOLOGICA HUNGARICA 2013; 64:395-413. [PMID: 24275587 DOI: 10.1556/abiol.64.2013.4.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In rodent models for neuropsychiatric disorders reduced number of hippocampal interneurons have been reported, but the total number of GABAergic neurons in the normal rat hippocampus is yet unknown. We used in situ hybridization method to label the 65 isoform of glutamic acid decarboxylase (GAD65) and counted the number of GAD65 mRNA-expressing neurons along the entire septo-temporal axis of the hippocampus. We found that 2/3 of the interneurons were in Ammon's horn (61,590) and 1/3 in the dentate gyrus (28,000). We observed the following numbers in Ammon's horn: CA3 area 33,400, CA2 area 4,190, CA1 area 24,000 and in the dentate gyrus: 6,000 in the molecular and 9,000 in the granule cell layers and 13,000 in the hilus. GAD65 mRNA-expressing neurons were significantly more numerous in dorsal than in ventral hippocampus. The ratio between interneurons and principal cells was lowest in the granule cell layer (0.9%) and highest in hilus (21%). In Ammon's horn this ratio was constant being 13% in CA3 and 8% in CA1-2 areas. In the entire hippocampal formation, the interneuron/principal cell ratio was 6%, with a significant difference between Ammon's horn (9.5%) and the dentate gyrus (2.8%) including the hilus. Such low ratios could suggest that even a limited loss of GABAergic neurons in the hippocampus may have a considerable functional impact.
Collapse
Affiliation(s)
- B Czéh
- University of Pécs Department of Laboratory Medicine, Faculty of Medicine H-7624 Pécs Hungary Aarhus University Hospital Centre for Psychiatric Research 8240 Risskov Denmark University of Pécs Szentágothai János Research Center, Neuroendocrinology Research Group H-7624 Pécs Hungary
| | | | | | | | | |
Collapse
|
42
|
A reorganized GABAergic circuit in a model of epilepsy: evidence from optogenetic labeling and stimulation of somatostatin interneurons. J Neurosci 2013; 33:14392-405. [PMID: 24005292 DOI: 10.1523/jneurosci.2045-13.2013] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Axonal sprouting of excitatory neurons is frequently observed in temporal lobe epilepsy, but the extent to which inhibitory interneurons undergo similar axonal reorganization remains unclear. The goal of this study was to determine whether somatostatin (SOM)-expressing neurons in stratum (s.) oriens of the hippocampus exhibit axonal sprouting beyond their normal territory and innervate granule cells of the dentate gyrus in a pilocarpine model of epilepsy. To obtain selective labeling of SOM-expressing neurons in s. oriens, a Cre recombinase-dependent construct for channelrhodopsin2 fused to enhanced yellow fluorescent protein (ChR2-eYFP) was virally delivered to this region in SOM-Cre mice. In control mice, labeled axons were restricted primarily to s. lacunosum-moleculare. However, in pilocarpine-treated animals, a rich plexus of ChR2-eYFP-labeled fibers and boutons extended into the dentate molecular layer. Electron microscopy with immunogold labeling demonstrated labeled axon terminals that formed symmetric synapses on dendritic profiles in this region, consistent with innervation of granule cells. Patterned illumination of ChR2-labeled fibers in s. lacunosum-moleculare of CA1 and the dentate molecular layer elicited GABAergic inhibitory responses in dentate granule cells in pilocarpine-treated mice but not in controls. Similar optical stimulation in the dentate hilus evoked no significant responses in granule cells of either group of mice. These findings indicate that under pathological conditions, SOM/GABAergic neurons can undergo substantial axonal reorganization beyond their normal territory and establish aberrant synaptic connections. Such reorganized circuitry could contribute to functional deficits in inhibition in epilepsy, despite the presence of numerous GABAergic terminals in the region.
Collapse
|
43
|
Fernández-Ruiz A, Muñoz S, Sancho M, Makarova J, Makarov VA, Herreras O. Cytoarchitectonic and dynamic origins of giant positive local field potentials in the dentate gyrus. J Neurosci 2013; 33:15518-32. [PMID: 24068819 PMCID: PMC6618450 DOI: 10.1523/jneurosci.0338-13.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 12/18/2022] Open
Abstract
To determine why some pathways but not others produce sizable local field potentials (LFPs) and how far from the source can these be recorded, complementary experimental analyses and realistic modeling of specific brain structures are required. In the present study, we combined multiple in vivo linear recordings in rats and a tridimensional finite element model of the dentate gyrus, a curved structure displaying abnormally large positive LFPs. We demonstrate that the polarized dendritic arbour of granule cells (GCs), combined with the curved layered configuration of the population promote the spatial clustering of GC currents in the interposed hilus and project them through the open side at a distance from cell domains. LFPs grow up to 20 times larger than observed in synaptic sites. The dominant positive polarity of hilar LFPs was only produced by the synchronous activation of GCs in both blades by either somatic inhibition or dendritic excitation. Moreover, the corresponding anatomical pathways must project to both blades of the dentate gyrus as even a mild decrease in the spatial synchronization resulted in a dramatic reduction in LFP power in distant sites, yet not in the GC domains. It is concluded that the activation of layered structures may establish sharply delimited spatial domains where synaptic currents from one or another input appear to be segregated according to the topology of afferent pathways and the cytoarchitectonic features of the target population. These also determine preferred directions for volume conduction in the brain, of relevance for interpretation of surface EEG recordings.
Collapse
Affiliation(s)
| | - Sagrario Muñoz
- Department of Applied Physics III, Faculty of Physics, Universidad Complutense de Madrid, Madrid 28040, Spain, and
| | - Miguel Sancho
- Department of Applied Physics III, Faculty of Physics, Universidad Complutense de Madrid, Madrid 28040, Spain, and
| | - Julia Makarova
- Department of Systems Neuroscience, Cajal Institute, CSIC, Madrid 28002, Spain
| | - Valeri A. Makarov
- Department of Applied Mathematics, Faculty of Mathematics, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Oscar Herreras
- Department of Systems Neuroscience, Cajal Institute, CSIC, Madrid 28002, Spain
| |
Collapse
|
44
|
Milenkovic I, Vasiljevic M, Maurer D, Höger H, Klausberger T, Sieghart W. The parvalbumin-positive interneurons in the mouse dentate gyrus express GABAA receptor subunits α1, β2, and δ along their extrasynaptic cell membrane. Neuroscience 2013; 254:80-96. [PMID: 24055402 DOI: 10.1016/j.neuroscience.2013.09.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 08/27/2013] [Accepted: 09/09/2013] [Indexed: 11/17/2022]
Abstract
Neuronal circuitries in the hippocampus are involved in navigation and memory and are controlled by major networks of GABAergic interneurons. Parvalbumin (PV)-expressing interneurons in the dentate gyrus (DG) are identified as fast-spiking cells, playing a crucial role in network oscillation and synchrony. The inhibitory modulation of these interneurons is thought to be mediated mainly through GABAA receptors, the major inhibitory neurotransmitter receptors in the brain. Here we show that all PV-positive interneurons in the granular/subgranular layer (GL/SGL) of the mouse DG express high levels of the GABAA receptor δ subunit. PV-containing interneurons in the hilus and the molecular layer, however, express the δ subunit to a lower extent. Only 8% of the somatostatin-containing interneurons express the δ subunit, whereas calbindin- or calretinin-containing interneurons in the DG seem not to express the GABAA receptor δ subunit at all. Hence, these cells receive a GABAergic control different from that of PV-containing interneurons in the GL/SGL. Experiments investigating a possible co-expression of GABAA receptor α1, α2, α3, α4, α5, β1, β2, β3, or γ2 subunits with PV and δ subunits indicated that α1 and β2 subunits are co-expressed with δ subunits along the extrasynaptic membranes of PV-interneurons. These results suggest a robust tonic GABAergic control of PV-containing interneurons in the GL/SGL of the DG via δ subunit-containing receptors. Our data are important for better understanding of the neuronal circuitries in the DG and the role of specific cell types under pathological conditions.
Collapse
Affiliation(s)
- I Milenkovic
- Center for Brain Research, Department of Biochemistry and Molecular Biology of the Nervous System, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria; Institute of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1097 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
45
|
Sun C, Sun J, Erisir A, Kapur J. Loss of cholecystokinin-containing terminals in temporal lobe epilepsy. Neurobiol Dis 2013; 62:44-55. [PMID: 24051276 DOI: 10.1016/j.nbd.2013.08.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/22/2013] [Accepted: 08/27/2013] [Indexed: 11/30/2022] Open
Abstract
Altered GABA-mediated inhibition is proposed to play a role in the pathogenesis of epilepsy. Previous studies have demonstrated a loss of somatostatin-containing GABAergic interneurons innervating granule cells in epileptic animals. However, the reorganization of synapses between interneurons and granule cells has not been investigated. We studied synapse organization in an animal model of temporal lobe epilepsy (TLE) using continuous hippocampal stimulation. The distribution of axon terminals and inhibitory synapses on granule cell dendrites was studied using a combination of immunohistochemistry and pre-embedding electron microscopy techniques. A whole-cell patch-clamp technique was applied to study the functional changes in GABAergic input from different interneurons. In epileptic animals, the density of cholecystokinin (CCK)-immunoreactive (IR) fibers and α2 subunit containing GABAA receptors in the inner molecular layer of the dentate gyrus was reduced. Quantitative immuno-electron microscopy study revealed that the ratio of CCK-containing symmetric synapses to the total symmetric synapses was reduced. The frequency of GABAergic synaptic currents (sIPSC) was decreased and their amplitude was increased. The inhibitory effect of the activation of cannabinoid 1 (CB1) receptors was also reduced in epileptic animals. Isolation of CCK- and parvalbumin (PV)-containing GABAergic inputs by N- and P/Q-type calcium channel blockers respectively suggested that GABA release from CCK-containing interneurons was selectively reduced in epileptic rats. This study found that there was a loss of CCK-containing GABAergic synapses to granule cells both morphologically and functionally. These studies add to our understanding of the mechanisms that contribute to altering GABAergic inhibition of granule cells in TLE.
Collapse
Affiliation(s)
- Chengsan Sun
- Department of Neurology, University of Virginia, Health Sciences Center, PO Box 800394, Charlottesville, VA 22908, USA; Department of Psychology, University of Virginia, PO Box 400400, Charlottesville, VA 22904, USA
| | - Jianli Sun
- Department of Neurology, University of Virginia, Health Sciences Center, PO Box 800394, Charlottesville, VA 22908, USA
| | - Alev Erisir
- Department of Psychology, University of Virginia, PO Box 400400, Charlottesville, VA 22904, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Health Sciences Center, PO Box 800394, Charlottesville, VA 22908, USA; Department of Neuroscience, PO Box 801392, Charlottesville, VA 22908, USA.
| |
Collapse
|
46
|
Molecular layer perforant path-associated cells contribute to feed-forward inhibition in the adult dentate gyrus. Proc Natl Acad Sci U S A 2013; 110:9106-11. [PMID: 23671081 DOI: 10.1073/pnas.1306912110] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
New neurons, which have been implicated in pattern separation, are continually generated in the dentate gyrus in the adult hippocampus. Using a genetically modified rabies virus, we demonstrated that molecular layer perforant pathway (MOPP) cells innervated newborn granule neurons in adult mouse brain. Stimulating the perforant pathway resulted in the activation of MOPP cells before the activation of dentate granule neurons. Moreover, activation of MOPP cells by focal uncaging of glutamate induced strong inhibition of granule cells. Together, these results indicate that MOPP cells located in the molecular layer of the dentate gyrus contribute to feed-forward inhibition of granule cells via perforant pathway activation.
Collapse
|
47
|
Jinde S, Zsiros V, Nakazawa K. Hilar mossy cell circuitry controlling dentate granule cell excitability. Front Neural Circuits 2013; 7:14. [PMID: 23407806 PMCID: PMC3569840 DOI: 10.3389/fncir.2013.00014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/23/2013] [Indexed: 12/27/2022] Open
Abstract
Glutamatergic hilar mossy cells of the dentate gyrus can either excite or inhibit distant granule cells, depending on whether their direct excitatory projections to granule cells or their projections to local inhibitory interneurons dominate. However, it remains controversial whether the net effect of mossy cell loss is granule cell excitation or inhibition. Clarifying this controversy has particular relevance to temporal lobe epilepsy, which is marked by dentate granule cell hyperexcitability and extensive loss of dentate hilar mossy cells. Two diametrically opposed hypotheses have been advanced to explain this granule cell hyperexcitability—the “dormant basket cell” and the “irritable mossy cell” hypotheses. The “dormant basket cell” hypothesis proposes that mossy cells normally exert a net inhibitory effect on granule cells and therefore their loss causes dentate granule cell hyperexcitability. The “irritable mossy cell” hypothesis takes the opposite view that mossy cells normally excite granule cells and that the surviving mossy cells in epilepsy increase their activity, causing granule cell excitation. The inability to eliminate mossy cells selectively has made it difficult to test these two opposing hypotheses. To this end, we developed a transgenic toxin-mediated, mossy cell-ablation mouse line. Using these mutants, we demonstrated that the extensive elimination of hilar mossy cells causes granule cell hyperexcitability, although the mossy cell loss observed appeared insufficient to cause clinical epilepsy. In this review, we focus on this topic and also suggest that different interneuron populations may mediate mossy cell-induced translamellar lateral inhibition and intralamellar recurrent inhibition. These unique local circuits in the dentate hilar region may be centrally involved in the functional organization of the dentate gyrus.
Collapse
Affiliation(s)
- Seiichiro Jinde
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo Tokyo, Japan
| | | | | |
Collapse
|
48
|
Sloviter RS, Lømo T. Updating the lamellar hypothesis of hippocampal organization. Front Neural Circuits 2012; 6:102. [PMID: 23233836 PMCID: PMC3517983 DOI: 10.3389/fncir.2012.00102] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/21/2012] [Indexed: 11/13/2022] Open
Abstract
Andersen et al. (1971) proposed that excitatory activity in the entorhinal cortex propagates topographically to the dentate gyrus, and on through a "trisynaptic circuit" lying within transverse hippocampal "slices" or "lamellae." In this way, a relatively simple structure might mediate complex functions in a manner analogous to the way independent piano keys can produce a nearly infinite variety of unique outputs. The lamellar hypothesis derives primary support from the "lamellar" distribution of dentate granule cell axons (the mossy fibers), which innervate dentate hilar neurons and area CA3 pyramidal cells and interneurons within the confines of a thin transverse hippocampal segment. Following the initial formulation of the lamellar hypothesis, anatomical studies revealed that unlike granule cells, hilar mossy cells, CA3 pyramidal cells, and Layer II entorhinal cells all form axonal projections that are more divergent along the longitudinal axis than the clearly "lamellar" mossy fiber pathway. The existence of pathways with "translamellar" distribution patterns has been interpreted, incorrectly in our view, as justifying outright rejection of the lamellar hypothesis (Amaral and Witter, 1989). We suggest that the functional implications of longitudinally projecting axons depend not on whether they exist, but on what they do. The observation that focal granule cell layer discharges normally inhibit, rather than excite, distant granule cells suggests that longitudinal axons in the dentate gyrus may mediate "lateral" inhibition and define lamellar function, rather than undermine it. In this review, we attempt a reconsideration of the evidence that most directly impacts the physiological concept of hippocampal lamellar organization.
Collapse
Affiliation(s)
- Robert S Sloviter
- Department of Neurobiology, Morehouse School of Medicine Atlanta, GA, USA
| | | |
Collapse
|
49
|
He S, Shao LR, Rittase WB, Bausch SB. Increased Kv1 channel expression may contribute to decreased sIPSC frequency following chronic inhibition of NR2B-containing NMDAR. Neuropsychopharmacology 2012; 37:1338-56. [PMID: 22218089 PMCID: PMC3327840 DOI: 10.1038/npp.2011.320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/21/2011] [Accepted: 11/29/2011] [Indexed: 12/20/2022]
Abstract
Numerous studies have documented the effects of chronic N-methyl-D-aspartate receptor (NMDAR) blockade on excitatory circuits, but the effects on inhibitory circuitry are not well studied. NR2A- and NR2B-containing NMDARs play differential roles in physiological processes, but the consequences of chronic NR2A- or NR2B-containing NMDAR inhibition on glutamatergic and GABAergic neurotransmission are unknown. We investigated altered GABAergic neurotransmission in dentate granule cells and interneurons following chronic treatment with the NR2B-selective antagonist, Ro25,6981, the NR2A-prefering antagonist, NVP-AAM077, or the non-subunit-selective NMDAR antagonist, D-APV, in organotypic hippocampal slice cultures. Electrophysiological recordings revealed large reductions in spontaneous inhibitory postsynaptic current (sIPSC) frequency in both granule cells and interneurons following chronic Ro25,6981 treatment, which was associated with minimally altered sIPSC amplitude, miniature inhibitory postsynaptic current (mIPSC) frequency, and mIPSC amplitude, suggesting diminished action potential-dependent GABA release. Chronic NVP-AAM077 or D-APV treatment had little effect on these measures. Reduced sIPSC frequency did not arise from downregulated GABA(A)R, altered excitatory or inhibitory drive to interneurons, altered interneuron membrane properties, increased failure rate, decreased action potential-dependent release probability, or mGluR/GABA(B) receptor modulation of GABA release. However, chronic Ro25,6981-mediated reductions in sIPSC frequency were occluded by the K+ channel blockers, dendrotoxin, margatoxin, and agitoxin, but not dendrotoxin-K or XE991. Immunohistochemistry also showed increased Kv1.2, Kv1.3, and Kv1.6 in the dentate molecular layer following chronic Ro25,6981 treatment. Our findings suggest that increased Kv1 channel expression/function contributed to diminished action potential-dependent GABA release following chronic NR2B-containing NMDAR inhibition and that these Kv1 channels may be heteromeric complexes containing Kv1.2, Kv1.3, and Kv1.6.
Collapse
Affiliation(s)
- Shuijin He
- Department of Pharmacology, Uniformed Services University School of Medicine, Bethesda, MD, USA
- Graduate Program in Neuroscience, Uniformed Services University School of Medicine, Bethesda, MD, USA
| | - Li-Rong Shao
- Department of Pharmacology, Uniformed Services University School of Medicine, Bethesda, MD, USA
| | - W Bradley Rittase
- Department of Pharmacology, Uniformed Services University School of Medicine, Bethesda, MD, USA
| | - Suzanne B Bausch
- Department of Pharmacology, Uniformed Services University School of Medicine, Bethesda, MD, USA
- Graduate Program in Neuroscience, Uniformed Services University School of Medicine, Bethesda, MD, USA
| |
Collapse
|
50
|
Armstrong C, Szabadics J, Tamás G, Soltesz I. Neurogliaform cells in the molecular layer of the dentate gyrus as feed-forward γ-aminobutyric acidergic modulators of entorhinal-hippocampal interplay. J Comp Neurol 2011; 519:1476-91. [PMID: 21452204 DOI: 10.1002/cne.22577] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Feed-forward inhibition from molecular layer interneurons onto granule cells (GCs) in the dentate gyrus is thought to have major effects regulating entorhinal-hippocampal interactions, but the precise identity, properties, and functional connectivity of the GABAergic cells in the molecular layer are not well understood. We used single and paired intracellular patch clamp recordings from post-hoc-identified cells in acute rat hippocampal slices and identified a subpopulation of molecular layer interneurons that expressed immunocytochemical markers present in members of the neurogliaform cell (NGFC) class. Single NGFCs displayed small dendritic trees, and their characteristically dense axonal arborizations covered significant portions of the outer and middle one-thirds of the molecular layer, with frequent axonal projections across the fissure into the CA1 and subicular regions. Typical NGFCs exhibited a late firing pattern with a ramp in membrane potential prior to firing action potentials, and single spikes in NGFCs evoked biphasic, prolonged GABA(A) and GABA(B) postsynaptic responses in GCs. In addition to providing dendritic GABAergic inputs to GCs, NGFCs also formed chemical synapses and gap junctions with various molecular layer interneurons, including other NGFCs. NGFCs received low-frequency spontaneous synaptic events, and stimulation of perforant path fibers revealed direct, facilitating synaptic inputs from the entorhinal cortex. Taken together, these results indicate that NGFCs form an integral part of the local molecular layer microcircuitry generating feed-forward inhibition and provide a direct GABAergic pathway linking the dentate gyrus to the CA1 and subicular regions through the hippocampal fissure.
Collapse
Affiliation(s)
- Caren Armstrong
- Department of Anatomy and Neurobiology, University of California, Irvine, School of Medicine, Irvine, California 92697, USA.
| | | | | | | |
Collapse
|