1
|
Peczely L, Grace AA. The dose-dependent effect of the D2R agonist quinpirole microinjected into the ventral pallidum on information flow in the limbic system. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111059. [PMID: 38901759 PMCID: PMC11348604 DOI: 10.1016/j.pnpbp.2024.111059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/28/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
The ventral pallidum (VP) receives its primary inputs from the nucleus accumbens (NAC) and the basolateral amygdala (BLA). We demonstrated recently that in the VP, the D2 DA receptor (D2R) agonist quinpirole dose-dependently facilitates memory consolidation in inhibitory avoidance and spatial learning. In the VP, D2R can be found both on NAC and BLA terminals. According to our hypothesis, quinpirole microinjected into the VP can facilitate memory consolidation via modulation of synaptic plasticity on NAC and/or BLA terminals. The effect of intra-VP quinpirole on BLA-VP and NAC shell-VP synapses was investigated via a high frequency stimulation (HFS) protocol. Quinpirole was administered in three doses into the VP of male Sprague-Dawley rats after HFS; controls received vehicle. To examine whether an interaction between the NAC shell and the BLA at the level of the VP was involved, tetrodotoxin (TTX) was microinjected into one of the nuclei while stimulating the other nucleus. Our results showed that quinpirole dose-dependently modulates BLA-VP and NAC shell-VP synapses, similar to those observed in inhibitory avoidance and spatial learning, respectively. The lower dose inhibits BLA inputs, while the larger doses facilitates NAC shell inputs. The experiments with TTX demonstrates that the two nuclei do not influence each others' evoked responses in the VP. Power spectral density analysis demonstrated that independent from the synaptic facilitation, intra-VP quinpirole increases the amplitude of gamma frequency band after NAC HFS, and BLA tonically suppresses the NAC's HFS-induced gamma facilitation. In contrast, HFS of the BLA results in a delayed, transient increase in the amplitude of the gamma frequency band correlating with the LTP of the P1 component of the VP response to BLA stimulation. Furthermore, our results demonstrate that the BLA plays a prominent role in the generation of the delta oscillations: HFS of the BLA leads to a gradually increasing delta frequency band facilitation over time, while BLA inhibition blocks the NAC's HFS induced strong delta facilitation. These findings demonstrate that there is a complex interaction between the NAC shell region and the VP, as well as the BLA and the VP, and support the important role of VP D2Rs in the regulation of limbic information flow.
Collapse
Affiliation(s)
- Laszlo Peczely
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA; Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary; Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary; Centre for Neuroscience, University of Pécs, Pécs, Hungary.
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
2
|
Soares-Cunha C, Heinsbroek JA. Ventral pallidal regulation of motivated behaviors and reinforcement. Front Neural Circuits 2023; 17:1086053. [PMID: 36817646 PMCID: PMC9932340 DOI: 10.3389/fncir.2023.1086053] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
The interconnected nuclei of the ventral basal ganglia have long been identified as key regulators of motivated behavior, and dysfunction of this circuit is strongly implicated in mood and substance use disorders. The ventral pallidum (VP) is a central node of the ventral basal ganglia, and recent studies have revealed complex VP cellular heterogeneity and cell- and circuit-specific regulation of reward, aversion, motivation, and drug-seeking behaviors. Although the VP is canonically considered a relay and output structure for this circuit, emerging data indicate that the VP is a central hub in an extensive network for reward processing and the regulation of motivation that extends beyond classically defined basal ganglia borders. VP neurons respond temporally faster and show more advanced reward coding and prediction error processing than neurons in the upstream nucleus accumbens, and regulate the activity of the ventral mesencephalon dopamine system. This review will summarize recent findings in the literature and provide an update on the complex cellular heterogeneity and cell- and circuit-specific regulation of motivated behaviors and reinforcement by the VP with a specific focus on mood and substance use disorders. In addition, we will discuss mechanisms by which stress and drug exposure alter the functioning of the VP and produce susceptibility to neuropsychiatric disorders. Lastly, we will outline unanswered questions and identify future directions for studies necessary to further clarify the central role of VP neurons in the regulation of motivated behaviors. Significance: Research in the last decade has revealed a complex cell- and circuit-specific role for the VP in reward processing and the regulation of motivated behaviors. Novel insights obtained using cell- and circuit-specific interrogation strategies have led to a major shift in our understanding of this region. Here, we provide a comprehensive review of the VP in which we integrate novel findings with the existing literature and highlight the emerging role of the VP as a linchpin of the neural systems that regulate motivation, reward, and aversion. In addition, we discuss the dysfunction of the VP in animal models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jasper A. Heinsbroek
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
3
|
Song J, Lin H, Liu S. Basal ganglia network dynamics and function: Role of direct, indirect and hyper-direct pathways in action selection. NETWORK (BRISTOL, ENGLAND) 2023; 34:84-121. [PMID: 36856435 DOI: 10.1080/0954898x.2023.2173816] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Basal ganglia (BG) are a widely recognized neural basis for action selection, but its decision-making mechanism is still a difficult problem for researchers. Therefore, we constructed a spiking neural network inspired by the BG anatomical data. Simulation experiments were based on the principle of dis-inhibition and our functional hypothesis within the BG: the direct pathway, the indirect pathway, and the hyper-direct pathway of the BG jointly implement the initiation execution and termination of motor programs. Firstly, we studied the dynamic process of action selection with the network, which contained intra-group competition and inter-group competition. Secondly, we focused on the effects of the stimulus intensity and the proportion of excitation and inhibition on the GPi/SNr. The results suggested that inhibition and excitation shape action selection. They also explained why the firing rate of GPi/SNr did not continue to increase in the action-selection experiment. Finally, we discussed the experimental results with the functional hypothesis. Uniquely, this paper summarized the decision-making neural mechanism of action selection based on the direct pathway, the indirect pathway, and the hyper-direct pathway within BG.
Collapse
Affiliation(s)
- Jian Song
- School of Mathematics, South China University of Technology, Guangzhou, China
| | - Hui Lin
- Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Shenquan Liu
- School of Mathematics, South China University of Technology, Guangzhou, China
| |
Collapse
|
4
|
Saga Y, Galineau L, Tremblay L. Impulsive and compulsive behaviors can be induced by opposite GABAergic dysfunctions inside the primate ventral pallidum. Front Syst Neurosci 2022; 16:1009626. [PMID: 36567755 PMCID: PMC9774472 DOI: 10.3389/fnsys.2022.1009626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction: The ventral pallidum (VP) is central in the limbic Basal Ganglia circuit, controlling both appetitive (approach) and aversive (avoidance) motivated behaviors. Nevertheless, VP involvement in pathological aspects remains unclear, especially in the behavioral expression of different motivational dysfunctions. This study aimed to investigate how the VP contributes to the expression of abnormal behaviors via opposite GABAergic dysfunctions. Methods: Opposite GABAergic dysfunctions were induced by injecting muscimol (a GABAA agonist) and bicuculline (a GABAA antagonist) into monkeys. We determined the effects of both substances on self-initiated behaviors in lab-chair and in free-moving home-cage contexts in six monkeys, and in two animals performing an approach-avoidance task in appetitive and aversive contexts. Results: While the self-initiated behaviors induced by bicuculline injections in VP were characterized by compulsive behaviors such as repetitive grooming and self-biting, muscimol injections induced impulsive behaviors including limb movements in a lab-chair context and exploration behaviors in a free-moving context. More specific behavioral effects were observed in the approach-avoidance task. The muscimol injections induced premature responses and erroneous screen touches, which characterize impulsive and attention disorders, while the bicuculline injections into the VP increased passive avoidance (non-initiated action) and task-escape in an aversive context, suggesting an anxiety disorder. Conclusions: These results show that activating or blocking GABAergic transmission in the VP impairs motivated behaviors. Furthermore, the behavioral expressions produced by these opposite disturbances show that the VP could be involved in anxiety-driven compulsive disorders, such as OCD, as well as in impulsive disorders motivated by attention deficits or reward-seeking, as seen in ADHD or impulse control disorders.
Collapse
Affiliation(s)
- Yosuke Saga
- Institut des Sciences Cognitives Marc Jeannerod, UMR-5229 CNRS, Bron Cedex, France,*Correspondence: Yosuke Saga Léon Tremblay
| | - Laurent Galineau
- UMR INSERM U1253, Université François Rabelais de Tours, Tours, France
| | - Léon Tremblay
- Institut des Sciences Cognitives Marc Jeannerod, UMR-5229 CNRS, Bron Cedex, France,Université Claude-Bernard Lyon1, Villeurbanne, France,*Correspondence: Yosuke Saga Léon Tremblay
| |
Collapse
|
5
|
Péczely L, Kékesi G, Kállai V, Ollmann T, László K, Büki A, Lénárd L, Horváth G. Effects of D 2 dopamine receptor activation in the ventral pallidum on sensory gating and food-motivated learning in control and schizophrenia model (Wisket) rats. Behav Brain Res 2020; 400:113047. [PMID: 33279633 DOI: 10.1016/j.bbr.2020.113047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 11/28/2022]
Abstract
Dopamine D2 receptors (D2Rs) of the ventral pallidum (VP) play important role in motivational and learning processes, however, their potential role in triggering schizophrenic symptoms has not been investigated, yet. In the present experiments the effects of locally administered D2R agonist quinpirole were investigated on behavioral parameters related to sensorimotor gating, motor activity and food-motivated labyrinth learning. Two weeks after bilateral implantation of microcannulae into the VP, the acute (30 min) and delayed (3, 21 and 24 h) effects of quinpirole microinjection (1 μg/0.4 μL at both sides) were investigated in Wistar and schizophrenia model (Wisket substrain) rats in prepulse inhibition (PPI) and the reward-based Ambitus tests. Quinpirole administration did not modify the impaired sensorimotor gating in Wisket rats, but it led to significant deficit in Wistar animals. Regarding the locomotor activity in the Ambitus test, no effects of quinpirole were detected in either groups at the investigated time points. In contrast, quinpirole resulted in decreased exploratory and food-collecting activities in Wistar rats with 21 and 24 h delay. Though, impaired food-related motivation could be observed in Wisket rats, but quinpirole treatment did not result in further deterioration. In summary, our results showed that the VP D2R activation in Wistar rats induces symptoms similar to those observed in schizophrenia model Wisket rats. These data suggest that Wisket rats might have significant alterations in the functional activity of VP, which might be due to its enhanced dopaminergic activity.
Collapse
Affiliation(s)
- László Péczely
- Institute of Physiology, Faculty of Medicine, University of Pécs, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary.
| | - Gabriella Kékesi
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Veronika Kállai
- Institute of Physiology, Faculty of Medicine, University of Pécs, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Tamás Ollmann
- Institute of Physiology, Faculty of Medicine, University of Pécs, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, Faculty of Medicine, University of Pécs, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Alexandra Büki
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Lénárd
- Institute of Physiology, Faculty of Medicine, University of Pécs, Pécs, Hungary; Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Research Centre, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Gyöngyi Horváth
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
6
|
Koelman LA, Lowery MM. Beta-Band Resonance and Intrinsic Oscillations in a Biophysically Detailed Model of the Subthalamic Nucleus-Globus Pallidus Network. Front Comput Neurosci 2019; 13:77. [PMID: 31749692 PMCID: PMC6848887 DOI: 10.3389/fncom.2019.00077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/17/2019] [Indexed: 12/29/2022] Open
Abstract
Increased beta-band oscillatory activity in the basal ganglia network is associated with Parkinsonian motor symptoms and is suppressed with medication and deep brain stimulation (DBS). The origins of the beta-band oscillations, however, remains unclear with both intrinsic oscillations arising within the subthalamic nucleus (STN)-external globus pallidus (GPe) network and exogenous beta-activity, originating outside the network, proposed as potential sources of the pathological activity. The aim of this study was to explore the relative contribution of autonomous oscillations and exogenous oscillatory inputs in the generation of pathological oscillatory activity in a biophysically detailed model of the parkinsonian STN-GPe network. The network model accounts for the integration of synaptic currents and their interaction with intrinsic membrane currents in dendritic structures within the STN and GPe. The model was used to investigate the development of beta-band synchrony and bursting within the STN-GPe network by changing the balance of excitation and inhibition in both nuclei, and by adding exogenous oscillatory inputs with varying phase relationships through the hyperdirect cortico-subthalamic and indirect striato-pallidal pathways. The model showed an intrinsic susceptibility to beta-band oscillations that was manifest in weak autonomously generated oscillations within the STN-GPe network and in selective amplification of exogenous beta-band synaptic inputs near the network's endogenous oscillation frequency. The frequency at which this resonance peak occurred was determined by the net level of excitatory drive to the network. Intrinsic or endogenously generated oscillations were too weak to support a pacemaker role for the STN-GPe network, however, they were considerably amplified by sparse cortical beta inputs and were further amplified by striatal beta inputs that promoted anti-phase firing of the cortex and GPe, resulting in maximum transient inhibition of STN neurons. The model elucidates a mechanism of cortical patterning of the STN-GPe network through feedback inhibition whereby intrinsic susceptibility to beta-band oscillations can lead to phase locked spiking under parkinsonian conditions. These results point to resonance of endogenous oscillations with exogenous patterning of the STN-GPe network as a mechanism of pathological synchronization, and a role for the pallido-striatal feedback loop in amplifying beta oscillations.
Collapse
Affiliation(s)
- Lucas A. Koelman
- Neuromuscular Systems Laboratory, School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
7
|
Clark M, Bracci E. Dichotomous Dopaminergic Control of Ventral Pallidum Neurons. Front Cell Neurosci 2018; 12:260. [PMID: 30186117 PMCID: PMC6113373 DOI: 10.3389/fncel.2018.00260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/30/2018] [Indexed: 01/14/2023] Open
Abstract
The ventral pallidum (VP) is crucially involved in reward processing. Dopaminergic afferents reach the VP from the ventral tegmental area (VTA). Recent in vivo studies suggest dopamine application increase the firing in the VP. However, little is known about the cellular effects of dopamine within the VP. We aimed to address this paucity of data using brain slices containing the VP and multi-electrode array recordings. Dopamine significantly affected firing in 86% of spontaneously active VP neurons. Among the affected neurons, 84% were excited, while 16% were inhibited. The selective D1-like receptor agonist SKF81297 also had modulatory effects on the majority of VP neurons, but its effects were universally excitatory. On the other hand, the D2-like receptor agonist quinpirole had modulatory effects on 87% of VP neurons studied. It caused significant inhibitory effects in 33% of the cases and excitatory effects in the remaining 67%. The effects of D1-like receptor activation were presynaptic as blocking synaptic transmission with low Ca2+ abolished the effects of SKF81297 application. Furthermore, SKF81297 effects were abolished by blocking ionotropic glutamate receptors, suggesting that D1-like receptors boost glutamate release, which in turn excites VP neurons through postsynaptic glutamate receptors. Effects caused by D2-like receptor activation were found to involve pre and postsynaptic mechanisms, as low Ca2+ abolished the excitatory effects of quinpirole but not the inhibitory ones. Increases in firing frequency (ff) to quinpirole application were abolished by a group 2/3 mGluR antagonist, suggesting that D2-like receptors cause presynaptic inhibition of glutamate release, resulting in reduced postsynaptic activation of inhibitory mGluRs. Conversely, the inhibitory effects of quinpirole persisted in low Ca2+ and therefore can be attributed to postsynaptic D2-like receptor activation. VP neurons excited by dopamine had shorter spike half-widths and are excited by D1-like receptors (presynaptically) and by D2-like receptors (postsynaptically). VP neurons inhibited by dopamine have longer spike half-widths and while D1-like receptor activation has a presynaptic excitatory influence on them, D2-like receptor activation has a postsynaptic inhibitory effect that prevails, on balance. These data provide novel insights into the cellular mechanisms by which dopamine controls information processing within the VP.
Collapse
Affiliation(s)
- Martin Clark
- Department of Psychology, The University of Sheffield, Sheffield, United Kingdom
| | - Enrico Bracci
- Department of Psychology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
8
|
Role of D2 dopamine receptors of the ventral pallidum in inhibitory avoidance learning. Behav Brain Res 2017; 321:99-105. [DOI: 10.1016/j.bbr.2017.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/13/2016] [Accepted: 01/01/2017] [Indexed: 11/21/2022]
|
9
|
Stout KA, Dunn AR, Lohr KM, Alter SP, Cliburn RA, Guillot TS, Miller GW. Selective Enhancement of Dopamine Release in the Ventral Pallidum of Methamphetamine-Sensitized Mice. ACS Chem Neurosci 2016; 7:1364-1373. [PMID: 27501345 PMCID: PMC5073372 DOI: 10.1021/acschemneuro.6b00131] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
![]()
Drugs of abuse induce
sensitization, which is defined as enhanced
response to additional drug following a period of withdrawal. Sensitization
occurs in both humans and animal models of drug reinforcement and
contributes substantially to the addictive nature of drugs of abuse,
because it is thought to represent enhanced motivational wanting for
drug. The ventral pallidum, a key member of the reward pathway, contributes
to behaviors associated with reward, such as sensitization. Dopamine
inputs to the ventral pallidum have not been directly characterized.
Here we provide anatomical, neurochemical, and behavioral evidence
demonstrating that dopamine terminals in the ventral pallidum contribute
to reward in mice. We report subregional differences in dopamine release,
measured by ex vivo fast-scan cyclic voltammetry:
rostral ventral pallidum exhibits increased dopamine release and uptake
compared with caudal ventral pallidum, which is correlated with tissue
expression of dopaminergic proteins. We then subjected mice to a methamphetamine-sensitization
protocol to investigate the contribution of dopaminergic projections
to the region in reward related behavior. Methamphetamine-sensitized
animals displayed a 508% and 307% increase in baseline dopamine release
in the rostral and caudal ventral pallidum, respectively. Augmented
dopamine release in the rostral ventral pallidum was significantly
correlated with sensitized locomotor activity. Moreover, this presynaptic
dopaminergic plasticity occurred only in the ventral pallidum and
not in the ventral or dorsal striatum, suggesting that dopamine release
in the ventral pallidum may be integrally important to drug-induced
sensitization.
Collapse
Affiliation(s)
- Kristen A. Stout
- Department
of Environmental Health, Rollins School of Public Health, ‡Center for Neurodegenerative
Diseases, §Department of Pharmacology, and ∥Department of Neurology, Emory University, Atlanta, Georgia 30322, United States
| | - Amy R. Dunn
- Department
of Environmental Health, Rollins School of Public Health, ‡Center for Neurodegenerative
Diseases, §Department of Pharmacology, and ∥Department of Neurology, Emory University, Atlanta, Georgia 30322, United States
| | - Kelly M. Lohr
- Department
of Environmental Health, Rollins School of Public Health, ‡Center for Neurodegenerative
Diseases, §Department of Pharmacology, and ∥Department of Neurology, Emory University, Atlanta, Georgia 30322, United States
| | - Shawn P. Alter
- Department
of Environmental Health, Rollins School of Public Health, ‡Center for Neurodegenerative
Diseases, §Department of Pharmacology, and ∥Department of Neurology, Emory University, Atlanta, Georgia 30322, United States
| | - Rachel A. Cliburn
- Department
of Environmental Health, Rollins School of Public Health, ‡Center for Neurodegenerative
Diseases, §Department of Pharmacology, and ∥Department of Neurology, Emory University, Atlanta, Georgia 30322, United States
| | - Thomas S. Guillot
- Department
of Environmental Health, Rollins School of Public Health, ‡Center for Neurodegenerative
Diseases, §Department of Pharmacology, and ∥Department of Neurology, Emory University, Atlanta, Georgia 30322, United States
| | - Gary W. Miller
- Department
of Environmental Health, Rollins School of Public Health, ‡Center for Neurodegenerative
Diseases, §Department of Pharmacology, and ∥Department of Neurology, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
10
|
Root DH, Melendez RI, Zaborszky L, Napier TC. The ventral pallidum: Subregion-specific functional anatomy and roles in motivated behaviors. Prog Neurobiol 2015; 130:29-70. [PMID: 25857550 PMCID: PMC4687907 DOI: 10.1016/j.pneurobio.2015.03.005] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 03/19/2015] [Accepted: 03/29/2015] [Indexed: 12/17/2022]
Abstract
The ventral pallidum (VP) plays a critical role in the processing and execution of motivated behaviors. Yet this brain region is often overlooked in published discussions of the neurobiology of mental health (e.g., addiction, depression). This contributes to a gap in understanding the neurobiological mechanisms of psychiatric disorders. This review is presented to help bridge the gap by providing a resource for current knowledge of VP anatomy, projection patterns and subregional circuits, and how this organization relates to the function of VP neurons and ultimately behavior. For example, ventromedial (VPvm) and dorsolateral (VPdl) VP subregions receive projections from nucleus accumbens shell and core, respectively. Inhibitory GABAergic neurons of the VPvm project to mediodorsal thalamus, lateral hypothalamus, and ventral tegmental area, and this VP subregion helps discriminate the appropriate conditions to acquire natural rewards or drugs of abuse, consume preferred foods, and perform working memory tasks. GABAergic neurons of the VPdl project to subthalamic nucleus and substantia nigra pars reticulata, and this VP subregion is modulated by, and is necessary for, drug-seeking behavior. Additional circuits arise from nonGABAergic neuronal phenotypes that are likely to excite rather than inhibit their targets. These subregional and neuronal phenotypic circuits place the VP in a unique position to process motivationally relevant stimuli and coherent adaptive behaviors.
Collapse
Affiliation(s)
- David H Root
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, New Brunswick, NJ 08854, United States.
| | - Roberto I Melendez
- Department of Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR 00936, United States.
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, United States.
| | - T Celeste Napier
- Departments of Pharmacology and Psychiatry, Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612, United States.
| |
Collapse
|
11
|
Péczely L, Ollmann T, László K, Kovács A, Gálosi R, Szabó Á, Karádi Z, Lénárd L. Role of D1 dopamine receptors of the ventral pallidum in inhibitory avoidance learning. Behav Brain Res 2014; 270:131-6. [DOI: 10.1016/j.bbr.2014.04.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
|
12
|
Kupchik YM, Scofield MD, Rice KC, Cheng K, Roques BP, Kalivas PW. Cocaine dysregulates opioid gating of GABA neurotransmission in the ventral pallidum. J Neurosci 2014; 34:1057-66. [PMID: 24431463 PMCID: PMC3891949 DOI: 10.1523/jneurosci.4336-13.2014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/12/2013] [Accepted: 12/04/2013] [Indexed: 11/21/2022] Open
Abstract
The ventral pallidum (VP) is a target of dense nucleus accumbens projections. Many of these projections coexpress GABA and the neuropeptide enkephalin, a δ and μ opioid receptor (MOR) ligand. Of these two, the MOR in the VP is known to be involved in reward-related behaviors, such as hedonic responses to palatable food, alcohol intake, and reinstatement of cocaine seeking. Stimulating MORs in the VP decreases extracellular GABA, indicating that the effects of MORs in the VP on cocaine seeking are via modulating GABA neurotransmission. Here, we use whole-cell patch-clamp on a rat model of withdrawal from cocaine self-administration to test the hypothesis that MORs presynaptically regulate GABA transmission in the VP and that cocaine withdrawal changes the interaction between MORs and GABA. We found that in cocaine-extinguished rats pharmacological activation of MORs no longer presynaptically inhibited GABA release, whereas blocking the MORs disinhibited GABA release. Moreover, MOR-dependent long-term depression of GABA neurotransmission in the VP was lost in cocaine-extinguished rats. Last, GABA neurotransmission was found to be tonically suppressed in cocaine-extinguished rats. These substantial synaptic changes indicated that cocaine was increasing tone on MOR receptors. Accordingly, increasing endogenous tone by blocking the enzymatic degradation of enkephalin inhibited GABA neurotransmission in yoked saline rats but not in cocaine-extinguished rats. In conclusion, our results indicate that following withdrawal from cocaine self-administration enkephalin levels in the VP are elevated and the opioid modulation of GABA neurotransmission is impaired. This may contribute to the difficulties withdrawn addicts experience when trying to resist relapse.
Collapse
Affiliation(s)
- Yonatan M Kupchik
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol and Alcoholism, Rockville, Maryland 20892, Pharmaleads SAS, 75013 Paris, France, and Université Paris-Descartes, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|
13
|
Merrison-Hort R, Borisyuk R. The emergence of two anti-phase oscillatory neural populations in a computational model of the Parkinsonian globus pallidus. Front Comput Neurosci 2013; 7:173. [PMID: 24348374 PMCID: PMC3844854 DOI: 10.3389/fncom.2013.00173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/12/2013] [Indexed: 01/28/2023] Open
Abstract
Experiments in rodent models of Parkinson's disease have demonstrated a prominent increase of oscillatory firing patterns in neurons within the Parkinsonian globus pallidus (GP) which may underlie some of the motor symptoms of the disease. There are two main pathways from the cortex to GP: via the striatum and via the subthalamic nucleus (STN), but it is not known how these inputs sculpt the pathological pallidal firing patterns. To study this we developed a novel neural network model of conductance-based spiking pallidal neurons with cortex-modulated input from STN neurons. Our results support the hypothesis that entrainment occurs primarily via the subthalamic pathway. We find that as a result of the interplay between excitatory input from the STN and mutual inhibitory coupling between GP neurons, a homogeneous population of GP neurons demonstrates a self-organizing dynamical behavior where two groups of neurons emerge: one spiking in-phase with the cortical rhythm and the other in anti-phase. This finding mirrors what is seen in recordings from the GP of rodents that have had Parkinsonism induced via brain lesions. Our model also includes downregulation of Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channels in response to burst firing of GP neurons, since this has been suggested as a possible mechanism for the emergence of Parkinsonian activity. We found that the downregulation of HCN channels provides even better correspondence with experimental data but that it is not essential in order for the two groups of oscillatory neurons to appear. We discuss how the influence of inhibitory striatal input will strengthen our results.
Collapse
Affiliation(s)
- Robert Merrison-Hort
- Centre for Robotics and Neural Systems, School of Computing and Mathematics, The University of Plymouth Plymouth, UK
| | - Roman Borisyuk
- Centre for Robotics and Neural Systems, School of Computing and Mathematics, The University of Plymouth Plymouth, UK ; Neural Networks Laboratory, Institute of Mathematical Problems in Biology, Russian Academy of Sciences Pushchino, Russia
| |
Collapse
|
14
|
Merrison-Hort R, Yousif N, Njap F, Hofmann UG, Burylko O, Borisyuk R. An interactive channel model of the Basal Ganglia: bifurcation analysis under healthy and parkinsonian conditions. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2013; 3:14. [PMID: 23945348 PMCID: PMC4177535 DOI: 10.1186/2190-8567-3-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 03/05/2013] [Indexed: 06/02/2023]
Abstract
Oscillations in the basal ganglia are an active area of research and have been shown to relate to the hypokinetic motor symptoms of Parkinson's disease. We study oscillations in a multi-channel mean field model, where each channel consists of an interconnected pair of subthalamic nucleus and globus pallidus sub-populations.To study how the channels interact, we perform two-dimensional bifurcation analysis of a model of an individual channel, which reveals the critical boundaries in parameter space that separate different dynamical modes; these modes include steady-state, oscillatory, and bi-stable behaviour. Without self-excitation in the subthalamic nucleus a single channel cannot generate oscillations, yet there is little experimental evidence for such self-excitation. Our results show that the interactive channel model with coupling via pallidal sub-populations demonstrates robust oscillatory behaviour without subthalamic self-excitation, provided the coupling is sufficiently strong. We study the model under healthy and Parkinsonian conditions and demonstrate that it exhibits oscillations for a much wider range of parameters in the Parkinsonian case. In the discussion, we show how our results compare with experimental findings and discuss their possible physiological interpretation. For example, experiments have found that increased lateral coupling in the rat basal ganglia is correlated with oscillations under Parkinsonian conditions.
Collapse
Affiliation(s)
- Robert Merrison-Hort
- School of Computing & Mathematics, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK
| | - Nada Yousif
- Neuromodulation Group, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Felix Njap
- Graduate School for Computing in Medicine and Life Sciences, University of Lübeck, Lübeck, Germany
| | - Ulrich G Hofmann
- Department for Neurosurgery, Albert-Ludwigs-University Freiburg, 79108, Freiburg, Germany
| | - Oleksandr Burylko
- Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivska Street, Kyiv, 01601, Ukraine
| | - Roman Borisyuk
- School of Computing & Mathematics, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK
- Institute of Mathematical Problems in Biology, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
15
|
Effects of apomorphine and β-carbolines on firing rate of neurons in the ventral pallidum in the rats. Behav Brain Res 2012; 227:109-15. [DOI: 10.1016/j.bbr.2011.10.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/23/2011] [Accepted: 10/25/2011] [Indexed: 11/22/2022]
|
16
|
Root DH, Fabbricatore AT, Pawlak AP, Barker DJ, Ma S, West MO. Slow phasic and tonic activity of ventral pallidal neurons during cocaine self-administration. Synapse 2011; 66:106-27. [PMID: 21953543 DOI: 10.1002/syn.20990] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 09/14/2011] [Indexed: 02/06/2023]
Abstract
Ventral pallidal (VP) neurons exhibit rapid phasic firing patterns within seconds of cocaine-reinforced responses. The present investigation examined whether VP neurons exhibited firing rate changes: (1) over minutes during the inter-infusion interval (slow phasic patterns) and/or (2) over the course of the several-hour self-administration session (tonic firing patterns) relative to pre-session firing. Approximately three-quarters (43/54) of VP neurons exhibited slow phasic firing patterns. The most common pattern was a post-infusion decrease in firing followed by a progressive reversal of firing over minutes (51.16%; 22/43). Early reversals were predominantly observed anteriorly whereas progressive and late reversals were observed more posteriorly. Approximately half (51.85%; 28/54) of the neurons exhibited tonic firing patterns consisting of at least a two-fold change in firing. Most cells decreased firing during drug loading, remained low over self-administration maintenance, and reversed following lever removal. Over a whole experiment (tonic) timescale, the majority of neurons exhibited an inverse relationship between calculated drug level and firing rates during loading and post-self-administration behaviors. Fewer neurons exhibited an inverse relationship of calculated drug level and tonic firing rate during self-administration maintenance but, among those that did, nearly all were progressive reversal neurons. The present results show that, similar to its main afferent the nucleus accumbens, VP exhibits both slow phasic and tonic firing patterns during cocaine self-administration. Given that VP neurons are principally GABAergic, the predominant slow phasic decrease and tonic decrease firing patterns within the VP may indicate a disinhibitory influence upon its thalamocortical, mesolimbic, and nigrostriatal targets during cocaine self-administration.
Collapse
Affiliation(s)
- David H Root
- Department of Psychology, Rutgers University, New Brunswick, New Jersey 08903, USA
| | | | | | | | | | | |
Collapse
|
17
|
Conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network. J Neurosci 2010; 30:12340-52. [PMID: 20844130 DOI: 10.1523/jneurosci.0817-10.2010] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The advance of Parkinson's disease is associated with the existence of abnormal oscillations within the basal ganglia with frequencies in the beta band (13-30 Hz). While the origin of these oscillations remains unknown, there is some evidence suggesting that oscillations observed in the basal ganglia arise due to interactions of two nuclei: the subthalamic nucleus (STN) and the globus pallidus pars externa (GPe). To investigate this hypothesis, we develop a computational model of the STN-GPe network based upon anatomical and electrophysiological studies. Significantly, our study shows that for certain parameter regimes, the model intrinsically oscillates in the beta range. Through an analytical study of the model, we identify a simple set of necessary conditions on model parameters that guarantees the existence of beta oscillations. These conditions for generation of oscillations are described by a set of simple inequalities and can be summarized as follows: (1) The excitatory connections from STN to GPe and the inhibitory connections from GPe to STN need to be sufficiently strong. (2) The time required by neurons to react to their inputs needs to be short relative to synaptic transmission delays. (3) The excitatory input from the cortex to STN needs to be high relative to the inhibition from striatum to GPe. We confirmed the validity of these conditions via numerical simulation. These conditions describe changes in parameters that are consistent with those expected as a result of the development of Parkinson's disease, and predict manipulations that could inhibit the pathological oscillations.
Collapse
|
18
|
Root DH, Fabbricatore AT, Ma S, Barker DJ, West MO. Rapid phasic activity of ventral pallidal neurons during cocaine self-administration. Synapse 2010; 64:704-13. [PMID: 20340176 DOI: 10.1002/syn.20792] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Little is known regarding the involvement of the ventral pallidum (VP) in cocaine-seeking behavior, in contrast with considerable documentation of the involvement of its major afferent, the nucleus accumbens, over the past thirty years utilizing electrophysiology, lesion, inactivation, molecular, imaging, and other approaches. The VP is neuroanatomically positioned to integrate signals projected from the nucleus accumbens, basolateral amygdala, and ventral tegmental area. In turn, VP projects to thalamoprefrontal, subthalamic, and mesencephalic dopamine regions having widespread influence across mesolimbic, mesocortical, and nigrostriatal systems. Prior lesion studies have implicated VP in cocaine-seeking behavior, but the electrophysiological mechanisms underlying this behavior in the VP have not been investigated. In the present investigation, following 2 weeks of training over which animals increased drug intake, VP phasic activity comprised rapid-phasic increases or decreases in firing rate during the seconds prior to and/or following cocaine-reinforced responses, similar to those found in accumbens. As a population, the direction (increasing or decreasing) and magnitude of firing rate changes were normally distributed suggesting that ventral striatopallidal processing is heterogeneous. Since changes in firing rate around the cocaine-reinforced lever press occurred in animals that escalated drug intake prior to neuronal recordings, a marker of "addiction-like behavior" in the rat, the present experiment provides novel support for a role of VP in drug-seeking behavior. This is especially important given that pallidothalamic and pallidomesencephalic VP projections are positioned to alter dopaminoceptive targets such as the medial prefrontal cortex, nucleus accumbens, and dorsal striatum, all of which have roles in cocaine self-administration.
Collapse
Affiliation(s)
- David H Root
- Department of Psychology, Rutgers University, New Brunswick, New Jersey 08903, USA
| | | | | | | | | |
Collapse
|
19
|
Lodge DJ, Grace AA. Developmental pathology, dopamine, stress and schizophrenia. Int J Dev Neurosci 2010; 29:207-13. [PMID: 20727962 DOI: 10.1016/j.ijdevneu.2010.08.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 01/12/2023] Open
Abstract
Psychological stress is a contributing factor for a wide variety of neuropsychiatric diseases including substance use disorders, anxiety, depression and schizophrenia. However, it has not been conclusively determined how stress augments the symptoms of these diseases. Here we review evidence that the ventral hippocampus may be a site of convergence whereby a number of seemingly discrete risk factors, including stress, may interact to precipitate psychosis in schizophrenia. Specifically, aberrant hippocampal activity has been demonstrated to underlie both the elevated dopamine neuron activity and associated behavioral hyperactivity to dopamine agonists in a verified animal model of schizophrenia. In addition, stress, psychostimulant drug use, prenatal infection and select genetic polymorphisms all appear to augment ventral hippocampal function that may therefore exaggerate or precipitate psychotic symptoms. Such information is critical for our understanding into the pathology of psychiatric disease with the ultimate aim being the development of more effective therapeutics.
Collapse
Affiliation(s)
- Daniel J Lodge
- Department of Pharmacology & Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX 78229, USA.
| | | |
Collapse
|
20
|
Tsirogiannis GL, Tagaris GA, Sakas D, Nikita KS. A population level computational model of the basal ganglia that generates parkinsonian Local Field Potential activity. BIOLOGICAL CYBERNETICS 2010; 102:155-176. [PMID: 20041261 DOI: 10.1007/s00422-009-0360-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 12/14/2009] [Indexed: 05/28/2023]
Abstract
Recordings from the basal ganglia's subthalamic nucleus are acquired via microelectrodes immediately prior to the application of Deep Brain Stimulation (DBS) treatment for Parkinson's Disease (PD) to assist in the selection of the final point for the implantation of the DBS electrode. The acquired recordings reveal a persistent characteristic beta band peak in the power spectral density function of the Local Field Potential (LFP) signals. This peak is considered to lie at the core of the causality-effect relationships of the parkinsonian pathophysiology. Based on LFPs acquired from human subjects during DBS for PD, we constructed a computational model of the basal ganglia on the population level that generates LFPs to identify the critical pathophysiological alterations that lead to the expression of the beta band peak. To this end, we used experimental data reporting that the strengths of the synaptic connections are modified under dopamine depletion. The hypothesis that the altered dopaminergic modulation may affect both the amplitude and the time course of the postsynaptic potentials is validated by the model. The results suggest a pivotal role of both of these parameters to the pathophysiology of PD.
Collapse
Affiliation(s)
- George L Tsirogiannis
- Biomedical Simulations and Imaging Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece.
| | | | | | | |
Collapse
|
21
|
Smith KS, Tindell AJ, Aldridge JW, Berridge KC. Ventral pallidum roles in reward and motivation. Behav Brain Res 2008; 196:155-67. [PMID: 18955088 DOI: 10.1016/j.bbr.2008.09.038] [Citation(s) in RCA: 385] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 09/22/2008] [Indexed: 10/21/2022]
Abstract
In recent years the ventral pallidum has become a focus of great research interest as a mechanism of reward and incentive motivation. As a major output for limbic signals, the ventral pallidum was once associated primarily with motor functions rather than regarded as a reward structure in its own right. However, ample evidence now suggests that ventral pallidum function is a major mechanism of reward in the brain. We review data indicating that (1) an intact ventral pallidum is necessary for normal reward and motivation, (2) stimulated activation of ventral pallidum is sufficient to cause reward and motivation enhancements, and (3) activation patterns in ventral pallidum neurons specifically encode reward and motivation signals via phasic bursts of excitation to incentive and hedonic stimuli. We conclude that the ventral pallidum may serve as an important 'limbic final common pathway' for mesocorticolimbic processing of many rewards.
Collapse
Affiliation(s)
- Kyle S Smith
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
22
|
Aberrant hippocampal activity underlies the dopamine dysregulation in an animal model of schizophrenia. J Neurosci 2007; 27:11424-30. [PMID: 17942737 DOI: 10.1523/jneurosci.2847-07.2007] [Citation(s) in RCA: 328] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evidence supports a dysregulation of subcortical dopamine (DA) system function as a common etiology of psychosis; however, the factors responsible for this aberrant DA system responsivity have not been delineated. Here, we demonstrate in an animal model of schizophrenia that a pathologically enhanced drive from the ventral hippocampus (vHipp) can result in aberrant dopamine neuron signaling. Adult rats in which development was disrupted by prenatal methylazoxymethanol acetate (MAM) administration display a significantly greater number of spontaneously firing ventral tegmental DA neurons. This appears to be a consequence of excessive hippocampal activity because, in MAM-treated rats, vHipp inactivation completely reversed the elevated DA neuron population activity and also normalized the augmented amphetamine-induced locomotor behavior. These data provide a direct link between hippocampal dysfunction and the hyper-responsivity of the DA system that is believed to underlie the augmented response to amphetamine in animal models and psychosis in schizophrenia patients.
Collapse
|
23
|
Miyagawa Y, Tsujimura A, Fujita K, Matsuoka Y, Takahashi T, Takao T, Takada S, Matsumiya K, Osaki Y, Takasawa M, Oku N, Hatazawa J, Kaneko S, Okuyama A. Differential brain processing of audiovisual sexual stimuli in men: Comparative positron emission tomography study of the initiation and maintenance of penile erection during sexual arousal. Neuroimage 2007; 36:830-42. [PMID: 17493836 DOI: 10.1016/j.neuroimage.2007.03.055] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 02/25/2007] [Accepted: 03/15/2007] [Indexed: 01/18/2023] Open
Abstract
The human male psychosexual cycle consists of four phases: excitation, plateau, orgasm, and resolution. Identification of the specific neural substrates of each phase may provide information regarding the brain's pathophysiology of sexual dysfunction. We previously analyzed regional cerebral blood flow (rCBF) with H(2)15O-positron emission tomography (PET) during the excitation phase (initiation of penile erection) induced by audiovisual sexual stimuli (AVSS) and identified activation of the cerebellar vermis, the bilateral extrastriate cortex, and right orbitofrontal cortex, suggesting a role of cognition/emotion in the excitement phase. In the present study, we analyzed rCBF of the same six healthy volunteers during the plateau phase (maintenance of penile erection) induced by AVSS and compared the results with those of the excitation phase. Penile rigidity was monitored in real time with RigiScan Plus during PET scanning. Images were analyzed by statistical parametric mapping (SPM) software, and rCBF in the amygdala, hypothalamus, anterior cingulate, and insula was measured. During the plateau phase, primary subcortical activation was noted in the right ventral putamen, indicating motivational factors in the sexual response via the limbic reward circuit. A significant increase in rCBF in the left hypothalamus was also observed during the plateau phase. The right anterior cingulate and left insula were specifically activated during the excitation phase but not during the plateau phase. These results indicate a significant role of the ventral putamen and the hypothalamus in the plateau phase and confirm that paralimbic and limbic components of the human brain differentially coordinate the sexual response in a psychosexual phase-dependent manner.
Collapse
Affiliation(s)
- Yasushi Miyagawa
- Department of Urology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Humphries MD, Stewart RD, Gurney KN. A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J Neurosci 2007; 26:12921-42. [PMID: 17167083 PMCID: PMC6674973 DOI: 10.1523/jneurosci.3486-06.2006] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The basal ganglia (BG) have long been implicated in both motor function and dysfunction. It has been proposed that the BG form a centralized action selection circuit, resolving conflict between multiple neural systems competing for access to the final common motor pathway. We present a new spiking neuron model of the BG circuitry to test this proposal, incorporating all major features and many physiologically plausible details. We include the following: effects of dopamine in the subthalamic nucleus (STN) and globus pallidus (GP), transmission delays between neurons, and specific distributions of synaptic inputs over dendrites. All main parameters were derived from experimental studies. We find that the BG circuitry supports motor program selection and switching, which deteriorates under dopamine-depleted and dopamine-excessive conditions in a manner consistent with some pathologies associated with those dopamine states. We also validated the model against data describing oscillatory properties of BG. We find that the same model displayed detailed features of both gamma-band (30-80 Hz) and slow (approximately 1 Hz) oscillatory phenomena reported by Brown et al. (2002) and Magill et al. (2001), respectively. Only the parameters required to mimic experimental conditions (e.g., anesthetic) or manipulations (e.g., lesions) were changed. From the results, we derive the following novel predictions about the STN-GP feedback loop: (1) the loop is functionally decoupled by tonic dopamine under normal conditions and recoupled by dopamine depletion; (2) the loop does not show pacemaking activity under normal conditions in vivo (but does after combined dopamine depletion and cortical lesion); (3) the loop has a resonant frequency in the gamma-band.
Collapse
Affiliation(s)
- Mark D Humphries
- Adaptive Behaviour Research Group, Department of Psychology, University of Sheffield, Sheffield, S10 2TP, United Kingdom
| | | | | |
Collapse
|
25
|
Sarter M, Bruno JP, Parikh V, Martinez V, Kozak R, Richards JB. Forebrain dopaminergic-cholinergic interactions, attentional effort, psychostimulant addiction and schizophrenia. EXS 2006; 98:65-86. [PMID: 17019883 DOI: 10.1007/978-3-7643-7772-4_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Martin Sarter
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Sarter M, Gehring WJ, Kozak R. More attention must be paid: The neurobiology of attentional effort. ACTA ACUST UNITED AC 2006; 51:145-60. [PMID: 16530842 DOI: 10.1016/j.brainresrev.2005.11.002] [Citation(s) in RCA: 364] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 10/31/2005] [Accepted: 11/01/2005] [Indexed: 10/24/2022]
Abstract
Increases in attentional effort are defined as the motivated activation of attentional systems in response to detrimental challenges on attentional performance, such as the presentation of distractors, prolonged time-on-task, changing target stimulus characteristics and stimulus presentation parameters, circadian phase shifts, stress or sickness. Increases in attentional effort are motivated by the expected performance outcome; in the absence of such motivation, attentional performance continues to decline or may cease altogether. The beneficial effects of increased attentional effort are due in part to the activation of top-down mechanisms that act to optimize input detection and processing, thereby stabilizing or recovering attentional performance in response to challenges. Following a description of the psychological construct "attentional effort", evidence is reviewed indicating that increases in the activity of cortical cholinergic inputs represent a major component of the neuronal circuitry mediating increases in attentional effort. A neuronal model describes how error detection and reward loss, indicating declining performance, are integrated with motivational mechanisms on the basis of neuronal circuits between prefrontal/anterior cingulate and mesolimbic regions. The cortical cholinergic input system is activated by projections of mesolimbic structures to the basal forebrain cholinergic system. In prefrontal regions, increases in cholinergic activity are hypothesized to contribute to the activation of the anterior attention system and associated executive functions, particularly the top-down optimization of input processing in sensory regions. Moreover, and influenced in part by prefrontal projections to the basal forebrain, increases in cholinergic activity in sensory and other posterior cortical regions contribute directly to the modification of receptive field properties or the suppression of contextual information and, therefore, to the mediation of top-down effects. The definition of attentional effort as a cognitive incentive, and the description of a neuronal circuitry model that integrates brain systems involved in performance monitoring, the processing of incentives, activation of attention systems and modulation of input functions, suggest that 'attentional effort' represents a viable construct for cognitive neuroscience research.
Collapse
Affiliation(s)
- Martin Sarter
- Department of Psychology, University of Michigan, Ann Arbor, 48109, USA.
| | | | | |
Collapse
|
27
|
McDaid J, Dallimore JE, Mackie AR, Napier TC. Changes in accumbal and pallidal pCREB and deltaFosB in morphine-sensitized rats: correlations with receptor-evoked electrophysiological measures in the ventral pallidum. Neuropsychopharmacology 2006; 31:1212-26. [PMID: 16123760 PMCID: PMC1464405 DOI: 10.1038/sj.npp.1300854] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activation of mu-opioid receptors in the ventral pallidum (VP) is important for the induction of behavioral sensitization to morphine in rats. The present study was designed to ascertain if neurons within the VP demonstrate sensitization at a time when morphine-induced behavioral sensitization occurred (ie 3 or 14 days after five once-daily injections of 10 mg/kg i.p. morphine) in rats. Western blotting was used to evaluate transcription factors altered by opiates, CREB and deltaFosB. CREB levels did not change in the VP, but there was a significant decrease in levels of its active, phosphorylated form (pCREB) at both 3- and 14-days withdrawal. DeltaFosB levels were elevated following a 3-day withdrawal, but returned to normal by 14 days. This profile also was obtained from nucleus accumbens tissue. In a separate group of similarly treated rats, in vivo electrophysiological recordings of VP neuronal responses to microiontophoretically applied ligands were carried out after 14-days withdrawal. The firing rate effects of local applications of morphine were diminished in rats withdrawn from i.p. morphine. Repeated i.p. morphine did not alter GABA-mediated suppression of firing, or the rate enhancing effects of the D1 dopamine receptor agonist SKF82958 or glutamate. However, VP neurons from rats withdrawn from repeated i.p. morphine showed a higher propensity to enter a state of depolarization inactivation to locally applied glutamate. Overall, these findings reveal that decreased pCREB in brain regions such as the VP accompanies persistent behavioral sensitization to morphine and that this biochemical alteration may influence the excitability of neurons in this brain region.
Collapse
Affiliation(s)
- John McDaid
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago School of Medicine, Maywood, IL, USA
| | - Jeanine E Dallimore
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago School of Medicine, Maywood, IL, USA
| | - Alexander R Mackie
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago School of Medicine, Maywood, IL, USA
| | - T Celeste Napier
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago School of Medicine, Maywood, IL, USA
- *Correspondence: Dr TC Napier, Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago School of Medicine, 2160 South 1st Avenue, Maywood, IL 60153, USA, Tel: +1 708 216 8427, Fax: +1 708 216 6596, E-mail:
| |
Collapse
|
28
|
McDaid J, Dallimore JE, Mackie AR, Mickiewicz AL, Napier TC. Cross-sensitization to morphine in cocaine-sensitized rats: behavioral assessments correlate with enhanced responding of ventral pallidal neurons to morphine and glutamate, with diminished effects of GABA. J Pharmacol Exp Ther 2005; 313:1182-93. [PMID: 15722402 DOI: 10.1124/jpet.105.084038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Common neurobiological substrates contribute to the progressively increased behavioral effects (i.e., sensitization) that occur with repeated intermittent treatments of cocaine and morphine. Consequently, repeated exposure to cocaine can augment responding to morphine (termed cross-sensitization). Drug-induced sensitization in rats may model aspects of the dysfunction in motivation that are imposed by addiction. The ventral pallidum (VP) is involved in motivated behaviors and its function is altered by acute administration of cocaine and morphine, but the effects of repeated drug exposure remain unknown. Targeting this paucity, the present study evaluated electrophysiological changes in the VP of rats exposed to five once-daily cocaine treatments (15 mg/kg i.p.). This regimen also induced behavioral-sensitization that was expressed 3 days later when the rats received either an acute injection of cocaine (15 mg/kg i.p.) or morphine (10 mg/kg i.p.). VP neurons recorded in vivo 3 days after the repeated cocaine treatment regimen demonstrated increased excitatory responding to microiontophoretic applications of morphine and glutamate. The maximal effect (E(max)) was increased without altering potency, suggesting a change in the functional efficacy of the respective receptor systems. This did not represent a potentiation in transmission in general, for the effects of GABA were diminished. The results provide the first evidence for cellular adaptation in the VP after a sensitizing drug treatment paradigm and reveal that cross-sensitization of drug-induced behaviors temporally correlates with changes in VP neuronal responding. These findings advance an emerging theme that alterations in the VP may contribute to the increased motivation for drug seeking that occurs in drug-withdrawn addicts.
Collapse
Affiliation(s)
- J McDaid
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago, School of Medicine, Maywood, IL 60153-5515, USA
| | | | | | | | | |
Collapse
|
29
|
Heidenreich BA, Mitrovic I, Battaglia G, Napier TC. Limbic pallidal adaptations following long-term cessation of dopaminergic transmission: lack of upregulation of dopamine receptor function. Exp Neurol 2004; 186:145-57. [PMID: 15026253 DOI: 10.1016/j.expneurol.2003.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2003] [Accepted: 11/10/2003] [Indexed: 10/26/2022]
Abstract
Neurons in the ventral pallidum (VP) exhibit robust responding to activation of dopamine (DA) receptors of the D1 class. To determine if the VP adapts to chronic cessation of DA transmission, the present studies examined D1 receptor-mediated responses in the VP recorded extracellularly in chloral-hydrate anesthetized rats following destruction of DA neurons with 6-hydroxydopamine (6-OHDA) or long-term treatment with the D1 antagonist SCH23390. Indices of basal spiking (i.e., spontaneous firing rate and pattern) recorded 10-21 days after unilateral 6-OHDA treatment did not differ from controls. Moreover, DA depletion did not alter the proportion of VP neurons whose rate was enhanced with i.v. injections of the D1 agonist SKF38393, and the functional efficacy (Emax) and potency (ED50) were similar to controls. There also was no change in the direction of responses, the Emax or the ED50 measure of sensitivity (ECur50) to iontophoretic application of DA or SKF38393 in VP neurons. Forty-eight hours after 21 once-daily treatments with SCH23390, the number of [3H]SCH23390-labeled D1 receptors was increased in the striatum, but unchanged in the VP, globus pallidus, or septum. Accordingly, there was no functional upregulation of VP responses to i.v. SKF38393. Indeed, the proportion of SKF38393-sensitive neurons was decreased after chronic SCH23390. Distinguishing the VP from other forebrain regions, these findings indicate that basal spiking is not altered in the VP following chronic DA depletion, and that no upregulation of VP DA receptor function occurs following either dopaminergic lesions or chronic antagonism of D1 receptors.
Collapse
Affiliation(s)
- Byron A Heidenreich
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
30
|
Meredith GE, Switzer RC, Napier TC. Short-term, D2 receptor blockade induces synaptic degeneration, reduces levels of tyrosine hydroxylase and brain-derived neurotrophic factor, and enhances D2-mediated firing in the ventral pallidum. Brain Res 2004; 995:14-22. [PMID: 14644466 DOI: 10.1016/j.brainres.2003.09.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Repeated treatments with neuroleptics are associated with biochemical and morphological alterations in forebrain neurons as well as an upregulation of D2-mediated changes in neuronal function. The present study evaluated the histological and physiological effects of three once-daily treatments with two chemically divergent neuroleptics, haloperidol (1 mg/kg i.p./day) and eticlopride (3 mg/kg i.p./day), measured in rats 24 h after the last injection. It was determined that this short-term antagonism of D2-like receptors induced fiber and terminal degeneration and significantly decreased tyrosine hydroxylase (TH) and brain-derived neurotrophic factor (BDNF) immunoreactivity in the ventral pallidum (VP), as determined by optical density measurements. While other forebrain regions demonstrated changes in TH and BDNF, the neurodegeneration profile was unique to the VP. This was accompanied by an enhancement in the efficacy of the D2 agonist quinpirole to increase spiking rate of VP neurons recorded in chloral hydrate-anesthetized rats. These data indicate that short-term treatments with D2 antagonists are sufficient to induce changes in the biochemical and morphological profiles uniquely within the VP. Moreover, the functional ramifications of these changes appear to include profound alterations in the way dopamine regulates neuronal activity in this region.
Collapse
Affiliation(s)
- G E Meredith
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Finch University of Health Sciences, 3333 Green Bay Rd., North Chicago, IL 60064-3095, USA.
| | | | | |
Collapse
|
31
|
Raevskii VV, Dawe GS, Stevenson JD. Endogenous dopamine modulates corticopallidal influences via GABA. ACTA ACUST UNITED AC 2003; 33:839-44. [PMID: 14636002 DOI: 10.1023/a:1025113818854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Acute experiments on Sprague-Dawley rats were performed to study the effects of local application of D1 and D2 receptor antagonists (SCH 23390 and raclopride) on the responses of neurons in the globus pallidus induced by stimulation of the somatosensory cortex. SCH 23390 induced short-latency inhibition in response to stimulation of the cortex and blocked long-latency inhibition. Application of raclopride suppressed short-latency inhibition and induced a long-latency inhibitory response to stimulation of the cortex. It is suggested that these changes are based on modulation of GABA release from striopallidal terminals by endogenous dopamine.
Collapse
Affiliation(s)
- V V Raevskii
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerov Street, 117865 Moscow, Russia
| | | | | |
Collapse
|
32
|
Turner MS, Mignon L, Napier TC. Alterations in responses of ventral pallidal neurons to excitatory amino acids after long-term dopamine depletion. J Pharmacol Exp Ther 2002; 301:371-81. [PMID: 11907195 DOI: 10.1124/jpet.301.1.371] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The present study explored the possibility that excitatory amino acid (EAA) sensitivity within the ventral pallidum (VP) is altered by long-term removal of dopamine (DA). Electrophysiological experiments were conducted in chloral hydrate-anesthetized rats 21 to 28 days after they received unilateral substantia nigra injections of the dopaminergic toxin 6-hydroxydopamine (6-OHDA). VP neurons increased firing at low microiontophoretic ejection currents of the EAA agonists N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA); however, high currents decreased action potential amplitude and rapidly caused cessation of neuronal firing. These responses likely reflected the induction of depolarization block for they were reversed by coiontophoresis of the hyperpolarizing transmitter gamma-aminobutyric acid (GABA) at ejection current levels that normally suppressed firing. The ability of NMDA and AMPA to induce such inactivation was greater in the VP of 6-OHDA-lesioned hemispheres, but unchanged in reserpinized rats, verifying that the alterations in responding to NMDA were the result of chronic, rather than acute, DA removal. The adaptations do not appear to be the consequence of a diminished GABAergic tone for the ability of bicuculline to increase firing (due to blocking a tonic GABAergic input) was not changed. However, low ejection currents of GABA that were insufficient to alter firing rate greatly attenuated the ability of NMDA to induce an apparent depolarization inactivation when coiontophoresed with NMDA onto VP neurons of the lesioned, but not the unlesioned, hemisphere. These studies show that chronic DA removal altered the EAA-induced amplitude-decreasing (i.e., the apparent depolarization inactivation) effects in VP neurons in the absence of a decrease in GABAergic tone.
Collapse
Affiliation(s)
- Michael S Turner
- Department of Pharmacology and Experimental Therapeutics, and the Neuroscience Graduate Program, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153, USA
| | | | | |
Collapse
|
33
|
Mengual E, Pickel VM. Ultrastructural immunocytochemical localization of the dopamine D2 receptor and tyrosine hydroxylase in the rat ventral pallidum. Synapse 2002; 43:151-62. [PMID: 11793420 DOI: 10.1002/syn.10033] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The mesopallidal dopamine system plays a role in locomotor activity and reward. To understand the potential contribution of the dopamine D2 receptor (D2R) to the action of dopamine in the ventral pallidum (VP), we used electron microscopic immunocytochemistry to examine the cellular and subcellular localization of an antipeptide antiserum against the D2R in both ventromedial and dorsolateral VP compartments. In each region the majority of the total D2R-labeled profiles (n = 1,132) were axon terminals (55%) and small unmyelinated axons (27%). These terminals were often apposed to other axon terminals or dendrites and formed almost exclusively symmetric, inhibitory-type axodendritic synapses. Immunogold D2R labeling in axon terminals was seen on the plasmalemma and membranes of nearby synaptic vesicles. In ventral pallidal sections processed for dual detection of D2R peptide and the catecholamine-synthesizing enzyme tyrosine hydroxylase (TH), D2R labeling was detected in a few axons and axon terminals containing TH immunoreactivity as well as in axons contacted by TH-labeled terminals. In most cases, however, the D2R-labeled profiles were located at a distance from small axons and terminals containing TH. Our results provide the first ultrastructural evidence that D2Rs in the two VP subterritories are strategically located for primary involvement in modulation of the presynaptic release of nondopaminergic inhibitory transmitters. They also suggest that in this region the presynaptic D2 receptors are 1) minimally involved in autoregulation of dopaminergic transmission, and 2) differentially activated by dopamine, depending in part on levels and distance from release sites.
Collapse
Affiliation(s)
- Elisa Mengual
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 411 East 69th St., New York, NY 10021, USA
| | | |
Collapse
|
34
|
Mitrovic I, Napier TC. Mu and kappa opioid agonists modulate ventral tegmental area input to the ventral pallidum. Eur J Neurosci 2002; 15:257-68. [PMID: 11849293 DOI: 10.1046/j.0953-816x.2001.01860.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The ventral pallidum (VP) is situated at the convergence of midbrain dopamine and accumbal opioid efferent projections. Using in vivo electrophysiological procedures in chloral hydrate-anaesthetized rats, we examined whether discrete application of mu- [D-Ala2,N-Me-Phe4,Gly-ol5 (DAMGO)] or kappa- (U50488) opioid receptor agonists could alter VP responses to electrical stimulation of ventral tegmental area. Rate suppressions occurred frequently following ventral tegmental area stimulation. Consistent with an involvement of dopamine in this effect, none of the 12 spontaneously active ventral pallidal neurons recorded in rats that had monoamines depleted by reserpine responded to electrical stimulation of ventral tegmental area. Moreover, in intact rats, the dopamine antagonist flupenthixol attenuated evoked suppression in 100% of the neurons tested; however, the GABAA antagonist bicuculline was able to slightly attenuate the response in 50% of the neurons tested. These observations concur with our previous studies in indicating that ventral tegmental area stimulation releases dopamine (and sometimes GABA) onto ventral pallidal neurons. Both DAMGO and U50488 decreased the inhibitory effects of ventral tegmental area stimulation. These effects on the endogenously released transmitter differed from those seen with exogenously applied dopamine, for DAMGO did not alter the efficacy or potency of microiontophoretically applied dopamine. Taken together, these observations suggest that the interaction between DAMGO and dopamine does not occur at a site that is immediately postsynaptic to the dopaminergic input within the VP, but rather that opioid modulation involves mechanisms governing presynaptically released dopamine. These modulatory processes would enable ventral pallidal opioids to gate the influence of ventral tegmental area dopamine transmission on limbic system outputs at the level of the VP.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Dopamine/metabolism
- Electric Stimulation
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Evoked Potentials/drug effects
- Evoked Potentials/physiology
- Globus Pallidus/cytology
- Iontophoresis
- Male
- Neural Pathways
- Nucleus Accumbens/cytology
- Nucleus Accumbens/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Ventral Tegmental Area/cytology
- Ventral Tegmental Area/drug effects
- Ventral Tegmental Area/metabolism
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- Igor Mitrovic
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago Stritch School of Medicine, Building 102, 2160 South First Avenue, Maywood, IL 60153, USA
| | | |
Collapse
|
35
|
Regulation of limbic information outflow by the subthalamic nucleus: excitatory amino acid projections to the ventral pallidum. J Neurosci 2001. [PMID: 11306634 DOI: 10.1523/jneurosci.21-08-02820.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The subthalamic nucleus (STN), a component of the basal ganglia motor system, sends an excitatory amino acid (EAA)-containing projection to the ventral pallidum (VP), a major limbic system output region. The VP contains both NMDA and AMPA subtypes of EAA receptors. To characterize the physiology of the subthalamic pathway to the VP, and to determine the influence of EAA receptor subtypes, in vivo intracellular recordings, and in vivo extracellular recordings combined with microiontophoresis, were made from VP neurons in anesthetized rats. Of the intracellularly recorded neurons, 86% responded to STN stimulation, and these displayed EPSPs with an onset of 8.7 msec, consistent with a monosynaptic input. The EPSPs evoked in spontaneously firing neurons were nearly twice the amplitude of those in nonfiring cells (13.1 vs 6.8 mV, respectively). As neurons were depolarized by current injection, the latency for spiking decreased from 24.2 to 14.2 msec, although EPSP latency was unaffected. Eighty-seven percent of the extracellularly recorded VP neurons responded to STN stimulation with a rapid and robust enhancement of spiking; the response onset, like the EPSP onset, equaled 8.7 msec. Firing rate was enhanced by NMDA in 94% of the STN-excited cells, and AMPA increased firing in 94% as well. The NMDA-selective antagonist AP-5 attenuated 67% of the STN-evoked excitatory responses, and the AMPA-selective antagonist CNQX attenuated 52%. Both antagonists attenuated 33% of responses, and 78% were attenuated by at least one. This evidence suggests that a great majority of VP neurons are directly influenced by STN activation and that both NMDA and non-NMDA receptors are involved. Moreover, the VP response to STN stimulation appears to be strongly dependent on the depolarization state of the neuron.
Collapse
|
36
|
Arnold HM, Fadel J, Sarter M, Bruno JP. Amphetamine-stimulated cortical acetylcholine release: role of the basal forebrain. Brain Res 2001; 894:74-87. [PMID: 11245817 DOI: 10.1016/s0006-8993(00)03328-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Systemic administration of amphetamine results in increases in the release of acetylcholine in the cortex. Basal forebrain mediation of this effect was examined in three experiments using microdialysis in freely-moving rats. Experiment 1 examined whether dopamine receptor activity within the basal forebrain was necessary for amphetamine-induced increase in cortical acetylcholine by examining whether intra-basalis perfusion of dopamine antagonists attenuates this increase. Systemic administration of 2.0 mg/kg amphetamine increased dopamine efflux within the basal forebrain nearly 700% above basal levels. However, the increase in cortical acetylcholine efflux following amphetamine administration was unaffected by intra-basalis perfusions of high concentrations of D1- (100 microM SCH 23390) or D2-like (100 microM sulpiride) dopamine receptor antagonists. Experiments 2 and 3 determined whether glutamatergic or GABAergic local modulation of the excitability of the basal forebrain cholinergic neurons influences the ability of systemic amphetamine to increase cortical acetylcholine efflux. In Experiment 2, perfusion of kynurenate (1.0 mM), a non-selective glutamate receptor antagonist, into the basal forebrain attenuated the increase in cortical acetylcholine produced by amphetamine. Experiment 3 revealed that positive modulation of GABAergic transmission by bilateral intra-basalis infusion of the benzodiazepine receptor agonist chlordiazepoxide (40 microg/hemisphere) also attenuated the amphetamine-stimulated increase in cortical acetylcholine efflux. These data suggest that amphetamine increases cortical acetylcholine release via a complex neuronal network rather than simply increasing basal forebrain D1 or D2 receptor activity.
Collapse
Affiliation(s)
- H M Arnold
- Department of Psychology, 31 Townshend Hall, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
37
|
Kretschmer BD, Goiny M, Herrera-Marschitz M. Effect of intracerebral administration of NMDA and AMPA on dopamine and glutamate release in the ventral pallidum and on motor behavior. J Neurochem 2000; 74:2049-57. [PMID: 10800948 DOI: 10.1046/j.1471-4159.2000.0742049.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study investigates the modulation of the ventral tegmental area (VTA)-ventral pallidum (VP) dopaminergic system by glutamate agonists in rats. The glutamate receptor agonists N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) were infused via reversed microdialysis into the VTA, and dopamine (DA), glutamate, and aspartate levels in the VTA and ipsilateral VP were monitored together with motor behavior screened in an open field. NMDA (750 microM) infusion, as well as AMPA (50 microM) infusion, induced an increase of DA and glutamate levels in the VTA, followed by an increase of DA levels in the ipsilateral VP and by enhanced locomotor activity. The increase of DA in the VP was similar after administration of these two glutamate agonists, although motor activity was more pronounced and showed an earlier onset after NMDA infusion. Glutamate levels in the VP were not increased by the stimulation of DA release. It is concluded that DA is released from mesencephalic DA neurons projecting to the VP and that these neurons are controlled by glutamatergic systems, via NMDA and AMPA receptors. Thus, DA in the VP has to be considered as a substantial modulator. Dysregulation of the mesopallidal DA neurons, as well as their glutamatergic control, may play an additional or distinct role in disorders like schizophrenia and drug addiction.
Collapse
Affiliation(s)
- B D Kretschmer
- Department of Neuropharmacology, University of Tübingen, Germany.
| | | | | |
Collapse
|
38
|
Kretschmer BD. NMDA receptor antagonist-induced dopamine release in the ventral pallidum does not correlate with motor activation. Brain Res 2000; 859:147-56. [PMID: 10720624 DOI: 10.1016/s0006-8993(00)01989-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The ventral pallidum is the output structure of the nucleus accumbens in the ventral corticostriato-thalamocortical loop. Information processing in this loop is critically involved in motor behavior and reinforcement. The ventral pallidum receives a direct dopaminergic input from the ventral tegmental area, but also glutamatergic input from cortical and limbic areas. It has been assumed that dopamine release in the VP is indeed modulated by glutamate. The present study investigated the effects of NMDA receptor blockade on motor behavior and dopamine release in the ventral pallidum. In a first experiment, rats were implanted with microdialysis probes in the ventral pallidum and were systemically injected or locally perfused via the microdialysis probe with dizocilpine (0.32 mg/kg, 10 and 100 microM, respectively). Effects on dopamine and on locomotion were simultaneously monitored. In a second experiment, ventral pallidum was lesioned by quinolinic acid and the effects of systemic dizocilpine (0.08 and 0.16 mg/kg) on locomotion and stereotyped sniffing behavior were determined. It was found that systemic and local dizocilpine administration increased dopamine release in the ventral pallidum to a similar extent whereas only systemic treatment was accompanied by locomotor stimulation. Lesion of the ventral pallidum did not affect locomotion and stereotyped sniffing behavior induced by systemic dizocilpine treatment. Thus, DA release in the ventral pallidum that is elevated by blockade of NMDA receptors is not relevant for activation of motor behavior.
Collapse
Affiliation(s)
- B D Kretschmer
- University of Tübingen, Department of Neuropharmacology, Mohlstr. 54/1, 72074, Tübingen, Germany.
| |
Collapse
|
39
|
Abstract
In contrast to the well-established dopaminergic innervation of the neostriatum, the existence of dopaminergic innervation of the subthalamic nucleus and globus pallidus is controversial. In the present study, tyrosine hydroxylase (TH)-immunoreactive elements were observed by light microscopy after antigen retrieval in the subthalamic nucleus and in the internal and external segments of the globus pallidus in postmortem human brain. Small islands of apparent neostriatal tissue with abundant arborization of fine, TH-immunoreactive axons in the vicinity of calbindin-positive small neurons resembling neostriatal medium spiny neurons were present in the external segment of the globus pallidus. Large numbers of medium-large, TH-immunoreactive axons were observed passing above and through the subthalamic nucleus and through both pallidal segments; these are presumed to be axons of passage on their way to the neostriatum. In addition, fine, TH-immunoreactive axons with meandering courses, occasional branches, and irregular outlines, morphologically suggestive of terminal axon arborizations with varicosities, were seen in both pallidal segments, including the ventral pallidum, and the subthalamic nucleus, consistent with a catecholaminergic (probably dopaminergic) innervation of these nuclei. This finding suggests that, in Parkinson's disease and in animal models of this disorder, loss of dopaminergic innervation might contribute to abnormal neuronal activation in these three nuclei.
Collapse
Affiliation(s)
- J C Hedreen
- Department of Psychiatry, New England Medical Center and the Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| |
Collapse
|
40
|
Abstract
While the ventral pallidum (VP) is known to be important in relaying information between the nucleus accumbens and target structures, it has become clear that substantial information processing occurs within the VP. We evaluated the possibility that opioid modulation of other transmitters contained in VP afferents is involved in this process. Initially, we demonstrated that opioids hyperpolarized VP neurons in vitro and suppressed spontaneous firing in vivo. The ability of opioids to modulate other transmitters was determined using microiontophoretically applied ligands and extracellular recordings of VP neurons from chloral hydrate-anesthetized rats. With neurons that responded to iontophoresed opioid agonists, the ejection current was reduced to a level that was below that necessary to alter spontaneous firing. This "subthreshold" current was used to determine the ability of mu opioid receptor (microR) agonists to alter VP responses to endogenous (released by electrical activation of afferents) and exogenous (iontophoretically applied) transmitters. microR agonists decreased the variability and enhanced the acuity (e.g., "signal-to-noise" relationship) of VP responses to activation of glutamatergic inputs from the prefrontal cortex and amygdala. By contrast, microR agonists attenuated both the slow excitatory responses to substance P and GABA-induced inhibitions that resulted from activating the nucleus accumbens. Subthreshold opioids also attenuated inhibitory responses to stimulating midbrain dopaminergic cells. These results suggest that a consequence of opioid transmission in the VP is to negate the influence of some afferents (e.g., midbrain dopamine and accumbal GABA and substance P) while selectively potentiating the efficacy of others (e.g., cortical and amygdaloid glutamate). Interpreted in the context of opiate abuse, microR opioids in the VP may serve to diminish the influence of reinforcement (ventral tegmental area and nucleus accumbens) in the transduction of cognition (prefrontal cortex) and affect (amygdala) into behavior. This may contribute to drug craving that occurs even in the absence of reward.
Collapse
Affiliation(s)
- T C Napier
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago, Maywood, Illinois 60153, USA.
| | | |
Collapse
|