1
|
da Silva MDV, Piva M, Martelossi-Cebinelli G, Stinglin Rosa Ribas M, Hoffmann Salles Bianchini B, K Heintz O, Casagrande R, Verri WA. Stem cells and pain. World J Stem Cells 2023; 15:1035-1062. [PMID: 38179216 PMCID: PMC10762525 DOI: 10.4252/wjsc.v15.i12.1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Pain can be defined as an unpleasant sensory and emotional experience caused by either actual or potential tissue damage or even resemble that unpleasant experience. For years, science has sought to find treatment alternatives, with minimal side effects, to relieve pain. However, the currently available pharmacological options on the market show significant adverse events. Therefore, the search for a safer and highly efficient analgesic treatment has become a priority. Stem cells (SCs) are non-specialized cells with a high capacity for replication, self-renewal, and a wide range of differentiation possibilities. In this review, we provide evidence that the immune and neuromodulatory properties of SCs can be a valuable tool in the search for ideal treatment strategies for different types of pain. With the advantage of multiple administration routes and dosages, therapies based on SCs for pain relief have demonstrated meaningful results with few downsides. Nonetheless, there are still more questions than answers when it comes to the mechanisms and pathways of pain targeted by SCs. Thus, this is an evolving field that merits further investigation towards the development of SC-based analgesic therapies, and this review will approach all of these aspects.
Collapse
Affiliation(s)
- Matheus Deroco Veloso da Silva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Maiara Piva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Geovana Martelossi-Cebinelli
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Mariana Stinglin Rosa Ribas
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Beatriz Hoffmann Salles Bianchini
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Olivia K Heintz
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, State University of Londrina, Londrina 86038-440, Paraná, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Paraná, Brazil.
| |
Collapse
|
2
|
Characterisation of the pathophysiology of neuropathy and sensory dysfunction in a mouse model of Recessive Dystrophic Epidermolysis Bullosa. Pain 2022; 163:2052-2060. [DOI: 10.1097/j.pain.0000000000002599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/18/2022] [Indexed: 11/26/2022]
|
3
|
Comparative Transcriptome Profiling Reveals Changes of microRNAs Response to Exercise in Rats with Neuropathic Pain. Neural Plast 2021; 2021:5597139. [PMID: 34394340 PMCID: PMC8356008 DOI: 10.1155/2021/5597139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 06/24/2021] [Accepted: 07/16/2021] [Indexed: 11/18/2022] Open
Abstract
There is accumulating evidence showing that exercise therapy may play an active role in peripheral neuropathic pain (NP), but its mechanism is still unclear. Studies have found that microRNAs (miRNAs) may play a role in NP by regulating pain-related target genes. Therefore, we aimed to explore the changes of miRNA and mRNA of dorsal root ganglion (DRG) after NP in response to exercise with transcriptome technology. The chronic constriction injury (CCI) model was established, and rats were randomly allocated into three groups, namely, the sham-operated, CCI, and CCI-exercised groups. L4-L6 DRG tissue was taken for RNA-sequencing, and the differentially expressed genes (DEGs) were determined through bioinformatics analysis. Real-time PCR was used to confirm the accuracy. A total of 4 overlapping differentially expressed miRNAs and 186 overlapping differentially expressed mRNAs were identified in the two comparisons of the sham-operated group versus the CCI group and the CCI group versus the CCI-exercised group. Among these DEGs, miR-145-5p, miR-341, miR-300-5p, miR-653-5p, Atf3, Cacna2d1, Gal, and Ctss related to NP were validated by real-time PCR. DEGs between the CCI and CCI-exercised groups were enriched in HIF-1 signaling pathway, Rap1 signaling pathway, and neurotrophin signaling pathway. This study provides an understanding of the adaptive mechanisms after exercise of NP, and these DEGs in DRG might play a role in NP by stimulating the enriched pathways.
Collapse
|
4
|
Vincent K, Dona CPG, Albert TJ, Dahia CL. Age-related molecular changes in the lumbar dorsal root ganglia of mice: Signs of sensitization, and inflammatory response. JOR Spine 2020; 3:e1124. [PMID: 33392459 PMCID: PMC7770202 DOI: 10.1002/jsp2.1124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/18/2020] [Accepted: 08/23/2020] [Indexed: 11/06/2022] Open
Abstract
Aging is a major risk factor for numerous painful, inflammatory, and degenerative diseases including disc degeneration. A better understanding of how the somatosensory nervous system adapts to the changing physiology of the aging body will be of great significance for our expanding aging population. Previously, we reported that chronological aging of mouse lumbar discs is pathological and associated with behavioral changes related to pain. It is established that with age and degeneration the lumbar discs become inflammatory and innervated. Here we analyze the aging lumbar dorsal root ganglia (DRGs) and spinal cord dorsal horn (SCDH) in mice between 3 and 24 months of age for age-related somatosensory adaptations. We observe that as mice age there are signs of peripheral sensitization, and response to inflammation at the molecular and cellular level in the DRGs. From 12 months onwards the mRNA expression of vasodilator and neurotransmitter, Calca (CGRP); stress (and survival) marker, Atf3; and neurotrophic factor, Bdnf, increases linearly with age in the DRGs. Further, while the mRNA expression of neuropeptide, Tac1, precursor of Substance P, did not change at the transcriptional level, TAC1 protein expression increased in 24-month-old DRGs. Additionally, elevated expression of NFκB subunits, Nfkb1 and Rela, but not inflammatory mediators, Tnf, Il6, Il1b, or Cox2, in the DRGs suggest peripheral nerves are responding to inflammation, but do not increase the expression of inflammatory mediators at the transcriptional level. These results identify a progressive, age-related shift in the molecular profile of the mouse somatosensory nervous system and implicates nociceptive sensitization and inflammatory response.
Collapse
Affiliation(s)
- Kathleen Vincent
- Orthopedic Soft Tissue Research ProgramHospital for Special SurgeryNew YorkNew YorkUSA
- Department of Cell and Developmental Biology, Weill Cornell MedicineGraduate School of Medical ScienceNew YorkNew YorkUSA
| | - Chethana Prabodhanie Gallage Dona
- Orthopedic Soft Tissue Research ProgramHospital for Special SurgeryNew YorkNew YorkUSA
- Department of MedicineWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Todd J Albert
- Department of MedicineWeill Cornell Medical CollegeNew YorkNew YorkUSA
- Orthopaedic SurgeryHospital for Special SurgeryNew YorkNew YorkUSA
| | - Chitra Lekha Dahia
- Orthopedic Soft Tissue Research ProgramHospital for Special SurgeryNew YorkNew YorkUSA
- Department of Cell and Developmental Biology, Weill Cornell MedicineGraduate School of Medical ScienceNew YorkNew YorkUSA
| |
Collapse
|
5
|
Deletion of Acid-Sensing Ion Channel 3 Relieves the Late Phase of Neuropathic Pain by Preventing Neuron Degeneration and Promoting Neuron Repair. Cells 2020; 9:cells9112355. [PMID: 33114619 PMCID: PMC7692130 DOI: 10.3390/cells9112355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 11/17/2022] Open
Abstract
Neuropathic pain is one type of chronic pain that occurs as a result of a lesion or disease to the somatosensory nervous system. Chronic excessive inflammatory response after nerve injury may contribute to the maintenance of persistent pain. Although the role of inflammatory mediators and cytokines in mediating allodynia and hyperalgesia has been extensively studied, the detailed mechanisms of persistent pain or whether the interactions between neurons, glia and immune cells are essential for maintenance of the chronic state have not been completely elucidated. ASIC3, a voltage-insensitive, proton-gated cation channel, is the most essential pH sensor for pain perception. ASIC3 gene expression is increased in dorsal root ganglion neurons after inflammation and nerve injury and ASIC3 is involved in macrophage maturation. ASIC currents are increased after nerve injury. However, whether prolonged hyperalgesia induced by the nerve injury requires ASIC3 and whether ASIC3 regulates neurons, immune cells or glial cells to modulate neuropathic pain remains unknown. We established a model of chronic constriction injury of the sciatic nerve (CCI) in mice. CCI mice showed long-lasting mechanical allodynia and thermal hyperalgesia. CCI also caused long-term inflammation at the sciatic nerve and primary sensory neuron degeneration as well as increased satellite glial expression and ATF3 expression. ASIC3 deficiency shortened mechanical allodynia and attenuated thermal hyperalgesia. ASIC3 gene deletion shifted ATF3 expression from large to small neurons and altered the M1/M2 macrophage ratio, thereby preventing small neuron degeneration and relieved pain.
Collapse
|
6
|
Oh JY, Hwang TY, Jang JH, Park JY, Ryu Y, Lee H, Park HJ. Muscovite nanoparticles mitigate neuropathic pain by modulating the inflammatory response and neuroglial activation in the spinal cord. Neural Regen Res 2020; 15:2162-2168. [PMID: 32394976 PMCID: PMC7716045 DOI: 10.4103/1673-5374.282260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite numerous efforts to overcome neuropathic pain, various pharmacological drugs often fail to meet the needs and have many side effects. Muscovite is an aluminosilicate mineral that has been reported to have an anti-inflammatory effect, but the efficacy of muscovite for neuropathic pain has not been investigated. Here, we assessed whether muscovite nanoparticles can reduce the symptoms of pain by controlling the inflammatory process observed in neuropathic pain. The analgesic effects of muscovite nanoparticles were explored using partial sciatic nerve ligation model of neuropathic pain, in which one-third to one-half of the nerve trifurcation of the sciatic nerve was tightly tied to the dorsal side. Muscovite nanoparticles (4 mg/100 μL) was given intramuscularly to evaluate its effects on neuropathic pain (3 days per week for 4 weeks). The results showed that the muscovite nanoparticle injections significantly alleviated partial sciatic nerve ligation-induced mechanical and cold allodynia. In the spinal cord, the muscovite nanoparticle injections exhibited inhibitory effects on astrocyte and microglia activation and reduced the expression of pro-inflammatory cytokines, such as interleukin-1β, tumor necrosis factor-α, interleiukin-6 and monocyte chemoattractant protein-1, which were upregulated in the partial sciatic nerve ligation model. Moreover, the muscovite nanoparticle injections resulted in a decrease in activating transcription factor 3, a neuronal injury marker, in the sciatic nerve. These results suggest that the analgesic effects of muscovite nanoparticle on partial sciatic nerve ligation-induced neuropathic pain may result from inhibiting activation of astrocytes and microglia as well as pro-inflammatory cytokines. We propose that muscovite nanoparticle is a potential anti-nociceptive candidate for neuropathic pain. All experimental protocols in this study were approved by the Institutional Animal Ethics Committee (IACUC) at Dongguk University, South Korea (approval No. 2017-022-1) on September 28, 2017.
Collapse
Affiliation(s)
- Ju-Young Oh
- Acupuncture and Meridian Science Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu; Department of Korean Medical Science, Graduate School of Korean Medicine; BK21 PLUS Korean Medicine Science Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Tae-Yeon Hwang
- Acupuncture and Meridian Science Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu; Department of Korean Medical Science, Graduate School of Korean Medicine; BK21 PLUS Korean Medicine Science Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Hwan Jang
- Acupuncture and Meridian Science Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu; Department of Korean Medical Science, Graduate School of Korean Medicine; BK21 PLUS Korean Medicine Science Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ji-Yeun Park
- Acupuncture and Meridian Science Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul; College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Yeonhee Ryu
- Korean Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - HyeJung Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu; Department of Korean Medical Science, Graduate School of Korean Medicine; BK21 PLUS Korean Medicine Science Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Shin SM, Cai Y, Itson-Zoske B, Qiu C, Hao X, Xiang H, Hogan QH, Yu H. Enhanced T-type calcium channel 3.2 activity in sensory neurons contributes to neuropathic-like pain of monosodium iodoacetate-induced knee osteoarthritis. Mol Pain 2020; 16:1744806920963807. [PMID: 33054557 PMCID: PMC7570798 DOI: 10.1177/1744806920963807] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
The monosodium iodoacetate knee osteoarthritis model has been widely used for the evaluation of osteoarthritis pain, but the pathogenesis of associated chronic pain is not fully understood. The T-type calcium channel 3.2 (CaV3.2) is abundantly expressed in the primary sensory neurons, in which it regulates neuronal excitability at both the somata and peripheral terminals and facilitates spontaneous neurotransmitter release at the spinal terminals. In this study, we investigated the involvement of primary sensory neuron-CaV3.2 activation in monosodium iodoacetate osteoarthritis pain. Knee joint osteoarthritis pain was induced by intra-articular injection of monosodium iodoacetate (2 mg) in rats, and sensory behavior was evaluated for 35 days. At that time, knee joint structural histology, primary sensory neuron injury, and inflammatory gliosis in lumbar dorsal root ganglia, and spinal dorsal horn were examined. Primary sensory neuron-T-type calcium channel current by patch-clamp recording and CaV3.2 expression by immunohistochemistry and immunoblots were determined. In a subset of animals, pain relief by CaV3.2 inhibition after delivery of CaV3.2 inhibitor TTA-P2 into sciatic nerve was investigated. Knee injection of monosodium iodoacetate resulted in osteoarthritis histopathology, weight-bearing asymmetry, sensory hypersensitivity of the ipsilateral hindpaw, and inflammatory gliosis in the ipsilateral dorsal root ganglia, sciatic nerve, and spinal dorsal horn. Neuronal injury marker ATF-3 was extensively upregulated in primary sensory neurons, suggesting that neuronal damage was beyond merely knee-innervating primary sensory neurons. T-type current in dissociated primary sensory neurons from lumbar dorsal root ganglia of monosodium iodoacetate rats was significantly increased, and CaV3.2 protein levels in the dorsal root ganglia and spinal dorsal horn ipsilateral to monosodium iodoacetate by immunoblots were significantly increased, compared to controls. Perineural application of TTA-P2 into the ipsilateral sciatic nerve alleviated mechanical hypersensitivity and weight-bearing asymmetry in monosodium iodoacetate osteoarthritis rats. Overall, our findings demonstrate an elevated CaV3.2 expression and enhanced function of primary sensory neuron-T channels in the monosodium iodoacetate osteoarthritis pain. Further study is needed to delineate the importance of dysfunctional primary sensory neuron-CaV3.2 in osteoarthritis pain.
Collapse
Affiliation(s)
- Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | - Yongsong Cai
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Xi’an Honghui Hospital, Xi’an, Shaanxi, PR China
| | - Brandon Itson-Zoske
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chensheng Qiu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, PR China
| | - Xu Hao
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, PR China
| | - Hongfei Xiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, PR China
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| |
Collapse
|
8
|
Crawford LK, Caterina MJ. Functional Anatomy of the Sensory Nervous System: Updates From the Neuroscience Bench. Toxicol Pathol 2019; 48:174-189. [PMID: 31554486 DOI: 10.1177/0192623319869011] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The simple tripartite classification of sensory neurons as A-beta, A-delta, and C fibers fails to convey the complexity of the neurons that encode stimuli as diverse as the texture of a surface, the location of a pinprick, or the direction of hair movement as a breeze moves across the skin. It has also proven to be inadequate when investigating the molecular mechanisms underlying pain, which can encompass any combination of chemical, tactile, and thermal modalities. Beginning with a brief overview of visceral and sensory neuroanatomy, this review expands upon sensory innervation of the skin as a prime example of the heterogeneity and complexity of the somatosensory nervous system. Neuroscientists have characterized defining features of over 15 subtypes of sensory neurons that innervate the skin of the mouse. This has enabled the study of cell-specific mechanisms of pain, which suggests that diverse sensory neuron subtypes may have distinct susceptibilities to toxic injury and different roles in pathologic mechanisms underlying altered sensation. Leveraging this growing body of knowledge for preclinical trials and models of neurotoxicity can vastly improve our understanding of peripheral nervous system dysfunction, advancing the fields of toxicologic pathology and neuropathology alike.
Collapse
Affiliation(s)
- LaTasha K Crawford
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, USA, Madison, WI, USA
| | - Michael J Caterina
- Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Downregulation of MicroRNA-33-5p Protected Bupivacaine-Induced Apoptosis in Murine Dorsal Root Ganglion Neurons Through GDNF. Neurotox Res 2019; 35:860-866. [PMID: 30617464 DOI: 10.1007/s12640-018-9994-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/21/2018] [Accepted: 12/26/2018] [Indexed: 12/25/2022]
Abstract
In this work, we evaluated the functional role of microRNA-33-5p (miR-33-5p) in regulating bupivacaine (Bv)-induced neural apoptosis in dorsal root ganglion (DRG) cells. DRG was extracted from adult mice and treated with BV in vitro. A TUNEL assay was applied to assess neural apoptosis among DRG cells. A qRT-PCR assay was applied to assess miR-33-5p expression among BV-treated DRG cells. MiR-33-5p was genetically knocked down in DRG cells. Its effect on BV-induced neural apoptosis was further evaluated by TUNEL assay. Correlation between miR-33-5p and its putative downstream target gene, glial cell-derived neurotrophic factor (GDNF), was assessed by dual-luciferase activity and qRT-PCR assays, respectively. GDNF was then inhibited in miR-33-5p-downregulated DRG cells to further assess its functional regulation in BV-induced neural apoptosis. BV induced significant neural apoptosis, in a dose-dependent manner, in DRG cells in vitro. MiR-33-5p was upregulated by BV treatment, also in a dose-dependent manner in DRG cells. On the other hand, downregulation of miR-33-5p protected BV-induced DRG neural apoptosis. GDNF was shown to be inversely correlated with miR-33-5p in BV-treated DRG cells. Moreover, inhibiting GDNF was able to reverse the protection of miR-33-5p-downregulation on BV-induced DRG neural apoptosis. MiR-33-5p, through its inverse regulation on DGNF gene, modulates anesthesia-induced neural apoptosis in DRG cells.
Collapse
|
10
|
Wong AW, Osborne PB, Keast JR. Axonal Injury Induces ATF3 in Specific Populations of Sacral Preganglionic Neurons in Male Rats. Front Neurosci 2018; 12:766. [PMID: 30405344 PMCID: PMC6207596 DOI: 10.3389/fnins.2018.00766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/03/2018] [Indexed: 12/26/2022] Open
Abstract
Compared to other neurons of the central nervous system, autonomic preganglionic neurons are unusual because most of their axon lies in the periphery. These axons are vulnerable to injury during surgical procedures, yet in comparison to peripheral neurons and somatic motor neurons, the impact of injury on preganglionic neurons is poorly understood. Here, we have investigated the impact of axotomy on sacral preganglionic neurons, a functionally diverse group of neurons required for micturition, defecation, and sexual function. We have previously observed that after axotomy, the injury-related transcription factor activating transcription factor-3 (ATF3) is upregulated in only half of these neurons (Peddie and Keast, 2011: PMID: 21283532). In the current study, we have investigated if this response is constrained to particular subclasses of preganglionic neurons that have specific functions or signaling properties. Seven days after unilateral pelvic nerve transection, we quantified sacral preganglionic neurons expressing ATF3, many but not all of which co-expressed c-Jun. This response was independent of soma size. Subclasses of sacral preganglionic neurons expressed combinations of somatostatin, calbindin, and neurokinin-1 receptor, each of which showed a similar response to injury. We also found that in contrast to thoracolumbar preganglionic neurons, the heat shock protein-25 (Hsp25) was not detected in naive sacral preganglionic neurons but was upregulated in many of these neurons after axotomy; the majority of these Hsp25 neurons expressed ATF3. Together, these studies reveal the molecular complexity of sacral preganglionic neurons and their responses to injury. The simultaneous upregulation of Hsp25 and ATF3 may indicate a distinct mechanism of regenerative capacity after injury.
Collapse
Affiliation(s)
- Agnes W Wong
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
| | - Peregrine B Osborne
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
| | - Janet R Keast
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Guha D, Shamji MF. The Dorsal Root Ganglion in the Pathogenesis of Chronic Neuropathic Pain. Neurosurgery 2018; 63 Suppl 1:118-126. [PMID: 27399376 DOI: 10.1227/neu.0000000000001255] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
| | - Mohammed F Shamji
- Department of Surgery and.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Lee C, Ramsey A, De Brito-Gariepy H, Michot B, Podborits E, Melnyk J, Gibbs JL. Molecular, cellular and behavioral changes associated with pathological pain signaling occur after dental pulp injury. Mol Pain 2018; 13:1744806917715173. [PMID: 28580829 PMCID: PMC5480629 DOI: 10.1177/1744806917715173] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Persistent pain can occur after routine dental treatments in which the dental pulp is
injured. To better understand pain chronicity after pulp injury, we assessed whether
dental pulp injury in mice causes changes to the sensory nervous system associated with
pathological pain. In some experiments, we compared findings after dental pulp injury to a
model of orofacial neuropathic pain, in which the mental nerve is injured. After
unilateral dental pulp injury, we observed increased expression of activating
transcription factor 3 (ATF3) and neuropeptide Y (NPY) mRNA and decreased tachykinin
precursor 1 gene expression, in the ipsilateral trigeminal ganglion. We also observed an
ipsilateral increase in the number of trigeminal neurons expressing immunoreactivity for
ATF3, a decrease in substance P (SP) immunoreactive cells, and no change in the number of
cells labeled with IB4. Mice with dental pulp injury transiently exhibit hindpaw
mechanical allodynia, out to 12 days, while mice with mental nerve injury have persistent
hindpaw allodynia. Mice with dental pulp injury increased spontaneous consumption of a
sucrose solution for 17 days while mental nerve injury mice did not. Finally, after dental
pulp injury, an increase in expression of the glial markers Iba1 and glial fibrillary
acidic protein occurs in the transition zone between nucleus caudalis and interpolaris,
ipsilateral to the injury. Collectively these studies suggest that dental pulp injury is
associated with significant neuroplasticity that could contribute to persistent pain after
of dental pulp injury.
Collapse
Affiliation(s)
- Caroline Lee
- Department of Endodontics. New York University College of Dentistry. NY, NY USA
| | - Austin Ramsey
- Department of Endodontics. New York University College of Dentistry. NY, NY USA
| | | | - Benoit Michot
- Department of Endodontics. New York University College of Dentistry. NY, NY USA
| | - Eugene Podborits
- Department of Endodontics. New York University College of Dentistry. NY, NY USA
| | - Janet Melnyk
- Department of Endodontics. New York University College of Dentistry. NY, NY USA
| | | |
Collapse
|
13
|
Salinas-Abarca AB, Velazquez-Lagunas I, Franco-Enzástiga Ú, Torres-López JE, Rocha-González HI, Granados-Soto V. ATF2, but not ATF3, participates in the maintenance of nerve injury-induced tactile allodynia and thermal hyperalgesia. Mol Pain 2018; 14:1744806918787427. [PMID: 29921170 PMCID: PMC6050803 DOI: 10.1177/1744806918787427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transcription factors are proteins that modulate the transcriptional rate of target genes in the nucleus in response to extracellular or cytoplasmic signals. Activating transcription factors 2 (ATF2) and 3 (ATF3) respond to environmental signals and maintain cellular homeostasis. There is evidence that inflammation and nerve injury modulate ATF2 and ATF3 expression. However, the function of these transcription factors in pain is unknown. The purpose of this study was to investigate the contribution of ATF2 and ATF3 to nerve injury-induced neuropathic pain. L5/6 spinal nerve ligation induced tactile allodynia and thermal hyperalgesia. Moreover, nerve damage enhanced ATF2 and ATF3 protein expression in injured L5/6 dorsal root ganglia and spinal cord but not in uninjured L4 dorsal root ganglia. Nerve damage also enhanced ATF2 immunoreactivity in dorsal root ganglia and spinal cord 7 to 21 days post-injury. Repeated intrathecal post-treatment with a small-interfering RNA targeted against ATF2 (ATF2 siRNA) or anti-ATF2 antibody partially reversed tactile allodynia and thermal hyperalgesia. In contrast, ATF3 siRNA or anti-ATF3 antibody did not modify nociceptive behaviors. ATF2 immunoreactivity was found in dorsal root ganglia and spinal cord co-labeling with NeuN mainly in non-peptidergic (IB4+) but also in peptidergic (CGRP+) neurons. ATF2 was found mainly in small- and medium-sized neurons. These results suggest that ATF2, but not ATF3, is found in strategic sites related to spinal nociceptive processing and participates in the maintenance of neuropathic pain in rats.
Collapse
Affiliation(s)
- Ana B Salinas-Abarca
- 1 Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Mexico
| | | | | | - Jorge E Torres-López
- 2 Laboratorio Mecanismos del Dolor, Centro de Investigación, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Mexico.,3 Hospital Regional de Alta Especialidad Dr. Juan Graham Casasús, Mexico
| | - Héctor I Rocha-González
- 4 Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Vinicio Granados-Soto
- 1 Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Mexico
| |
Collapse
|
14
|
Sha H, Zhang D, Zhang Y, Wen Y, Wang Y. ATF3 promotes migration and M1/M2 polarization of macrophages by activating tenascin‑C via Wnt/β‑catenin pathway. Mol Med Rep 2017; 16:3641-3647. [PMID: 28714032 DOI: 10.3892/mmr.2017.6992] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 03/27/2017] [Indexed: 11/05/2022] Open
Abstract
There are different polarization states of macrophages, including the classically activated M1 phenotype and the alternatively activated M2 phenotype. These have different functions in the inflammation process. Activating transcription factor 3 (ATF3) is a key transcriptional regulator that inhibits the inflammatory response. However, the effects of ATF3 on migration and anti‑inflammatory control mechanisms of macrophages have not been thoroughly investigated. The present study investigated the effect of ATF3 on macrophage migration and M1/M2 polarization. Results revealed that overexpression of ATF3 promoted macrophage migration and the expression of the M2 phenotype markers [cluster of differentiation (CD) 163, mannose receptor C type 1, arginase 1 and peroxisome proliferator‑activated receptor γ] and inhibited expression of the M1 phenotype markers (monocyte chemoattractant protein‑1, inducible nitric oxide synthase, CD16 and tumor necrosis factor‑α), whereas knockdown of ATF3 resulted in a contrary effect. In addition, the wingless‑type MMTV integration site family member (Wnt)/β‑catenin signaling pathway was activated and the expression level of tenascin (TNC) was significantly upregulated by overexpression of ATF3. Additionally, inhibition of Wnt/β‑catenin signaling significantly attenuated the upregulatory effect of ATF3 on TNC. Finally, the effect of ATF3 on macrophage migration and markers of the M1 or M2 state was investigated using TNC‑specific siRNA. In conclusion, the results of the present study suggested that ATF3 promotes macrophage migration and reverses M1‑polarized macrophages to the M2 phenotype by upregulation of TNC via the Wnt/β‑catenin signaling pathway.
Collapse
Affiliation(s)
- Hao Sha
- Department of Orthopaedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Dianzhong Zhang
- Department of Orthopaedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yunfei Zhang
- Department of Orthopaedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yanhua Wen
- Department of Orthopaedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yucai Wang
- Department of Orthopaedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
15
|
Formalin injection produces long-lasting hypersensitivity with characteristics of neuropathic pain. Eur J Pharmacol 2017; 797:83-93. [PMID: 28095324 DOI: 10.1016/j.ejphar.2017.01.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 01/12/2023]
Abstract
The purpose of this study was to investigate whether 1%, 2% or 5% formalin injection produce hypersensitivity with characteristics of the neuropathic pain induced by spinal nerve injury. Formalin injection (1%, 2% and 5%) produced concentration-dependent long-lasting (at least 14 days) mechanical allodynia and hyperalgesia in both paws. Likewise, L5/L6 spinal nerve ligation induced allodynia and hyperalgesia in both paws. The intensity of hypersensitivity was greater in the ipsilateral than in the contralateral paw in all models. Systemic gabapentin or morphine completely reduced 1% formalin-induced hypersensitivity. In contrast, both drugs were not able to fully diminish 2-5% formalin- and nerve injury-induced hypersensitivity. Indomethacin produced a significant effect in the chronic 1% formalin test. Conversely, this drug did not modify 2 or 5% formalin- and nerve injury-induced hypersensitivity. Spinal nerve injury and 2-5%, but not 1%, formalin injection enhanced ATF3 protein expression and immunofluorescence in dorsal root ganglia (DRG) in a time-dependent manner. Furthermore, 2-5%, but not 1%, formalin injection or spinal nerve injury also enhanced α2δ-1 subunit protein levels in DRG. Our results suggest that 5% and, at lesser extent, 2% formalin injection produces long-lasting hypersensitivity with a pharmacological and molecular pattern that resembles neuropathic pain induced by spinal nerve ligation.
Collapse
|
16
|
Miyagi M, Ishikawa T, Kamoda H, Suzuki M, Inoue G, Sakuma Y, Oikawa Y, Uchida K, Suzuki T, Takahashi K, Takaso M, Ohtori S. The efficacy of nerve growth factor antibody in a mouse model of neuropathic cancer pain. Exp Anim 2016; 65:337-343. [PMID: 27194075 PMCID: PMC5111836 DOI: 10.1538/expanim.16-0014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Neuropathic cancer pain is caused by tumors compressing the spinal nerve roots and is
usually difficult to treat. The aim of current study was to determine the influence of NGF
antibody on pain-related markers and behavior in a mouse model of neuropathic cancer pain.
Twenty mice were used to model neuropathic cancer pain by applying murine sarcoma cells to
their left sciatic nerve. Ten mice were sham operated. Two weeks after surgery, the murine
sarcoma-affected mice were allocated randomly into treatment groups receiving either
sterile saline (saline group) or an anti-nerve growth factor antibody (anti-NGF group).
Three weeks after surgery (a week after treatment), the pain-related behavior of mice was
evaluated using a CatWalk system. Subsequently, bilateral dorsal root ganglia (DRGs) from
the L4–L6 levels and spinal cords at L4–L6 levels were resected. DRGs were immunostained
for calcitonin gene-related peptide (CGRP) and activating transcription factor 3 (ATF-3),
and spinal cords were immunostained for ionized calcium-binding adaptor molecule-1
(iba-1). Mechanical allodynia was observed in mice from the saline group and was improved
in mice from the anti-NGF group. CGRP and ATF-3-immunoreactivity in DRGs and microglia
expression in the spinal dorsal horn were upregulated in the saline group compared with
the sham group, and they were suppressed in the anti-NGF group compared with the saline
group (P<0.05). These findings suggest that anti-NGF therapy might be
valuable for treating neuropathic cancer pain.
Collapse
Affiliation(s)
- Masayuki Miyagi
- Department of Orthopaedic Surgery, Kitasato University, School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara city, Kanagawa 252-0374, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Clarke JP, Mearow K. Autophagy inhibition in endogenous and nutrient-deprived conditions reduces dorsal root ganglia neuron survival and neurite growth in vitro. J Neurosci Res 2016; 94:653-70. [PMID: 27018986 DOI: 10.1002/jnr.23733] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/05/2016] [Accepted: 02/28/2016] [Indexed: 12/31/2022]
Abstract
Peripheral neuropathies can result in cytoskeletal changes in axons, ultimately leading to Wallerian degeneration and cell death. Recently, autophagy has been studied as a potential target for improving axonal survival and growth during peripheral nerve damage. This study investigates the influence of autophagy on adult dorsal root ganglia (DRG) neuron survival and axonal growth under control and nutrient deprivation conditions. Constitutive autophagy was modulated with pharmacological activators (rapamycin; Rapa) and inhibitors (3-methyladenine, bafilomycin A1) in conjunction with either a nutrient-stable environment (standard culture medium) or a nutrient-deprived environment (Hank's balanced salt solution + Ca(2+) /Mg(2+) ). The results demonstrated that autophagy inhibition decreased cell viability and reduced neurite growth and branching complexity. Although autophagy was upregulated with nutrient deprivation compared with the control, it was not further activated by rapamycin, suggesting a threshold level of autophagy. Overall, both cellular and biochemical approaches combined to show the influence of autophagy on adult DRG neuron survival and growth. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joseph-Patrick Clarke
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Karen Mearow
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
18
|
Medici T, Shortland PJ. Effects of peripheral nerve injury on parvalbumin expression in adult rat dorsal root ganglion neurons. BMC Neurosci 2015; 16:93. [PMID: 26674138 PMCID: PMC4681077 DOI: 10.1186/s12868-015-0232-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/07/2015] [Indexed: 12/24/2022] Open
Abstract
Background Parvalbumin (PV) is a calcium binding protein that identifies a subpopulation of proprioceptive dorsal root ganglion (DRG) neurons. Calcitonin gene-related peptide (CGRP) is also expressed in a high proportion of muscle afferents but its relationship to PV is unclear. Little is known of the phenotypic responses of muscle afferents to nerve injury. Sciatic nerve axotomy or L5 spinal nerve ligation and section (SNL) lesions were used to explore these issues in adult rats using immunocytochemistry. Results In naive animals, the mean PV expression was 25 % of L4 or L5 dorsal root ganglion (DRG) neurons, and this was unchanged 2 weeks after sciatic nerve axotomy. Colocalization studies with the injury marker activating transcription factor 3 (ATF3) showed that approximately 24 % of PV neurons expressed ATF3 after sciatic nerve axotomy suggesting that PV may show a phenotypic switch from injured to uninjured neurons. This possibility was further assessed using the spinal nerve ligation (SNL) injury model where injured and uninjured neurons are located in different DRGs. Two weeks after L5 SNL there was no change in total PV staining and essentially all L5 PV neurons expressed ATF3. Additionally, there was no increase in PV-ir in the adjacent uninjured L4 DRG cells. Co-labelling of DRG neurons revealed that less than 2 % of PV neurons normally expressed CGRP and no colocalization was seen after injury. Conclusion These experiments clearly show that axotomy does not produce down regulation of PV protein in the DRG. Moreover, this lack of change is not due to a phenotypic switch in PV immunoreactive (ir) neurons, or de novo expression of PV-ir in uninjured neurons after nerve injury. These results further illustrate differences that occur when muscle afferents are injured as compared to cutaneous afferents.
Collapse
Affiliation(s)
- Tom Medici
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E1 2AT, UK. .,Queens Hospital, Romford, Essex, RM7 0AG, UK.
| | - Peter J Shortland
- School of Science and Health, Western Sydney University, Narellen Road, Campbelltown, NSW, 2560, Australia. .,Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E1 2AT, UK.
| |
Collapse
|
19
|
Evidence for a distinct neuro-immune signature in rats that develop behavioural disability after nerve injury. J Neuroinflammation 2015; 12:96. [PMID: 25986444 PMCID: PMC4506439 DOI: 10.1186/s12974-015-0318-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/05/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chronic neuropathic pain is a neuro-immune disorder, characterised by allodynia, hyperalgesia and spontaneous pain, as well as debilitating affective-motivational disturbances (e.g., reduced social interactions, sleep-wake cycle disruption, anhedonia, and depression). The role of the immune system in altered sensation following nerve injury is well documented. However, its role in the development of affective-motivational disturbances remains largely unknown. Here, we aimed to characterise changes in the immune response at peripheral and spinal sites in a rat model of neuropathic pain and disability. METHODS Sixty-two rats underwent sciatic nerve chronic constriction injury (CCI) and were characterised as either Pain and disability, Pain and transient disability or Pain alone on the basis of sensory threshold testing and changes in post-CCI dominance behaviour in resident-intruder interactions. Nerve ultrastructure was assessed and the number of T lymphocytes and macrophages were quantified at the site of injury on day six post-CCI. ATF3 expression was quantified in the dorsal root ganglia (DRG). Using a multiplex assay, eight cytokines were quantified in the sciatic nerve, DRG and spinal cord. RESULTS All CCI rats displayed equal levels of mechanical allodynia, structural nerve damage, and reorganisation. All CCI rats had significant infiltration of macrophages and T lymphocytes to both the injury site and the DRG. Pain and disability rats had significantly greater numbers of T lymphocytes. CCI increased IL-6 and MCP-1 in the sciatic nerve. Examination of disability subgroups revealed increases in IL-6 and MCP-1 were restricted to Pain and disability rats. Conversely, CCI led to a decrease in IL-17, which was restricted to Pain and transient disability and Pain alone rats. CCI significantly increased IL-6 and MCP-1 in the DRG, with IL-6 restricted to Pain and disability rats. CCI rats had increased IL-1β, IL-6 and MCP-1 in the spinal cord. Amongst subgroups, only Pain and disability rats had increased IL-1β. CONCLUSIONS This study has defined individual differences in the immune response at peripheral and spinal sites following CCI in rats. These changes correlated with the degree of disability. Our data suggest that individual immune signatures play a significant role in the different behavioural trajectories following nerve injury, and in some cases may lead to persistent affective-motivational disturbances.
Collapse
|
20
|
Su J, Gao T, Shi T, Xiang Q, Xu X, Wiesenfeld-Hallin Z, Hökfelt T, Svensson CI. Phenotypic changes in dorsal root ganglion and spinal cord in the collagen antibody-induced arthritis mouse model. J Comp Neurol 2015; 523:1505-28. [DOI: 10.1002/cne.23749] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/26/2014] [Accepted: 01/24/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Jie Su
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm 171 77 Sweden
| | - Tianle Gao
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm 171 77 Sweden
| | - Tiejun Shi
- Department of Neuroscience; Karolinska Institutet; Stockholm 171 77 Sweden
| | - Qiong Xiang
- Department of Neuroscience; Karolinska Institutet; Stockholm 171 77 Sweden
| | - Xiaojun Xu
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm 171 77 Sweden
| | | | - Tomas Hökfelt
- Department of Neuroscience; Karolinska Institutet; Stockholm 171 77 Sweden
| | - Camilla I. Svensson
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm 171 77 Sweden
| |
Collapse
|
21
|
Henriques A, Kastner S, Chatzikonstantinou E, Pitzer C, Plaas C, Kirsch F, Wafzig O, Krüger C, Spoelgen R, Gonzalez De Aguilar JL, Gretz N, Schneider A. Gene expression changes in spinal motoneurons of the SOD1(G93A) transgenic model for ALS after treatment with G-CSF. Front Cell Neurosci 2015; 8:464. [PMID: 25653590 PMCID: PMC4299451 DOI: 10.3389/fncel.2014.00464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/20/2014] [Indexed: 12/12/2022] Open
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is an incurable fatal motoneuron disease with a lifetime risk of approximately 1:400. It is characterized by progressive weakness, muscle wasting, and death ensuing 3–5 years after diagnosis. Granulocyte-colony stimulating factor (G-CSF) is a drug candidate for ALS, with evidence for efficacy from animal studies and interesting data from pilot clinical trials. To gain insight into the disease mechanisms and mode of action of G-CSF, we performed gene expression profiling on isolated lumbar motoneurons from SOD1G93A mice, the most frequently studied animal model for ALS, with and without G-CSF treatment. Results: Motoneurons from SOD1G93A mice present a distinct gene expression profile in comparison to controls already at an early disease stage (11 weeks of age), when treatment was initiated. The degree of deregulation increases at a time where motor symptoms are obvious (15 weeks of age). Upon G-CSF treatment, transcriptomic deregulations of SOD1G93A motoneurons were notably restored. Discriminant analysis revealed that SOD1 mice treated with G-CSF has a transcriptom close to presymptomatic SOD1 mice or wild type mice. Some interesting genes modulated by G-CSF treatment relate to neuromuscular function such as CCR4-NOT or Prss12. Conclusions: Our data suggest that G-CSF is able to re-adjust gene expression in symptomatic SOD1G93A motoneurons. This provides further arguments for G-CSF as a promising drug candidate for ALS.
Collapse
Affiliation(s)
- Alexandre Henriques
- INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence Strasbourg, France ; UMRS1118, Fédération de Médecine Translationnelle de Strasbourg Université de Strasbourg, France
| | | | | | | | | | | | | | | | | | - Jose-Luis Gonzalez De Aguilar
- INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence Strasbourg, France ; UMRS1118, Fédération de Médecine Translationnelle de Strasbourg Université de Strasbourg, France
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| | | |
Collapse
|
22
|
Newton VL, Ali S, Duddy G, Whitmarsh AJ, Gardiner NJ. Targeting apoptosis signalling kinase-1 (ASK-1) does not prevent the development of neuropathy in streptozotocin-induced diabetic mice. PLoS One 2014; 9:e107437. [PMID: 25329046 PMCID: PMC4199525 DOI: 10.1371/journal.pone.0107437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 08/18/2014] [Indexed: 12/25/2022] Open
Abstract
Apoptosis signal-regulating kinase-1 (ASK1) is a mitogen-activated protein 3 kinase (MAPKKK/MAP3K) which lies upstream of the stress-activated MAPKs, JNK and p38. ASK1 may be activated by a variety of extracellular and intracellular stimuli. MAP kinase activation in the sensory nervous system as a result of diabetes has been shown in numerous preclinical and clinical studies. As a common upstream activator of both p38 and JNK, we hypothesised that activation of ASK1 contributes to nerve dysfunction in diabetic neuropathy. We therefore wanted to characterize the expression of ASK1 in sensory neurons, and determine whether the absence of functional ASK1 would protect against the development of neuropathy in a mouse model of experimental diabetes. ASK1 mRNA and protein is constitutively expressed by multiple populations of sensory neurons of the adult mouse lumbar DRG. Diabetes was induced in male C57BL/6 and transgenic ASK1 kinase-inactive (ASK1n) mice using streptozotocin. Levels of ASK1 do not change in the DRG, spinal cord, or sciatic nerve following induction of diabetes. However, levels of ASK2 mRNA increase in the spinal cord at 4 weeks of diabetes, which could represent a future target for this field. Neither motor nerve conduction velocity deficits, nor thermal or mechanical hypoalgesia were prevented or ameliorated in diabetic ASK1n mice. These results suggest that activation of ASK1 is not responsible for the nerve deficits observed in this mouse model of diabetic neuropathy.
Collapse
Affiliation(s)
- Victoria L. Newton
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Sumia Ali
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Graham Duddy
- Platform Technology and Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Alan J. Whitmarsh
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Natalie J. Gardiner
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Rau KK, Petruska JC, Cooper BY, Johnson RD. Distinct subclassification of DRG neurons innervating the distal colon and glans penis/distal urethra based on the electrophysiological current signature. J Neurophysiol 2014; 112:1392-408. [PMID: 24872531 DOI: 10.1152/jn.00560.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spinal sensory neurons innervating visceral and mucocutaneous tissues have unique microanatomic distribution, peripheral modality, and physiological, pharmacological, and biophysical characteristics compared with those neurons that innervate muscle and cutaneous tissues. In previous patch-clamp electrophysiological studies, we have demonstrated that small- and medium-diameter dorsal root ganglion (DRG) neurons can be subclassified on the basis of their patterns of voltage-activated currents (VAC). These VAC-based subclasses were highly consistent in their action potential characteristics, responses to algesic compounds, immunocytochemical expression patterns, and responses to thermal stimuli. For this study, we examined the VAC of neurons retrogradely traced from the distal colon and the glans penis/distal urethra in the adult male rat. The afferent population from the distal colon contained at least two previously characterized cell types observed in somatic tissues (types 5 and 8), as well as four novel cell types (types 15, 16, 17, and 18). In the glans penis/distal urethra, two previously described cell types (types 6 and 8) and three novel cell types (types 7, 14, and 15) were identified. Other characteristics, including action potential profiles, responses to algesic compounds (acetylcholine, capsaicin, ATP, and pH 5.0 solution), and neurochemistry (expression of substance P, CGRP, neurofilament, TRPV1, TRPV2, and isolectin B4 binding) were consistent for each VAC-defined subgroup. With identification of distinct DRG cell types that innervate the distal colon and glans penis/distal urethra, future in vitro studies related to the gastrointestinal and urogenital sensory function in normal as well as abnormal/pathological conditions may be benefitted.
Collapse
Affiliation(s)
- Kristofer K Rau
- Department of Anesthesiology, Department of Anatomical Sciences and Neurobiology, and Kentucky Spinal Cord Injury Research Center, University of Louisville College of Medicine, Louisville, Kentucky; Department of Physiological Sciences, University of Florida College of Veterinary Medicine and McKnight Brain Institute, Gainesville, Florida
| | - Jeffrey C Petruska
- Department of Anatomical Sciences and Neurobiology, Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville College of Medicine, Louisville, Kentucky
| | - Brian Y Cooper
- Department of Oral and Maxillofacial Surgery, Division of Neuroscience, J. Hillis Miller Health Center, University of Florida College of Dentistry and McKnight Brain Institute, Gainesville, Florida; and
| | - Richard D Johnson
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine and McKnight Brain Institute, Gainesville, Florida
| |
Collapse
|
24
|
Murakami K, Kuniyoshi K, Iwakura N, Matsuura Y, Suzuki T, Takahashi K, Ohtori S. Vein wrapping for chronic nerve constriction injury in a rat model: study showing increases in VEGF and HGF production and prevention of pain-associated behaviors and nerve damage. J Bone Joint Surg Am 2014; 96:859-67. [PMID: 24875027 DOI: 10.2106/jbjs.l.01790] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Although efficacious clinical results have been reported after vein wrapping for the treatment of recurrent compressive neuropathy, the mechanism of nerve protection remains uncertain. METHODS Eight-week-old male Wistar rats (n = 90) were randomly divided into three groups: sham procedure, chronic constriction injury, and chronic constriction injury plus vein wrapping. Mechanical withdrawal thresholds and walking patterns were measured with use of von Frey filaments and the CatWalk system, respectively. We investigated L4-L5 dorsal root ganglia immunohistochemically at fourteen days postsurgery and sciatic nerves histologically at fourteen days and again five months postsurgery. Concentrations of several sciatic neurotrophic factors in the ligated sciatic nerves were quantified with use of ELISA (enzyme-linked immunosorbent assay). RESULTS In behavioral tests, the rats in which the chronic constriction injury had been followed by vein wrapping displayed significantly greater pain responses than the sham group, and the group with untreated chronic constriction injury showed greater pain responses than the vein-wrapping group (both p < 0.05). Immunoreactive markers of inflammation and nerve damage, calcitonin gene-related peptide (CGRP) and activating transcription factor-3 (ATF3), were upregulated in dorsal root ganglion neurons in the constriction-injury and vein-wrapping groups compared with those in the sham group, with greater upregulation in the constriction-injury group than in the vein-wrapping group (both p < 0.01). Histologic observation showed marked nerve degeneration and scar tissue formation around the sciatic nerve in the constriction-injury group, but these effects were prevented to some extent in the vein-wrapping group. Vascular endothelial growth factor (VEGF) levels at one and three days postsurgery and hepatocyte growth factor (HGF) levels at three, seven, fourteen, and twenty-eight days postsurgery were significantly higher in the vein-wrapping group than in the other groups (p < 0.05). CONCLUSIONS Vein wrapping decreased pain-associated behavior and nerve damage caused by chronic constriction injury. VEGF and HGF produced in response to vein grafts may play a mechanistic role. CLINICAL RELEVANCE These findings may lead to development of new therapies employing growth factors, with or without other materials, that simulate vein wrapping.
Collapse
Affiliation(s)
- Kenichi Murakami
- Department of Orthopedic Surgery (K.M., K.K., Y.M., K.T., and S.O.) and Department of Bioenvironmental Medicine (T.S.), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan. E-mail address for K. Murakami: srdioz@gm
| | - Kazuki Kuniyoshi
- Department of Orthopedic Surgery (K.M., K.K., Y.M., K.T., and S.O.) and Department of Bioenvironmental Medicine (T.S.), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan. E-mail address for K. Murakami: srdioz@gm
| | - Nahoko Iwakura
- Department of Orthopedics, Tokyo Women's Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Yusuke Matsuura
- Department of Orthopedic Surgery (K.M., K.K., Y.M., K.T., and S.O.) and Department of Bioenvironmental Medicine (T.S.), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan. E-mail address for K. Murakami: srdioz@gm
| | - Takane Suzuki
- Department of Orthopedic Surgery (K.M., K.K., Y.M., K.T., and S.O.) and Department of Bioenvironmental Medicine (T.S.), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan. E-mail address for K. Murakami: srdioz@gm
| | - Kazuhisa Takahashi
- Department of Orthopedic Surgery (K.M., K.K., Y.M., K.T., and S.O.) and Department of Bioenvironmental Medicine (T.S.), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan. E-mail address for K. Murakami: srdioz@gm
| | - Seiji Ohtori
- Department of Orthopedic Surgery (K.M., K.K., Y.M., K.T., and S.O.) and Department of Bioenvironmental Medicine (T.S.), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan. E-mail address for K. Murakami: srdioz@gm
| |
Collapse
|
25
|
Elzière L, Sar C, Ventéo S, Bourane S, Puech S, Sonrier C, Boukhadaoui H, Fichard A, Pattyn A, Valmier J, Carroll P, Méchaly I. CaMKK-CaMK1a, a new post-traumatic signalling pathway induced in mouse somatosensory neurons. PLoS One 2014; 9:e97736. [PMID: 24840036 PMCID: PMC4026325 DOI: 10.1371/journal.pone.0097736] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 04/24/2014] [Indexed: 11/19/2022] Open
Abstract
Neurons innervating peripheral tissues display complex responses to peripheral nerve injury. These include the activation and suppression of a variety of signalling pathways that together influence regenerative growth and result in more or less successful functional recovery. However, these responses can be offset by pathological consequences including neuropathic pain. Calcium signalling plays a major role in the different steps occurring after nerve damage. As part of our studies to unravel the roles of injury-induced molecular changes in dorsal root ganglia (DRG) neurons during their regeneration, we show that the calcium calmodulin kinase CaMK1a is markedly induced in mouse DRG neurons in several models of mechanical peripheral nerve injury, but not by inflammation. Intrathecal injection of NRTN or GDNF significantly prevents the post-traumatic induction of CaMK1a suggesting that interruption of target derived factors might be a starter signal in this de novo induction. Inhibition of CaMK signalling in injured DRG neurons by pharmacological means or treatment with CaMK1a siRNA resulted in decreased velocity of neurite growth in vitro. Altogether, the results suggest that CaMK1a induction is part of the intrinsic regenerative response of DRG neurons to peripheral nerve injury, and is thus a potential target for therapeutic intervention to improve peripheral nerve regeneration.
Collapse
Affiliation(s)
- Lucie Elzière
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Chamroeun Sar
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Stéphanie Ventéo
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Steeve Bourane
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, California, United States of America
| | - Sylvie Puech
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Corinne Sonrier
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Hassan Boukhadaoui
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Agnès Fichard
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
- Department BioMV, University of Montpellier II, Montpellier, France
| | - Alexandre Pattyn
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Jean Valmier
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
- Department BioMV, University of Montpellier II, Montpellier, France
| | - Patrick Carroll
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Ilana Méchaly
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
- Department BioMV, University of Montpellier II, Montpellier, France
| |
Collapse
|
26
|
Richner M, Ulrichsen M, Elmegaard SL, Dieu R, Pallesen LT, Vaegter CB. Peripheral nerve injury modulates neurotrophin signaling in the peripheral and central nervous system. Mol Neurobiol 2014; 50:945-70. [PMID: 24752592 DOI: 10.1007/s12035-014-8706-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/01/2014] [Indexed: 12/21/2022]
Abstract
Peripheral nerve injury disrupts the normal functions of sensory and motor neurons by damaging the integrity of axons and Schwann cells. In contrast to the central nervous system, the peripheral nervous system possesses a considerable capacity for regrowth, but regeneration is far from complete and functional recovery rarely returns to pre-injury levels. During development, the peripheral nervous system strongly depends upon trophic stimulation for neuronal differentiation, growth and maturation. The perhaps most important group of trophic substances in this context is the neurotrophins (NGF, BDNF, NT-3 and NT-4/5), which signal in a complex spatial and timely manner via the two structurally unrelated p75(NTR) and tropomyosin receptor kinase (TrkA, Trk-B and Trk-C) receptors. Damage to the adult peripheral nerves induces cellular mechanisms resembling those active during development, resulting in a rapid and robust increase in the synthesis of neurotrophins in neurons and Schwann cells, guiding and supporting regeneration. Furthermore, the injury induces neurotrophin-mediated changes in the dorsal root ganglia and in the spinal cord, which affect the modulation of afferent sensory signaling and eventually may contribute to the development of neuropathic pain. The focus of this review is on the expression patterns of neurotrophins and their receptors in neurons and glial cells of the peripheral nervous system and the spinal cord. Furthermore, injury-induced changes of expression patterns and the functional consequences in relation to axonal growth and remyelination as well as to neuropathic pain development will be reviewed.
Collapse
Affiliation(s)
- Mette Richner
- Danish Research Institute of Translational Neuroscience DANDRITE, Nordic EMBL Partnership, and Lundbeck Foundation Research Center MIND, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, 8000, Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
27
|
Vertebral compression exacerbates osteoporotic pain in an ovariectomy-induced osteoporosis rat model. Spine (Phila Pa 1976) 2013; 38:2085-91. [PMID: 24225423 DOI: 10.1097/brs.0000000000000001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Basic pain study using osteoporotic rodent models. OBJECTIVE To examine alterations in distribution of pain-related neuropeptides after compressive force on osteoporotic vertebrae and their chronic pain-related properties. SUMMARY OF BACKGROUND DATA We previously reported significantly increased production of calcitonin gene-related peptide (CGRP), a marker of inflammatory pain, in the dorsal root ganglia (DRG) of vertebrae in osteoporosis-model ovariectomized (OVX) rats. Here, we hypothesized that longitudinal compressive force on vertebrae can affect osteoporotic pain properties, which has not been examined yet. METHODS OVX rats were used as the osteoporosis model. Female Sprague-Dawley rats were prepared and Fluoro-Gold (FG) neurotracer was applied to the periosteal surface of the Co5 vertebra. After FG labeling, the animals were divided into 4 groups: Control, Control + compression, OVX, and OVX + compression. The Control groups were not ovariectomized. In the compression groups, K-wires were stabbed transversely through Co4 and Co6 with Co5 compressed longitudinally by rubber bands bridged between the 2. One, 2, 4, and 8 weeks after surgery, bilateral S1 to S3 DRGs were excised for immunofluorescence assays. Expression of CGRP and activating transcription factor 3, a marker of neuronal injury, were compared among the 4 groups. RESULTS Sustained upregulation of CGRP in DRG neurons was observed after compression of the Co5 vertebra, and Co5 compression caused significant increase in CGRP production in DRG neurons, whereas a greater level of activating transcription factor 3 upregulation was observed in DRGs in OVX rats after dynamic vertebral compression 8 weeks after surgery, implying potential neuropathic pain. CONCLUSION There was sustained upregulation of CGRP and activating transcription factor 3 in DRGs in osteoporotic model rats compared with controls, and levels were further enhanced by dynamic vertebral compression. These findings imply that dynamic compression stress on vertebrae can exacerbate osteoporotic pain by inducing both inflammatory and neuropathic pain mediators. LEVEL OF EVIDENCE N/A.
Collapse
|
28
|
Forrest SL, Osborne PB, Keast JR. Characterization of bladder sensory neurons in the context of myelination, receptors for pain modulators, and acute responses to bladder inflammation. Front Neurosci 2013; 7:206. [PMID: 24223534 PMCID: PMC3819567 DOI: 10.3389/fnins.2013.00206] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/16/2013] [Indexed: 01/23/2023] Open
Abstract
Bladder sensation is mediated by lumbosacral dorsal root ganglion neurons and is essential for normal voiding and nociception. Numerous electrophysiological, structural, and molecular changes occur in these neurons following inflammation. Defining which neurons undergo these changes is critical for understanding the mechanism underlying bladder pain and dysfunction. Our first aim was to define the chemical classes of bladder sensory neurons that express receptors for the endogenous modulators of nociceptor sensitivity, glial cell line-derived neurotrophic factor (GDNF), the related neurotrophic factor, artemin, and estrogens. Bladder sensory neurons of adult female Sprague-Dawley rats were identified with retrograde tracer. Diverse groups of neurons express these receptors, and some neurons express receptors for both neurotrophic factors and estrogens. Lumbar and sacral sensory neurons showed some distinct differences in their expression profile. We also distinguished the chemical profile of myelinated and unmyelinated bladder sensory neurons. Our second aim was to identify bladder sensory neurons likely to be undergoing structural remodeling during inflammation. Following systemic administration of cyclophosphamide (CYP), its renal metabolite acrolein causes transient urothelial loss, exposing local afferent terminals to a toxic environment. CYP induced expression of the injury-related immediate-early gene product, activating transcription factor-3 (ATF-3), in a small population of sacral nitrergic bladder sensory neurons. In conclusion, we have defined the bladder sensory neurons that express receptors for GDNF, artemin and estrogens. Our study has also identified a sub-population of sacral sensory neurons that are likely to be undergoing structural remodeling during acute inflammation of the bladder. Together these results contribute to increased understanding of the neurons that are known to be involved in pain modulation and hyperreflexia during inflammation.
Collapse
Affiliation(s)
- Shelley L Forrest
- Pain Management Research Institute and Kolling Institute, University of Sydney at Royal North Shore Hospital Sydney, NSW, Australia
| | | | | |
Collapse
|
29
|
Pope JE, Deer TR, Kramer J. A systematic review: current and future directions of dorsal root ganglion therapeutics to treat chronic pain. PAIN MEDICINE 2013; 14:1477-96. [PMID: 23802747 DOI: 10.1111/pme.12171] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE The purpose of the study was to systematically review the historical therapeutics for chronic pain care directed at the dorsal root ganglion (DRG) and to identify future trends and upcoming treatment strategies. METHODS A literature search on bibliographic resources, including EMBASE, PubMed Cochrane Database of Systemic Reviews from literature published from 1966 to December 1, 2012 to identify studies and treatments directed at the DRG to treat chronic pain, and was limited to the English language. Case series, case reports, and preclinical work were excluded. Information on emerging technologies and pharmacologics were captured separately, as they did not meet the inclusion criteria. RESULTS The literature review yielded three current clinical treatment strategies: ganglionectomy, conventional radiofrequency treatment of the dorsal root ganglion, and pulsed radiofrequency treatment of the DRG. Seven studies were identified utilizing ganglionectomy, 14 for conventional radiofrequency, and 16 for pulsed radiofrequency. Electrical stimulation and novel therapeutic delivery strategies have been proposed and are in development. CONCLUSIONS Despite a robust understanding of the DRG and its importance in acute nociception, as well as the development and maintenance of chronic pain, relatively poor evidence exists regarding current therapeutic strategies. Novel therapies like electrical and pharmacologic strategies are on the horizon, and more prospective study is required to better qualify the role of the DRG in chronic pain care.
Collapse
Affiliation(s)
- Jason E Pope
- The Center for Pain Relief, Charleston, West Virginia
| | | | | |
Collapse
|
30
|
Abdelalim EM, Bellier JP, Tooyama I. Expression of NPR-B in neurons of the dorsal root ganglia of the rat. Peptides 2013; 43:56-61. [PMID: 23454171 DOI: 10.1016/j.peptides.2013.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/16/2013] [Accepted: 02/18/2013] [Indexed: 12/17/2022]
Abstract
C-type natriuretic peptide (CNP) is an abundant neuropeptide in the central nervous system, which exerts its physiological effects through natriuretic peptide receptor B (NPR-B). Recently, the CNP/NPR-B system has been recognized as an important regulator for the development of sensory axons. The dorsal root ganglion (DRG) contains neurons transmitting several kinds of spinal sensory stimuli to the central nervous system. In this study, we characterized NPR-B receptor expression in the rat DRG, using reverse transcription-polymerase chain reaction, Western blotting and immunohistochemistry. Immunostaining revealed that NPR-B was expressed in neuronal cell bodies and processes of the DRG, with NPR-B immunoreactivity mainly prominent in small and medium-sized DRG neurons. Double-immunolabeling showed that NPR-B was expressed in calcitonin gene-related peptide- and isolectin B4-positive neurons. Furthermore, NPR-B expression was co-localized with calcitonin gene-related peptide in the dorsal horn of the spinal cord. Together, our data suggest that the natriuretic peptides may perform several biological actions on sensory neurons via their binding to NPR-B in the DRG.
Collapse
Affiliation(s)
- Essam M Abdelalim
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.
| | | | | |
Collapse
|
31
|
ISSLS prize winner: disc dynamic compression in rats produces long-lasting increases in inflammatory mediators in discs and induces long-lasting nerve injury and regeneration of the afferent fibers innervating discs: a pathomechanism for chronic discogenic low back pain. Spine (Phila Pa 1976) 2012; 37:1810-8. [PMID: 22366969 DOI: 10.1097/brs.0b013e31824ffac6] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Animal model of intravertebral disc (IVD) degeneration. OBJECTIVE To examine production of inflammatory mediators in IVDs and neuropeptides in dorsal root ganglia (DRGs) in rat models of IVD compression and injury. SUMMARY OF BACKGROUND DATA Sensory nerve fibers in IVDs and inflammatory mediator responses have been verified in animal models of IVD injury. However, the IVD injury in animals incompletely models degenerated human IVDs causing discogenic low back pain, because human IVDs are also subject to compression. METHODS Experimental groups (controls, IVD injury, IVD compression, and their combination) of Sprague Dawley rats were prepared. Fluoro-Gold (FG; Fluorochrome, Denver, CO) was applied into coccygeal IVDs. Inflammatory mediators in IVDs, including nerve growth factor, tumor necrosis factor α, interleukin 1β, and interleukin 6, were quantified using enzyme-linked immunosorbent assays. DRGs were immunostained for calcitonin gene-related peptide, activating transcription factor 3, and growth-associated phosphoprotein 43. RESULTS The upregulation of inflammatory mediators was transient in the IVD injury group but delayed and long-lasting in the IVD compression group. When the IVD injury and compression were combined, the upregulation of inflammatory mediators was long-lasting through 8 weeks. The proportion of calcitonin gene-related peptide-immunoreactive neurons among Fluoro-Gold-labeled neurons remained significantly higher in the IVD injury, compression, and combination groups than in the controls. In contrast, increases in the proportions of activating transcription factor 3-immunoreactive or growth-associated phosphoprotein 43-immunoreactive neurons in the IVD injury group animals were transient but long-lasting in the compression and combination groups compared with controls. CONCLUSION Disc injury in rats produces persistent increases in neuropeptides in DRGs but only transient increases in inflammatory mediators in IVDs. On the contrary, disc compression in rats produces a long-lasting increase in inflammatory mediators in IVDs and neuropeptides in DRGs. Moreover, disc compression induces persistent nerve injury and regeneration of the afferent fibers innervating IVDs.
Collapse
|
32
|
Improved outcome after peripheral nerve injury in mice with increased levels of endogenous ω-3 polyunsaturated fatty acids. J Neurosci 2012; 32:563-71. [PMID: 22238091 DOI: 10.1523/jneurosci.3371-11.2012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Functional recovery after a peripheral nerve injury (PNI) is often poor. There is a need for therapies that protect neurons against injury and enhance regeneration. ω-3 polyunsaturated fatty acids (PUFAs) have been shown to have therapeutic potential in a variety of neurological disorders, including acute traumatic injury. The objective of this study was to assess the neuroprotective and pro-regenerative potential of ω-3 PUFAs in PNI. We investigated this in mice that express the fat-1 gene encoding for ω-3 fatty acid desaturase, which leads to an increase in endogenous ω-3 PUFAs and a concomitant decrease in ω-6 PUFAs. Dorsal root ganglion (DRG) neurons from wild-type or fat-1 mice were subjected to a mechanical strain or hypoxic injury, and cell death was assessed using ethidium homodimer-1 labeling. The fat-1 background appears to confer robust neuroprotection against both injuries. We then examined the early functional and morphological changes in wild-type and fat-1 mice after a sciatic nerve crush. An accelerated functional recovery 7 d after injury was seen in fat-1 mice when assessed using von Frey filaments and the sciatic nerve functional index. These observations were also mapped to changes in injury-related markers. The injury-induced expression of ATF-3 was decreased in the DRG of fat-1 mice, whereas the axons detected 6 mm distal to the crush were increased. Fat-1 animals also had some protection against muscle atrophy after injury. In conclusion, both in vitro and in vivo experiments support the idea that a higher endogenous ω-3 PUFA could lead to beneficial effects after a PNI.
Collapse
|
33
|
Takasu K, Sakai A, Hanawa H, Shimada T, Suzuki H. Overexpression of GDNF in the uninjured DRG exerts analgesic effects on neuropathic pain following segmental spinal nerve ligation in mice. THE JOURNAL OF PAIN 2012; 12:1130-9. [PMID: 21684216 DOI: 10.1016/j.jpain.2011.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 02/28/2011] [Accepted: 04/04/2011] [Indexed: 02/05/2023]
Abstract
UNLABELLED Glial cell line-derived neurotrophic factor (GDNF), a survival-promoting factor for a subset of nociceptive small-diameter neurons, has been shown to exert analgesic effects on neuropathic pain. However, its detailed mechanisms of action are still unknown. In the present study, we investigated the site-specific analgesic effects of GDNF in the neuropathic pain state using lentiviral vector-mediated GDNF overexpression in mice with left fifth lumbar (L5) spinal nerve ligation (SNL) as a neuropathic pain model. A lentiviral vector expressing both GDNF and enhanced green fluorescent protein (EGFP) was constructed and injected into the left dorsal spinal cord, uninjured fourth lumbar (L4) dorsal root ganglion (DRG), injured L5 DRG, or plantar skin of mice. In SNL mice, injection of the GDNF-EGFP-expressing lentivirus into the dorsal spinal cord or uninjured L4 DRG partially but significantly reduced the mechanical allodynia in association with an increase in GDNF protein expression in each virus injection site, whereas injection into the injured L5 DRG or plantar skin had no effects. These results suggest that GDNF exerts its analgesic effects in the neuropathic pain state by acting on the central terminals of uninjured DRG neurons and/or on the spinal cells targeted by the uninjured DRG neurons. PERSPECTIVE This article shows that GDNF exerts its analgesic effects on neuropathic pain by acting on the central terminals of uninjured DRG neurons and/or on the spinal cells targeted by these neurons. Therefore, research focusing on these GDNF-dependent neurons in the uninjured DRG would provide a new strategy for treating neuropathic pain.
Collapse
Affiliation(s)
- Kumiko Takasu
- Department of Pharmacology, Nippon Medical School, Tokyo, Japan
| | | | | | | | | |
Collapse
|
34
|
Wang T, Molliver DC, Jing X, Schwartz ES, Yang FC, Samad OA, Ma Q, Davis BM. Phenotypic switching of nonpeptidergic cutaneous sensory neurons following peripheral nerve injury. PLoS One 2011; 6:e28908. [PMID: 22216140 PMCID: PMC3244441 DOI: 10.1371/journal.pone.0028908] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 11/17/2011] [Indexed: 12/31/2022] Open
Abstract
In adult mammals, the phenotype of half of all pain-sensing (nociceptive) sensory neurons is tonically modulated by growth factors in the glial cell line-derived neurotrophic factor (GDNF) family that includes GDNF, artemin (ARTN) and neurturin (NRTN). Each family member binds a distinct GFRα family co-receptor, such that GDNF, NRTN and ARTN bind GFRα1, -α2, and -α3, respectively. Previous studies revealed transcriptional regulation of all three receptors in following axotomy, possibly in response to changes in growth factor availability. Here, we examined changes in the expression of GFRα1-3 in response to injury in vivo and in vitro. We found that after dissociation of adult sensory ganglia, up to 27% of neurons die within 4 days (d) in culture and this can be prevented by nerve growth factor (NGF), GDNF and ARTN, but not NRTN. Moreover, up-regulation of ATF3 (a marker of neuronal injury) in vitro could be prevented by NGF and ARTN, but not by GDNF or NRTN. The lack of NRTN efficacy was correlated with rapid and near-complete loss of GFRα2 immunoreactivity. By retrogradely-labeling cutaneous afferents in vivo prior to nerve cut, we demonstrated that GFRα2-positive neurons switch phenotype following injury and begin to express GFRα3 as well as the capsaicin receptor, transient receptor potential vanilloid 1(TRPV1), an important transducer of noxious stimuli. This switch was correlated with down-regulation of Runt-related transcription factor 1 (Runx1), a transcription factor that controls expression of GFRα2 and TRPV1 during development. These studies show that NRTN-responsive neurons are unique with respect to their plasticity and response to injury, and suggest that Runx1 plays an ongoing modulatory role in the adult.
Collapse
Affiliation(s)
- Ting Wang
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Derek C. Molliver
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Xiaotang Jing
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Erica S. Schwartz
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Fu-Chia Yang
- Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Omar Abdel Samad
- Center for Neuroscience and Regeneration Research, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Qiufu Ma
- Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian M. Davis
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
35
|
Nascimento D, Pozza DH, Castro-Lopes JM, Neto FL. Neuronal injury marker ATF-3 is induced in primary afferent neurons of monoarthritic rats. Neurosignals 2011; 19:210-21. [PMID: 21912089 DOI: 10.1159/000330195] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/16/2011] [Indexed: 12/18/2022] Open
Abstract
Activating transcription factor 3 (ATF-3) expression has been associated with several signaling pathways implicated in cellular stress response in many cell types and is usually regarded as a neuronal damage marker in dorsal root ganglia (DRG). We investigated ATF-3 expression in primary afferents in the monoarthritic (MA) model of chronic inflammatory joint pain. Immunohistochemistry revealed that ATF-3 is highly induced mainly in small and medium neurons, especially at 2 and 4 days of MA in L(5) DRGs. Colocalization with calcitonin gene-related peptide (CGRP) and isolectin B4 (IB4) demonstrated that ATF-3-immunoreactive cells are mainly peptidergic. The lack of significant differences in ATF-3 and pAkt colocalization indicated that ATF-3 is probably not involved in a pAkt-mediated survival pathway. Anti-inflammatory (ketoprofen) administration failed to reverse ATF-3 induction in MA rats, but significantly increased CGRP expression. These data suggest that ATF-3 expression is definitely involved in MA, actually marking injured neurons. Some degree of neuronal damage seems to occur right from the first days of disease, mainly affecting small-to-medium peptidergic neurons. The intra-articular injection of complete Freund's adjuvant and the generation of a neuroinflammatory environment seem to be the plausible explanation for the local nerve damage.
Collapse
Affiliation(s)
- Diana Nascimento
- Departamento de Biologia Experimental, Faculdade de Medicina do Porto e Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | | | | | | |
Collapse
|
36
|
Kim CF, Moalem-Taylor G. Detailed characterization of neuro-immune responses following neuropathic injury in mice. Brain Res 2011; 1405:95-108. [DOI: 10.1016/j.brainres.2011.06.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 05/30/2011] [Accepted: 06/08/2011] [Indexed: 01/23/2023]
|
37
|
Orita S, Ishikawa T, Miyagi M, Ochiai N, Inoue G, Eguchi Y, Kamoda H, Arai G, Toyone T, Aoki Y, Kubo T, Takahashi K, Ohtori S. Pain-related sensory innervation in monoiodoacetate-induced osteoarthritis in rat knees that gradually develops neuronal injury in addition to inflammatory pain. BMC Musculoskelet Disord 2011; 12:134. [PMID: 21679434 PMCID: PMC3142251 DOI: 10.1186/1471-2474-12-134] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 06/16/2011] [Indexed: 01/07/2023] Open
Abstract
Background The exact mechanism of knee osteoarthritis (OA)-associated pain is unclear, whereas mixed evidence of inflammatory pain and neuropathic pain has been noted. We aimed to investigate pain-related sensory innervation in a monoiodoacetate (MIA)-induced model of OA. Methods Sixty of seventy female Sprague Dawley rats of six week-old underwent intra-articular MIA and fluorogold (FG) retrograde neurotracer injection into their right (ipsilateral) knee, while their left knees were treated with FG in saline as a control (contralateral knee). Other rats were treated with FG only bilaterally, and used as controls. Rats were evaluated for tactile allodynia using von Frey hairs. Proinflammatory mediators in the knee soft tissues, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, and nerve growth factor (NGF), were quantified using ELISAs to evaluate inflammation in the knee after 1, 4, 7,14,21, and 28 days post injection:. Dorsal root ganglia (DRG) were immunostained for three molecules after 7,14,21, and 28 days post injection: calcitonin gene-related peptide (CGRP), a marker of inflammatory pain; and activating transcription factor-3 (ATF3) and growth associated protein-43 (GAP43), as markers for nerve injury and regenerating axons. The distribution of microglia in the spinal cord were also evaluated, because they have been reported to increase in neuropathic pain states. These evaluations were performed up to 28 days postinjection. P < 0.05 was considered significant. Results Progressive tactile allodynia and elevated cytokine concentrations were observed in ipsilateral knees. CGRP-immunoreactive (-ir) ipsilateral DRG neurons significantly increased, peaking at 14 days postinjection, while expression of FG-labeled ATF3-ir or ATF3-ir GAP43-ir DRG neurons significantly increased in a time-dependent manner. Significant proliferation of microglia were found with time in the ipsilateral dorsal horn. Conclusions Pain-related characteristics in a MIA-induced rat OA model can originate from an inflammatory pain state induced by the local inflammation initiated by inflammatory cytokines, and that state will be followed by gradual initiation of neuronal injury, which may induce the neuropathic pain state.
Collapse
Affiliation(s)
- Sumihisa Orita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lindå H, Sköld MK, Ochsmann T. Activating transcription factor 3, a useful marker for regenerative response after nerve root injury. Front Neurol 2011; 2:30. [PMID: 21629765 PMCID: PMC3099310 DOI: 10.3389/fneur.2011.00030] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 05/04/2011] [Indexed: 11/22/2022] Open
Abstract
Activating transcription factor 3 (ATF3) is induced in various tissues in response to stress. In this experiment, ATF3 expression was studied in adult rats subjected either to a dorsal or ventral root avulsion (VRA; L4-6), or sciatic nerve transection (SNT). Post-operative survival times varied between 1.5 h and 3 weeks. In additional experiments an avulsed ventral root was directly replanted to the spinal cord. Dorsal root ganglias (DRGs) from humans exposed to traumatic dorsal root avulsions were also examined. After SNT ATF3 immunoreactivity (ATF3 IR) was detected in a few DRG neurons already 6 h after the lesion. After 24 h the number had clearly increased and still at 3 weeks DRG neurons remained labeled. In the ventral horn, ATF3 IR in motoneurons (MN) was first detected 24 h after the SNT, and still 3 weeks post-operatively lesioned MN showed ATF3 labeling. After a VRA many spinal MN showed ATF3 IR already after 3 h, and after 6 h all MN were labeled. At 3 weeks a majority of the lesioned MN had died, but all the remaining ones were labeled. When an avulsed ventral root was directly replanted, MN survived and were still labeled at 5 weeks. In DRG, a few neurons were labeled already at 1.5 h after a dorsal root avulsion. At 24 h the number had increased but still only a minority of the neurons were labeled. At 3 days the number of labeled neurons was reduced, and a further reduction was at hand at 7 days and 3 weeks. In parallel, in humans, 3 days after a traumatic dorsal root avulsion, only a few DRG neurons showed ATF3 IR. At 6 weeks no labeled neurons could be detected. These facts imply that ATF3 response to axotomy involves a distance-dependent mechanism. ATF3 also appears to be a useful and reliable neuronal marker of nerve lesions even in humans. In addition, ATF3 up-regulation in both motor and sensory neurons seems to be linked to regenerative competence.
Collapse
Affiliation(s)
- Hans Lindå
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| | | | | |
Collapse
|
39
|
Neuropathic pain- and glial derived neurotrophic factor-associated regulation of cadherins in spinal circuits of the dorsal horn. Pain 2011; 152:924-935. [DOI: 10.1016/j.pain.2011.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 11/24/2010] [Accepted: 01/10/2011] [Indexed: 12/29/2022]
|
40
|
Guo Y, Johnson EC, Cepurna WO, Dyck JA, Doser T, Morrison JC. Early gene expression changes in the retinal ganglion cell layer of a rat glaucoma model. Invest Ophthalmol Vis Sci 2011; 52:1460-73. [PMID: 21051717 DOI: 10.1167/iovs.10-5930] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE To identify patterns of early gene expression changes in the retinal ganglion cell layer (GCL) of a rodent model of chronic glaucoma. METHODS Prolonged elevation of intraocular pressure (IOP) was produced in rats by episcleral vein injection of hypertonic saline (N = 30). GCLs isolated by laser capture microdissection were grouped by grading of the nerve injury (<25% axon degeneration for early injury; >25% for advanced injury). Gene expression was determined by cDNA microarray of independent GCL RNA samples. Quantitative PCR (qPCR) was used to further examine the expression of selected genes. RESULTS By array analysis, 533 GCL genes (225 up, 308 down) were significantly regulated in early injury. Compared to only one major upregulated gene class of metabolism regulation, more were downregulated, including mitochondria, ribosome, proteasome, energy pathways, protein synthesis, protein folding, and synaptic transmission. qPCR confirmed an early upregulation of Atf3. With advanced injury, 1790 GCL genes were significantly regulated (997 up, 793 down). Altered gene categories included upregulated protein synthesis, immune response, and cell apoptosis and downregulated dendrite morphogenesis and axon extension. Of all the early changed genes, 50% were not present in advanced injury. These uniquely affected genes were mainly associated with upregulated transcription regulation and downregulated protein synthesis. CONCLUSIONS Early GCL gene responses to pressure-induced injury are characterized by an upregulation of Atf3 and extensive downregulation in genes associated with cellular metabolism and neuronal functions. Most likely, these changes represent those specific to RGCs and are thus potentially important for enhancing RGC survival in glaucoma.
Collapse
Affiliation(s)
- Ying Guo
- Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
41
|
Tan Y, Sun L, Zhang Q. Noradrenaline enhances ATP P2X3 receptor expression in dorsal root ganglion neurons of rats. Neuroscience 2011; 176:32-8. [DOI: 10.1016/j.neuroscience.2010.12.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/02/2010] [Accepted: 12/24/2010] [Indexed: 01/15/2023]
|
42
|
Peeraer E, Van Lutsenborg A, Verheyen A, De Jongh R, Nuydens R, Meert TF. Pharmacological evaluation of rat dorsal root ganglion neurons as an in vitro model for diabetic neuropathy. J Pain Res 2011; 4:55-65. [PMID: 21559351 PMCID: PMC3085264 DOI: 10.2147/jpr.s15452] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Diabetic neuropathy is a complication of diabetes mellitus that develops in about 50% of people with diabetes. Despite its widespread occurrence and devastating effects, this complication is still not fully understood, and there is no treatment available to prevent its development. METHODS In this study, immunocytochemistry for activating transcription factor 3, a marker for cell injury, was used to investigate the stress response in dorsal root ganglion neurons in both in vitro and ex vivo models of diabetic neuropathy. RESULTS Our findings showed increased activating transcription factor 3 expression in hyperglycemic culture conditions and in dorsal root ganglion neurons isolated from diabetic rats. Glial cell line-derived neurotrophic factor, a substance with known neuroprotective properties, was able to reduce diabetes mellitus-induced neuronal stress in vitro, while gabapentin and carbamazepine, currently used to treat neuropathic pain, showed only limited effects. CONCLUSION Growth factors may have a therapeutic benefit as neurotrophic agents in the treatment of diabetic peripheral neuropathy, but gabapentin and carbamazepine have no direct protective effect on sensory neurons. This research also indicates that immunocytochemistry for activating transcription factor 3 is a valuable tool for evaluation of pharmacological substances in dorsal root ganglion cultures.
Collapse
Affiliation(s)
- Eve Peeraer
- Johnson & Johnson Pharmaceutical Research and Development, Beerse, Belgium
| | | | | | | | | | | |
Collapse
|
43
|
Peddie CJ, Keast JR. Pelvic Nerve Injury Causes a Rapid Decrease in Expression of Choline Acetyltransferase and Upregulation of c-Jun and ATF-3 in a Distinct Population of Sacral Preganglionic Neurons. Front Neurosci 2011; 5:6. [PMID: 21283532 PMCID: PMC3031092 DOI: 10.3389/fnins.2011.00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/07/2011] [Indexed: 11/13/2022] Open
Abstract
Autonomic regulation of the urogenital organs is impaired by injuries sustained during pelvic surgery or compression of lumbosacral spinal nerves (e.g., cauda equina syndrome). To understand the impact of injury on both sympathetic and parasympathetic components of this nerve supply, we performed an experimental surgical and immunohistochemical study on adult male rats, where the structure of this complex part of the nervous system has been well defined. We performed unilateral transection of pelvic or hypogastric nerves and analyzed relevant regions of lumbar and sacral spinal cord, up to 4 weeks after injury. Expression of c-Jun, the neuronal injury marker activating transcription factor-3 (ATF-3), and choline acetyltransferase (ChAT) were examined. We found little evidence for chemical or structural changes in substantial numbers of functionally related but uninjured spinal neurons (e.g., in sacral preganglionic neurons after hypogastric nerve injury), failing to support the concept of compensatory events. The effects of injury were greatest in sacral cord, ipsilateral to pelvic nerve transection. Here, around half of all preganglionic neurons expressed c-Jun within 1 week of injury, and substantial ATF-3 expression also occurred, especially in neurons with complete loss of ChAT-immunoreactivity. There did not appear to be any death of retrogradely labeled neurons, in contrast to axotomy studies performed on other regions of spinal cord or sacral ventral root avulsion models. Each of the effects we observed occurred in only a subpopulation of preganglionic neurons at that spinal level, raising the possibility that distinct functional subgroups have different susceptibility to trauma-induced degeneration and potentially different regenerative abilities. Identification of the cellular basis of these differences may provide insights into organ-specific strategies for attenuating degeneration or promoting regeneration of these circuits after trauma.
Collapse
Affiliation(s)
- Christopher J Peddie
- Pain Management Research Institute and Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital St Leonards, NSW, Australia
| | | |
Collapse
|
44
|
Toda S, Sakai A, Ikeda Y, Sakamoto A, Suzuki H. A local anesthetic, ropivacaine, suppresses activated microglia via a nerve growth factor-dependent mechanism and astrocytes via a nerve growth factor-independent mechanism in neuropathic pain. Mol Pain 2011; 7:2. [PMID: 21211063 PMCID: PMC3022746 DOI: 10.1186/1744-8069-7-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 01/07/2011] [Indexed: 12/13/2022] Open
Abstract
Background Local anesthetics alleviate neuropathic pain in some cases in clinical practice, and exhibit longer durations of action than those predicted on the basis of the pharmacokinetics of their blocking effects on voltage-dependent sodium channels. Therefore, local anesthetics may contribute to additional mechanisms for reversal of the sensitization of nociceptive pathways that occurs in the neuropathic pain state. In recent years, spinal glial cells, microglia and astrocytes, have been shown to play critical roles in neuropathic pain, but their participation in the analgesic effects of local anesthetics remains largely unknown. Results Repetitive epidural administration of ropivacaine reduced the hyperalgesia induced by chronic constrictive injury of the sciatic nerve. Concomitantly with this analgesia, ropivacaine suppressed the increases in the immunoreactivities of CD11b and glial fibrillary acidic protein in the dorsal spinal cord, as markers of activated microglia and astrocytes, respectively. In addition, epidural administration of a TrkA-IgG fusion protein that blocks the action of nerve growth factor (NGF), which was upregulated by ropivacaine in the dorsal root ganglion, prevented the inhibitory effect of ropivacaine on microglia, but not astrocytes. The blockade of NGF action also abolished the analgesic effect of ropivacaine on neuropathic pain. Conclusions Ropivacaine provides prolonged analgesia possibly by suppressing microglial activation in an NGF-dependent manner and astrocyte activation in an NGF-independent manner in the dorsal spinal cord. Local anesthetics, including ropivacaine, may represent a new approach for glial cell inhibition and, therefore, therapeutic strategies for neuropathic pain.
Collapse
Affiliation(s)
- Shigeru Toda
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
45
|
Liu CC, Lu N, Cui Y, Yang T, Zhao ZQ, Xin WJ, Liu XG. Prevention of paclitaxel-induced allodynia by minocycline: Effect on loss of peripheral nerve fibers and infiltration of macrophages in rats. Mol Pain 2010; 6:76. [PMID: 21050491 PMCID: PMC2991291 DOI: 10.1186/1744-8069-6-76] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/05/2010] [Indexed: 01/19/2023] Open
Abstract
Background Although paclitaxel is a frontline antineoplastic agent for treatment of solid tumors, the paclitaxel-evoked pain syndrome is a serious problem for patients. There is currently no valid drug to prevent or treat the paclitaxel-induced allodynia, partly due to lack of understanding regarding the cellular mechanism. Studies have shown that minocycline, an inhibitor of microglia/macrophage, prevented neuropathic pain and promoted neuronal survival in animal models of neurodegenerative disease. Recently, Cata et al also reported that minocycline inhibited allodynia induced by low-dose paclitaxel (2 mg/kg) in rats, but the mechanism is still unclear. Results Here, we investigate by immunohistochemistry the change of intraepidermal nerve fiber (IENF) in the hind paw glabrous skin, expression of macrophage and activating transcription factor 3 (ATF3) in DRG at different time points after moderate-dose paclitaxel treatment (cumulative dose 24 mg/kg; 3 × 8 mg/kg) in rats. Moreover, we observe the effect of minocycline on the IENF, macrophages and ATF3. The results showed that moderate-dose paclitaxel induced a persisted, gradual mechanical allodynia, which was accompanied by the loss of IENF in the hind paw glabrous skin and up-regulation of macrophages and ATF3 in DRG in rats. The expressions of ATF3 mainly focus on the NF200-positive cells. More importantly, we observed that pretreatment of minocycline at dose of 30 mg/kg or 50 mg/kg, but not 5 mg/kg, prevented paclitaxel-evoked allodynia. The evidence from immunohistochemistry showed that 30 mg/kg minocycline rescued the degeneration of IENF, attenuated infiltration of macrophages and up-regulation of ATF3 induced by paclitaxel treatment in rats. Conclusions Minocycline prevents paclitaxel-evoked allodynia, likely due to its inhibition on loss of IENF, infiltration of macrophages and up-regulation of ATF3 in rats. The finding might provide potential target for preventing paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- Cui-Cui Liu
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yat-Sen University, 74 Zhongshan Rd, 2, Guangzhou, 510080, PR China
| | | | | | | | | | | | | |
Collapse
|
46
|
Gordon T. The physiology of neural injury and regeneration: The role of neurotrophic factors. JOURNAL OF COMMUNICATION DISORDERS 2010; 43:265-273. [PMID: 20451212 DOI: 10.1016/j.jcomdis.2010.04.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/26/2010] [Accepted: 02/01/2010] [Indexed: 05/29/2023]
Abstract
UNLABELLED Injured nerves regenerate slowly and often over long distances. Prolonged periods for regenerating nerves to make functional connections with denervated targets prolong the period of isolation of the neurons from the target (chronic axotomy) and of the denervation of Schwann cells in the distal nerve pathways (chronic denervation). In an animal model, we demonstrated that prolonged axotomy and chronic denervation severely reduce the regenerative capacity of neurons to less to 10%. Concurrent reduction in neurotrophic factors, including brain- and glial-derived neurotrophic factors (BDNF and GDNF) in axotomized neurons and denervated Schwann cells, suggest that these factors are required to sustain nerve regeneration. Findings that exogenous BDNF and GDNF did not increase numbers of neurons that regenerate their axons in freshly cut and repaired rat nerves, but did increase the numbers significantly after chronic axotomy, are consistent with the view that there is sufficient endogenous neurotrophic factor supply in axotomized motoneurons and denervated Schwann cells to support nerve regeneration but that the reduced supply must be supplemented when target reinnervation is delayed. In addition, findings that BDNF is essential for the effectiveness of brief low frequency electrical stimulation in promoting nerve growth, provides further support for a central role of BNDF in motor nerve regeneration. LEARNING OUTCOMES Readers of this article will gain an understanding of the basis for poor functional outcomes of peripheral nerve injuries, even when surgical repair is possible.
Collapse
Affiliation(s)
- Tessa Gordon
- Division of Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2S2 Canada.
| |
Collapse
|
47
|
Hill CE, Harrison BJ, Rau KK, Hougland MT, Bunge MB, Mendell LM, Petruska JC. Skin incision induces expression of axonal regeneration-related genes in adult rat spinal sensory neurons. THE JOURNAL OF PAIN 2010; 11:1066-73. [PMID: 20627820 DOI: 10.1016/j.jpain.2010.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 01/26/2010] [Accepted: 02/01/2010] [Indexed: 12/31/2022]
Abstract
UNLABELLED Skin incision and nerve injury both induce painful conditions. Incisional and postsurgical pain is believed to arise primarily from inflammation of tissue and the subsequent sensitization of peripheral and central neurons. The role of axonal regeneration-related processes in development of pain has only been considered when there has been injury to the peripheral nerve itself, even though tissue damage likely induces injury of resident axons. We sought to determine if skin incision would affect expression of regeneration-related genes such as activating transcription factor 3 (ATF3) in dorsal root ganglion (DRG) neurons. ATF3 is absent from DRG neurons of the normal adult rodent, but is induced by injury of peripheral nerves and modulates the regenerative capacity of axons. Image analysis of immunolabeled DRG sections revealed that skin incision led to an increase in the number of DRG neurons expressing ATF3. RT-PCR indicated that other regeneration-associated genes (galanin, GAP-43, Gadd45a) were also increased, further suggesting an injury-like response in DRG neurons. Our finding that injury of skin can induce expression of neuronal injury/regeneration-associated genes may impact how clinical postsurgical pain is investigated and treated. PERSPECTIVE Tissue injury, even without direct nerve injury, may induce a state of enhanced growth capacity in sensory neurons. Axonal regeneration-associated processes should be considered alongside nerve signal conduction and inflammatory/sensitization processes as possible mechanisms contributing to pain, particularly the transition from acute to chronic pain.
Collapse
Affiliation(s)
- Caitlin E Hill
- University of Miami, The Miami Project to Cure Paralysis, Miami, Florida, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Hirose K, Iwakura N, Orita S, Yamashita M, Inoue G, Yamauchi K, Eguchi Y, Ochiai N, Kishida S, Nakamura J, Takaso M, Ishikawa T, Arai G, Miyagi M, Kamoda H, Aoki Y, Hiwatari R, Kakizaki J, Kunishi T, Kono M, Suzuki T, Toyone T, Takahashi K, Kuniyoshi K, Ohtori S. Evaluation of behavior and neuropeptide markers of pain in a simple, sciatic nerve-pinch pain model in rats. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2010; 19:1746-52. [PMID: 20490875 DOI: 10.1007/s00586-010-1428-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/27/2010] [Accepted: 04/30/2010] [Indexed: 12/18/2022]
Abstract
Pathomechanisms of injured-nerve pain have not been fully elucidated. Radicular pain and chronic constriction injury models have been established; however, producing these models is complicated. A sciatic nerve-pinch injury is easy to produce but the reliability of this model for evaluating pain behavior has not been examined. The current study evaluated pain-related behavior and change in pain markers in the dorsal root ganglion (DRG) of rats in a simple, sciatic nerve-pinch injury model. In the model, the sciatic nerve was pinched for 2 s using forceps (n = 20), but not injured in sham-operated animals (n = 20). Mechanical and thermal hyperalgesia were measured every second day for 2 weeks using von Frey filaments and a Hargreaves device. Calcitonin gene-related peptide (CGRP), activating transcription factor-3 (ATF-3), phosphorylated p38 mitogen activated protein (Map) kinase (p-p38), and nuclear factor-kappa B (NF-κB; p65) expression in L5 DRGs were examined at 4 and 7 days after surgery using immunohistochemistry. The proportion of neurons immunoreactive for these markers was compared between the two groups. Mechanical (during 8 days) and thermal hyperalgesia (during 6 days) were found in the pinch group rats, but not in the sham-operated animals (p < 0.05); however, hyperalgesia was not significant from days 10 to 14. CGRP, ATF-3, p-p38, and NF-κB expression in L5 DRGs was upregulated in the nerve-injured rats compared with the sham-operated rats (p < 0.01). Our results indicate that a simple sciatic nerve pinch produced pain-related behavior. Upregulation of the pain-marker expression in the nerve-injury model suggested it could be used as a model of pain. However, it was not considered as suitable for long-term studies.
Collapse
Affiliation(s)
- Kazutoshi Hirose
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Malaspina A, Ngoh SFA, Ward RE, Hall JCE, Tai FWD, Yip PK, Jones C, Jokic N, Averill SA, Michael-Titus AT, Priestley JV. Activation transcription factor-3 activation and the development of spinal cord degeneration in a rat model of amyotrophic lateral sclerosis. Neuroscience 2010; 169:812-27. [PMID: 20470869 DOI: 10.1016/j.neuroscience.2010.04.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 04/23/2010] [Indexed: 12/17/2022]
Abstract
It has been reported that an early activation of glial fibrillary acid protein (GFAP) in astroglial cells occurs simultaneously in peripheral nerves and spinal cord from the G93A SOD1 mouse model of amyotrophic lateral sclerosis (ALS), an invariably fatal neurodegenerative disorder. In ALS, the contribute to the pathological process of different cell types varies according to the disease stage, with a florid immune response in spinal cord at end stage disease. In this study, we have mapped in different anatomical sites the process of disease-induced functional perturbation from a pre-symptomatic stage using a marker of cellular distress expressed in neurons and glial cells, the activating transcription factor 3 (ATF-3), and applied large-scale gene expression analysis to define the pattern or transcriptional changes occurring in spinal cord from the G93A SOD1 rat model of ALS in parallel with ATF-3 neuronal activation. From the disease onset onward, transgenic lumbar spinal cord displayed ATF-3 transcriptional regulation and motor cells immunostaining in association with the over-expression of genes promoting cell growth, the functional integrity of cell organelles and involved in the modulation of immune responses. While spinal cord from the pre-symptomatic rat showed no detectable ATF-3 transcriptional regulation, ATF-3 activation was appreciated in large size neurofilament-rich, small size non-peptidergic and parvalbumin-positive neurons within the dorsal root ganglia (DRG), and in ventral roots Schwann cells alongside macrophages infiltration. This pattern of peripheral ATF-3 activation remained detectable throughout the disease process. In the G93A SOD1 rat model of ALS, signs of roots and nerves subtle distress preceded overt clinical-pathological changes, involving both glial cells and neurons that function as receptors of peripheral sensory stimuli from the muscle. In addition, factors previously described to be linked to ATF-3 activation under various experimental conditions of stress, become switched on in spinal cord from the end-stage transgenic rat model of ALS.
Collapse
Affiliation(s)
- A Malaspina
- Centre for Neuroscience and Trauma, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Blizard Institute, 4 Newark Street, London E1 2AT, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Differential effects of riluzole on subpopulations of adult rat dorsal root ganglion neurons in vitro. Neuroscience 2010; 166:942-51. [DOI: 10.1016/j.neuroscience.2009.12.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 12/23/2009] [Accepted: 12/23/2009] [Indexed: 12/29/2022]
|