1
|
Lin R, Mitsuhashi H, Fiori LM, Denniston R, Ibrahim EC, Belzung C, Mechawar N, Turecki G. SNORA69 is up-regulated in the lateral habenula of individuals with major depressive disorder. Sci Rep 2024; 14:8258. [PMID: 38589409 PMCID: PMC11001866 DOI: 10.1038/s41598-024-58278-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Major depressive disorder (MDD) is a complex and potentially debilitating illness whose etiology and pathology remains unclear. Non-coding RNAs have been implicated in MDD, where they display differential expression in the brain and the periphery. In this study, we quantified small nucleolar RNA (snoRNA) expression by small RNA sequencing in the lateral habenula (LHb) of individuals with MDD (n = 15) and psychiatrically-healthy controls (n = 15). We uncovered five snoRNAs that exhibited differential expression between MDD and controls (FDR < 0.01). Specifically, SNORA69 showed increased expression in MDD and was technically validated via RT-qPCR. We further investigated the expression of Snora69 in the LHb and peripheral blood of an unpredicted chronic mild stress (UCMS) mouse model of depression. Snora69 was specifically up-regulated in mice that underwent the UCMS paradigm. SNORA69 is known to guide pseudouridylation onto 5.8S and 18S rRNAs. We quantified the relative abundance of pseudouridines on 5.8S and 18S rRNA in human post-mortem LHb samples and found increased abundance of pseudouridines in the MDD group. Overall, our findings indicate the importance of brain snoRNAs in the pathology of MDD. Future studies characterizing SNORA69's role in MDD pathology is warranted.
Collapse
Affiliation(s)
- Rixing Lin
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Haruka Mitsuhashi
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Laura M Fiori
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Ryan Denniston
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - El Cherif Ibrahim
- CNRS, INT, Institute Neuroscience Timone, Aix-Marseille Université, Marseille, France
| | - Catherine Belzung
- Imaging Brain and Neuropsychiatry iBraiN U1253, INSERM, Université de Tours, Tours, France
| | - Naguib Mechawar
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Gustavo Turecki
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Matveeva A, Vinogradov D, Zhuravlev E, Semenov D, Vlassov V, Stepanov G. Intron Editing Reveals SNORD-Dependent Maturation of the Small Nucleolar RNA Host Gene GAS5 in Human Cells. Int J Mol Sci 2023; 24:17621. [PMID: 38139448 PMCID: PMC10743478 DOI: 10.3390/ijms242417621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The GAS5 gene encodes a long non-coding RNA (lncRNA) and intron-located small nucleolar RNAs (snoRNAs). Its structure, splice variants, and diverse functions in mammalian cells have been thoroughly investigated. However, there are still no data on a successful knockout of GAS5 in human cells, with most of the loss-of-function experiments utilizing standard techniques to produce knockdowns. By using CRISPR/Cas9 to introduce double-strand breaks in the terminal intronic box C/D snoRNA genes (SNORDs), we created monoclonal cell lines carrying continuous deletions in one of the GAS5 alleles. The levels of GAS5-encoded box C/D snoRNAs and lncRNA GAS5 were assessed, and the formation of the novel splice variants was analyzed. To comprehensively evaluate the influence of specific SNORD mutations, human cell lines with individual mutations in SNORD74 and SNORD81 were obtained. Specific mutations in SNORD74 led to the downregulation of all GAS5-encoded SNORDs and GAS5 lncRNA. Further analysis revealed that SNORD74 contains a specific regulatory element modulating the maturation of the GAS5 precursor transcript. The results demonstrate that the maturation of GAS5 occurs through the m6A-associated pathway in a SNORD-dependent manner, which is a quite intriguing epitranscriptomic mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | - Grigory Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (A.M.); (D.V.); (E.Z.); (D.S.)
| |
Collapse
|
3
|
Talross GJS, Deryusheva S, Gall JG. Stable lariats bearing a snoRNA (slb-snoRNA) in eukaryotic cells: A level of regulation for guide RNAs. Proc Natl Acad Sci U S A 2021; 118:e2114156118. [PMID: 34725166 PMCID: PMC8609340 DOI: 10.1073/pnas.2114156118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 12/31/2022] Open
Abstract
Small nucleolar (sno)RNAs guide posttranscriptional modifications essential for the biogenesis and function of their target. The majority of snoRNAs in higher eukaryotes are encoded within introns. They are first released from nascent transcripts in the form of a lariat and rapidly targeted by the debranching enzyme and nuclear exonucleases for linearization and further trimming. In this study, we report that some snoRNAs are encoded within unusually stable intronic RNAs. These intronic sequences can escape the debranching enzyme and accumulate as lariats. Stable lariats bearing a snoRNA, or slb-snoRNA, are associated with snoRNA binding proteins but do not guide posttranscriptional modification. While most slb-snoRNAs accumulate in the nucleus, some can be exported to the cytoplasm. We find that this export competes with snoRNA maturation. Slb-snoRNAs provide a previously unknown layer of regulation to snoRNA and snoRNA binding proteins.
Collapse
Affiliation(s)
- Gaëlle J S Talross
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Svetlana Deryusheva
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Joseph G Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| |
Collapse
|
4
|
Glavan D, Gheorman V, Gresita A, Hermann DM, Udristoiu I, Popa-Wagner A. Identification of transcriptome alterations in the prefrontal cortex, hippocampus, amygdala and hippocampus of suicide victims. Sci Rep 2021; 11:18853. [PMID: 34552157 PMCID: PMC8458545 DOI: 10.1038/s41598-021-98210-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/30/2021] [Indexed: 11/09/2022] Open
Abstract
Suicide is one of the leading causes of death globally for all ages, and as such presents a very serious problem for clinicians worldwide. However, the underlying neurobiological pathology remains to a large extent unknown. In order to address this gap, we have carried out a genome-wide investigation of the gene expression in the amygdala, hippocampus, prefrontal cortex and thalamus in post-mortem brain samples obtained from 20 suicide completers and 7 control subjects. By KEGG enrichment analysis indicated we identified novel clusters of downregulated pathways involved in antigen neutralization and autoimmune thyroid disease (amygdala, thalamus), decreased axonal plasticity in the hippocampus. Two upregulated pathways were involved in neuronal death in the hippocampus and olfactory transduction in the thalamus and the prefrontal cortex. Autoimmune thyroid disease pathway was downregulated only in females. Metabolic pathways involved in Notch signaling amino acid metabolism and unsaturated lipid synthesis were thalamus-specific. Suicide-associated changes in the expression of several genes and pseudogenes that point to various functional mechanisms possibly implicated in the pathology of suicide. Two genes (SNORA13 and RNU4-2) involved in RNA processing were common to all brain regions analyzed. Most of the identified gene expression changes were related to region-specific dysregulated manifestation of genetic and epigenetic mechanisms underlying neurodevelopmental disorders (SNORD114-10, SUSd1), motivation, addiction and motor disorders (CHRNA6), long-term depression (RAB3B), stress response, major depression and schizophrenia (GFAP), signal transduction at the neurovascular unit (NEXN) and inhibitory neurotransmission in spatial learning, neural plasticity (CALB2; CLIC6, ENPP1). Some of the differentially expressed genes were brain specific non-coding RNAs involved in the regulation of translation (SNORA13). One, (PARM1) is a potential oncogene and prognostic biomarker for colorectal cancer with no known function in the brain. Disturbed gene expression involved in antigen neutralization, autoimmunity, neural plasticity, stress response, signal transduction at the neurovascular unit, dysregulated nuclear RNA processing and translation and epigenetic imprinting signatures is associated with suicide and point to regulatory non-coding RNAs as potential targets of new drugs development.
Collapse
Affiliation(s)
- Daniela Glavan
- Department of Psychiatry, University of Medicine and Pharmacy, Craiova, Romania
| | - Victor Gheorman
- Department of Psychiatry, University of Medicine and Pharmacy, Craiova, Romania
| | - Andrei Gresita
- Griffith University Menzies Health Institute of Queensland, Gold Coast Campus, Brisbane, QLD, 4000, Australia
| | - Dirk M Hermann
- Chair of Vascular Neurology, Dementia and Ageing Research, Department of Neurology, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Ion Udristoiu
- Department of Psychiatry, University of Medicine and Pharmacy, Craiova, Romania.
| | - Aurel Popa-Wagner
- Griffith University Menzies Health Institute of Queensland, Gold Coast Campus, Brisbane, QLD, 4000, Australia. .,Chair of Vascular Neurology, Dementia and Ageing Research, Department of Neurology, University Hospital Essen, University of Duisburg, Essen, Germany.
| |
Collapse
|
5
|
Nuthikattu S, Milenkovic D, Rutledge JC, Villablanca AC. Lipotoxic Injury Differentially Regulates Brain Microvascular Gene Expression in Male Mice. Nutrients 2020; 12:E1771. [PMID: 32545722 PMCID: PMC7353447 DOI: 10.3390/nu12061771] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022] Open
Abstract
The Western diet (WD) and hyperlipidemia are risk factors for vascular disease, dementia, and cognitive impairment. However, the molecular mechanisms are poorly understood. This pilot study investigated the genomic pathways by which the WD and hyperlipidemia regulate gene expression in brain microvessels. Five-week-old C57BL/6J wild type (WT) control and low-density lipoprotein receptor deficient (LDL-R-/-) male mice were fed the WD for eight weeks. Differential gene expression, gene networks and pathways, transcription factors, and non-protein coding RNAs were evaluated by a genome-wide microarray and bioinformatics analysis of laser-captured hippocampal microvessels. The WD resulted in the differential expression of 1972 genes. Much of the differentially expressed gene (DEG) was attributable to the differential regulation of cell signaling proteins and their transcription factors, approximately 4% was attributable to the differential expression of miRNAs, and 10% was due to other non-protein coding RNAs, primarily long non-coding RNAs (lncRNAs) and small nucleolar RNAs (snoRNAs) not previously described to be modified by the WD. Lipotoxic injury resulted in complex and multilevel molecular regulation of the hippocampal microvasculature involving transcriptional and post-transcriptional regulation and may provide a molecular basis for a better understanding of hyperlipidemia-associated dementia risk.
Collapse
Affiliation(s)
- Saivageethi Nuthikattu
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, One Shields Ave., The Grove, Rm 1159, Davis, CA 95616, USA; (S.N.); (D.M.); (J.C.R.)
| | - Dragan Milenkovic
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, One Shields Ave., The Grove, Rm 1159, Davis, CA 95616, USA; (S.N.); (D.M.); (J.C.R.)
- INRA, UNH, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - John C. Rutledge
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, One Shields Ave., The Grove, Rm 1159, Davis, CA 95616, USA; (S.N.); (D.M.); (J.C.R.)
| | - Amparo C. Villablanca
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, One Shields Ave., The Grove, Rm 1159, Davis, CA 95616, USA; (S.N.); (D.M.); (J.C.R.)
| |
Collapse
|
6
|
Bratkovič T, Božič J, Rogelj B. Functional diversity of small nucleolar RNAs. Nucleic Acids Res 2020; 48:1627-1651. [PMID: 31828325 PMCID: PMC7038934 DOI: 10.1093/nar/gkz1140] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/17/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are short non-protein-coding RNAs with a long-recognized role in tuning ribosomal and spliceosomal function by guiding ribose methylation and pseudouridylation at targeted nucleotide residues of ribosomal and small nuclear RNAs, respectively. SnoRNAs are increasingly being implicated in regulation of new types of post-transcriptional processes, for example rRNA acetylation, modulation of splicing patterns, control of mRNA abundance and translational efficiency, or they themselves are processed to shorter stable RNA species that seem to be the principal or alternative bioactive isoform. Intriguingly, some display unusual cellular localization under exogenous stimuli, or tissue-specific distribution. Here, we discuss the new and unforeseen roles attributed to snoRNAs, focusing on the presumed mechanisms of action. Furthermore, we review the experimental approaches to study snoRNA function, including high resolution RNA:protein and RNA:RNA interaction mapping, techniques for analyzing modifications on targeted RNAs, and cellular and animal models used in snoRNA biology research.
Collapse
Affiliation(s)
- Tomaž Bratkovič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI1000 Ljubljana, Slovenia
| | - Janja Božič
- Jozef Stefan Institute, Department of Biotechnology, Jamova cesta 39, SI1000 Ljubljana, Slovenia.,Biomedical Research Institute BRIS, Puhova ulica 10, SI1000 Ljubljana, Slovenia
| | - Boris Rogelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI1000 Ljubljana, Slovenia.,Jozef Stefan Institute, Department of Biotechnology, Jamova cesta 39, SI1000 Ljubljana, Slovenia.,Biomedical Research Institute BRIS, Puhova ulica 10, SI1000 Ljubljana, Slovenia.,University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Nuthikattu S, Milenkovic D, Rutledge J, Villablanca A. The Western Diet Regulates Hippocampal Microvascular Gene Expression: An Integrated Genomic Analyses in Female Mice. Sci Rep 2019; 9:19058. [PMID: 31836762 PMCID: PMC6911042 DOI: 10.1038/s41598-019-55533-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/22/2019] [Indexed: 01/05/2023] Open
Abstract
Hyperlipidemia is a risk factor for dementia, and chronic consumption of a Western Diet (WD) is associated with cognitive impairment. However, the molecular mechanisms underlying the development of microvascular disease in the memory centers of the brain are poorly understood. This pilot study investigated the nutrigenomic pathways by which the WD regulates gene expression in hippocampal brain microvessels of female mice. Five-week-old female low-density lipoprotein receptor deficient (LDL-R−/−) and C57BL/6J wild type (WT) mice were fed a chow or WD for 8 weeks. Metabolics for lipids, glucose and insulin were determined. Differential gene expression, gene networks and pathways, transcription factors, and non-protein coding RNAs were evaluated by genome-wide microarray and bioinformatics analysis of laser captured hippocampal microvessels. The WD resulted in differential expression of 2,412 genes. The majority of differential gene expression was attributable to differential regulation of cell signaling proteins and their transcription factors, approximately 7% was attributable to differential expression of miRNAs, and a lesser proportion was due to other non-protein coding RNAs, primarily long non-coding RNAs (lncRNAs) and small nucleolar RNAs (snoRNAs) not previously described to be modified by the WD in females. Our findings revealed that chronic consumption of the WD resulted in integrated multilevel molecular regulation of the hippocampal microvasculature of female mice and may provide one of the mechanisms underlying vascular dementia.
Collapse
Affiliation(s)
- Saivageethi Nuthikattu
- Division of Cardiovascular Medicine, University of California, Davis, Davis, California, USA
| | - Dragan Milenkovic
- Division of Cardiovascular Medicine, University of California, Davis, Davis, California, USA.,Université Clermont Auvergne, INRA, UNH, CRNH Auvergne, F-63000, Clermont-Ferrand, France
| | - John Rutledge
- Division of Cardiovascular Medicine, University of California, Davis, Davis, California, USA
| | - Amparo Villablanca
- Division of Cardiovascular Medicine, University of California, Davis, Davis, California, USA.
| |
Collapse
|
8
|
Leighton LJ, Bredy TW. Functional Interplay between Small Non-Coding RNAs and RNA Modification in the Brain. Noncoding RNA 2018; 4:E15. [PMID: 29880782 PMCID: PMC6027130 DOI: 10.3390/ncrna4020015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022] Open
Abstract
Small non-coding RNAs are essential for transcription, translation and gene regulation in all cell types, but are particularly important in neurons, with known roles in neurodevelopment, neuroplasticity and neurological disease. Many small non-coding RNAs are directly involved in the post-transcriptional modification of other RNA species, while others are themselves substrates for modification, or are functionally modulated by modification of their target RNAs. In this review, we explore the known and potential functions of several distinct classes of small non-coding RNAs in the mammalian brain, focusing on the newly recognised interplay between the epitranscriptome and the activity of small RNAs. We discuss the potential for this relationship to influence the spatial and temporal dynamics of gene activation in the brain, and predict that further research in the field of epitranscriptomics will identify interactions between small RNAs and RNA modifications which are essential for higher order brain functions such as learning and memory.
Collapse
Affiliation(s)
- Laura J Leighton
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Timothy W Bredy
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
9
|
Gibbons A, Udawela M, Dean B. Non-Coding RNA as Novel Players in the Pathophysiology of Schizophrenia. Noncoding RNA 2018; 4:E11. [PMID: 29657307 PMCID: PMC6027250 DOI: 10.3390/ncrna4020011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia is associated with diverse changes in the brain's transcriptome and proteome. Underlying these changes is the complex dysregulation of gene expression and protein production that varies both spatially across brain regions and temporally with the progression of the illness. The growing body of literature showing changes in non-coding RNA in individuals with schizophrenia offers new insights into the mechanisms causing this dysregulation. A large number of studies have reported that the expression of microRNA (miRNA) is altered in the brains of individuals with schizophrenia. This evidence is complemented by findings that single nucleotide polymorphisms (SNPs) in miRNA host gene sequences can confer an increased risk of developing the disorder. Additionally, recent evidence suggests the expression of other non-coding RNAs, such as small nucleolar RNA and long non-coding RNA, may also be affected in schizophrenia. Understanding how these changes in non-coding RNAs contribute to the development and progression of schizophrenia offers potential avenues for the better treatment and diagnosis of the disorder. This review will focus on the evidence supporting the involvement of non-coding RNA in schizophrenia and its therapeutic potential.
Collapse
Affiliation(s)
- Andrew Gibbons
- The Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia.
- The Department of Psychiatry, the University of Melbourne, Parkville, Victoria, Australia.
| | - Madhara Udawela
- The Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia.
| | - Brian Dean
- The Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia.
- The Centre for Mental Health, Swinburne University of Technology, Hawthorn, Victoria, Australia.
| |
Collapse
|
10
|
Leighton LJ, Ke K, Zajaczkowski EL, Edmunds J, Spitale RC, Bredy TW. Experience-dependent neural plasticity, learning, and memory in the era of epitranscriptomics. GENES, BRAIN, AND BEHAVIOR 2018; 17:e12426. [PMID: 28926184 PMCID: PMC5858957 DOI: 10.1111/gbb.12426] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 12/23/2022]
Abstract
In this short review, we highlight recent findings in the emerging field of epitranscriptomic mechanisms and discuss their potential role in neural plasticity, learning and memory. These include the influence of RNA modifications on activity-induced RNA structure states, RNA editing and RNA localization, and how qualitative state changes in RNA increase the functional diversity and information-carrying capacity of RNA molecules. We predict that RNA modifications may be just as important for synaptic plasticity and memory as quantitative changes in transcript and protein abundance, but with the added advantage of not being required to signal back to the nucleus, and therefore better suited to be coordinated with the temporal dynamics of learning.
Collapse
Affiliation(s)
- Laura J. Leighton
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia 4072
| | - Ke Ke
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA 92697
| | - Esmi L. Zajaczkowski
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia 4072
| | - Jordan Edmunds
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia 4072
| | - Robert C. Spitale
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA 92697
| | - Timothy W. Bredy
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia 4072
| |
Collapse
|
11
|
Cavaillé J. Box C/D small nucleolar RNA genes and the Prader-Willi syndrome: a complex interplay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28296064 DOI: 10.1002/wrna.1417] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 12/22/2022]
Abstract
The nucleolus of mammalian cells contains hundreds of box C/D small nucleolar RNAs (SNORDs). Through their ability to base pair with ribosomal RNA precursors, most play important roles in the synthesis and/or activity of ribosomes, either by guiding sequence-specific 2'-O-methylations or by facilitating RNA folding and cleavages. A growing number of SNORD genes with elusive functions have been discovered recently. Intriguingly, the vast majority of them are located in two large, imprinted gene clusters at human chromosome region 15q11q13 (the SNURF-SNRPN domain) and at 14q32 (the DLK1-DIO3 domain) where they are expressed, respectively, only from the paternally and maternally inherited alleles. These placental mammal-specific SNORD genes have many features of the canonical SNORDs that guide 2'-O-methylations, yet they lack obvious complementarity with ribosomal RNAs and, surprisingly, they are processed from large, tandemly repeated genes expressed preferentially in the brain. This review summarizes our understanding of the biology of these peculiar SNORD genes, focusing particularly on SNORD115 and SNORD116 in the SNURF-SNRPN domain. It examines the growing evidence that altered levels of these SNORDs and/or their host-gene transcripts may be a primary cause of Prader-Willi syndrome (PWS; a rare disorder characterized by overeating and obesity) as well as abnormalities in signaling through the 5-HT2C serotonin receptor. Finally, the hypothesis that PWS may be a ribosomopathy (ribosomal disease) is also discussed. WIREs RNA 2017, 8:e1417. doi: 10.1002/wrna.1417 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jérôme Cavaillé
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse; UPS and CNRS, LMBE, Toulouse, France
| |
Collapse
|
12
|
Poplawski SG, Peixoto L, Porcari GS, Wimmer ME, McNally AG, Mizuno K, Giese KP, Chatterjee S, Koberstein JN, Risso D, Speed TP, Abel T. Contextual fear conditioning induces differential alternative splicing. Neurobiol Learn Mem 2016; 134 Pt B:221-35. [PMID: 27451143 DOI: 10.1016/j.nlm.2016.07.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/16/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022]
Abstract
The process of memory consolidation requires transcription and translation to form long-term memories. Significant effort has been dedicated to understanding changes in hippocampal gene expression after contextual fear conditioning. However, alternative splicing by differential transcript regulation during this time period has received less attention. Here, we use RNA-seq to determine exon-level changes in expression after contextual fear conditioning and retrieval. Our work reveals that a short variant of Homer1, Ania-3, is regulated by contextual fear conditioning. The ribosome biogenesis regulator Las1l, small nucleolar RNA Snord14e, and the RNA-binding protein Rbm3 also change specific transcript usage after fear conditioning. The changes in Ania-3 and Las1l are specific to either the new context or the context-shock association, while the changes in Rbm3 occur after context or shock only. Our analysis revealed novel transcript regulation of previously undetected changes after learning, revealing the importance of high throughput sequencing approaches in the study of gene expression changes after learning.
Collapse
Affiliation(s)
- Shane G Poplawski
- Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Lucia Peixoto
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA; Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Giulia S Porcari
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathieu E Wimmer
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna G McNally
- Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Keiko Mizuno
- Centre for the Cellular Basis of Behaviour, King's College London, London, UK
| | - K Peter Giese
- Centre for the Cellular Basis of Behaviour, King's College London, London, UK
| | | | - John N Koberstein
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Davide Risso
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
| | - Terence P Speed
- Department of Statistics, University of California, Berkeley, CA, USA; Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Mathematics and Statistics, The University of Melbourne, Victoria, Australia
| | - Ted Abel
- Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Peixoto LL, Wimmer ME, Poplawski SG, Tudor JC, Kenworthy CA, Liu S, Mizuno K, Garcia BA, Zhang NR, Giese K, Abel T. Memory acquisition and retrieval impact different epigenetic processes that regulate gene expression. BMC Genomics 2015; 16 Suppl 5:S5. [PMID: 26040834 PMCID: PMC4460846 DOI: 10.1186/1471-2164-16-s5-s5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background A fundamental question in neuroscience is how memories are stored and retrieved in the brain. Long-term memory formation requires transcription, translation and epigenetic processes that control gene expression. Thus, characterizing genome-wide the transcriptional changes that occur after memory acquisition and retrieval is of broad interest and importance. Genome-wide technologies are commonly used to interrogate transcriptional changes in discovery-based approaches. Their ability to increase scientific insight beyond traditional candidate gene approaches, however, is usually hindered by batch effects and other sources of unwanted variation, which are particularly hard to control in the study of brain and behavior. Results We examined genome-wide gene expression after contextual conditioning in the mouse hippocampus, a brain region essential for learning and memory, at all the time-points in which inhibiting transcription has been shown to impair memory formation. We show that most of the variance in gene expression is not due to conditioning and that by removing unwanted variance through additional normalization we are able provide novel biological insights. In particular, we show that genes downregulated by memory acquisition and retrieval impact different functions: chromatin assembly and RNA processing, respectively. Levels of histone 2A variant H2AB are reduced only following acquisition, a finding we confirmed using quantitative proteomics. On the other hand, splicing factor Rbfox1 and NMDA receptor-dependent microRNA miR-219 are only downregulated after retrieval, accompanied by an increase in protein levels of miR-219 target CAMKIIγ. Conclusions We provide a thorough characterization of coding and non-coding gene expression during long-term memory formation. We demonstrate that unwanted variance dominates the signal in transcriptional studies of learning and memory and introduce the removal of unwanted variance through normalization as a necessary step for the analysis of genome-wide transcriptional studies in the context of brain and behavior. We show for the first time that histone variants are downregulated after memory acquisition, and splicing factors and microRNAs after memory retrieval. Our results provide mechanistic insights into the molecular basis of cognition by highlighting the differential involvement of epigenetic mechanisms, such as histone variants and post-transcriptional RNA regulation, after acquisition and retrieval of memory.
Collapse
|
14
|
Kishimoto R, Tamada K, Liu X, Okubo H, Ise S, Ohta H, Ruf S, Nakatani J, Kohno N, Spitz F, Takumi T. Model mice for 15q11-13 duplication syndrome exhibit late-onset obesity and altered lipid metabolism. Hum Mol Genet 2015; 24:4559-72. [PMID: 26002101 DOI: 10.1093/hmg/ddv187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/18/2015] [Indexed: 12/27/2022] Open
Abstract
Copy number variations on human chromosome 15q11-q13 have been implicated in several neurodevelopmental disorders. A paternal loss or duplication of the Prader-Willi syndrome/Angelman syndrome (PWS/AS) region confers a risk of obesity, although the mechanism remains a mystery due to a lack of an animal model that accurately recreates the obesity phenotype. We performed detailed analyses of mice with duplication of PWS/AS locus (6 Mb) generated by chromosome engineering and found that animals with a paternal duplication of this region (patDp/+) show late-onset obesity, high sensitivity for high-fat diet, high levels of blood leptin and insulin without an increase in food intake. We show that prior to becoming obese, young patDp/+ mice already had enlarged white adipocytes. Transcriptome analysis of adipose tissue revealed an up-regulation of Secreted frizzled-related protein 5 (Sfrp5), known to promote adipogenesis. We additionally generated a new mouse model of paternal duplication focusing on a 3 Mb region (3 Mb patDp/+) within the PWS/AS locus. These mice recapitulate the obese phenotypes including expansion of visceral adipose tissue. Our results suggest paternally expressed genes in PWS/AS locus play a significant role for the obesity and identify new potential targets for future research and treatment of obesity.
Collapse
Affiliation(s)
- Rui Kishimoto
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan, Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima 734-8553, Japan
| | - Kota Tamada
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan, Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima 734-8553, Japan
| | - Xiaoxi Liu
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Hiroko Okubo
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Satoko Ise
- Banyu Tsukuba Research Institute, Tsukuba, Ibaraki 300-2611, Japan
| | - Hisashi Ohta
- Banyu Tsukuba Research Institute, Tsukuba, Ibaraki 300-2611, Japan
| | - Sandra Ruf
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jin Nakatani
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Ohtsu, Shiga 520-2192, Japan and
| | - Nobuoki Kohno
- Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima 734-8553, Japan
| | - François Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan, Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima 734-8553, Japan, JST, CREST, Tokyo, Japan
| |
Collapse
|
15
|
Dupuis-Sandoval F, Poirier M, Scott MS. The emerging landscape of small nucleolar RNAs in cell biology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:381-97. [PMID: 25879954 PMCID: PMC4696412 DOI: 10.1002/wrna.1284] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 01/07/2023]
Abstract
Small nucleolar RNAs (snoRNAs) are a large class of small noncoding RNAs present in all eukaryotes sequenced thus far. As a family, they have been well characterized as playing a central role in ribosome biogenesis, guiding either the sequence-specific chemical modification of pre-rRNA (ribosomal RNA) or its processing. However, in higher eukaryotes, numerous orphan snoRNAs were described over a decade ago, with no known target or ascribed function, suggesting the possibility of alternative cellular functionality. In recent years, thanks in great part to advances in sequencing methodologies, we have seen many examples of the diversity that exists in the snoRNA family on multiple levels. In this review, we discuss the identification of novel snoRNA members, of unexpected binding partners, as well as the clarification and extension of the snoRNA target space and the characterization of diverse new noncanonical functions, painting a new and extended picture of the snoRNA landscape. Under the deluge of novel features and functions that have recently come to light, snoRNAs emerge as a central, dynamic, and highly versatile group of small regulatory RNAs. WIREs RNA 2015, 6:381–397. doi: 10.1002/wrna.1284
Collapse
Affiliation(s)
- Fabien Dupuis-Sandoval
- Biochemistry Department, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Mikaël Poirier
- Biochemistry Department, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Michelle S Scott
- Biochemistry Department and RNA Group, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
16
|
Bombail V, Qing W, Chapman KE, Holmes MC. Prevention of 5-hydroxytryptamine2C receptor RNA editing and alternate splicing in C57BL/6 mice activates the hypothalamic-pituitary-adrenal axis and alters mood. Eur J Neurosci 2014; 40:3663-73. [PMID: 25257581 PMCID: PMC4282755 DOI: 10.1111/ejn.12727] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 08/06/2014] [Accepted: 08/20/2014] [Indexed: 11/26/2022]
Abstract
The 5-hydroxytryptamine2C (5-HT)2C receptor is widely implicated in the aetiology of affective and eating disorders as well as regulation of the hypothalamo-pituitary-adrenal axis. Signalling through this receptor is regulated by A-to-I RNA editing, affecting three amino acids in the protein sequence, with unedited transcripts encoding a receptor (INI) that, in vitro, is hyperactive compared with edited isoforms. Targeted alteration (knock-in) of the Htr2c gene to generate 'INI' mice with no alternate splicing, solely expressing the full-length unedited isoform, did not produce an overt metabolic phenotype or altered anxiety behaviour, but did display reduced depressive-like and fear-associated behaviours. INI mice exhibited a hyperactive hypothalamo-pituitary-adrenal axis, with increased nadir plasma corticosterone and corticotrophin-releasing hormone expression in the hypothalamus but responded normally to chronic stress and showed normal circadian activity and activity in a novel environment. The circadian patterns of 5-HT2C receptor mRNA and mbii52, a snoRNA known to regulate RNA editing and RNA splicing of 5-HT2C receptor pre-mRNA, were altered in INI mice compared with wild-type control mice. Moreover, levels of 5-HT1A receptor mRNA were increased in the hippocampus of INI mice. These gene expression changes may underpin the neuroendocrine and behavioural changes observed in INI mice. However, the phenotype of INI mice was not consistent with a globally hyperactive INI receptor encoded by the unedited transcript in the absence of alternate splicing. Hence, the in vivo outcome of RNA editing may be neuronal cell type specific.
Collapse
Affiliation(s)
- Vincent Bombail
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
17
|
Abstract
Discoveries over the past decade portend a paradigm shift in molecular biology. Evidence suggests that RNA is not only functional as a messenger between DNA and protein but also involved in the regulation of genome organization and gene expression, which is increasingly elaborate in complex organisms. Regulatory RNA seems to operate at many levels; in particular, it plays an important part in the epigenetic processes that control differentiation and development. These discoveries suggest a central role for RNA in human evolution and ontogeny. Here, we review the emergence of the previously unsuspected world of regulatory RNA from a historical perspective.
Collapse
Affiliation(s)
- Kevin V Morris
- School of Biotechnology and Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; and Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John S Mattick
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; the School of Biotechnology and Biomedical Sciences, and St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
18
|
Bratkovič T, Rogelj B. The many faces of small nucleolar RNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:438-43. [PMID: 24735946 DOI: 10.1016/j.bbagrm.2014.04.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 12/15/2022]
Abstract
Small nucleolar RNAs (snoRNAs) are a class of evolutionally conserved non-coding RNAs traditionally associated with nucleotide modifications in other RNA species. Acting as guides pairing with ribosomal (rRNA) and small nuclear RNAs (snRNAs), snoRNAs direct partner enzymes to specific sites for uridine isomerization or ribose methylation, thereby influencing stability, folding and protein-interacting properties of target RNAs. In recent years, however, numerous non-canonical functions have also been ascribed to certain members of the snoRNA group, ranging from regulation of mRNA editing and/or alternative splicing to posttranscriptional gene silencing by a yet poorly understood pathway that may involve microRNA-like mechanisms. While some of these intriguing snoRNAs (the so-called orphan snoRNAs) have no sequence complementarity to rRNA or snRNA, others apparently display dual functionality, performing both traditional and newly elucidated functions. Here, we review the effects elicited by non-canonical snoRNA activities.
Collapse
Affiliation(s)
- Tomaž Bratkovič
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Biology, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Boris Rogelj
- Jozef Stefan Institute, Department of Biotechnology, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
19
|
Barry G. Integrating the roles of long and small non-coding RNA in brain function and disease. Mol Psychiatry 2014; 19:410-6. [PMID: 24468823 DOI: 10.1038/mp.2013.196] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 12/20/2022]
Abstract
Regulatory RNA is emerging as the major architect of cognitive evolution and innovation in the mammalian brain. While the protein machinery has remained largely constant throughout animal evolution, the non protein-coding transcriptome has expanded considerably to provide essential and widespread cellular regulation, partly through directing generic protein function. Both long (long non-coding RNA) and small non-coding RNAs (for example, microRNA) have been demonstrated to be essential for brain development and higher cognitive abilities, and to be involved in psychiatric disease. Long non-coding RNAs, highly expressed in the brain and expanded in mammalian genomes, provide tissue- and activity-specific epigenetic and transcriptional regulation, partly through functional control of evolutionary conserved effector small RNA activity. However, increased cognitive sophistication has likely introduced concomitant psychiatric vulnerabilities, predisposing to conditions such as autism and schizophrenia, and cooperation between regulatory and effector RNAs may underlie neural complexity and concomitant fragility in the human brain.
Collapse
Affiliation(s)
- G Barry
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
20
|
Farris SP, Mayfield RD. RNA-Seq reveals novel transcriptional reorganization in human alcoholic brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 116:275-300. [PMID: 25172479 DOI: 10.1016/b978-0-12-801105-8.00011-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA microarrays have been used for over a decade to profile gene expression on a genomic scale. While this technology has advanced our understanding of complex cellular function, the reliance of microarrays on hybridization kinetics results in several technical limitations. For example, knowledge of the sequences being probed is required, distinguishing similar sequences is difficult because of cross-hybridization, and the relatively narrow dynamic range of the signal limits sensitivity. Recently, new technologies have been introduced that are based on novel sequencing methodologies. These next-generation sequencing methods do not have the limitations inherent to microarrays. Next-generation sequencing is unique since it allows the detection of all known and novel RNAs present in biological samples without bias toward known transcripts. In addition, the expression of coding and noncoding RNAs, alternative splicing events, and expressed single nucleotide polymorphisms (SNPs) can be identified in a single experiment. Furthermore, this technology allows for remarkably higher throughput while lowering sequencing costs. This significant shift in throughput and pricing makes low-cost access to whole genomes possible and more importantly expands sequencing applications far beyond traditional uses (Morozova & Marra, 2008) to include sequencing the transcriptome (RNA-Seq), providing detail on gene structure, alternative splicing events, expressed SNPs, and transcript size (Mane et al., 2009; Tang et al., 2009; Walter et al., 2009), in a single experiment, while also quantifying the absolute abundance of genes, all with greater sensitivity and dynamic range than the competing cDNA microarray technology (Mortazavi, Williams, McCue, Schaeffer, & Wold, 2008).
Collapse
Affiliation(s)
- Sean P Farris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712.
| |
Collapse
|
21
|
Guennewig B, Cooper AA. The Central Role of Noncoding RNA in the Brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 116:153-94. [DOI: 10.1016/b978-0-12-801105-8.00007-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Bervini S, Herzog H. Mouse models of Prader-Willi Syndrome: a systematic review. Front Neuroendocrinol 2013; 34:107-19. [PMID: 23391702 DOI: 10.1016/j.yfrne.2013.01.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 11/28/2022]
Abstract
Prader-Willi Syndrome (PWS) is a neurodevelopmental genetic disorder caused by loss of expression of imprinted, paternally inherited genes on chromosome 15q11q13. This imprinted gene cluster has its homologous region on mouse chromosome 7C. The extremely well conserved synteny between the human and the murine regions gave origin to the generation of mouse models for PWS, which facilitated investigations of the role and function of single genes or gene clusters in the pathogenesis of this disease. In this review we will describe which mouse models have been generated so far and how they were developed; we will focus on the consequences of single genes' (or gene clusters') loss of expression on the phenotype, highlighting the similarities to the human PWS features. PWS mouse models have brought major improvements in our knowledge about this complex condition, although the mechanisms implicated in its pathogenesis still remain not fully understood.
Collapse
Affiliation(s)
- Sandrina Bervini
- Neuroscience Research Program, The Garvan Institute of Medical Research, 384 Victoria Street, Sydney-Darlinghurst, NSW 2010, Australia
| | | |
Collapse
|
23
|
Singh M. Dysregulated A to I RNA editing and non-coding RNAs in neurodegeneration. Front Genet 2013; 3:326. [PMID: 23346095 PMCID: PMC3551214 DOI: 10.3389/fgene.2012.00326] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 12/28/2012] [Indexed: 12/14/2022] Open
Abstract
RNA editing is an alteration in the primary nucleotide sequences resulting from a chemical change in the base. RNA editing is observed in eukaryotic mRNA, transfer RNA, ribosomal RNA, and non-coding RNAs (ncRNA). The most common RNA editing in the mammalian central nervous system is a base modification, where the adenosine residue is base-modified to inosine (A to I). Studies from ADAR (adenosine deaminase that act on RNA) mutants in Caenorhabditis elegans, Drosophila, and mice clearly show that the RNA editing process is an absolute requirement for nervous system homeostasis and normal physiology of the animal. Understanding the mechanisms of editing and findings of edited substrates has provided a better knowledge of the phenotype due to defective and hyperactive RNA editing. A to I RNA editing is catalyzed by a family of enzymes knows as ADARs. ADARs modify duplex RNAs and editing of duplex RNAs formed by ncRNAs can impact RNA functions, leading to an altered regulatory gene network. Such altered functions by A to I editing is observed in mRNAs, microRNAs (miRNA) but other editing of small and long ncRNAs (lncRNAs) has yet to be identified. Thus, ncRNA and RNA editing may provide key links between neural development, nervous system function, and neurological diseases. This review includes a summary of seminal findings regarding the impact of ncRNAs on biological and pathological processes, which may be further modified by RNA editing. NcRNAs are non-translated RNAs classified by size and function. Known ncRNAs like miRNAs, smallRNAs (smRNAs), PIWI-interacting RNAs (piRNAs), and lncRNAs play important roles in splicing, DNA methylation, imprinting, and RNA interference. Of note, miRNAs are involved in development and function of the nervous system that is heavily dependent on both RNA editing and the intricate spatiotemporal expression of ncRNAs. This review focuses on the impact of dysregulated A to I editing and ncRNAs in neurodegeneration.
Collapse
Affiliation(s)
- Minati Singh
- Department of Internal Medicine, University of Iowa Iowa City, IA, USA
| |
Collapse
|
24
|
Falaleeva M, Stamm S. Processing of snoRNAs as a new source of regulatory non-coding RNAs: snoRNA fragments form a new class of functional RNAs. Bioessays 2012. [PMID: 23180440 DOI: 10.1002/bies.201200117] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent experimental evidence suggests that most of the genome is transcribed into non-coding RNAs. The initial transcripts undergo further processing generating shorter, metabolically stable RNAs with diverse functions. Small nucleolar RNAs (snoRNAs) are non-coding RNAs that modify rRNAs, tRNAs, and snRNAs that were considered stable. We review evidence that snoRNAs undergo further processing. High-throughput sequencing and RNase protection experiments showed widespread expression of snoRNA fragments, known as snoRNA-derived RNAs (sdRNAs). Some sdRNAs resemble miRNAs, these can associate with argonaute proteins and influence translation. Other sdRNAs are longer, form complexes with hnRNPs and influence gene expression. C/D box snoRNA fragmentation patterns are conserved across multiple cell types, suggesting a processing event, rather than degradation. The loss of expression from genetic loci that generate canonical snoRNAs and processed snoRNAs results in diseases, such as Prader-Willi Syndrome, indicating possible physiological roles for processed snoRNAs. We propose that processed snoRNAs acquire new roles in gene expression and represent a new class of regulatory RNAs distinct from canonical snoRNAs.
Collapse
Affiliation(s)
- Marina Falaleeva
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY, USA
| | | |
Collapse
|
25
|
Schouten M, Buijink MR, Lucassen PJ, Fitzsimons CP. New Neurons in Aging Brains: Molecular Control by Small Non-Coding RNAs. Front Neurosci 2012; 6:25. [PMID: 22363255 PMCID: PMC3281214 DOI: 10.3389/fnins.2012.00025] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 01/30/2012] [Indexed: 12/12/2022] Open
Abstract
Adult neurogenesis generates functional neurons from neural stem cells present in specific brain regions. It is largely confined to two main regions: the subventricular zone of the lateral ventricle, and the subgranular zone of the dentate gyrus (DG), in the hippocampus. With age, the function of the hippocampus and particularly the DG is impaired. For instance, adult neurogenesis is decreased with aging, in both proliferating and differentiation of newborn cells, while in parallel an age-associated decline in cognitive performance is often seen. Surprisingly, the synaptogenic potential of adult-born neurons is only marginally influenced by aging. Therefore, although proliferation, differentiation, and synaptogenesis of adult-born new neurons in the DG are closely related to each other, they are differentially affected by aging. In this review we discuss the crucial roles of a novel class of recently discovered modulators of gene expression, the small non-coding RNAs, in the regulation of adult neurogenesis. Multiple small non-coding RNAs are differentially expressed in the hippocampus. In particular a subgroup of the small non-coding RNAs, the microRNAs, fine-tune the progression of adult neurogenesis. This makes small non-coding RNAs appealing candidates to orchestrate the functional alterations in adult neurogenesis and cognition associated with aging. Finally, we summarize observations that link changes in circulating levels of steroid hormones with alterations in adult neurogenesis, cognitive decline, and vulnerability to psychopathology in advanced age, and discuss a potential interplay between steroid hormone receptors and microRNAs in cognitive decline in aging individuals.
Collapse
Affiliation(s)
- Marijn Schouten
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | | | | | | |
Collapse
|
26
|
Bratkovič T, Rogelj B. Biology and applications of small nucleolar RNAs. Cell Mol Life Sci 2011; 68:3843-51. [PMID: 21748470 PMCID: PMC11114935 DOI: 10.1007/s00018-011-0762-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
Abstract
Small nucleolar RNAs (snoRNAs) constitute a group of non-coding RNAs principally involved in posttranscriptional modification of ubiquitously expressed ribosomal and small nuclear RNAs. However, a number of tissue-specific snoRNAs have recently been identified that apparently do not target conventional substrates and are presumed to guide processing of primary transcripts of protein-coding genes, potentially expanding the diapason of regulatory RNAs that control translation of mRNA to proteins. Here, we review biogenesis of snoRNAs and redefine their function in light of recent exciting discoveries. We also discuss the potential of recombinant snoRNAs to be used in modulation of gene expression.
Collapse
Affiliation(s)
- Tomaž Bratkovič
- Department of Pharmaceutical Biology, University of Ljubljana, Slovenia.
| | | |
Collapse
|
27
|
Meier I, Fellini L, Jakovcevski M, Schachner M, Morellini F. Expression of the snoRNA host gene gas5 in the hippocampus is upregulated by age and psychogenic stress and correlates with reduced novelty-induced behavior in C57BL/6 mice. Hippocampus 2011; 20:1027-36. [PMID: 19739230 DOI: 10.1002/hipo.20701] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The growth arrest specific 5 (gas5) is a noncoding protein gene that hosts small nucleolar RNAs. Based on the observation that gas5 RNA level in the brain is highest in the hippocampus and remarkably enhanced in aged mice, we tested the hypothesis that gas5 is involved in functions controlled by the hippocampus and known to be affected by age, such as spatial learning and novelty-induced behaviors. We show that aged (22-month-old) C57BL/6 male mice have spatial-learning impairments, reduced novelty-induced exploration, and enhanced gas5 RNA levels in the hippocampus compared to young (3-month-old) mice. At both ages, levels of gas5 RNA in the hippocampus negatively correlated with novelty-induced exploration in the open field and elevated-plus maze tests. No correlations were found between gas5 RNA levels in the hippocampus and performance in the water maze test. The expression of gas5 RNA in the rest of the brain did not correlate with any behavioral parameter analyzed. Because variations in novelty-induced behaviors could be caused by stressfull experiences, we analyzed whether gas5 RNA levels in the hippocampus are regulated by acute stressors. We found that gas5 RNA levels in the hippocampus were upregulated by 50% 24 h after a psychogenic stressor (60-min olfactory contact with a rat) but were unchanged after exposure to an unfamiliar environment or after acquisition of new spatial information in a one-trial learning task. The present results suggest that strong psychogenic stressors upregulate gas5 RNA in the hippocampus, which in turn affects novelty-induced responses controlled by this region. We hypothesize that long-life exposure to stressors causes an age-dependent increase in hippocampal gas5 RNA levels, which could be responsible for age-related reduced novelty-induced behaviors, thus suggesting a new mechanism by which ageing and stress affect hippocampal function.
Collapse
Affiliation(s)
- Ingo Meier
- Universitätsklinikum Hamburg-Eppendorf, Zentrum für Molekulare Neurobiologie Hamburg, Germany
| | | | | | | | | |
Collapse
|
28
|
Mattick JS. The central role of RNA in human development and cognition. FEBS Lett 2011; 585:1600-16. [DOI: 10.1016/j.febslet.2011.05.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 05/03/2011] [Indexed: 12/22/2022]
|
29
|
Mattick JS. RNA as the substrate for epigenome-environment interactions: RNA guidance of epigenetic processes and the expansion of RNA editing in animals underpins development, phenotypic plasticity, learning, and cognition. Bioessays 2011; 32:548-52. [PMID: 20544741 DOI: 10.1002/bies.201000028] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- John S Mattick
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
30
|
Role of Alternative Splicing of the 5-HT2C Receptor in the Prader–Willi Syndrome. 5-HT2C RECEPTORS IN THE PATHOPHYSIOLOGY OF CNS DISEASE 2011. [DOI: 10.1007/978-1-60761-941-3_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Smalheiser NR, Lugli G, Thimmapuram J, Cook EH, Larson J. Endogenous siRNAs and noncoding RNA-derived small RNAs are expressed in adult mouse hippocampus and are up-regulated in olfactory discrimination training. RNA (NEW YORK, N.Y.) 2011; 17:166-181. [PMID: 21045079 PMCID: PMC3004058 DOI: 10.1261/rna.2123811] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 09/30/2010] [Indexed: 05/29/2023]
Abstract
We previously proposed that endogenous siRNAs may regulate synaptic plasticity and long-term gene expression in the mammalian brain. Here, a hippocampal-dependent task was employed in which adult mice were trained to execute a nose-poke in a port containing one of two simultaneously present odors in order to obtain a reward. Mice demonstrating olfactory discrimination training were compared to pseudo-training and nose-poke control groups; size-selected hippocampal RNA was subjected to Illumina deep sequencing. Sequences that aligned uniquely and exactly to the genome without uncertain nucleotide assignments, within exons or introns of MGI annotated genes, were examined further. The data confirm that small RNAs having features of endogenous siRNAs are expressed in brain; that many of them derive from genes that regulate synaptic plasticity (and have been implicated in neuropsychiatric diseases); and that hairpin-derived endo-siRNAs and the 20- to 23-nt size class of small RNAs show a significant increase during an early stage of training. The most abundant putative siRNAs arose from an intronic inverted repeat within the SynGAP1 locus; this inverted repeat was a substrate for dicer in vitro, and SynGAP1 siRNA was specifically associated with Argonaute proteins in vivo. Unexpectedly, a dramatic increase with training (more than 100-fold) was observed for a class of 25- to 30-nt small RNAs derived from specific sites within snoRNAs and abundant noncoding RNAs (Y1 RNA, RNA component of mitochondrial RNAse P, 28S rRNA, and 18S rRNA). Further studies are warranted to characterize the role(s) played by endogenous siRNAs and noncoding RNA-derived small RNAs in learning and memory.
Collapse
Affiliation(s)
- Neil R Smalheiser
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | | | | | |
Collapse
|
32
|
Buckley NJ, Johnson R, Zuccato C, Bithell A, Cattaneo E. The role of REST in transcriptional and epigenetic dysregulation in Huntington's disease. Neurobiol Dis 2010; 39:28-39. [PMID: 20170730 DOI: 10.1016/j.nbd.2010.02.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 12/20/2022] Open
Abstract
Huntington's disease (HD) is a devastating disorder that affects approximately 1 in 10,000 people and is accompanied by neuronal dysfunction and neurodegeneration. HD manifests as a progressive chorea, a decline in mental abilities accompanied by behavioural, emotional and psychiatric problems followed by, dementia, and ultimately, death. The molecular pathology of HD is complex but includes widespread transcriptional dysregulation. Although many transcriptional regulatory molecules have been implicated in the pathogenesis of HD, a growing body of evidence points to the pivotal role of RE1 Silencing Transcription Factor (REST). In HD, REST, translocates from the cytoplasm to the nucleus in neurons resulting in repression of key target genes such as BDNF. Since these original observations, several thousand direct target genes of REST have been identified, including numerous non-coding RNAs including both microRNAs and long non-coding RNAs, several of which are dysregulated in HD. More recently, evidence is emerging that hints at epigenetic abnormalities in HD brain. This in turn, promotes the notion that targeting the epigenetic machinery may be a useful strategy for treatment of some aspects of HD. REST also recruits a host of histone and chromatin modifying activities that can regulate the local epigenetic signature at REST target genes. Collectively, these observations present REST as a hub that coordinates transcriptional, posttranscriptional and epigenetic programmes, many of which are disrupted in HD. We identify several spokes emanating from this REST hub that may represent useful sites to redress REST dysfunction in HD.
Collapse
Affiliation(s)
- Noel J Buckley
- King's College London, Institute of Psychiatry, Centre for the Cellular Basis of Behaviour, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK.
| | | | | | | | | |
Collapse
|
33
|
Ogorelkova M, Navarro A, Vivarelli F, Ramirez-Soriano A, Estivill X. Positive selection and gene conversion drive the evolution of a brain-expressed snoRNAs cluster. Mol Biol Evol 2009; 26:2563-71. [PMID: 19651851 DOI: 10.1093/molbev/msp173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
HBII-52 small nucleolar RNAs (snoRNAs) are brain-expressed posttranscriptional modifiers of serotonin receptor 2C RNA. They are organized in a cluster of 47 highly homologous gene copies spanning 100 kb at chromosome 15q11.2. Nucleotide diversity at HBII-52 snoRNA gene cluster in African and European descent populations was analyzed via resequencing of 25 functional snoRNA gene copies. Ninety-four variants were detected, from which 74 are novel. Only 16 variants are shared between Africans and Europeans. We also report a novel Yoruba-specific copy-number variant representing a 5.2-kb polymorphic deletion and resulting in a chimerical functional snoRNA copy. In both populations, the snoRNA genes are characterized by high density of single nucleotide polymorphisms and an excess of low-frequency variants. However, the variability patterns are strictly population specific and there is an extreme divergence in allele frequencies in both resequencing and HapMap data. Several tests of neutrality strongly suggest that the observed extreme population divergence at the HBII-52 region results from positive selection in Europeans. Our analysis of HBII-52 nucleotide variability spectrum shows that gene conversion is the main factor introducing variability at the cluster. Sixty-five substitutions (69%) correspond to a paralogous sequence variant (PSV) in another copy and occur at potential gene conversion tracts of >5 bp. We detected several interparalogue gene-conversion events that involve more than one PSV, with individual frequency patterns suggestive of recurrent gene conversion. Analysis based on derived and ancestral allele distribution shows that gene conversion is at least twice more frequent than point mutations. Gene conversion is an important factor in disrupting patterns of linkage disequilibrium (LD) at short scales. Consistent with this, we detect punctual breaks of LD at gene conversion sites while the overall LD at the HBII-52 cluster is high in both study populations.
Collapse
Affiliation(s)
- Miroslava Ogorelkova
- Genetic Causes of Disease Group, Genes and Disease Program, Centre for Genomic Regulation (CRG), Barcelona, Spain.
| | | | | | | | | |
Collapse
|
34
|
Doe CM, Relkovic D, Garfield AS, Dalley JW, Theobald DEH, Humby T, Wilkinson LS, Isles AR. Loss of the imprinted snoRNA mbii-52 leads to increased 5htr2c pre-RNA editing and altered 5HT2CR-mediated behaviour. Hum Mol Genet 2009; 18:2140-8. [PMID: 19304781 DOI: 10.1093/hmg/ddp137] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Prader-Willi syndrome (PWS) genetic interval contains several brain-expressed small nucleolar (sno)RNA species that are subject to genomic imprinting. In vitro studies have shown that one of these snoRNA molecules, h/mbii-52, negatively regulates editing and alternative splicing of the serotonin 2C receptor (5htr2c) pre-RNA. However, the functional consequences of loss of h/mbii-52 and subsequent increased post-transcriptional modification of 5htr2c are unknown. 5HT2CRs are important in controlling aspects of cognition and the cessation of feeding, and disruption of their function may underlie some of the psychiatric and feeding abnormalities seen in PWS. In a mouse model for PWS lacking expression of mbii-52 (PWS-IC+/-), we show an increase in editing, but not alternative splicing, of the 5htr2c pre-RNA. This change in post-transcriptional modification is associated with alterations in a number of 5HT2CR-related behaviours, including impulsive responding, locomotor activity and reactivity to palatable foodstuffs. In a non-5HT2CR-related behaviour, marble burying, loss of mbii-52 was without effect. The specificity of the behavioural effects to changes in 5HT2CR function was further confirmed using drug challenges. These data illustrate, for the first time, the physiological consequences of altered RNA editing of 5htr2c linked to mbii-52 loss that may underlie specific aspects of the complex PWS phenotype and point to an important functional role for this imprinted snoRNA.
Collapse
Affiliation(s)
- Christine M Doe
- Behavioural Genetics Group, Department of Psychological Medicine and Neurology (School of Medicine) and School of Psychology, Cardiff University, Cardiff, UK
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
We are in the midst of a revolution in the genomic sciences that will forever change the way we view biology and medicine, particularly with respect to brain form, function, development, evolution, plasticity, neurological disease pathogenesis and neural regenerative potential. The application of epigenetic principles has already begun to identify and characterize previously unrecognized molecular signatures of disease latency, onset and progression, mechanisms underlying disease pathogenesis, and responses to new and evolving therapeutic modalities. Moreover, epigenomic medicine promises to usher in a new era of neurological therapeutics designed to promote disease prevention and recovery of seemingly lost neurological function via reprogramming of stem cells, redirecting cell fate decisions and dynamically modulating neural network plasticity and connectivity.
Collapse
Affiliation(s)
- Mark F Mehler
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
36
|
Molecular Evolution of the HBII-52 snoRNA Cluster. J Mol Biol 2008; 381:810-5. [DOI: 10.1016/j.jmb.2008.06.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/12/2008] [Accepted: 06/23/2008] [Indexed: 11/18/2022]
|
37
|
Mercer TR, Dinger ME, Mariani J, Kosik KS, Mehler MF, Mattick JS. Noncoding RNAs in Long-Term Memory Formation. Neuroscientist 2007; 14:434-45. [DOI: 10.1177/1073858408319187] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Current research exploring the molecular basis of memory focuses mainly on proteins despite recent genomic studies reporting the abundant transcription of non-protein-coding RNA (ncRNA). Although ncRNAs are involved in a diverse range of biological processes, they are particularly prevalent within the nervous system, where they contribute towards the complexity and function of the mammalian brain. In this review, we apply recent advances in ncRNA biology to predict a critical role for ncRNAs in the molecular mechanisms underlying memory formation and maintenance. We describe the role of ncRNAs in regulating the translation, stability, and editing of mRNA populations in response to synaptic activity during memory formation and the role of ncRNAs in the epigenetic and transcriptional programs that underlie long-term memory storage. We also consider ncRNAs acting as an additional avenue of communication between neurons by their intercellular trafficking. Taken together, the emerging evidence suggests a central role for ncRNAs in memory formation and provokes novel research directions in this field. NEUROSCIENTIST 14(5):434—445, 2008. DOI: 10.1177/1073858408319187
Collapse
Affiliation(s)
- Tim R. Mercer
- Institute for Molecular Biosciences, University of Queensland,
Brisbane, Australia
| | - Marcel E. Dinger
- Institute for Molecular Biosciences, University of Queensland,
Brisbane, Australia
| | - Jean Mariani
- Université Pierre et Marie Curie-Paris 6, UMR 7102-Neurobiologie
des Processus Adaptatifs (NPA): CNRS, Paris, France
| | - Kenneth S. Kosik
- Neuroscience Research Institute, University of California
at Santa Barbara, Santa Barbara, California
| | - Mark F. Mehler
- Institute for Brain Disorders and Neural Regeneration,
Departments of Neurology, Neuroscience and Psychiatry and Behavioral Sciences,
Einstein Cancer Center and Rose F. Kennedy Center for Research in Mental Retardation
and Developmental Disabilities, Albert Einstein College of Medicine, Bronx,
New York
| | - John S. Mattick
- Institute for Molecular Biosciences, University of Queensland,
Brisbane, Australia,
| |
Collapse
|
38
|
Mehler MF, Mattick JS. Noncoding RNAs and RNA Editing in Brain Development, Functional Diversification, and Neurological Disease. Physiol Rev 2007; 87:799-823. [PMID: 17615389 DOI: 10.1152/physrev.00036.2006] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The progressive maturation and functional plasticity of the nervous system in health and disease involve a dynamic interplay between the transcriptome and the environment. There is a growing awareness that the previously unexplored molecular and functional interface mediating these complex gene-environmental interactions, particularly in brain, may encompass a sophisticated RNA regulatory network involving the twin processes of RNA editing and multifaceted actions of numerous subclasses of non-protein-coding RNAs. The mature nervous system encompasses a wide range of cell types and interconnections. Long-term changes in the strength of synaptic connections are thought to underlie memory retrieval, formation, stabilization, and effector functions. The evolving nervous system involves numerous developmental transitions, such as neurulation, neural tube patterning, neural stem cell expansion and maintenance, lineage elaboration, differentiation, axonal path finding, and synaptogenesis. Although the molecular bases for these processes are largely unknown, RNA-based epigenetic mechanisms appear to be essential for orchestrating these precise and versatile biological phenomena and in defining the etiology of a spectrum of neurological diseases. The concerted modulation of RNA editing and the selective expression of non-protein-coding RNAs during seminal as well as continuous state transitions may comprise the plastic molecular code needed to couple the intrinsic malleability of neural network connections to evolving environmental influences to establish diverse forms of short- and long-term memory, context-specific behavioral responses, and sophisticated cognitive capacities.
Collapse
Affiliation(s)
- Mark F Mehler
- Institute for Brain Disorders and Neural Regeneration, Department of Neurology, Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
39
|
Kishore S, Stamm S. Regulation of alternative splicing by snoRNAs. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:329-34. [PMID: 17381313 DOI: 10.1101/sqb.2006.71.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The SNURF-SNRPN locus located on chromosome 15 is maternally imprinted and generates a large transcript containing at least 148 exons. Loss of the paternal allele causes Prader-Willi syndrome (PWS). The 3' end of the transcript harbors several evolutionarily conserved C/D box small nucleolar RNAs (snoRNAs) that are tissue-specifically expressed. With the exception of 47 copies of HBII-52 snoRNAs, none of the snoRNAs exhibit complementarity to known RNAs. Due to an 18-nucleotide sequence complementarity, HBII-52 can bind to the alternatively spliced exon Vb of the serotonin receptor 2C pre-mRNA, where it masks a splicing silencer, which results in alternative exon usage. This silencer can also be destroyed by RNA editing, which changes the amino acid sequence and appears to be independent of HBII-52. Lack of HBII-52 expression in individuals with PWS causes most likely a lack of the high-efficacy serotonin receptor, which could contribute to the disease. It is therefore possible that snoRNAs could act as versatile modulators of gene expression by modulating alternative splicing.
Collapse
Affiliation(s)
- S Kishore
- University of Erlangen, Institute for Biochemistry, Erlangen, Germany
| | | |
Collapse
|
40
|
Rogelj B. Brain-specific small nucleolar RNAs. J Mol Neurosci 2007; 28:103-9. [PMID: 16679551 DOI: 10.1385/jmn:28:2:103] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 11/30/1999] [Accepted: 08/08/2005] [Indexed: 11/11/2022]
Abstract
Small nucleolar RNAs (snoRNAs) are a group of noncoding RNAs that function mainly as guides for modification of ribosomal RNAs (rRNAs) and small nuclear RNAs (snRNAs). A subgroup of snoRNAs was found to be predominantly expressed in the brain; and interestingly, these brain-specific snoRNAs (b-snoRNAs) appear not to be involved in modification of rRNAs and snRNAs, raising the question of what their function and targets might be. Expression studies of b-snoRNAs in mice have shown potential involvement of two b-snoRNAs, MBII-48 and MBII-52, in learning and memory. HBII-52, the human homolog of MBII-52, appears to be involved with regulation of 5-HT(2C) receptor subunit mRNA. Furthermore, several reports link the disruption of expression of a specific b-snoRNA, HBII-85, with a neurobehavioral disorder, Prader-Willi syndrome. This paper reviews the current knowledge of the properties, expression, and functions of b-snoRNAs.
Collapse
Affiliation(s)
- Boris Rogelj
- Department of Neuroscience, Institute of Psychiatry, King's College London, London, UK.
| |
Collapse
|
41
|
Abstract
Small non coding RNAs are a group of very different RNA molecules, present in virtually all cells, with a wide spectrum of regulatory functions which include RNA modification and regulation of protein synthesis. They have been isolated and characterized in all organisms and tissues, from Archaeobacteria to mammals. In mammalian brain there are a number of these small molecules, which are involved in neuronal differentiation as well as, possibly, in learning and memory. In this manuscript, we analyze the present knowledge about the function of the most important groups of small non-coding RNA present in brain: small nucleolar RNAs, small cytoplasmic RNAs, and microRNAs. The last ones, in particular, appear to be critical for dictating neuronal cell identity during development and to play an important role in neurite growth, synaptic development and neuronal plasticity.
Collapse
Affiliation(s)
- Carlo Presutti
- Dipartimento di Genetica e Biologia Molecolare, Moro 5, 00185 Roma, Italy
| | - Jessica Rosati
- IBPM CNR, Università La Sapienza, P.le A. Moro 5, 00185 Roma, Italy
| | - Sara Vincenti
- Dipartimento di Genetica e Biologia Molecolare, Moro 5, 00185 Roma, Italy
| | - Sergio Nasi
- IBPM CNR, Università La Sapienza, P.le A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
42
|
Cao X, Yeo G, Muotri AR, Kuwabara T, Gage FH. Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci 2006; 29:77-103. [PMID: 16776580 DOI: 10.1146/annurev.neuro.29.051605.112839] [Citation(s) in RCA: 334] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The central nervous system (CNS) is arguably one of the most complex systems in the universe. To understand the CNS, scientists have investigated a variety of molecules, including proteins, lipids, and various small molecules. However, one large class of molecules, noncoding RNAs (ncRNAs), has been relatively unexplored. ncRNAs function directly as structural, catalytic, or regulatory molecules rather than serving as templates for protein synthesis. The increasing variety of ncRNAs being identified in the CNS suggests a strong connection between the biogenesis, dynamics of action, and combinatorial regulatory potential of ncRNAs and the complexity of the CNS. In this review, we give an overview of the diversity and abundance of ncRNAs before delving into specific examples that illustrate their importance in the CNS. In particular, we cover recent evidence for the roles of microRNAs, small nucleolar RNAs, retrotransposons, the NRSE small modulatory RNA, and BC1/BC200 in the CNS. Finally, we speculate why ncRNAs are well adapted to improving organism-environment interactions.
Collapse
Affiliation(s)
- Xinwei Cao
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | | | | | | | |
Collapse
|
43
|
Abstract
Increasing evidence suggests that the development and function of the nervous system is heavily dependent on RNA editing and the intricate spatiotemporal expression of a wide repertoire of non-coding RNAs, including micro RNAs, small nucleolar RNAs and longer non-coding RNAs. Non-coding RNAs may provide the key to understanding the multi-tiered links between neural development, nervous system function, and neurological diseases.
Collapse
Affiliation(s)
- Mark F Mehler
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
| | | |
Collapse
|
44
|
Monti B, Berteotti C, Contestabile A. Subchronic rolipram delivery activates hippocampal CREB and arc, enhances retention and slows down extinction of conditioned fear. Neuropsychopharmacology 2006; 31:278-86. [PMID: 15988467 DOI: 10.1038/sj.npp.1300813] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rolipram, a type IV-specific phosphodiesterase inhibitor, is known to improve memory under various learning tasks. Moreover, Rolipram treatments have been shown to increase expression and phosphorylation of a key factor for hippocampal memory consolidation, the cAMP-dependent response element-binding protein, CREB. However, the exact correlation between hippocampal CREB phosphorylation and memory improvement induced by Rolipram has not yet been determined in a CREB-dependent type of hippocampal-related learning in normogenic, intact rodents. Here, we report that subchronic Rolipram delivery by using osmotic minipumps increased the basal rat hippocampal expression and phosphorylation of CREB, as well as the expression of the cAMP-dependent, memory-related protein, Arc. In parallel, the same treatment improved memory consolidation of conditioned fear. Furthermore, the increase of CREB phosphorylation and Arc expression consequent to the learning experience was enhanced in Rolipram-treated rats, compared to controls. By evaluating the time course of memory extinction over 10 days after the initial learning test, we also observed significant slowing down of the memory extinction rate in Rolipram-treated rats. This effect could be attributed to CREB phosphorylation and memory having been initially higher, as osmotic minipumps stopped to release Rolipram the first day after the initial learning test. Our data define the conditions through which the pharmacological manipulation of hippocampal CREB expression and activation result in memory amelioration in normogenic, intact animals. These results are relevant for the study of molecular correlates of memory, and may also be important in view of the efforts to design new pharmacological treatments, targeting the CREB pathway and leading to enhancement of learning and memory, even in the absence of patent neuropathology.
Collapse
|
45
|
Monti B, Berteotti C, Contestabile A. Dysregulation of memory-related proteins in the hippocampus of aged rats and their relation with cognitive impairment. Hippocampus 2006; 15:1041-9. [PMID: 16086428 DOI: 10.1002/hipo.20099] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the present experiments, we used conditioned fear to study whether changes in expression or functional state of proteins known to be involved in hippocampal learning could suggest correlation with age-related memory deficits. We focused on both alterations constitutively present in the hippocampus of aged rats and alterations related to different learning responses. Our results point at the dysregulation of the phosphorylation state of CREB in the hippocampus of aged rats as a primary biochemical correlate of their impaired memory. Other proteins, known to be important for various steps of memory formation and consolidation and linked to CREB, are to some extent altered in their constitutive expression or in the response to learning in the aged hippocampus. In particular, phosphorylated CREB and Arc, a protein functionally related to CREB in memory consolidation, are both present at constitutively higher levels in the hippocampus of aged rats, but they are not susceptible to the learning-related up-regulation occurring in young adults. Two other CREB-regulated proteins involved in memory consolidation, the neurotrophin BDNF and the transcription factor C/EBPbeta, are expressed at similar levels in the hippocampus of young-adult and aged rats, but their response to conditioned fear learning appears dysregulated by aging. Calcineurin, a protein phosphatase having CREB among its substrates and whose expression negatively correlates with learning, is more expressed in the hippocampus of aged rats. However, while calcineurin expression decreases in the hippocampus of young adults after learning, no changes are observed in the hippocampus of aged, learning-impaired rats.
Collapse
Affiliation(s)
- Barbara Monti
- Department of Biology, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|