1
|
Kaplelach AK, Fox SN, Cook AK, Hall JA, Dannemiller RS, Jaunarajs KL, Arrant AE. Regulation of extracellular progranulin in medial prefrontal cortex. Neurobiol Dis 2023; 188:106326. [PMID: 37838007 PMCID: PMC10682954 DOI: 10.1016/j.nbd.2023.106326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023] Open
Abstract
Progranulin is a secreted pro-protein that has anti-inflammatory and neurotrophic effects and is necessary for maintaining lysosomal function. Mutations in progranulin (GRN) are a major cause of frontotemporal dementia. Most pathogenic GRN mutations cause progranulin haploinsufficiency, so boosting progranulin levels is a promising therapeutic strategy. Progranulin is constitutively secreted, then taken up and trafficked to lysosomes. Before being taken up from the extracellular space, progranulin interacts with receptors that may mediate anti-inflammatory and growth factor-like effects. Modifying progranulin trafficking is a viable approach to boosting progranulin, but progranulin secretion and uptake by cells in the brain is poorly understood and may involve distinct mechanisms from other parts of the body. Understanding the cell types and processes that regulate extracellular progranulin in the brain could provide insight into progranulin's mechanism of action and inform design of progranulin-boosting therapies. To address this question we used microdialysis to measure progranulin in interstitial fluid (ISF) of mouse medial prefrontal cortex (mPFC). Grn+/- mice had approximately 50% lower ISF progranulin than wild-type mice, matching the reduction of progranulin in cortical tissue. Fluorescent in situ hybridization and immunofluorescence confirmed that microglia and neurons are the major progranulin-expressing cell types in the mPFC. Studies of conditional microglial (Mg-KO) and neuronal (N-KO) Grn knockout mice revealed that loss of progranulin from either cell type results in approximately 50% reduction in ISF progranulin. LPS injection (i.p.) produced an acute increase in ISF progranulin in mPFC. Depolarizing cells with KCl increased ISF progranulin, but this response was not altered in N-KO mice, indicating progranulin secretion by non-neuronal cells. Increasing neuronal activity with picrotoxin did not increase ISF progranulin. These data indicate that microglia and neurons are the source of most ISF progranulin in mPFC, with microglia likely secreting more progranulin per cell than neurons. The acute increase in ISF progranulin after LPS treatment is consistent with a role for extracellular progranulin in regulating inflammation, and may have been driven by microglia or peripheral immune cells. Finally, these data indicate that mPFC neurons engage in constitutive progranulin secretion that is not acutely changed by neuronal activity.
Collapse
Affiliation(s)
- Azariah K Kaplelach
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephanie N Fox
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anna K Cook
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Justin A Hall
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ryan S Dannemiller
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Karen L Jaunarajs
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew E Arrant
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Conte C, Baldi E, Bucherelli C, di Vito R, Petri D, Traina G. Modulation of synapse-related gene expression in the cerebellum and prefrontal cortex of rats subjected to the contextual fear conditioning paradigm. Neurobiol Learn Mem 2023:107776. [PMID: 37236300 DOI: 10.1016/j.nlm.2023.107776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/22/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
The contextual fear conditioning (CFC) paradigm is the most productive approach for understanding the neurobiology of learning and memory as it allows to follow the evolution of memory traces of a conditioned stimulus and a specific context. The formation of long-term memory involves alterations in synaptic efficacy and neural transmission. It is known that the prefrontal cortex (PFC) exerts top-down control over subcortical structures to regulate behavioural responses. Moreover, cerebellar structures are involved in storing conditioned responses. The purpose of this research was to determine if the response to conditioning and stressful challenge is associated with alterations in synapse-related genes mRNA levels in the PFC, cerebellar vermis (V), and hemispheres (H) of young adult male rats. Four groups of Wistar rats were examined: naïve, CFC, shock only (SO), and exploration (EXPL). The behavioural response was evaluated by measuring the total freezing duration. Real-Time PCR was employed to quantify mRNA levels of some genes involved in synaptic plasticity. The results obtained from this study showed alterations in gene expression in different synapse-related genes after exposure to stressful stimuli and positioning to new environment. In conclusion, conditioning behavioural stimuli change the expression profile of molecules involved in neural transmission.
Collapse
Affiliation(s)
- Carmela Conte
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via Romana, 06126, Perugia, Italy.
| | - Elisabetta Baldi
- Dipartimento di Medicina Sperimentale e Clinica, Università di Firenze, Viale G.B. Morgagni, 63, 50134, Firenze, Italy.
| | - Corrado Bucherelli
- Dipartimento di Medicina Sperimentale e Clinica, Università di Firenze, Viale G.B. Morgagni, 63, 50134, Firenze, Italy.
| | - Raffaella di Vito
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via Romana, 06126, Perugia, Italy.
| | - Davide Petri
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, via San Zeno 37, 56123 Pisa, Italy.
| | - Giovanna Traina
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via Romana, 06126, Perugia, Italy.
| |
Collapse
|
3
|
Bruscolini A, Iannitelli A, Segatto M, Rosso P, Fico E, Buonfiglio M, Lambiase A, Tirassa P. Psycho-Cognitive Profile and NGF and BDNF Levels in Tears and Serum: A Pilot Study in Patients with Graves' Disease. Int J Mol Sci 2023; 24:ijms24098074. [PMID: 37175781 PMCID: PMC10178719 DOI: 10.3390/ijms24098074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Nerve Growth Factor (NGF) and Brain derived Neurotrophic Factor (BDNF) mature/precursor imbalance in tears and serum is suggested as a risk factor and symptomatology aggravation in ophthalmology and neuropsychiatric disturbances. Cognitive and mood alterations are reported by patients with Graves' Orbitopathy (GO), indicating neurotrophin alterations might be involved. To address this question, the expression levels of NGF and BDNF and their precursors in serum and tears of GO patients were analyzed and correlated with the ophthalmological and psycho-cognitive symptoms. Hamilton Rating Scale for Anxiety (HAM-A) and Depression (HAM-D), Temperament and Character Inventory (TCI), and Cambridge Neuropsychological Test Automated Battery (CANTAB) test were used as a score. NGF and BDNF levels were measured using ELISA and Western Blot and statistically analyzed for psychiatric/ocular variable trend association. GO patients show memorization time and level of distraction increase, together with high irritability and impulsiveness. HAM-A and CANTAB variables association, and some TCI dimensions are also found. NGF and BDNF expression correlates with ophthalmological symptoms only in tears, while mature/precursor NGF and BDNF correlate with the specific psycho-cognitive variables both in tears and serum. Our study is the first to show that changes in NGF and BDNF processing in tears and serum might profile ocular and cognitive alterations in patients.
Collapse
Affiliation(s)
- Alice Bruscolini
- Department of Sense Organs, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Angela Iannitelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, Coppito 2, 67100 L'Aquila, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Pamela Rosso
- Institute of Biochemistry & Cell Biology (IBBC), National Research Council (CNR), Unit of Translational & Biomolecular Medicine "Rita Levi-Montalcini", Viale dell'Università 33, 00185 Rome, Italy
| | - Elena Fico
- Institute of Biochemistry & Cell Biology (IBBC), National Research Council (CNR), Unit of Translational & Biomolecular Medicine "Rita Levi-Montalcini", Viale dell'Università 33, 00185 Rome, Italy
| | - Marzia Buonfiglio
- Headache Center, Policlinico Umberto I, Sapienza University, Viale dell'Università 33, 00185 Rome, Italy
| | - Alessandro Lambiase
- Department of Sense Organs, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry & Cell Biology (IBBC), National Research Council (CNR), Unit of Translational & Biomolecular Medicine "Rita Levi-Montalcini", Viale dell'Università 33, 00185 Rome, Italy
| |
Collapse
|
4
|
Timmermann A, Tascio D, Jabs R, Boehlen A, Domingos C, Skubal M, Huang W, Kirchhoff F, Henneberger C, Bilkei-Gorzo A, Seifert G, Steinhäuser C. Dysfunction of NG2 glial cells affects neuronal plasticity and behavior. Glia 2023; 71:1481-1501. [PMID: 36802096 DOI: 10.1002/glia.24352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/20/2023]
Abstract
NG2 glia represents a distinct type of macroglial cells in the CNS and is unique among glia because they receive synaptic input from neurons. They are abundantly present in white and gray matter. While the majority of white matter NG2 glia differentiates into oligodendrocytes, the physiological impact of gray matter NG2 glia and their synaptic input are still ill defined. Here, we asked whether dysfunctional NG2 glia affect neuronal signaling and behavior. We generated mice with inducible deletion of the K+ channel Kir4.1 in NG2 glia and performed comparative electrophysiological, immunohistochemical, molecular and behavioral analyses. Kir4.1 was deleted at postnatal day 23-26 (recombination efficiency about 75%) and mice were investigated 3-8 weeks later. Notably, these mice with dysfunctional NG2 glia demonstrated improved spatial memory as revealed by testing new object location recognition while working and social memory remained unaffected. Focussing on the hippocampus, we found that loss of Kir4.1 potentiated synaptic depolarizations of NG2 glia and stimulated the expression of myelin basic protein while proliferation and differentiation of hippocampal NG2 glia remained largely unaffected. Mice with targeted deletion of the K+ channel in NG2 glia showed impaired long-term potentiation at CA3-CA1 synapses, which could be fully rescued by extracellular application of a TrkB receptor agonist. Our data demonstrate that proper NG2 glia function is important for normal brain function and behavior.
Collapse
Affiliation(s)
- Aline Timmermann
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Dario Tascio
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ronald Jabs
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anne Boehlen
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Catia Domingos
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Magdalena Skubal
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Wenhui Huang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute of Neurology, University College London, London, UK
| | - Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
5
|
The presence of BBB hastens neuronal differentiation of cerebral organoids - The potential role of endothelial derived BDNF. Biochem Biophys Res Commun 2022; 626:30-37. [PMID: 35970042 DOI: 10.1016/j.bbrc.2022.07.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 11/23/2022]
Abstract
Despite remaining the best in vitro model to resemble the human brain, a weakness of human cerebral organoids is the lack of the endothelial component that in vivo organizes in the blood brain barrier (BBB). Since the BBB is crucial to control the microenvironment of the nervous system, this study proposes a co-culture of BBB and cerebral organoids. We utilized a BBB model consisting of primary human brain microvascular endothelial cells and astrocytes in a transwell system. Starting from induced Pluripotent Stem Cells (iPSCs) we generated human cerebral organoids which were then cultured in the absence or presence of an in vitro model of BBB to evaluate potential effects on the maturation of cerebral organoids. By morphological analysis, it emerges that in the presence of the BBB the cerebral organoids are better organized than controls in the absence of the BBB. This effect might be due to Brain Derived Neurotrophic Factor (BDNF), a neurotrophic factor released by the endothelial component of the BBB, which is involved in neurodevelopment, neuroplasticity and neurosurvival.
Collapse
|
6
|
Herzog N, Johnstone A, Bellamy T, Russell N. Characterization of neuronal viability and network activity under microfluidic flow. J Neurosci Methods 2021; 358:109200. [PMID: 33932456 DOI: 10.1016/j.jneumeth.2021.109200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Microfluidics technology has the potential to allow precise control of the temporal and spatial aspects of solute concentration, making it highly relevant for the study of volume transmission mechanisms in neural tissue. However, full utilization of this technology depends on understanding how microfluidic flow at the rates needed for rapid solution exchange affects neuronal viability and network activity. NEW METHOD We designed a tape-based pressurized microfluidic flow system that is simple to fabricate and can be attached to commercial microelectrode arrays. The device is multi-layered, allowing the inclusion of a porous polycarbonate membrane to isolate neuronal cultures from shear forces while maintaining diffusive exchange of solutes. We used this system to investigate how flow affected survival and spiking patterns of cultured hippocampal neurons. RESULTS Viability and network activity of the cultures were reduced in proportion to flow rate. However, shear reduction measures did not improve survival or spiking activity; media conditioning in conjunction with culture age proved to be the critical factors for network stability. Diffusion simulations indicate that dilution of a small molecule accounts for the deleterious effects of flow on neuronal cultures. COMPARISON WITH EXISTING METHODS This work establishes the experimental conditions for real time measurement of network activity during rapid solution exchange, using multi-layered chambers with reversible bonding that allow for reuse of microelectrode arrays. CONCLUSIONS With correct media conditioning, the microfluidic flow system allows drug delivery on a subsecond timescale without disruption of network activity or viability, enabling in vitro reproduction of volume transmission mechanisms.
Collapse
Affiliation(s)
- Nitzan Herzog
- School of Electronic and Electrical Engineering, University of Nottingham, Nottingham, United Kingdom.
| | - Alexander Johnstone
- School of Electronic and Electrical Engineering, University of Nottingham, Nottingham, United Kingdom.
| | - Tomas Bellamy
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.
| | - Noah Russell
- School of Electronic and Electrical Engineering, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
7
|
Cauda F, Mancuso L, Nani A, Ficco L, Premi E, Manuello J, Liloia D, Gelmini G, Duca S, Costa T. Hubs of long-distance co-alteration characterize brain pathology. Hum Brain Mapp 2020; 41:3878-3899. [PMID: 32562581 PMCID: PMC7469792 DOI: 10.1002/hbm.25093] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/06/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
It is becoming clearer that the impact of brain diseases is more convincingly represented in terms of co-alterations rather than in terms of localization of alterations. In this context, areas characterized by a long mean distance of co-alteration may be considered as hubs with a crucial role in the pathology. We calculated meta-analytic transdiagnostic networks of co-alteration for the gray matter decreases and increases, and we evaluated the mean Euclidean, fiber-length, and topological distance of its nodes. We also examined the proportion of co-alterations between canonical networks, and the transdiagnostic variance of the Euclidean distance. Furthermore, disease-specific analyses were conducted on schizophrenia and Alzheimer's disease. The anterodorsal prefrontal cortices appeared to be a transdiagnostic hub of long-distance co-alterations. Also, the disease-specific analyses showed that long-distance co-alterations are more able than classic meta-analyses to identify areas involved in pathology and symptomatology. Moreover, the distance maps were correlated with the normative connectivity. Our findings substantiate the network degeneration hypothesis in brain pathology. At the same time, they suggest that the concept of co-alteration might be a useful tool for clinical neuroscience.
Collapse
Affiliation(s)
- Franco Cauda
- GCS‐fMRI, Koelliker Hospital and Department of PsychologyUniversity of TurinTurinItaly
- FOCUS Lab, Department of PsychologyUniversity of TurinTurinItaly
| | - Lorenzo Mancuso
- GCS‐fMRI, Koelliker Hospital and Department of PsychologyUniversity of TurinTurinItaly
- FOCUS Lab, Department of PsychologyUniversity of TurinTurinItaly
| | - Andrea Nani
- GCS‐fMRI, Koelliker Hospital and Department of PsychologyUniversity of TurinTurinItaly
- FOCUS Lab, Department of PsychologyUniversity of TurinTurinItaly
| | - Linda Ficco
- GCS‐fMRI, Koelliker Hospital and Department of PsychologyUniversity of TurinTurinItaly
- FOCUS Lab, Department of PsychologyUniversity of TurinTurinItaly
| | - Enrico Premi
- Stroke Unit, Azienda Socio‐Sanitaria Territoriale Spedali CiviliSpedali Civili HospitalBresciaItaly
- Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Jordi Manuello
- GCS‐fMRI, Koelliker Hospital and Department of PsychologyUniversity of TurinTurinItaly
- FOCUS Lab, Department of PsychologyUniversity of TurinTurinItaly
| | - Donato Liloia
- GCS‐fMRI, Koelliker Hospital and Department of PsychologyUniversity of TurinTurinItaly
- FOCUS Lab, Department of PsychologyUniversity of TurinTurinItaly
| | - Gabriele Gelmini
- FOCUS Lab, Department of PsychologyUniversity of TurinTurinItaly
| | - Sergio Duca
- GCS‐fMRI, Koelliker Hospital and Department of PsychologyUniversity of TurinTurinItaly
| | - Tommaso Costa
- GCS‐fMRI, Koelliker Hospital and Department of PsychologyUniversity of TurinTurinItaly
- FOCUS Lab, Department of PsychologyUniversity of TurinTurinItaly
| |
Collapse
|
8
|
Shinoda M, Hayashi Y, Kubo A, Iwata K. Pathophysiological mechanisms of persistent orofacial pain. J Oral Sci 2020; 62:131-135. [PMID: 32132329 DOI: 10.2334/josnusd.19-0373] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Nociceptive stimuli to the orofacial region are typically received by the peripheral terminal of trigeminal ganglion (TG) neurons, and noxious orofacial information is subsequently conveyed to the trigeminal spinal subnucleus caudalis and the upper cervical spinal cord (C1-C2). This information is further transmitted to the cortical somatosensory regions and limbic system via the thalamus, which then leads to the perception of pain. It is a well-established fact that the presence of abnormal pain in the orofacial region is etiologically associated with neuroplastic changes that may occur at any point in the pain transmission pathway from the peripheral to the central nervous system (CNS). Recently, several studies have reported that functional plastic changes in a large number of cells, including TG neurons, glial cells (satellite cells, microglia, and astrocytes), and immune cells (macrophages and neutrophils), contribute to the sensitization and disinhibition of neurons in the peripheral and CNS, which results in orofacial pain hypersensitivity.
Collapse
Affiliation(s)
| | | | - Asako Kubo
- Department of Physiology, Nihon University School of Dentistry
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry
| |
Collapse
|
9
|
Pradhan J, Noakes PG, Bellingham MC. The Role of Altered BDNF/TrkB Signaling in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2019; 13:368. [PMID: 31456666 PMCID: PMC6700252 DOI: 10.3389/fncel.2019.00368] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Brain derived neurotrophic factor (BDNF) is well recognized for its neuroprotective functions, via activation of its high affinity receptor, tropomysin related kinase B (TrkB). In addition, BDNF/TrkB neuroprotective functions can also be elicited indirectly via activation of adenosine 2A receptors (A2aRs), which in turn transactivates TrkB. Evidence suggests that alterations in BDNF/TrkB, including TrkB transactivation by A2aRs, can occur in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Although enhancing BDNF has been a major goal for protection of dying motor neurons (MNs), this has not been successful. Indeed, there is emerging in vitro and in vivo evidence suggesting that an upregulation of BDNF/TrkB can cause detrimental effects on MNs, making them more vulnerable to pathophysiological insults. For example, in ALS, early synaptic hyper-excitability of MNs is thought to enhance BDNF-mediated signaling, thereby causing glutamate excitotoxicity, and ultimately MN death. Moreover, direct inhibition of TrkB and A2aRs has been shown to protect MNs from these pathophysiological insults, suggesting that modulation of BDNF/TrkB and/or A2aRs receptors may be important in early disease pathogenesis in ALS. This review highlights the relevance of pathophysiological actions of BDNF/TrkB under certain circumstances, so that manipulation of BDNF/TrkB and A2aRs may give rise to alternate neuroprotective therapeutic strategies in the treatment of neural diseases such as ALS.
Collapse
Affiliation(s)
- Jonu Pradhan
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Peter G Noakes
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Mark C Bellingham
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Cacialli P, Gatta C, D'Angelo L, Leggieri A, Palladino A, de Girolamo P, Pellegrini E, Lucini C. Nerve growth factor is expressed and stored in central neurons of adult zebrafish. J Anat 2019; 235:167-179. [PMID: 30945286 PMCID: PMC6580073 DOI: 10.1111/joa.12986] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2019] [Indexed: 12/16/2022] Open
Abstract
Nerve growth factor (NGF), a member of the neurotrophin family, was initially described as neuronal survival and growth factor, but successively has emerged as an active mediator in many essential functions in the central nervous system of mammals. NGF is synthesized as a precursor pro-NGF and is cleaved intracellularly into mature NGF. However, recent evidence demonstrates that pro-NGF is not a simple inactive precursor, but is also secreted outside the cells and can exert multiple roles. Despite the vast literature present in mammals, studies devoted to NGF in the brain of other vertebrate models are scarce. Zebrafish is a teleost fish widely known for developmental genetic studies and is well established as model for translational neuroscience research. Genomic organization of zebrafish and mouse NGF is highly similar, and zebrafish NGF protein has been reported in mature and two-precursors forms. To add further knowledge on neurotrophic factors in vertebrate brain models, we decided to determine the NGF mRNA and protein distribution in the adult zebrafish brain and to characterize the phenotype of NGF-positive cells. NGF mRNA was visualized by in situ hybridization on whole-mount brains. NGF protein distribution was assessed on microtomic sections by using an antiserum against NGF, able to recognize pro-NGF in adult zebrafish brain as demonstrated also in previous studies. To characterize NGF-positive cells, anti-NGF was employed on microtomic slides of aromatase B transgenic zebrafish (where radial glial cells appeared fluorescent) and by means of double-immunolabeling against NGF/proliferative cell nuclear antigen (PCNA; proliferation marker) and NGF/microtube-associated protein2 (MAP2; neuronal marker). NGF mRNA and protein were widely distributed in the brain of adult zebrafish, and their pattern of distribution of positive perikaryal was overlapping, both in males and females, with few slight differences. Specifically, the immunoreactivity to the protein was observed in fibers over the entire encephalon. MAP2 immunoreactivity was present in the majority of NGF-positive cells, throughout the zebrafish brain. PCNA and aromatase B cells were not positive to NGF, but they were closely intermingled with NGF cells. In conclusion, our study demonstrated that mature neurons in the zebrafish brain express NGF mRNA and store pro-NGF.
Collapse
Affiliation(s)
- Pietro Cacialli
- Dipartimento di Medicina Veterinaria e Produzioni AnimaliUniversità di Napoli Federico IINapoliItaly
- InsermEHESP, Irset (Institut de recherche en santé environnement et travail) ‐ UMR_S 1085Univ RennesRennesFrance
| | - Claudia Gatta
- Dipartimento di Medicina Veterinaria e Produzioni AnimaliUniversità di Napoli Federico IINapoliItaly
| | - Livia D'Angelo
- Dipartimento di Medicina Veterinaria e Produzioni AnimaliUniversità di Napoli Federico IINapoliItaly
- Stazione Zoologica Anton DohrnNapoliItaly
| | - Adele Leggieri
- Dipartimento di Medicina Veterinaria e Produzioni AnimaliUniversità di Napoli Federico IINapoliItaly
| | - Antonio Palladino
- Centro Ricerche Interdipartimentali sui BiomaterialiUniversità di Napoli Federico IINapoliItaly
| | - Paolo de Girolamo
- Dipartimento di Medicina Veterinaria e Produzioni AnimaliUniversità di Napoli Federico IINapoliItaly
| | - Elisabeth Pellegrini
- InsermEHESP, Irset (Institut de recherche en santé environnement et travail) ‐ UMR_S 1085Univ RennesRennesFrance
| | - Carla Lucini
- Dipartimento di Medicina Veterinaria e Produzioni AnimaliUniversità di Napoli Federico IINapoliItaly
| |
Collapse
|
11
|
Soligo M, Piccinin S, Protto V, Gelfo F, De Stefano ME, Florenzano F, Berretta E, Petrosini L, Nisticò R, Manni L. Recovery of hippocampal functions and modulation of muscarinic response by electroacupuncture in young diabetic rats. Sci Rep 2017; 7:9077. [PMID: 28831054 PMCID: PMC5567336 DOI: 10.1038/s41598-017-08556-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/11/2017] [Indexed: 01/15/2023] Open
Abstract
The muscarinic receptor response to acetylcholine regulates the hippocampal-related learning, memory, neural plasticity and the production and processing of the pro-nerve growth factor (proNGF) by hippocampal cells. The development and progression of diabetes generate a mild cognitive impairment reducing the functions of the septo-hippocampal cholinergic circuitry, depressing neural plasticity and inducing proNGF accumulation in the brain. Here we demonstrate, in a rat model of early type-1 diabetes, that a physical therapy, the electroacupuncture, counteracts the diabetes-induced deleterious effects on hippocampal physiology by ameliorating hippocampal-related memory functions; recovering the impaired long-term potentiation at the dentate gyrus (DG-LTP) and the lowered expression of the vesicular glutamate transporter 1; normalizing the activity-dependent release of proNGF in diabetic rat hippocampus. Electroacupuncture exerted its therapeutic effects by regulating the expression and activity of M1- and M2-acetylcholine muscarinic receptors subtypes in the dentate gyrus of hippocampus. Our results suggest that a physical therapy based on repetitive sensory stimulation could promote hippocampal neural activity, neuronal metabolism and functions, and conceivably improve the diabetes-induced cognitive impairment. Our data can support the setup of therapeutic protocols based on a better integration between physical therapies and pharmacology for the cure of diabetes-associated neurodegeneration and possibly for Alzheimer’s disease.
Collapse
Affiliation(s)
- Marzia Soligo
- Institute of Translational Pharmacology, Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Sonia Piccinin
- European Brain Research Institute (EBRI), Rita Levi-Montalcini Foundation, Rome, Italy
| | - Virginia Protto
- Institute of Translational Pharmacology, Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Francesca Gelfo
- I.R.C.C.S., Santa Lucia Foundation, Rome, Italy.,Department of Systemic Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Maria Egle De Stefano
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Fulvio Florenzano
- European Brain Research Institute (EBRI), Rita Levi-Montalcini Foundation, Rome, Italy
| | - Erica Berretta
- I.R.C.C.S., Santa Lucia Foundation, Rome, Italy.,Department of Psychology, Faculty of Medicine and Psychology, University "Sapienza" of Rome, Rome, Italy
| | - Laura Petrosini
- I.R.C.C.S., Santa Lucia Foundation, Rome, Italy.,Department of Psychology, Faculty of Medicine and Psychology, University "Sapienza" of Rome, Rome, Italy
| | - Robert Nisticò
- European Brain Research Institute (EBRI), Rita Levi-Montalcini Foundation, Rome, Italy.,Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Luigi Manni
- Institute of Translational Pharmacology, Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy.
| |
Collapse
|
12
|
Tyler CM, Federoff HJ. CNS Gene Therapy and a Nexus of Complexity: Systems and Biology at a Crossroads. Cell Transplant 2017; 15:267-73. [PMID: 16719061 DOI: 10.3727/000000006783982007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Gene therapy is a potentially promising new treatment for neurodegenerative disorders such as Alzheimer's disease (AD), which has been difficult to treat with conventional therapeutics. Viral vector-mediated somatic gene therapy is a rapidly developing methodology for providing never before achieved capability to deliver specific genes to the CNS in a highly localized and controlled manner. With the advent and refinements of this technology one focus is directed to which genes are the most appropriate to select for specific disease indications. Nerve growth factor (NGF), a potent survival factor for critical cell populations that degenerate in AD, has been chosen already for clinical gene therapy trials in human AD patients. Much knowledge about the pathophysiological underpinnings of AD is still lacking to make clear which patients may benefit from a gene therapy approach. Moreover, a detailed understanding of sustained NGF action in the normal and diseased CNS needs to be resolved before conclusions can be drawn regarding the utility of NGF gene therapy. Systematic efforts to acquire this new knowledge should compel clinically and biologically sophisticated efforts to advance gene therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Carolyn M Tyler
- Center for Aging and Developmental Biology, Aab Institute of Biomedical Sciences, Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester NY 14642, USA
| | | |
Collapse
|
13
|
Vignoli B, Canossa M. Glioactive ATP controls BDNF recycling in cortical astrocytes. Commun Integr Biol 2017; 10:e1277296. [PMID: 28289489 PMCID: PMC5333523 DOI: 10.1080/19420889.2016.1277296] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 11/30/2022] Open
Abstract
We have recently reported that long-term memory retention requires synaptic glia for proBDNF uptake and recycling. Through the recycling course, glial cells release endocytic BDNF, a mechanism that is activated in response to glutamate via AMPA and mGluRI/II receptors. Cortical astrocytes express receptors for many different transmitters suggesting for a complex signaling controlling endocytic BDNF secretion. Here, we demonstrated that the extracellular nucleotide ATP, activating P2X and P2Y receptors, regulates endocytic BDNF secretion in cultured astrocytes. Our data indicate that distinct glioactive molecules can participate in BDNF glial recycling and suggest that cortical astrocytes contributing to neuronal plasticity can be influenced by neurotransmitters in tune with synaptic needs.
Collapse
Affiliation(s)
- Beatrice Vignoli
- Centre for Integrative Biology (CIBIO), University of Trento , Povo (TN), Italy
| | - Marco Canossa
- Centre for Integrative Biology (CIBIO), University of Trento, Povo (TN), Italy; European Brain Research Institute (EBRI)-Rita Levi-Montalcini, Rome, Italy
| |
Collapse
|
14
|
Mirisis AA, Alexandrescu A, Carew TJ, Kopec AM. The Contribution of Spatial and Temporal Molecular Networks in the Induction of Long-term Memory and Its Underlying Synaptic Plasticity. AIMS Neurosci 2016; 3:356-384. [PMID: 27819030 PMCID: PMC5096789 DOI: 10.3934/neuroscience.2016.3.356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to form long-lasting memories is critical to survival and thus is highly conserved across the animal kingdom. By virtue of its complexity, this same ability is vulnerable to disruption by a wide variety of neuronal traumas and pathologies. To identify effective therapies with which to treat memory disorders, it is critical to have a clear understanding of the cellular and molecular mechanisms which subserve normal learning and memory. A significant challenge to achieving this level of understanding is posed by the wide range of distinct temporal and spatial profiles of molecular signaling induced by learning-related stimuli. In this review we propose that a useful framework within which to address this challenge is to view the molecular foundation of long-lasting plasticity as composed of unique spatial and temporal molecular networks that mediate signaling both within neurons (such as via kinase signaling) as well as between neurons (such as via growth factor signaling). We propose that evaluating how cells integrate and interpret these concurrent and interacting molecular networks has the potential to significantly advance our understanding of the mechanisms underlying learning and memory formation.
Collapse
Affiliation(s)
- Anastasios A. Mirisis
- Center for Neural Science, New York University, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Anamaria Alexandrescu
- Center for Neural Science, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Thomas J. Carew
- Center for Neural Science, New York University, New York, NY, USA
| | - Ashley M. Kopec
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Orefice LL, Shih CC, Xu H, Waterhouse EG, Xu B. Control of spine maturation and pruning through proBDNF synthesized and released in dendrites. Mol Cell Neurosci 2015; 71:66-79. [PMID: 26705735 DOI: 10.1016/j.mcn.2015.12.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 12/27/2022] Open
Abstract
Excess synapses formed during early postnatal development are pruned over an extended period, while the remaining synapses mature. Synapse pruning is critical for activity-dependent refinement of neuronal connections and its dysregulation has been found in neurodevelopmental disorders such as autism spectrum disorders; however, the mechanism underlying synapse pruning remains largely unknown. As dendritic spines are the postsynaptic sites for the vast majority of excitatory synapses, spine maturation and pruning are indicators for maturation and elimination of these synapses. Our previous studies have found that dendritically localized mRNA for brain-derived neurotrophic factor (BDNF) regulates spine maturation and pruning. Here we investigated the mechanism by which dendritic Bdnf mRNA, but not somatically restricted Bdnf mRNA, promotes spine maturation and pruning. We found that neuronal activity stimulates both translation of dendritic Bdnf mRNA and secretion of its translation product mainly as proBDNF. The secreted proBDNF promotes spine maturation and pruning, and its effect on spine pruning is in part mediated by the p75(NTR) receptor via RhoA activation. Furthermore, some proBDNF is extracellularly converted to mature BDNF and then promotes maturation of stimulated spines by activating Rac1 through the TrkB receptor. In contrast, translation of somatic Bdnf mRNA and the release of its translation product mainly as mature BDNF are independent of action potentials. These results not only reveal a biochemical pathway regulating synapse pruning, but also suggest that BDNF synthesized in the soma and dendrites is released through distinct secretory pathways.
Collapse
Affiliation(s)
- Lauren L Orefice
- Department of Neuroscience, The Scripps Research Institute Florida, 130 Scripps Way, Jupiter, FL 33458, USA; Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057, USA
| | - Chien-Cheng Shih
- Department of Neuroscience, The Scripps Research Institute Florida, 130 Scripps Way, Jupiter, FL 33458, USA; Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057, USA
| | - Haifei Xu
- Department of Neuroscience, The Scripps Research Institute Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Emily G Waterhouse
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057, USA
| | - Baoji Xu
- Department of Neuroscience, The Scripps Research Institute Florida, 130 Scripps Way, Jupiter, FL 33458, USA; Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057, USA.
| |
Collapse
|
16
|
Abstract
Dendrite development of newborn granule cells (GCs) in the dentate gyrus of adult hippocampus is critical for their incorporation into existing hippocampal circuits, but the cellular mechanisms regulating their dendrite development remains largely unclear. In this study, we examined the function of brain-derived neurotrophic factor (BDNF), which is expressed in adult-born GCs, in regulating their dendrite morphogenesis. Using retrovirus-mediated gene transfection, we found that deletion and overexpression of BDNF in adult-born GCs resulted in the reduction and elevation of dendrite growth, respectively. This effect was mainly due to the autocrine rather than paracrine action of BDNF, because deletion of BDNF only in the newborn GCs resulted in dendrite abnormality of these neurons to a similar extent as that observed in conditional knockout (cKO) mice with BDNF deleted in the entire forebrain. Furthermore, selective expression of BDNF in adult-born GCs in BDNF cKO mice fully restored normal dendrite development. The BDNF autocrine action was also required for the development of normal density of spines and normal percentage of spines containing the postsynaptic marker PSD-95, suggesting autocrine BDNF regulation of synaptogenesis. Furthermore, increased dendrite growth of adult-born GCs caused by voluntary exercise was abolished by BDNF deletion specifically in these neurons and elevated dendrite growth due to BDNF overexpression in these neurons was prevented by reducing neuronal activity with coexpression of inward rectifier potassium channels, consistent with activity-dependent autocrine BDNF secretion. Therefore, BDNF expressed in adult-born GCs plays a critical role in dendrite development by acting as an autocrine factor.
Collapse
|
17
|
Biane J, Conner JM, Tuszynski MH. Nerve growth factor is primarily produced by GABAergic neurons of the adult rat cortex. Front Cell Neurosci 2014; 8:220. [PMID: 25147503 PMCID: PMC4124705 DOI: 10.3389/fncel.2014.00220] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/19/2014] [Indexed: 12/28/2022] Open
Abstract
Within the cortex, nerve growth factor (NGF) mediates the innervation of cholinergic neurons during development, maintains cholinergic corticopetal projections during adulthood and modulates cholinergic function through phenotypic control of the cholinergic gene locus. Recent studies suggest NGF may also play an important role in cortical plasticity in adulthood. Previously, NGF-producing cells have been shown to colocalize with GABAergic cell markers within the hippocampus, striatum, and basal forebrain. Classification of cells producing NGF in the cortex is lacking, however, and cholinergic corticopetal projections have been shown to innervate both pyramidal and GABAergic neurons in the cortex. In order to clarify potential trophic interactions between cortical neurons and cholinergic projections, we used double-fluorescent immunohistochemistry to classify NGF-expressing cells in several cortical regions, including the prefrontal cortex, primary motor cortex, parietal cortex and temporal cortex. Our results show that NGF colocalizes extensively with GABAergic cell markers in all cortical regions examined, with >91% of NGF-labeled cells coexpressing GAD65/67. Conversely, NGF-labeled cells exhibit very little co-localization with the excitatory cell marker CaMKIIα (<5% of cells expressing NGF). NGF expression was present in 56% of GAD-labeled cells, suggesting that production is confined to a specific subset of GABAergic neurons. These findings demonstrate that GABAergic cells are the primary source of NGF production in the cortex, and likely support the maintenance and function of basal forebrain cholinergic projections in adulthood.
Collapse
Affiliation(s)
- Jeremy Biane
- Department of Neurosciences, University of California at San Diego La Jolla, CA, USA
| | - James M Conner
- Department of Neurosciences, University of California at San Diego La Jolla, CA, USA
| | - Mark H Tuszynski
- Department of Neurosciences, University of California at San Diego La Jolla, CA, USA ; Veterans Affairs Medical Center San Diego, CA, USA
| |
Collapse
|
18
|
Iulita MF, Cuello AC. Nerve growth factor metabolic dysfunction in Alzheimer's disease and Down syndrome. Trends Pharmacol Sci 2014; 35:338-48. [PMID: 24962069 DOI: 10.1016/j.tips.2014.04.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/16/2014] [Accepted: 04/30/2014] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative condition and the most common type of amnestic dementia in the elderly. Individuals with Down syndrome (DS) are at increased risk of developing AD in adulthood as a result of chromosome 21 trisomy and triplication of the amyloid precursor protein (APP) gene. In both conditions, the central nervous system (CNS) basal forebrain cholinergic system progressively degenerates, and such changes contribute to the manifestation of cognitive decline and dementia. Given the strong dependency of these neurons on nerve growth factor (NGF), it was hypothesized that their atrophy was caused by NGF deficits. However, in AD, the synthesis of NGF is not affected at the transcript level and there is a marked increase in its precursor, proNGF. This apparent paradox remained elusive for many years. In this review, we discuss the recent evidence supporting a CNS deficit in the extracellular metabolism of NGF, both in AD and in DS brains. We describe the nature of this trophic disconnection and its implication for the atrophy of basal forebrain cholinergic neurons. We further discuss the potential of NGF pathway markers as diagnostic indicators of a CNS trophic disconnection.
Collapse
Affiliation(s)
- M Florencia Iulita
- Department of Pharmacology and Therapeutics, McGill University, Montreal, H3G1Y6, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, H3G1Y6, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, H3G1Y6, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, H3G1Y6, Canada.
| |
Collapse
|
19
|
Luo B, Huang J, Lu L, Hu X, Luo Z, Li M. Electrically induced brain-derived neurotrophic factor release from Schwann cells. J Neurosci Res 2014; 92:893-903. [PMID: 24753179 DOI: 10.1002/jnr.23365] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 12/18/2013] [Accepted: 12/27/2013] [Indexed: 11/10/2022]
Abstract
Regulating the production of brain-derived neurotrophic factor (BDNF) in Schwann cells (SCs) is critical for their application in traumatic nerve injury, neurodegenerative disorders, and demyelination disease in both central and peripheral nervous systems. The present study investigated the possibility of using electrical stimulation (ES) to activate SCs to release BDNF. We found that short-term ES was capable of promoting BDNF production from SCs, and the maximal BDNF release was achieved by ES at 6 V (3 Hz, 30 min). We further examined the involvement of intracellular calcium ions ([Ca2+]i) in the ES-induced BDNF production in SCs by pharmacological studies. We found that the ES-induced BDNF release required calcium influx through T-type voltage-gated calcium channel (VGCC) and calcium mobilization from internal calcium stores, including inositol triphosphate-sensitive stores and caffeine/ryanodine-sensitive stores. In addition, calcium-calmodulin dependent protein kinase IV (CaMK IV), mitogen-activated protein kinase (MAPK), and cAMP response element-binding protein (CREB) were found to play important roles in the ES-induced BDNF release from SCs. In conclusion, ES is capable of activating SCs to secrete BDNF, which requires the involvement of calcium influx through T-type VGCC and calcium mobilization from internal calcium stores. In addition, activation of CaMK IV, MAPK, and CREB were also involved in the ES-induced BDNF release. The findings indicate that ES can improve the neurotrophic ability in SCs and raise the possibility of developing electrically stimulated SCs as a source of cell therapy for nerve injury in both peripheral and central nervous systems.
Collapse
Affiliation(s)
- Beier Luo
- Institute of Orthopaedics, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
20
|
Lu H, Park H, Poo MM. Spike-timing-dependent BDNF secretion and synaptic plasticity. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130132. [PMID: 24298135 DOI: 10.1098/rstb.2013.0132] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In acute hippocampal slices, we found that the presence of extracellular brain-derived neurotrophic factor (BDNF) is essential for the induction of spike-timing-dependent long-term potentiation (tLTP). To determine whether BDNF could be secreted from postsynaptic dendrites in a spike-timing-dependent manner, we used a reduced system of dissociated hippocampal neurons in culture. Repetitive pairing of iontophoretically applied glutamate pulses at the dendrite with neuronal spikes could induce persistent alterations of glutamate-induced responses at the same dendritic site in a manner that mimics spike-timing-dependent plasticity (STDP)-the glutamate-induced responses were potentiated and depressed when the glutamate pulses were applied 20 ms before and after neuronal spiking, respectively. By monitoring changes in the green fluorescent protein (GFP) fluorescence at the dendrite of hippocampal neurons expressing GFP-tagged BDNF, we found that pairing of iontophoretic glutamate pulses with neuronal spiking resulted in BDNF secretion from the dendrite at the iontophoretic site only when the glutamate pulses were applied within a time window of approximately 40 ms prior to neuronal spiking, consistent with the timing requirement of synaptic potentiation via STDP. Thus, BDNF is required for tLTP and BDNF secretion could be triggered in a spike-timing-dependent manner from the postsynaptic dendrite.
Collapse
Affiliation(s)
- Hui Lu
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, , Berkeley, CA 94720, USA
| | | | | |
Collapse
|
21
|
Shinoda M, Iwata K. Neural communication in the trigeminal ganglion contributes to ectopic orofacial pain. J Oral Biosci 2013. [DOI: 10.1016/j.job.2013.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Birch AM, McGarry NB, Kelly AM. Short-term environmental enrichment, in the absence of exercise, improves memory, and increases NGF concentration, early neuronal survival, and synaptogenesis in the dentate gyrus in a time-dependent manner. Hippocampus 2013; 23:437-50. [PMID: 23460346 DOI: 10.1002/hipo.22103] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2013] [Indexed: 11/10/2022]
Abstract
Environmental manipulations can enhance neuroplasticity in the brain, with enrichment-induced cognitive improvements being linked to increased expression of growth factors, such as neurotrophins, and enhanced hippocampal neurogenesis. There is, however, a great deal of variation in environmental enrichment protocols used in the literature, making it difficult to assess the role of particular aspects of enrichment upon memory and the underlying associated mechanisms. This study sought to evaluate the efficacy of environmental enrichment, in the absence of exercise, as a cognitive enhancer and assess the role of Nerve Growth Factor (NGF), neurogenesis and synaptogenesis in this process. We report that rats housed in an enriched environment for 3 and 6 weeks (wk) displayed improved recognition memory, while rats enriched for 6 wk also displayed improved spatial and working memory. Neurochemical analyses revealed significant increases in NGF concentration and subgranular progenitor cell survival (as measured by BrdU+ nuclei) in the dentate gyrus of rats enriched for 6 wk, suggesting that these cellular changes may mediate the enrichment-induced memory improvements. Further analysis revealed a significant positive correlation between recognition task performance and BrdU+ nuclei. In addition, rats enriched for 6 wk showed a significant increase in expression of synaptophysin and synapsin I in the dentate gyrus, indicating that environmental enrichment can increase synaptogenesis. These data indicate a time-dependent cognitive-enhancing effect of environmental enrichment that is independent of physical activity. These data also support a role for increased concentration of NGF in dentate gyrus, synaptogenesis, and neurogenesis in mediating this effect.
Collapse
Affiliation(s)
- Amy M Birch
- Department of Physiology, School of Medicine & Trinity College Institute of Neuroscience, University of Dublin, Trinity College, Dublin, Ireland
| | | | | |
Collapse
|
23
|
Soligo M, Nori SL, Protto V, Florenzano F, Manni L. Acupuncture and Neurotrophin Modulation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 111:91-124. [DOI: 10.1016/b978-0-12-411545-3.00005-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
24
|
Abstract
A remarkable finding to emerge in recent years is that the early brain neuroepithelium is highly patterned before axonogenesis begins. Growth factors are among a variety of classes of molecules whose regionalized expression divides the early brain into molecularly distinct domains. Thus, when axons first grow to their synaptic targets, growth factor signalling may help them to navigate. This review discusses recent studies that reveal that growth factors can act as chemoattractants and repellents and that growth factor signalling is important for target entry. These new findings raise the compelling idea that growth factors play an active role in axon navigation.
Collapse
Affiliation(s)
- S McFarlane
- Dept of Anatomy, Neuroscience Research Group, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | |
Collapse
|
25
|
Yasuda M, Shinoda M, Kiyomoto M, Honda K, Suzuki A, Tamagawa T, Kaji K, Kimoto S, Iwata K. P2X3 receptor mediates ectopic mechanical allodynia with inflamed lower lip in mice. Neurosci Lett 2012; 528:67-72. [PMID: 22981884 DOI: 10.1016/j.neulet.2012.08.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/30/2012] [Accepted: 08/09/2012] [Indexed: 11/19/2022]
Abstract
Ectopic pain in other orofacial regions develops with local inflammation in separated orofacial structures. However, the basis for the spreading of pain to adjacent orofacial areas after local inflammation is still unknown. In the present study, we determined if the P2X(3) receptor (P2X(3)R) was associated with altered mechanical sensitivity of the whisker pad skin following complete Freund's adjuvant (CFA) injection into the lower lip. Mice with local inflammation induced by CFA injection into the lower lip demonstrated significant mechanical allodynia of whisker pad skin. The mechanical allodynia was reversed by P2X(3)R antagonist, A-317491 administration into whisker pad skin. The number of P2X(3)R and calcitonin gene-related peptide (CGRP) positive trigeminal ganglion (TG) neurons that innervates the whisker pad skin and lower lip was increased after CFA injection into the lower lip. CGRP protein expression in TG ipsilateral to CFA injection was also significantly greater than that of the saline-injected mice. The present findings suggest that induced CGRP by local inflammation in the lower lip increases P2X(3)R in TG neurons, the increased P2X(3)Rs are involved in the sensitization of primary afferent neurons in the whisker pad skin. This P2X(3)R overexpression may underlie ectopic mechanical allodynia in the whisker pad skin after CFA injection into the lower lip.
Collapse
Affiliation(s)
- Masafumi Yasuda
- Division of Pediatric Dentistry, Department of Craniofacial Growth and Development Dentistry, Kanagawa Dental College, Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nerve growth factor in the hippocamposeptal system: evidence for activity-dependent anterograde delivery and modulation of synaptic activity. J Neurosci 2012; 32:7701-10. [PMID: 22649248 DOI: 10.1523/jneurosci.0028-12.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neurotrophins have been implicated in regulating neuronal differentiation, promoting neuronal survival, and modulating synaptic efficacy and plasticity. The prevailing view is that, depending on the target and mode of action, most neurotrophins can be trafficked and released either anterogradely or retrogradely in an activity-dependent manner. However, the prototypic neurotrophin, nerve growth factor (NGF), is not thought to be anterogradely delivered. Here we provide the neuroanatomical substrate for an anterograde hippocamposeptal transport of NGF by demonstrating its presence in mouse hippocampal GABAergic neurons and in their hippocamposeptal axons that ramify densely and abut neurons in the medial septum/diagonal band of Broca (MS/DB). We also demonstrate an activity-dependent increase in septal NGF levels that is dependent on the pattern of intrahippocampal stimulation. In addition, we show that acute exposure to NGF, via activation of TrkA, attenuates GABA(A) receptor-mediated inhibitory synaptic currents and reduces sensitivity to exogenously applied GABA. These acute actions of NGF display cell type and functional selectivity insofar as (1) they were found in cholinergic, but not GABAergic, MS/DB neurons, and (2) glutamate-mediated excitatory synaptic activity as well as AMPA-activated current responses were unaffected. Our results advocate a novel anterograde, TrkA-mediated NGF signaling in the CNS.
Collapse
|
27
|
Cuello AC. Gangliosides, NGF, brain aging and disease: a mini-review with personal reflections. Neurochem Res 2012; 37:1256-60. [PMID: 22484968 DOI: 10.1007/s11064-012-0770-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/21/2012] [Accepted: 03/27/2012] [Indexed: 12/24/2022]
Abstract
In this mini-review I summarize our research efforts in ascertaining the possible neuro-reparative properties of the GM1 ganglioside and its cooperative effects with NGF in stroke-lesion models. We also review aspects of our NGF investigations which have recently led to the discovery that NGF is released in an activity-dependent manner in the form of its precursor molecule, proNGF. These studies support the notion that in the CNS NGF metabolism conversion and degradation occur in the extracellular milieu. We have also validated this pathway in vivo demonstrating that the pharmacological inhibition of the pro-to mature NGF conversion results in the brain accumulation of proNGF and loss and atrophy of cortical cholinergic synapses. Furthermore, we have gathered neurochemical evidence for a compromise of this newly discovered NGF metabolic pathway in Alzheimer's disease, explaining the vulnerability of NGF-dependent forebrain cholinergic neurons in this disease despite normal NGF synthesis and abundance of NGF precursor.
Collapse
Affiliation(s)
- A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
28
|
Abstract
A critical step in neuronal development is the formation of axon/dendrite polarity, a process involving symmetry breaking in the newborn neuron. Local self-amplifying processes could enhance and stabilize the initial asymmetry in the distribution of axon/dendrite determinants, but the identity of these processes remains elusive. We here report that BDNF, a secreted neurotrophin essential for the survival and differentiation of many neuronal populations, serves as a self-amplifying autocrine factor in promoting axon formation in embryonic hippocampal neurons by triggering two nested positive-feedback mechanisms. First, BDNF elevates cytoplasmic cAMP and protein kinase A activity, which triggers further secretion of BDNF and membrane insertion of its receptor TrkB. Second, BDNF/TrkB signaling activates PI3-kinase that promotes anterograde transport of TrkB in the putative axon, further enhancing local BDNF/TrkB signaling. Together, these self-amplifying BDNF actions ensure stable elevation of local cAMP/protein kinase A activity that is critical for axon differentiation and growth.
Collapse
|
29
|
Nerve growth factor contribution via transient receptor potential vanilloid 1 to ectopic orofacial pain. J Neurosci 2011; 31:7145-55. [PMID: 21562277 DOI: 10.1523/jneurosci.0481-11.2011] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
It is well known that oral inflammation causes tenderness in temporomandibular joints or masseter muscles. The exact mechanism of such an orofacial ectopic hyperalgesia remains unclear. Here, we investigated the functional significance of interaction of nerve growth factor (NGF) and transient receptor potential vanilloid 1 (TRPV1) in relation to heat hyperalgesia in the whisker pad skin caused by complete Freund's adjuvant (CFA) injection into the lower lip. CFA injection induced heat hyperalgesia of the ipsilateral whisker pad skin. Moreover, it leads to enhancement of spontaneous activity and heat responses in trigeminal ganglion (TG) neurons that was elicited by heat stimulation of the whisker pad skin. The heat hyperalgesia was dose-dependently reversed by intraperitoneal TRPV1 antagonist administration, also diminished by neutralizing anti-NGF antibody administration into the lower lip and intraganglionic administration of K252a, a tyrosine kinase receptor inhibitor. Nerve fibers in bundle of mandibular nerve and TG neurons that innervates the whisker pad skin and lower lip both expressed labeled NGF, which was administrated into the lower lip. Moreover, the NGF concentrations in ophthalmic-maxillary and mandibular divisions of the TG increased after CFA injection into the lower lip. The number of TRPV1-positive neurons that innervates the whisker pad skin and lower lip was increased after CFA injection into the lower lip, and this increase was annulled by anti-NGF administration. The present findings suggest that inflammation in the lower lip induces release of NGF that regulates TRPV1 expression in TG neurons. This TRPV1 overexpression may underlie ectopic heat hyperalgesia in the whisker pad skin.
Collapse
|
30
|
Garcia N, Santafe MM, Tomàs M, Lanuza MA, Besalduch N, Tomàs J. Involvement of brain-derived neurotrophic factor (BDNF) in the functional elimination of synaptic contacts at polyinnervated neuromuscular synapses during development. J Neurosci Res 2010; 88:1406-19. [PMID: 20029969 DOI: 10.1002/jnr.22320] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We use immunohistochemistry to describe the localization of brain-derived neurotrophic factor (BDNF) and its receptors trkB and p75(NTR) in the neuromuscular synapses of postnatal rats (P6-P7) during the synapse elimination period. The receptor protein p75(NTR) is present in the nerve terminal, muscle cell and glial Schwann cell whereas BDNF and trkB proteins can be detected mainly in the pre- and postsynaptic elements. Exogenously applied BDNF (10 nM for 3 hr or 50 nM for 1 hr) increases ACh release from singly and dually innervated synapses. This effect may be specific for BDNF because the neurotrophin NT-4 (2-8 nM) does not modulate release at P6-P7. Blocking the receptors trkB and p75(NTR) (with K-252a and anti-p75-192-IgG, respectively) completely abolishes the potentiating effect of exogenous BDNF. In addition, exogenous BDNF transiently recruits functionally depressed silent terminals, and this effect seems to be mediated by trkB. Calcium ions, the L-type voltage-dependent calcium channels and protein kinase C are involved in BDNF-mediated nerve ending recruitment. Blocking experiments suggest that endogenous BDNF could operate through p75(NTR) receptors coupled to potentiate ACh release in all nerve terminals because the anti-p75-192-IgG reduces release. However, blocking the trkB receptor (K-252a) or neutralizing endogenous BDNF with the trkB-IgG fusion protein reveals a trkB-mediated release inhibition on almost mature strong endings in dual junctions. Taken together these results suggest that a BDNF-induced p75(NTR)-mediated ACh release potentiating mechanism and a BDNF-induced trkB-mediated release inhibitory mechanism may contribute to developmental synapse disconnection.
Collapse
Affiliation(s)
- N Garcia
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Carrer Sant Llorenç, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Hallett H, Churchill L, Taishi P, De A, Krueger JM. Whisker stimulation increases expression of nerve growth factor- and interleukin-1beta-immunoreactivity in the rat somatosensory cortex. Brain Res 2010; 1333:48-56. [PMID: 20338152 PMCID: PMC2879054 DOI: 10.1016/j.brainres.2010.03.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 03/12/2010] [Accepted: 03/14/2010] [Indexed: 11/30/2022]
Abstract
Activity-dependent changes in cortical protein expression may mediate long-term physiological processes such as sleep and neural connectivity. In this study we determined the number of nerve growth factor (NGF)- and interleukin-1beta (IL1beta)-immunoreactive (IR) cells in the somatosensory cortex (Sctx) in response to 2 h of mystacial whisker stimulation. Manual whisker stimulation for 2 h increased the number of NGF-IR cells within layers II-V in activated Sctx columns, identified by enhanced Fos-IR. IL1beta-IR neurons increased within layers II-III and V-VI in these activated columns and IL1beta-IR astrocytes increased in layers I, II-III and V as well as the external capsule beneath the activated columns. These whisker-stimulated increases in the Sctx did not occur in the auditory cortex. These data demonstrate that expression of NGF or IL1beta in Sctx neurons and IL1beta in Sctx astrocytes is, in part, afferent input-dependent.
Collapse
Affiliation(s)
- Heather Hallett
- Dept. of Veterinary & Comparative Anatomy, Pharmacology and Physiology, Sleep and Performance Research Center, Program in Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520
- WWAMI Program at the University of Washington Medical School, Pullman, WA
| | - Lynn Churchill
- Dept. of Veterinary & Comparative Anatomy, Pharmacology and Physiology, Sleep and Performance Research Center, Program in Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520
| | - Ping Taishi
- Dept. of Veterinary & Comparative Anatomy, Pharmacology and Physiology, Sleep and Performance Research Center, Program in Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520
| | - Alok De
- Dept. of Veterinary & Comparative Anatomy, Pharmacology and Physiology, Sleep and Performance Research Center, Program in Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520
- Dept. of OB/Gyn, School of Medicine, *University of Missouri, Kansas City, Kansas City, Missouri 64108
| | - James M. Krueger
- Dept. of Veterinary & Comparative Anatomy, Pharmacology and Physiology, Sleep and Performance Research Center, Program in Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520
| |
Collapse
|
32
|
Differential activity-dependent secretion of brain-derived neurotrophic factor from axon and dendrite. J Neurosci 2009; 29:14185-98. [PMID: 19906967 DOI: 10.1523/jneurosci.1863-09.2009] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is essential for neuronal survival and differentiation during development and for synaptic function and plasticity in the mature brain. BDNF-containing vesicles are widely distributed and bidirectionally transported in neurons, and secreted BDNF can act on both presynaptic and postsynaptic cells. Activity-dependent BDNF secretion from neuronal cultures has been reported, but it remains unknown where the primary site of BDNF secretion is and whether neuronal activity can trigger BDNF secretion from axons and dendrites with equal efficacy. Using BDNF fused with pH-sensitive green fluorescent protein to visualize BDNF secretion, we found that BDNF-containing vesicles exhibited markedly different properties of activity-dependent exocytic fusion at the axon and dendrite of cultured hippocampal neurons. Brief spiking activity triggered a transient fusion pore opening, followed by immediate retrieval of vesicles without dilation of the fusion pore, resulting in very little BDNF secretion at the axon. On the contrary, the same brief spiking activity induced "full-collapse" vesicle fusion and substantial BDNF secretion at the dendrite. However, full vesicular fusion with BDNF secretion could occur at the axon when the neuron was stimulated by prolonged high-frequency activity, a condition neurons may encounter during epileptic discharge. Thus, activity-dependent axonal secretion of BDNF is highly restricted as a result of incomplete fusion of BDNF-containing vesicles, and normal neural activity induces BDNF secretion from dendrites, consistent with the BDNF function as a retrograde factor. Our study also revealed a novel mechanism by which differential exocytosis of BDNF-containing vesicles may regulate BDNF-TrkB signaling between connected neurons.
Collapse
|
33
|
Douglas MR, Morrison KC, Jacques SJ, Leadbeater WE, Gonzalez AM, Berry M, Logan A, Ahmed Z. Off-target effects of epidermal growth factor receptor antagonists mediate retinal ganglion cell disinhibited axon growth. ACTA ACUST UNITED AC 2009; 132:3102-21. [PMID: 19783665 DOI: 10.1093/brain/awp240] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Inhibition of central nervous system axon growth is reportedly mediated in part by calcium-dependent phosphorylation of axonal epidermal growth factor receptor, with local administration of the epidermal growth factor receptor kinase inhibitors AG1478 and PD168393 to an optic nerve lesion site promoting adult retinal ganglion cell axon regeneration. Here, we show that epidermal growth factor receptor was neither constitutively expressed, nor activated in optic nerve axons in our non-regenerating and regenerating optic nerve injury models, a finding that is inconsistent with phosphorylated epidermal growth factor receptor-dependent intra-axonal signalling of central nervous system myelin-related axon growth inhibitory ligands. However, epidermal growth factor receptor was localized and activated within most glia in the retina and optic nerve post-injury, and thus an indirect glial-dependent mechanism for stimulated retinal ganglion cell axon growth by epidermal growth factor receptor inhibitors seemed plausible. Using primary retinal cultures with added central nervous system myelin extracts, we confirmed previous reports that AG1478/PD168393 blocks epidermal growth factor receptor activation and promotes disinhibited neurite outgrowth. Paradoxically, neurites did not grow in central nervous system myelin extract-containing cultures after short interfering ribonucleic acid-mediated knockdown of epidermal growth factor receptor. However, addition of AG1478 restored neurite outgrowth to short interfering ribonucleic acid-treated cultures, implying that epidermal growth factor receptor does not mediate AG1478-dependent effects. TrkA-/B-/C-Fc fusion proteins and the kinase blocker K252a abrogated the neuritogenic activity in these cultures, correlating with the presence of the neurotrophins brain derived neurotrophic factor, nerve growth factor and neurotrophin-3 in the supernatant and increased intracellular cyclic adenosine monophosphate activity. Neurotrophins released by AG1478 stimulated disinhibited retinal ganglion cell axon growth in central nervous system myelin-treated cultures by the induction of regulated intramembraneous proteolysis of p75(NTR) and Rho inactivation. Retinal astrocytes/Müller cells and retinal ganglion cells were the source of neurotrophins, with neurite outgrowth halved in the presence of glial inhibitors. We attribute AG1478-stimulated neuritogenesis to the induced release of neurotrophins together with raised cyclic adenosine monophosphate levels in treated cultures, leading to axon growth and disinhibition by neurotrophin-induced regulated intramembraneous proteolysis of p75(NTR). These off-target effects of epidermal growth factor receptor kinase inhibition suggest a novel therapeutic approach for designing treatments to promote central nervous system axon regeneration.
Collapse
Affiliation(s)
- Michael R Douglas
- Molecular Neuroscience Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | |
Collapse
|
34
|
BDNF signaling in the formation, maturation and plasticity of glutamatergic and GABAergic synapses. Exp Brain Res 2009; 199:203-34. [PMID: 19777221 DOI: 10.1007/s00221-009-1994-z] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 08/12/2009] [Indexed: 01/17/2023]
Abstract
In the past 15 years numerous reports provided strong evidence that brain-derived neurotrophic factor (BDNF) is one of the most important modulators of glutamatergic and GABAergic synapses. Remarkable progress regarding localization, kinetics, and molecular mechanisms of BDNF secretion has been achieved, and a large number of studies provided evidence that continuous extracellular supply of BDNF is important for the proper formation and functional maturation of glutamatergic and GABAergic synapses. BDNF can play a permissive role in shaping synaptic networks, making them more susceptible for the occurrence of plastic changes. In addition, BDNF appears to be also an instructive factor for activity-dependent long-term synaptic plasticity. BDNF release just in response to synaptic stimulation might be a molecular trigger to convert high-frequency synaptic activity into long-term synaptic memories. This review attempts to summarize the current knowledge in synaptic secretion and synaptic action of BDNF, including both permissive and instructive effects of BDNF in synaptic plasticity.
Collapse
|
35
|
Hotta H, Kagitani F, Kondo M, Uchida S. Basal forebrain stimulation induces NGF secretion in ipsilateral parietal cortex via nicotinic receptor activation in adult, but not aged rats. Neurosci Res 2009; 63:122-8. [DOI: 10.1016/j.neures.2008.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 10/31/2008] [Accepted: 11/10/2008] [Indexed: 11/15/2022]
|
36
|
Prakash N, Frostig RD. What has intrinsic signal optical imaging taught us about NGF-induced rapid plasticity in adult cortex and its relationship to the cholinergic system? Mol Imaging Biol 2008; 7:14-21. [PMID: 15912271 DOI: 10.1007/s11307-005-0956-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intrinsic signal optical imaging (ISI) is a high-resolution functional brain mapping technique that is being used to further our understanding of the neocortex and its interaction with drugs. Recent studies using combination ISI and in vivo pharmacology have advanced our insight into the actions of both acetylcholine and neurotrophins on inducing rapid and large-scale cortical plasticity. In particular, it appears that acetylcholine (ACh), nicotinic ACh receptors, nerve growth factor (NGF), and NGF receptors (TrkA and p75) are involved in an important feedback loop between the basal forebrain cholinergic system (BFCS) and the neocortex. Specifically, recent data suggest that NGF expressed in the cortex may act on multiple time scales on the BFCS: acutely to increase BFCS release of acetylcholine, intermediately to induce sprouting of BFCS axons, and long-term to change gene expression of BFCS neurons. In this article, advances in understanding the links in vivo between the BFCS, neocortex, nicotinic ACh receptors, and NGF are reviewed.
Collapse
Affiliation(s)
- Neal Prakash
- Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095-6975, USA
| | | |
Collapse
|
37
|
Dudek H, Ghosh A, Greenberg ME. Calcium phosphate transfection of DNA into neurons in primary culture. ACTA ACUST UNITED AC 2008; Chapter 3:Unit 3.11. [PMID: 18428460 DOI: 10.1002/0471142301.ns0311s03] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Calcium phosphate/DNA coprecipitation is a widely used method for the introduction of foreign DNA into cells. DNA and calcium phosphate are allowed to form a precipitate that is then added to cells in culture. The cells internalize the DNA, leading to the expression of the transfected genes in the cell. Despite the simplicity of this method, it has not been used very often for primary neurons because of its potential to cause neuronal toxicity. However, low toxicity and reasonably high transfection efficiency (0.5% to 5%) can be achieved by optimization of the transfection parameter, combined in some cases with the use of inhibitors of neuronal activity. This unit describes a very easy and inexpensive method for neuronal gene delivery that can be used with standard eukaryotic expression vectors for the gene of interest.
Collapse
Affiliation(s)
- H Dudek
- Ontogeny, Inc., Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
38
|
Influence of ischemic preconditioning on levels of nerve growth factor, brain-derived neurotrophic factor and their high-affinity receptors in hippocampus following forebrain ischemia. Brain Res 2008; 1187:1-11. [DOI: 10.1016/j.brainres.2007.09.078] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 09/12/2007] [Accepted: 09/22/2007] [Indexed: 12/25/2022]
|
39
|
Lacmann A, Hess D, Gohla G, Roussa E, Krieglstein K. Activity-dependent release of transforming growth factor-beta in a neuronal network in vitro. Neuroscience 2007; 150:647-57. [DOI: 10.1016/j.neuroscience.2007.09.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 09/05/2007] [Accepted: 10/11/2007] [Indexed: 01/17/2023]
|
40
|
Kolarow R, Brigadski T, Lessmann V. Postsynaptic secretion of BDNF and NT-3 from hippocampal neurons depends on calcium calmodulin kinase II signaling and proceeds via delayed fusion pore opening. J Neurosci 2007; 27:10350-64. [PMID: 17898207 PMCID: PMC6673152 DOI: 10.1523/jneurosci.0692-07.2007] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The mammalian neurotrophins (NTs) NGF, BDNF, NT-3, and NT-4 constitute a family of secreted neuronal growth factors. In addition, NTs are implicated in several forms of activity-dependent synaptic plasticity. Although synaptic secretion of NTs has been described, the intracellular signaling cascades that regulate synaptic secretion of NTs are far from being understood. Analysis of NT secretion at the subcellular level is thus required to resolve the role of presynaptic and postsynaptic NT secretion for synaptic plasticity. Here, we transfected cultures of dissociated rat hippocampal neurons with green fluorescent protein-tagged versions of BDNF and NT-3, respectively, and identified NT vesicles at glutamatergic synapses by colocalization with the cotransfected postsynaptic marker PSD-95 (postsynaptic density-95)-DsRed. Depolarization-induced secretion of BDNF and NT-3 was monitored with live cell imaging. Direct postsynaptic depolarization with elevated K+ in the presence of blockers of synaptic transmission allowed us to investigate the signaling cascades that are involved in the postsynaptic NT vesicle secretion process. We show that depolarization-induced postsynaptic NT secretion is elicited by Ca2+ influx, either via L-type voltage-gated calcium channels or via NMDA receptors. Subsequent release of Ca2+ from internal stores via ryanodine receptors is required for the secretion process. Postsynaptic NT secretion is inhibited in the presence of KN-62 ([4(2S)-2-[(5-isoquinolinylsulfonyl)methylamino]-3-oxo-3-(4-phenyl-1-piperazinyl)propyl] phenyl isoquinolinesulfonic acid ester) and KN-93 (N-[2-[[[3-(4-chlorophenyl)-2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide), indicating a critical dependence on the activation of alpha-calcium-calmodulin-dependent protein kinase II (CaMKII). The cAMP/protein kinase A (PKA) signaling inhibitor Rp-cAMP-S impaired NT secretion, whereas elevation of intracellular cAMP levels was without effect. Using the Trk inhibitor k252a, we show that NT-induced NT secretion does not contribute to the NT release process at synapses, and BDNF does not induce its own secretion at postsynaptic sites. Release experiments in the presence of the fluorescence quencher bromphenol blue provide evidence for asynchronous and prolonged fusion pore opening of NT vesicles during secretion. Because fusion pore opening is fast compared with compound release, the speed of NT release seems to be limited by diffusion of NTs out of the vesicle. Together, our results reveal a strong dependence of activity-dependent postsynaptic NT secretion on Ca2+ influx, Ca2+ release from internal stores, activation of CaMKII, and intact PKA signaling, whereas Trk signaling and activation of Na+ channels is not required.
Collapse
Affiliation(s)
- Richard Kolarow
- Institute of Physiology and Pathophysiology, Johannes Gutenberg-University, 55128 Mainz, Germany, and
| | - Tanja Brigadski
- Institute of Physiology and Pathophysiology, Johannes Gutenberg-University, 55128 Mainz, Germany, and
- Institute of Physiology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Volkmar Lessmann
- Institute of Physiology and Pathophysiology, Johannes Gutenberg-University, 55128 Mainz, Germany, and
- Institute of Physiology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| |
Collapse
|
41
|
Lim KC, Tyler CM, Lim ST, Giuliano R, Federoff HJ. Proteolytic processing of proNGF is necessary for mature NGF regulated secretion from neurons. Biochem Biophys Res Commun 2007; 361:599-604. [PMID: 17673176 DOI: 10.1016/j.bbrc.2007.07.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 07/10/2007] [Indexed: 01/19/2023]
Abstract
Nerve growth factor mediates neuronal survival, synaptogenesis, and synaptic remodeling. We utilized primary hippocampal cultures to investigate the intrinsic motifs of proNGF that might contribute to its processing and subsequent allocation to a regulated versus constitutive secretory pathway. The addition of a carboxypeptidase E motif to proNGF did not alter the secretion of NGF. However, mutagenesis of proNGF proteolytic processing sites had significant effects on the final NGF product and its secretion. The furin recognition site (R118-S-K-R121) is essential for the proper processing of proNGF to its 13.5kDa mature product and mutating the furin site exposed an alternative processing site resulting in an intermediate NGF product of approximately 22kDa. Finally, inhibiting the processing of proNGF abolished regulated secretion of the resulting NGF product. These experiments demonstrate that hippocampal neurons harbor multiple pathways to process proNGF of which the furin consensus sequence is the preferred processing site.
Collapse
Affiliation(s)
- Kuei-Cheng Lim
- Interdepartmental Graduate Program in Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | | | | | | |
Collapse
|
42
|
Nomoto H, Takaiwa M, Mouri A, Furukawa S. Pro-region of neurotrophins determines the processing efficiency. Biochem Biophys Res Commun 2007; 356:919-24. [PMID: 17395157 DOI: 10.1016/j.bbrc.2007.03.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 03/10/2007] [Indexed: 11/20/2022]
Abstract
Neurotrophins are synthesized as precursors called pro-neurotrophins and then mature neurotrophins are formed proteolytically from them. Recent findings revealed that pro- and mature neurotrophins elicit opposite functional effects on cell survival, highlighting the importance of this processing step. Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) belong to the neurotrophin family and are mutually homologous, but BDNF is less efficiently processed. In order to find the reason for this, we examined some possibilities by using PC12 cells, and found that the pro-region, especially the last half of it, affected very much the processing efficiency of these neurotrophins.
Collapse
Affiliation(s)
- Hiroshi Nomoto
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Gifu 502-8585, Japan.
| | | | | | | |
Collapse
|
43
|
Abstract
Gene transfer is being rigorously evaluated in the laboratory in the preparation for the development of clinical therapies. Many CNS diseases, which have proved more challenging to treat than peripheral disorders, are prime candidates for gene therapy. However, there are numerous considerations in the development of gene therapy, including delivery, maintenance of expression, transgene level regulation, toxicity of the viral vector system and safety of the gene product. The authors review these issues and discuss various approaches used in preclinical studies. Alzheimer's and Parkinson's disease are employed as models, in which much research has already been performed, to address disease-specific questions about gene therapy approaches.
Collapse
Affiliation(s)
- Deborah A Ryan
- University of Rochester School of Medicine & Dentistry, Interdepartmental Graduate Program in Neuroscience, Rochester, New York, USA
| | | |
Collapse
|
44
|
Magby JP, Bi C, Chen ZY, Lee FS, Plummer MR. Single-cell characterization of retrograde signaling by brain-derived neurotrophic factor. J Neurosci 2007; 26:13531-6. [PMID: 17192436 PMCID: PMC6674723 DOI: 10.1523/jneurosci.4576-06.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a key regulator of hippocampal synaptic plasticity in the developing and adult nervous system. It can be released from pyramidal neuron dendrites in an activity-dependent manner and has therefore been suggested to serve as a signal that provides the retrograde intercellular communication necessary for Hebbian plasticity and hippocampal-dependent learning. Although much has been learned about BDNF function by field stimulation of hippocampal neurons, it is not known whether moderate action potential-independent depolarization of single cells is capable of releasing sufficient BDNF to influence transmission at individual synapses. In this study, we show directly at the single-cell level that such modulation can occur. By using K-252a, anti-BDNF antibody, and interruption of regulated release, we confirm a model in which postsynaptic depolarization elicits calcium-dependent release of BDNF that diffuses retrogradely and enhances presynaptic transmitter release.
Collapse
Affiliation(s)
- Jason P. Magby
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, and
| | - Caixia Bi
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, and
| | - Zhe-Yu Chen
- Department of Psychiatry, Weill Medical College of Cornell University, New York, New York 10021
| | - Francis S. Lee
- Department of Psychiatry, Weill Medical College of Cornell University, New York, New York 10021
| | - Mark R. Plummer
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, and
| |
Collapse
|
45
|
Gomez N, Lu Y, Chen S, Schmidt CE. Immobilized nerve growth factor and microtopography have distinct effects on polarization versus axon elongation in hippocampal cells in culture. Biomaterials 2007; 28:271-84. [PMID: 16919328 DOI: 10.1016/j.biomaterials.2006.07.043] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 07/25/2006] [Indexed: 12/30/2022]
Abstract
Cell interfacing with biomaterial surfaces dictates important aspects of cell behavior. In particular, axon extension in neurons is effectively influenced by surface properties, both for the initial formation of an axon as well as for the maintenance of axon growth. Here, we investigated how neurons behaved on poly(dimethyl siloxane) (PDMS) surfaces decorated with biochemical and physical cues presented individually or in combination. In particular, nerve growth factor (NGF) was covalently tethered to PDMS to create a bioactive surface, and microtopography was introduced to the material in the form of microchannels. Embryonic hippocampal neurons were used to investigate the impact of these surface cues on polarization (i.e., axon initiation or axogenesis) and overall axon length. We found that topography had a more pronounced effect on polarization (68% increase over controls) compared to immobilized NGF (0.1 ng/mm(2)) (27% increase). However, the effect of NGF was negligible when both types of stimuli were simultaneously presented on the biomaterial surface. In addition to axon formation, chemical and physical cues are also involved in axon growth following the initiation process. Interestingly, for the same studies described above, the effects of microchannels and NGF were opposite from the effects on polarization; the most evident effect was for the immobilized growth factor (10% increase in axon length with respect to controls) whereas there was no effect in general for the microtopography. More importantly, when the two surface stimuli were presented in combination, a synergistic increase in axon length was detected (25% increase with respect to controls), which could be a result of faster polarization triggered by topography plus enhanced growth from NGF. Additionally, axon orientation was also analyzed and we found the well-known tendency of perpendicular or parallel axonal alignment to be dependent on the width and depth of the channels. This investigation thoroughly compared and distinguished the individual and combined impact of material surface properties (chemical and physical) on axogenesis from the effects on axon length. Overall, topography dominated polarization mechanisms, whereas NGF, and particularly a synergy of immobilized NGF plus topography, dominated axon length. These results could be potentially applied for the design of biomaterials in applications were axon growth is critical.
Collapse
Affiliation(s)
- Natalia Gomez
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712-1062, USA
| | | | | | | |
Collapse
|
46
|
Jaffe DB, Gutiérrez R. Mossy fiber synaptic transmission: communication from the dentate gyrus to area CA3. PROGRESS IN BRAIN RESEARCH 2007; 163:109-32. [PMID: 17765714 DOI: 10.1016/s0079-6123(07)63006-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Communication between the dentate gyrus (DG) and area CA3 of the hippocampus proper is transmitted via axons of granule cells--the mossy fiber (MF) pathway. In this review we discuss and compare the properties of transmitter release from the MFs onto pyramidal neurons and interneurons. An examination of the anatomical connectivity from DG to CA3 reveals a surprising interplay between excitation and inhibition for this circuit. In this respect it is particularly relevant that the major targets of the MFs are interneurons and that the consequence of MF input into CA3 may be inhibitory or excitatory, conditionally dependent on the frequency of input and modulatory regulation. This is further complicated by the properties of transmitter release from the MFs where a large number of co-localized transmitters, including GABAergic inhibitory transmitter release, and the effects of presynaptic modulation finely tune transmitter release. A picture emerges that extends beyond the hypothesis that the MFs are simply "detonators" of CA3 pyramidal neurons; the properties of synaptic information flow from the DG have more subtle and complex influences on the CA3 network.
Collapse
Affiliation(s)
- David B Jaffe
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| | | |
Collapse
|
47
|
Seol GH, Kim MY, Liang GH, Kim JA, Kim YJ, Oh S, Suh SH. Sphingosine-1-phosphate-induced intracellular Ca2+ mobilization in human endothelial cells. ACTA ACUST UNITED AC 2006; 12:263-9. [PMID: 16410226 DOI: 10.1080/10623320500476716] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The authors have studied the effect of sphingosine-1-phosphate (S1P) on Ca2+ release from intracellular stores in cultured human umbilical vein endothelial cells (HUVECs). In the presence of extracellular Ca2+, S1P increased intracellular Ca2+ concentration ([Ca2+]i) and this increase was partially inhibited by La3+ (1 microM), indicating that S1P induces Ca2+ influx from extracellular pool and Ca2+ release from intracellular stores. S1P increased [Ca2+]i concentration dependently in Ca2+-free extracellular solution. The Hill coefficient (1.7) and EC50 (420 nM) was obtained from the concentration-response relationship. When caffeine depleted Ca2+ store in the presence of ryanodine, S1P did not induce intracellular Ca2+ release. Furthermore, the Ca2+-induced Ca2+ release inhibitors ruthenium red or dantrolene completely inhibited S1P-induced intracellular Ca2+ release. S1P-induced intracellular Ca2+ release was inhibited by the phospholipase C (PLC) inhibitors neomycin and U73312, or the inositol 1,4,5-triphosphate (IP3)-gated Ca2+ channel blocker aminoethoxybiphenyl borane (2-APB). In contrast, S1P-induced intracellular Ca2+ release was not inhibited by the mitochondrial Ca2+ uptake inhibitor CCCP or the mitochondrial Ca2+ release inhibitor cyclosporin A. These results show that S1P mobilizes Ca2+ from intracellular stores primarily via Ca2+-induced and IP3-induced Ca2+ release and this Ca2+ mobilization is independent of mitochondrial Ca2+ stores.
Collapse
Affiliation(s)
- Geun Hee Seol
- Department of Physiology and Medical Research Institute, College of Medicine, Ewha Women's University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
48
|
Mouri A, Nomoto H, Furukawa S. Processing of nerve growth factor: the role of basic amino acid clusters in the pro-region. Biochem Biophys Res Commun 2006; 353:1056-62. [PMID: 17207774 DOI: 10.1016/j.bbrc.2006.12.136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 12/18/2006] [Indexed: 11/21/2022]
Abstract
Neurotrophins are synthesized first as precursors called pro-neurotrophins, and their propeptides are then proteolytically removed to form mature neurotrophins. However, a significant proportion of total neurotrophins has been shown to be secreted as pro-neurotrophins. Furthermore, pro- and mature neurotrophins have been shown to elicit opposite effects on cell survival. Thus, the processing step of neurotrophins is very important. In order to understand the mechanism of neurotrophin processing, we focused on the two basic amino acid clusters in the pro-region of nerve growth factor (NGF). Various NGFs mutated at basic amino acids in the pro-region were introduced in COS7 and PC12 cells. The results indicated that these basic amino acid clusters were actually cleaved in the cells by furin, but that their cleavage contributed little to the production of mature NGF. However, one of the two sites was considered to contribute to mature NGF production depending on conditions used.
Collapse
Affiliation(s)
- Akihiro Mouri
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Mitahora-Higashi, Gifu 502-8585, Japan
| | | | | |
Collapse
|
49
|
Drake-Baumann R. Activity-dependent modulation of inhibition in Purkinje cells by TrkB ligands. THE CEREBELLUM 2006; 5:220-6. [PMID: 16997754 DOI: 10.1080/14734220600621344] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the cerebellum in vitro TrkB receptor ligands promote activity-dependent inhibitory synaptogenesis of Purkinje cells and also modulate inhibitory synaptic function. This mini review examines the roles of TrkB receptor activation by BDNF particularly in relation to activity-dependent synaptic plasticity on Purkinje cells and recent studies on the acute modulation of GABAergic synapses by BDNF.
Collapse
|
50
|
Williams BJ, Eriksdotter-Jonhagen M, Granholm AC. Nerve growth factor in treatment and pathogenesis of Alzheimer's disease. Prog Neurobiol 2006; 80:114-28. [PMID: 17084014 DOI: 10.1016/j.pneurobio.2006.09.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 09/05/2006] [Indexed: 10/24/2022]
Abstract
The etiology of Alzheimer's disease (AD) is still unknown. In addition, this terrible neurodegenerative disease will increase exponentially over the next two decades due to longer lifespan and an aging "baby-boomer" generation. All treatments currently approved for AD have moderate efficacy in slowing the rate of cognitive decline in patients, and no efficacy in halting progression of the disease. Hence, there is an urgent need for new drug targets and delivery methods to slow or reverse the progression of AD. One molecule that has received much attention in its potential therapeutic role in AD is nerve growth factor (NGF). This review will demonstrate data from humans and animals which promote NGF as a potential therapeutic target by (1) outlining the hypothesis behind using NGF for the treatment of AD, (2) reviewing both the normal and AD altered signaling pathways and effects of NGF in the central nervous system (CNS), and (3) examining the results of NGF treatment obtained from animal models of AD and AD patients.
Collapse
Affiliation(s)
- Brice J Williams
- Department of Neurosciences and the Center on Aging, Medical University of South Carolina, 173 Ashley Ave BSB 403, Charleston, SC 29425, United States
| | | | | |
Collapse
|