1
|
Shumikhina SI, Kozhukhov SA, Bondar IV. Dose-dependent changes in orientation amplitude maps in the cat visual cortex after propofol bolus injections. IBRO Neurosci Rep 2024; 16:224-240. [PMID: 38352699 PMCID: PMC10862412 DOI: 10.1016/j.ibneur.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/30/2023] [Indexed: 02/16/2024] Open
Abstract
A general intravenous anesthetic propofol (2,6-diisopropylphenol) is widely used in clinical, veterinary practice and animal experiments. It activates gamma- aminobutyric acid (GABAa) receptors. Though the cerebral cortex is one of the major targets of propofol action, no study of dose dependency of propofol action on cat visual cortex was performed yet. Also, no such investigation was done until now using intrinsic signal optical imaging. Here, we report for the first time on the dependency of optical signal in the visual cortex (area 17/area 18) on the propofol dose. Optical imaging of intrinsic responses to visual stimuli was performed in cats before and after propofol bolus injections at different doses on the background of continuous propofol infusion. Orientation amplitude maps were recorded. We found that amplitude of optical signal significantly decreased after a bolus dose of propofol. The effect was dose- and time-dependent producing stronger suppression of optical signal under the highest bolus propofol doses and short time interval after injection. In each hemisphere, amplitude at cardinal and oblique orientations decreased almost equally. However, surprisingly, amplitude at cardinal orientations in the ipsilateral hemisphere was depressed stronger than in contralateral cortex at most time intervals. As the magnitude of optical signal represents the strength of orientation tuned component, these our data give new insights on the mechanisms of generation of orientation selectivity. Our results also provide new data toward understanding brain dynamics under anesthesia and suggest a recommendation for conducting intrinsic signal optical imaging experiments on cortical functioning under propofol anesthesia.
Collapse
Affiliation(s)
- Svetlana I. Shumikhina
- Functional Neurocytology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova Street, 117485 Moscow, Russian Federation
| | - Sergei A. Kozhukhov
- Physiology of Sensory Systems, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova Street, 117485 Moscow, Russian Federation
| | - Igor V. Bondar
- Physiology of Sensory Systems, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova Street, 117485 Moscow, Russian Federation
| |
Collapse
|
2
|
McGuigan S, Marie DJ, O'Bryan LJ, Flores FJ, Evered L, Silbert B, Scott DA. The cellular mechanisms associated with the anesthetic and neuroprotective properties of xenon: a systematic review of the preclinical literature. Front Neurosci 2023; 17:1225191. [PMID: 37521706 PMCID: PMC10380949 DOI: 10.3389/fnins.2023.1225191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Xenon exhibits significant neuroprotection against a wide range of neurological insults in animal models. However, clinical evidence that xenon improves outcomes in human studies of neurological injury remains elusive. Previous reviews of xenon's method of action have not been performed in a systematic manner. The aim of this review is to provide a comprehensive summary of the evidence underlying the cellular interactions responsible for two phenomena associated with xenon administration: anesthesia and neuroprotection. Methods A systematic review of the preclinical literature was carried out according to the PRISMA guidelines and a review protocol was registered with PROSPERO. The review included both in vitro models of the central nervous system and mammalian in vivo studies. The search was performed on 27th May 2022 in the following databases: Ovid Medline, Ovid Embase, Ovid Emcare, APA PsycInfo, and Web of Science. A risk of bias assessment was performed utilizing the Office of Health Assessment and Translation tool. Given the heterogeneity of the outcome data, a narrative synthesis was performed. Results The review identified 69 articles describing 638 individual experiments in which a hypothesis was tested regarding the interaction of xenon with cellular targets including: membrane bound proteins, intracellular signaling cascades and transcription factors. Xenon has both common and subtype specific interactions with ionotropic glutamate receptors. Xenon also influences the release of inhibitory neurotransmitters and influences multiple other ligand gated and non-ligand gated membrane bound proteins. The review identified several intracellular signaling pathways and gene transcription factors that are influenced by xenon administration and might contribute to anesthesia and neuroprotection. Discussion The nature of xenon NMDA receptor antagonism, and its range of additional cellular targets, distinguishes it from other NMDA antagonists such as ketamine and nitrous oxide. This is reflected in the distinct behavioral and electrophysiological characteristics of xenon. Xenon influences multiple overlapping cellular processes, both at the cell membrane and within the cell, that promote cell survival. It is hoped that identification of the underlying cellular targets of xenon might aid the development of potential therapeutics for neurological injury and improve the clinical utilization of xenon. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier: 336871.
Collapse
Affiliation(s)
- Steven McGuigan
- Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, University of Melbourne, Melbourne, VIC, Australia
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Boston, MA, United States
| | - Daniel J. Marie
- Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Liam J. O'Bryan
- Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Francisco J. Flores
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Boston, MA, United States
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lisbeth Evered
- Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, University of Melbourne, Melbourne, VIC, Australia
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
| | - Brendan Silbert
- Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, University of Melbourne, Melbourne, VIC, Australia
| | - David A. Scott
- Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Soplata AE, Adam E, Brown EN, Purdon PL, McCarthy MM, Kopell N. Rapid thalamocortical network switching mediated by cortical synchronization underlies propofol-induced EEG signatures: a biophysical model. J Neurophysiol 2023; 130:86-103. [PMID: 37314079 PMCID: PMC10312318 DOI: 10.1152/jn.00068.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
Propofol-mediated unconsciousness elicits strong alpha/low-beta and slow oscillations in the electroencephalogram (EEG) of patients. As anesthetic dose increases, the EEG signal changes in ways that give clues to the level of unconsciousness; the network mechanisms of these changes are only partially understood. Here, we construct a biophysical thalamocortical network involving brain stem influences that reproduces transitions in dynamics seen in the EEG involving the evolution of the power and frequency of alpha/low-beta and slow rhythm, as well as their interactions. Our model suggests that propofol engages thalamic spindle and cortical sleep mechanisms to elicit persistent alpha/low-beta and slow rhythms, respectively. The thalamocortical network fluctuates between two mutually exclusive states on the timescale of seconds. One state is characterized by continuous alpha/low-beta-frequency spiking in thalamus (C-state), whereas in the other, thalamic alpha spiking is interrupted by periods of co-occurring thalamic and cortical silence (I-state). In the I-state, alpha colocalizes to the peak of the slow oscillation; in the C-state, there is a variable relationship between an alpha/beta rhythm and the slow oscillation. The C-state predominates near loss of consciousness; with increasing dose, the proportion of time spent in the I-state increases, recapitulating EEG phenomenology. Cortical synchrony drives the switch to the I-state by changing the nature of the thalamocortical feedback. Brain stem influence on the strength of thalamocortical feedback mediates the amount of cortical synchrony. Our model implicates loss of low-beta, cortical synchrony, and coordinated thalamocortical silent periods as contributing to the unconscious state.NEW & NOTEWORTHY GABAergic anesthetics induce alpha/low-beta and slow oscillations in the EEG, which interact in dose-dependent ways. We constructed a thalamocortical model to investigate how these interdependent oscillations change with propofol dose. We find two dynamic states of thalamocortical coordination, which change on the timescale of seconds and dose-dependently mirror known changes in EEG. Thalamocortical feedback determines the oscillatory coupling and power seen in each state, and this is primarily driven by cortical synchrony and brain stem neuromodulation.
Collapse
Affiliation(s)
- Austin E Soplata
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States
| | - Elie Adam
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Emery N Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Patrick L Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Michelle M McCarthy
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States
| | - Nancy Kopell
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
4
|
Kassab NED, Mehlfeld V, Kass J, Biel M, Schneider G, Rammes G. Xenon's Sedative Effect Is Mediated by Interaction with the Cyclic Nucleotide-Binding Domain (CNBD) of HCN2 Channels Expressed by Thalamocortical Neurons of the Ventrobasal Nucleus in Mice. Int J Mol Sci 2023; 24:ijms24108613. [PMID: 37239964 DOI: 10.3390/ijms24108613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Previous studies have shown that xenon reduces hyperpolarization-activated cyclic nucleotide-gated channels type-2 (HCN2) channel-mediated current (Ih) amplitude and shifts the half-maximal activation voltage (V1/2) in thalamocortical circuits of acute brain slices to more hyperpolarized potentials. HCN2 channels are dually gated by the membrane voltage and via cyclic nucleotides binding to the cyclic nucleotide-binding domain (CNBD) on the channel. In this study, we hypothesize that xenon interferes with the HCN2 CNBD to mediate its effect. Using the transgenic mice model HCN2EA, in which the binding of cAMP to HCN2 was abolished by two amino acid mutations (R591E, T592A), we performed ex-vivo patch-clamp recordings and in-vivo open-field test to prove this hypothesis. Our data showed that xenon (1.9 mM) application to brain slices shifts the V1/2 of Ih to more hyperpolarized potentials in wild-type thalamocortical neurons (TC) (V1/2: -97.09 [-99.56--95.04] mV compared to control -85.67 [-94.47--82.10] mV; p = 0.0005). These effects were abolished in HCN2EA neurons (TC), whereby the V1/2 reached only -92.56 [-93.16- -89.68] mV with xenon compared to -90.03 [-98.99--84.59] mV in the control (p = 0.84). After application of a xenon mixture (70% xenon, 30% O2), wild-type mice activity in the open-field test decreased to 5 [2-10] while in HCN2EA mice it remained at 30 [15-42]%, (p = 0.0006). In conclusion, we show that xenon impairs HCN2 channel function by interfering with the HCN2 CNBD site and provide in-vivo evidence that this mechanism contributes to xenon-mediated hypnotic properties.
Collapse
Affiliation(s)
- Nour El Dine Kassab
- Department of Anesthesiology and Intensive Care Medicine, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Verena Mehlfeld
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universitñt Mnchen, 81377 Munich, Germany
| | - Jennifer Kass
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universitñt Mnchen, 81377 Munich, Germany
| | - Martin Biel
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universitñt Mnchen, 81377 Munich, Germany
| | - Gerhard Schneider
- Department of Anesthesiology and Intensive Care Medicine, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care Medicine, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
5
|
Weiner VS, Zhou DW, Kahali P, Stephen EP, Peterfreund RA, Aglio LS, Szabo MD, Eskandar EN, Salazar-Gomez AF, Sampson AL, Cash SS, Brown EN, Purdon PL. Propofol disrupts alpha dynamics in functionally distinct thalamocortical networks during loss of consciousness. Proc Natl Acad Sci U S A 2023; 120:e2207831120. [PMID: 36897972 PMCID: PMC10089159 DOI: 10.1073/pnas.2207831120] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/14/2023] [Indexed: 03/12/2023] Open
Abstract
During propofol-induced general anesthesia, alpha rhythms measured using electroencephalography undergo a striking shift from posterior to anterior, termed anteriorization, where the ubiquitous waking alpha is lost and a frontal alpha emerges. The functional significance of alpha anteriorization and the precise brain regions contributing to the phenomenon are a mystery. While posterior alpha is thought to be generated by thalamocortical circuits connecting nuclei of the sensory thalamus with their cortical partners, the thalamic origins of the propofol-induced alpha remain poorly understood. Here, we used human intracranial recordings to identify regions in sensory cortices where propofol attenuates a coherent alpha network, distinct from those in the frontal cortex where it amplifies coherent alpha and beta activities. We then performed diffusion tractography between these identified regions and individual thalamic nuclei to show that the opposing dynamics of anteriorization occur within two distinct thalamocortical networks. We found that propofol disrupted a posterior alpha network structurally connected with nuclei in the sensory and sensory associational regions of the thalamus. At the same time, propofol induced a coherent alpha oscillation within prefrontal cortical areas that were connected with thalamic nuclei involved in cognition, such as the mediodorsal nucleus. The cortical and thalamic anatomy involved, as well as their known functional roles, suggests multiple means by which propofol dismantles sensory and cognitive processes to achieve loss of consciousness.
Collapse
Affiliation(s)
- Veronica S. Weiner
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
| | - David W. Zhou
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
- Center for Neurotechnology and Recovery, Department of Neurology, Massachusetts General Hospital, Boston, MA02114
| | - Pegah Kahali
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
| | - Emily P. Stephen
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Robert A. Peterfreund
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
- Harvard Medical School, Boston, MA02115
| | - Linda S. Aglio
- Harvard Medical School, Boston, MA02115
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Michele D. Szabo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
| | - Emad N. Eskandar
- Harvard Medical School, Boston, MA02115
- Department of Neurological Surgery, Massachusetts General Hospital, Boston, MA02114
| | - Andrés F. Salazar-Gomez
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
| | - Aaron L. Sampson
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
| | - Sydney S. Cash
- Center for Neurotechnology and Recovery, Department of Neurology, Massachusetts General Hospital, Boston, MA02114
- Harvard Medical School, Boston, MA02115
| | - Emery N. Brown
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
- Harvard Medical School, Boston, MA02115
- Division of Health Sciences and Technology, Harvard Medical School/Massachusetts Institute of Technology, Cambridge, MA02139
- Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Patrick L. Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA02114
- Harvard Medical School, Boston, MA02115
| |
Collapse
|
6
|
Sedative Properties of Dexmedetomidine Are Mediated Independently from Native Thalamic Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel Function at Clinically Relevant Concentrations. Int J Mol Sci 2022; 24:ijms24010519. [PMID: 36613961 PMCID: PMC9820684 DOI: 10.3390/ijms24010519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Dexmedetomidine is a selective α2-adrenoceptor agonist and appears to disinhibit endogenous sleep-promoting pathways, as well as to attenuate noradrenergic excitation. Recent evidence suggests that dexmedetomidine might also directly inhibit hyperpolarization-activated cyclic-nucleotide gated (HCN) channels. We analyzed the effects of dexmedetomidine on native HCN channel function in thalamocortical relay neurons of the ventrobasal complex of the thalamus from mice, performing whole-cell patch-clamp recordings. Over a clinically relevant range of concentrations (1-10 µM), the effects of dexmedetomidine were modest. At a concentration of 10 µM, dexmedetomidine significantly reduced maximal Ih amplitude (relative reduction: 0.86 [0.78-0.91], n = 10, and p = 0.021), yet changes to the half-maximal activation potential V1/2 occurred exclusively in the presence of the very high concentration of 100 µM (-4,7 [-7.5--4.0] mV, n = 10, and p = 0.009). Coincidentally, only the very high concentration of 100 µM induced a significant deceleration of the fast component of the HCN activation time course (τfast: +135.1 [+64.7-+151.3] ms, n = 10, and p = 0.002). With the exception of significantly increasing the membrane input resistance (starting at 10 µM), dexmedetomidine did not affect biophysical membrane properties and HCN channel-mediated parameters of neuronal excitability. Hence, the sedative qualities of dexmedetomidine and its effect on the thalamocortical network are not decisively shaped by direct inhibition of HCN channel function.
Collapse
|
7
|
Kessi M, Peng J, Duan H, He H, Chen B, Xiong J, Wang Y, Yang L, Wang G, Kiprotich K, Bamgbade OA, He F, Yin F. The Contribution of HCN Channelopathies in Different Epileptic Syndromes, Mechanisms, Modulators, and Potential Treatment Targets: A Systematic Review. Front Mol Neurosci 2022; 15:807202. [PMID: 35663267 PMCID: PMC9161305 DOI: 10.3389/fnmol.2022.807202] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
Background Hyperpolarization-activated cyclic nucleotide-gated (HCN) current reduces dendritic summation, suppresses dendritic calcium spikes, and enables inhibitory GABA-mediated postsynaptic potentials, thereby suppressing epilepsy. However, it is unclear whether increased HCN current can produce epilepsy. We hypothesized that gain-of-function (GOF) and loss-of-function (LOF) variants of HCN channel genes may cause epilepsy. Objectives This systematic review aims to summarize the role of HCN channelopathies in epilepsy, update genetic findings in patients, create genotype–phenotype correlations, and discuss animal models, GOF and LOF mechanisms, and potential treatment targets. Methods The review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement, for all years until August 2021. Results We identified pathogenic variants of HCN1 (n = 24), HCN2 (n = 8), HCN3 (n = 2), and HCN4 (n = 6) that were associated with epilepsy in 74 cases (43 HCN1, 20 HCN2, 2 HCN3, and 9 HCN4). Epilepsy was associated with GOF and LOF variants, and the mechanisms were indeterminate. Less than half of the cases became seizure-free and some developed drug-resistant epilepsy. Of the 74 cases, 12 (16.2%) died, comprising HCN1 (n = 4), HCN2 (n = 2), HCN3 (n = 2), and HCN4 (n = 4). Of the deceased cases, 10 (83%) had a sudden unexpected death in epilepsy (SUDEP) and 2 (16.7%) due to cardiopulmonary failure. SUDEP affected more adults (n = 10) than children (n = 2). HCN1 variants p.M234R, p.C329S, p.V414M, p.M153I, and p.M305L, as well as HCN2 variants p.S632W and delPPP (p.719–721), were associated with different phenotypes. HCN1 p.L157V and HCN4 p.R550C were associated with genetic generalized epilepsy. There are several HCN animal models, pharmacological targets, and modulators, but precise drugs have not been developed. Currently, there are no HCN channel openers. Conclusion We recommend clinicians to include HCN genes in epilepsy gene panels. Researchers should explore the possible underlying mechanisms for GOF and LOF variants by identifying the specific neuronal subtypes and neuroanatomical locations of each identified pathogenic variant. Researchers should identify specific HCN channel openers and blockers with high binding affinity. Such information will give clarity to the involvement of HCN channelopathies in epilepsy and provide the opportunity to develop targeted treatments.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Department of Pediatrics, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Haolin Duan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Hailan He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Juan Xiong
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Ying Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Guoli Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Karlmax Kiprotich
- Department of Epidemiology and Medical Statistics, School of Public Health, Moi University, Eldoret, Kenya
| | - Olumuyiwa A. Bamgbade
- Department of Anesthesiology and Pharmacology, University of British Columbia, Vancouver, BC, Canada
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- *Correspondence: Fei Yin
| |
Collapse
|
8
|
Shimizu M, Mi X, Toyoda F, Kojima A, Ding WG, Fukushima Y, Omatsu-Kanbe M, Kitagawa H, Matsuura H. Propofol, an Anesthetic Agent, Inhibits HCN Channels through the Allosteric Modulation of the cAMP-Dependent Gating Mechanism. Biomolecules 2022; 12:biom12040570. [PMID: 35454159 PMCID: PMC9032835 DOI: 10.3390/biom12040570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
Propofol is a broadly used intravenous anesthetic agent that can cause cardiovascular effects, including bradycardia and asystole. A possible mechanism for these effects is slowing cardiac pacemaker activity due to inhibition of the hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels. However, it remains unclear how propofol affects the allosteric nature of the voltage- and cAMP-dependent gating mechanism in HCN channels. To address this aim, we investigated the effect of propofol on HCN channels (HCN4 and HCN2) in heterologous expression systems using a whole-cell patch clamp technique. The extracellular application of propofol substantially suppressed the maximum current at clinical concentrations. This was accompanied by a hyperpolarizing shift in the voltage dependence of channel opening. These effects were significantly attenuated by intracellular loading of cAMP, even after considering the current modification by cAMP in opposite directions. The differential degree of propofol effects in the presence and absence of cAMP was rationalized by an allosteric gating model for HCN channels, where we assumed that propofol affects allosteric couplings between the pore, voltage-sensor, and cyclic nucleotide-binding domain (CNBD). The model predicted that propofol enhanced autoinhibition of pore opening by unliganded CNBD, which was relieved by the activation of CNBD by cAMP. Taken together, these findings reveal that propofol acts as an allosteric modulator of cAMP-dependent gating in HCN channels, which may help us to better understand the clinical action of this anesthetic drug.
Collapse
Affiliation(s)
- Morihiro Shimizu
- Department of Anesthesiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (M.S.); (A.K.); (Y.F.); (H.K.)
| | - Xinya Mi
- Department of Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (X.M.); (F.T.); (M.O.-K.); (H.M.)
| | - Futoshi Toyoda
- Department of Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (X.M.); (F.T.); (M.O.-K.); (H.M.)
| | - Akiko Kojima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (M.S.); (A.K.); (Y.F.); (H.K.)
| | - Wei-Guang Ding
- Department of Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (X.M.); (F.T.); (M.O.-K.); (H.M.)
- Correspondence: ; Tel.: +81-77-548-2152; Fax: +81-77-548-2348
| | - Yutaka Fukushima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (M.S.); (A.K.); (Y.F.); (H.K.)
| | - Mariko Omatsu-Kanbe
- Department of Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (X.M.); (F.T.); (M.O.-K.); (H.M.)
| | - Hirotoshi Kitagawa
- Department of Anesthesiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (M.S.); (A.K.); (Y.F.); (H.K.)
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (X.M.); (F.T.); (M.O.-K.); (H.M.)
| |
Collapse
|
9
|
Speigel IA, Hemmings Jr. HC. Relevance of Cortical and Hippocampal Interneuron Functional Diversity to General Anesthetic Mechanisms: A Narrative Review. Front Synaptic Neurosci 2022; 13:812905. [PMID: 35153712 PMCID: PMC8825374 DOI: 10.3389/fnsyn.2021.812905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/30/2021] [Indexed: 01/04/2023] Open
Abstract
General anesthetics disrupt brain processes involved in consciousness by altering synaptic patterns of excitation and inhibition. In the cerebral cortex and hippocampus, GABAergic inhibition is largely mediated by inhibitory interneurons, a heterogeneous group of specialized neuronal subtypes that form characteristic microcircuits with excitatory neurons. Distinct interneuron subtypes regulate specific excitatory neuron networks during normal behavior, but how these interneuron subtypes are affected by general anesthetics is unclear. This narrative review summarizes current principles of the synaptic architecture of cortical and interneuron subtypes, their contributions to different forms of inhibition, and their roles in distinct neuronal microcircuits. The molecular and cellular targets in these circuits that are sensitive to anesthetics are reviewed in the context of how anesthetics impact interneuron function in a subtype-specific manner. The implications of this functional interneuron diversity for mechanisms of anesthesia are discussed, as are their implications for anesthetic-induced changes in neural plasticity and overall brain function.
Collapse
Affiliation(s)
- Iris A. Speigel
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Iris A. Speigel
| | - Hugh C. Hemmings Jr.
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
10
|
Bosque-Cordero KY, Vazquez-Torres R, Calo-Guadalupe C, Consuegra-Garcia D, Fois GR, Georges F, Jimenez-Rivera CA. I h blockade reduces cocaine-induced firing patterns of putative dopaminergic neurons of the ventral tegmental area in the anesthetized rat. Prog Neuropsychopharmacol Biol Psychiatry 2022; 112:110431. [PMID: 34454991 PMCID: PMC8489561 DOI: 10.1016/j.pnpbp.2021.110431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/12/2023]
Abstract
The hyperpolarization-activated cation current (Ih) is a determinant of intrinsic excitability in various cells, including dopaminergic neurons (DA) of the ventral tegmental area (VTA). In contrast to other cellular conductances, Ih is activated by hyperpolarization negative to -55 mV and activating Ih produces a time-dependent depolarizing current. Our laboratory demonstrated that cocaine sensitization, a chronic cocaine behavioral model, significantly reduces Ih amplitude in VTA DA neurons. Despite this reduction in Ih, the spontaneous firing of VTA DA cells after cocaine sensitization remained similar to control groups. Although the role of Ih in controlling VTA DA excitability is still poorly understood, our hypothesis is that Ih reduction could play a role of a homeostatic controller compensating for cocaine-induced change in excitability. Using in vivo single-unit extracellular electrophysiology in isoflurane anesthetized rats, we explored the contribution of Ih on spontaneous firing patterns of VTA DA neurons. A key feature of spontaneous excitability is bursting activity; bursting is defined as trains of two or more spikes occurring within a short interval and followed by a prolonged period of inactivity. Burst activity increases the reliability of information transfer. To elucidate the contribution of Ih to spontaneous firing patterns of VTA DA neurons, we locally infused an Ih blocker (ZD 7288, 8.3 μM) and evaluated its effect. Ih blockade significantly reduced firing rate, bursting frequency, and percent of spikes within a burst. In addition, Ih blockade significantly reduced acute cocaine-induced spontaneous firing rate, bursting frequency, and percent of spikes within a burst. Using whole-cell patch-clamp, we determine the progressive reduction of Ih after acute and chronic cocaine administration (15 mg/k.g intraperitoneally). Our data show a significant reduction (~25%) in Ih amplitude after 24 but not 2 h of acute cocaine administration. These results suggest that a progressive reduction of Ih could serve as a homeostatic regulator of cocaine-induced spontaneous firing patterns related to VTA DA excitability.
Collapse
Affiliation(s)
| | | | | | | | - Giulia R Fois
- University of Bordeaux, Neurodegeneratives Diseases Institute, IMN-UMR-CNRS 5293, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS, Neurodegeneratives Diseases Institute, IMN-UMR-CNRS 5293, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - François Georges
- University of Bordeaux, Neurodegeneratives Diseases Institute, IMN-UMR-CNRS 5293, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS, Neurodegeneratives Diseases Institute, IMN-UMR-CNRS 5293, 146 rue Léo Saignat, 33076 Bordeaux, France
| | | |
Collapse
|
11
|
Progress in modelling of brain dynamics during anaesthesia and the role of sleep-wake circuitry. Biochem Pharmacol 2021; 191:114388. [DOI: 10.1016/j.bcp.2020.114388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/28/2022]
|
12
|
Chen H, Xu D, Zhang Y, Yan Y, Liu J, Liu C, Shen W, Yu T, Liu J. Neurons in the Locus Coeruleus Modulate the Hedonic Effects of Sub-Anesthetic Dose of Propofol. Front Neurosci 2021; 15:636901. [PMID: 33767609 PMCID: PMC7985178 DOI: 10.3389/fnins.2021.636901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/28/2021] [Indexed: 02/05/2023] Open
Abstract
Propofol is a worldwide-used intravenous general anesthetic with ideal effects, but hedonic effects of propofol have been reported and cause addictive issue. There is little known about the neurobiological mechanism of hedonic effects of propofol. Increasing researches have shown that the dopaminergic nervous system of the ventral tegmental area (VTA) and the noradrenergic system of locus coeruleus (LC) play a crucial role in hedonic experiences, which are putative sites for mediating the hedonic effects of propofol. In the present study, rat hedonic response scale and place conditioning paradigm were employed to examine the euphoric effects of propofol. In vivo GCaMP-based (AVV-hSyn-GCaMP6s) fiber photometry calcium imaging was used to monitor the real-time neuronal activity in VTA and LC area in rats exhibiting propofol-induced euphoric behaviors. Then DREADDs (designer receptors exclusively activated by designer drugs) modulation using rAAV-hSyn-hM4D(Gi)-EGFP was performed to confirm the neuronal substrate that mediates the euphoric effects of propofol. The score of hedonic facial responses was significantly increased in the 4 mg/kg group compared with that of the 0 mg/kg group. The locomotor activity in the propofol-paired compartment was significantly increased at the 4 mg/kg dose compared with that of the saline-paired group. When compared with the 0 mg/kg group, the place preference increased in the 4 mg/kg group. Administration of 4 mg/kg of propofol triggers reliable increases in GcaMP fluorescence. However, in the VTA GcaMP-expressing rats, administration of 4 mg/kg of propofol did not induce any change of GcaMP signals. The facial score and the place preference, which increased by 4 mg/kg propofol were abolished by chemogenetic inhibition of the neuronal activity in the LC area. Our results suggest that LC noradrenergic neurons, not VTA dopaminergic neurons, are directly involved in the hedonic effects of sub-anesthetic dose of propofol.
Collapse
Affiliation(s)
- Hui Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Xu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou, China
| | - Yu Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou, China
| | - Yan Yan
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou, China
| | - JunXiao Liu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou, China
| | - ChengXi Liu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou, China
| | - Wei Shen
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Schwerin S, Kopp C, Pircher E, Schneider G, Kreuzer M, Haseneder R, Kratzer S. Attenuation of Native Hyperpolarization-Activated, Cyclic Nucleotide-Gated Channel Function by the Volatile Anesthetic Sevoflurane in Mouse Thalamocortical Relay Neurons. Front Cell Neurosci 2021; 14:606687. [PMID: 33551750 PMCID: PMC7858256 DOI: 10.3389/fncel.2020.606687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/18/2020] [Indexed: 11/24/2022] Open
Abstract
As thalamocortical relay neurons are ascribed a crucial role in signal propagation and information processing, they have attracted considerable attention as potential targets for anesthetic modulation. In this study, we analyzed the effects of different concentrations of sevoflurane on the excitability of thalamocortical relay neurons and hyperpolarization-activated, cyclic-nucleotide gated (HCN) channels, which play a decisive role in regulating membrane properties and rhythmic oscillatory activity. The effects of sevoflurane on single-cell excitability and native HCN channels were investigated in acutely prepared brain slices from adult wild-type mice with the whole-cell patch-clamp technique, using voltage-clamp and current-clamp protocols. Sevoflurane dose-dependently depressed membrane biophysics and HCN-mediated parameters of neuronal excitability. Respective half-maximal inhibitory and effective concentrations ranged between 0.30 (95% CI, 0.18–0.50) mM and 0.88 (95% CI, 0.40–2.20) mM. We witnessed a pronounced reduction of HCN dependent Ih current amplitude starting at a concentration of 0.45 mM [relative change at −133 mV; 0.45 mM sevoflurane: 0.85 (interquartile range, 0.79–0.92), n = 12, p = 0.011; 1.47 mM sevoflurane: 0.37 (interquartile range, 0.34–0.62), n = 5, p < 0.001] with a half-maximal inhibitory concentration of 0.88 (95% CI, 0.40–2.20) mM. In contrast, effects on voltage-dependent channel gating were modest with significant changes only occurring at 1.47 mM [absolute change of half-maximal activation potential; 1.47 mM: −7.2 (interquartile range, −10.3 to −5.8) mV, n = 5, p = 0.020]. In this study, we demonstrate that sevoflurane inhibits the excitability of thalamocortical relay neurons in a concentration-dependent manner within a clinically relevant range. Especially concerning its effects on native HCN channel function, our findings indicate substance-specific differences in comparison to other anesthetic agents. Considering the importance of HCN channels, the observed effects might mechanistically contribute to the hypnotic properties of sevoflurane.
Collapse
Affiliation(s)
- Stefan Schwerin
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich School of Medicine, Munich, Germany
| | - Claudia Kopp
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich School of Medicine, Munich, Germany
| | - Elisabeth Pircher
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich School of Medicine, Munich, Germany
| | - Gerhard Schneider
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich School of Medicine, Munich, Germany
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich School of Medicine, Munich, Germany
| | - Rainer Haseneder
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich School of Medicine, Munich, Germany
| | - Stephan Kratzer
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich School of Medicine, Munich, Germany
| |
Collapse
|
14
|
Testing broad-spectrum and isoform-preferring HCN channel blockers for anticonvulsant properties in mice. Epilepsy Res 2020; 168:106484. [DOI: 10.1016/j.eplepsyres.2020.106484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022]
|
15
|
Kreuzer M, Butovas S, García PS, Schneider G, Schwarz C, Rudolph U, Antkowiak B, Drexler B. Propofol Affects Cortico-Hippocampal Interactions via β3 Subunit-Containing GABA A Receptors. Int J Mol Sci 2020; 21:ijms21165844. [PMID: 32823959 PMCID: PMC7461501 DOI: 10.3390/ijms21165844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND General anesthetics depress neuronal activity. The depression and uncoupling of cortico-hippocampal activity may contribute to anesthetic-induced amnesia. However, the molecular targets involved in this process are not fully characterized. GABAA receptors, especially the type with β3 subunits, represent a main molecular target of propofol. We therefore hypothesized that GABAA receptors with β3 subunits mediate the propofol-induced disturbance of cortico-hippocampal interactions. METHODS We used local field potential (LFP) recordings from chronically implanted cortical and hippocampal electrodes in wild-type and β3(N265M) knock-in mice. In the β3(N265M) mice, the action of propofol via β3subunit containing GABAA receptors is strongly attenuated. The analytical approach contained spectral power, phase locking, and mutual information analyses in the 2-16 Hz range to investigate propofol-induced effects on cortico-hippocampal interactions. RESULTS Propofol caused a significant increase in spectral power between 14 and 16 Hz in the cortex and hippocampus of wild-type mice. This increase was absent in the β3(N265M) mutant. Propofol strongly decreased phase locking of 6-12 Hz oscillations in wild-type mice. This decrease was attenuated in the β3(N265M) mutant. Finally, propofol reduced the mutual information between 6-16 Hz in wild-type mice, but only between 6 and 8 Hz in the β3(N265M) mutant. CONCLUSIONS GABAA receptors containing β3 subunits contribute to frequency-specific perturbation of cortico-hippocampal interactions. This likely explains some of the amnestic actions of propofol.
Collapse
Affiliation(s)
- Matthias Kreuzer
- Department of Anesthesiology and Intensive Care, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Ismaninger Str. 22, 81675 München, Germany; (M.K.); (G.S.)
| | - Sergejus Butovas
- Werner Reichardt Centre for Integrative Neuroscience, Eberhard-Karls-University, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; (S.B.); (C.S.)
| | - Paul S García
- Department of Anesthesiology, Neuroanesthesia Division, Columbia University Medical Center, New York Presbyterian Hospital, 622 West 168th Street, New York City, NY 10032, USA;
| | - Gerhard Schneider
- Department of Anesthesiology and Intensive Care, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Ismaninger Str. 22, 81675 München, Germany; (M.K.); (G.S.)
| | - Cornelius Schwarz
- Werner Reichardt Centre for Integrative Neuroscience, Eberhard-Karls-University, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; (S.B.); (C.S.)
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802-6178, USA;
- Carl R. Woese Institute for Genomic Biology, University of Illiniois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bernd Antkowiak
- Department of Anaesthesiology, Experimental Anaesthesiology Section, Eberhard-Karls-University, Waldhörnlestrasse 22, 72072 Tübingen, Germany;
| | - Berthold Drexler
- Department of Anaesthesiology, Experimental Anaesthesiology Section, Eberhard-Karls-University, Waldhörnlestrasse 22, 72072 Tübingen, Germany;
- Correspondence:
| |
Collapse
|
16
|
Plourde G, Arseneau F. Attenuation of high-frequency (30-200 Hz) thalamocortical EEG rhythms as correlate of anaesthetic action: evidence from dexmedetomidine. Br J Anaesth 2019; 119:1150-1160. [PMID: 29045562 DOI: 10.1093/bja/aex329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2017] [Indexed: 01/05/2023] Open
Abstract
Background Gamma (30-80 Hz) and high-gamma (80-200 Hz) thalamocortical EEG rhythms are involved in conscious processes and are attenuated by isoflurane and propofol. To explore the hypothesis that this attenuation is a correlate of anaesthetic action, we characterized the effect dexmedetomidine, a selective adrenergic α-2 agonist with lesser hypnotic potency, on these rhythms. Methods We recorded local field potentials from barrel cortex and ventroposteromedial thalamic nucleus in ten previously instrumented rats to measure spectral power (30-50 Hz, 51-75 Hz, 76-125 Hz, 126-200 Hz bands) during baseline, at four dexmedetomidine plasma concentrations obtained by i.v. target-controlled infusion (1.86, 3.75, 5.63 and 7.50 ng ml -1 ), and during recovery. Thalamocortical coherence over 0.3-200 Hz was also measured. Results Loss of righting reflex (LORR) occurred with 5.63 ng ml -1 . Dexmedetomidine produced a linear concentration-dependent attenuation of cortical ( P <0.04) and thalamic ( P ≤ 0.0051) log power in all bands. Slopes for cortex and thalamus were similar. The slope for dexmedetomidine on thalamic power in the 76-200 Hz range was less than half that of the other agents ( P <0.003). LORR was associated with an increase in delta band (0.3-4.0 Hz) thalamocortical coherence ( P <0.001). Increased low-frequency coherence also occurred with propofol and isoflurane. Conclusions Dexmedetomidine attenuates high-frequency thalamocortical rhythms, but to a lesser degree than isoflurane and propofol. The main differences between dexmedetomidine and the other anaesthetics involved thalamic rhythms, further substantiating the link between impaired thalamic function and anaesthesia. Increased delta coherence likely reflects cyclic hyperpolarization of thalamocortical networks and may be a marker for loss of consciousness.
Collapse
Affiliation(s)
- G Plourde
- Department of Anesthesia, McGill University, Montreal Neurological Hospital Room 548, 3801 University St, Montreal, QC, Canada, H3A 2B4
| | - F Arseneau
- Department of Anesthesia, McGill University, Montreal Neurological Hospital Room 548, 3801 University St, Montreal, QC, Canada, H3A 2B4
| |
Collapse
|
17
|
Hu Z, Wu Z, Gao J, Jia Q, Li N, Ouyang Y, Yao S, Chen X. Effects of HCN Channels in the Rostral Ventrolateral Medulla Contribute to the Cardiovascular Effects of Propofol. Mol Pharmacol 2018; 94:1280-1288. [PMID: 30194107 DOI: 10.1124/mol.118.111898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/30/2018] [Indexed: 11/22/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels were reported to express in the well-known vasomotor region, rostral ventrolateral medulla (RVLM), and can be inhibited by propofol. However, whether HCN channels in RVLM contribute to propofol-induced cardiovascular depression remains unclear. We recorded the hemodynamic changes when either continuous intravenous infusions or microinjections of propofol and ZD-7288 (4-ethylphenylamino-1,2-dimethyl-6-methylaminopyrimidinium chloride; HCN channel blocker) in RVLM. Expressions of HCN channels in RVLM neurons of mice of different ages were examined by quantitative real-time polymerase chain reaction and Western blotting. The effects of propofol and ZD-7288 on HCN channels and the excitability of RVLM neurons were examined by electrophysiological recording. Propofol (1.25, 2.5, 5, and 7.5 mg/kg per minute, i.v., 10 minutes) decreased mean arterial pressure (MAP) and heart rate (HR) in a concentration-dependent manner in wild-type mice that were markedly attenuated in HCN1 knockout mice. Bilateral microinjection of propofol (1%, 0.1 μl) in RVLM caused a sharp and pronounced drop in MAP and HR values, which were abated by pretreatment with ZD-7288. In electrophysiological recording, propofol (5, 10, and 20 μM) concentration-dependently inhibited HCN current, increased input resistance, decreased firing rate, and caused membrane hyperpolarization in RVLM neurons. These actions of propofol were attenuated by ZD-7288 pretreatment. The mRNA and protein level of HCN channels increased in an age-dependent manner, which may contribute to the age-dependent increase in the sensitivity to propofol. Our results indicated that the inhibition of HCN channels in RVLM neurons may contribute to propofol-induced cardiovascular inhibition.
Collapse
Affiliation(s)
- Zhiqiang Hu
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zhilin Wu
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jie Gao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qi Jia
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Na Li
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yeling Ouyang
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shanglong Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiangdong Chen
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
18
|
HCN Channels: New Therapeutic Targets for Pain Treatment. Molecules 2018; 23:molecules23092094. [PMID: 30134541 PMCID: PMC6225464 DOI: 10.3390/molecules23092094] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/28/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are highly regulated proteins which respond to different cellular stimuli. The HCN currents (Ih) mediated by HCN1 and HCN2 drive the repetitive firing in nociceptive neurons. The role of HCN channels in pain has been widely investigated as targets for the development of new therapeutic drugs, but the comprehensive design of HCN channel modulators has been restricted due to the lack of crystallographic data. The three-dimensional structure of the human HCN1 channel was recently reported, opening new possibilities for the rational design of highly-selective HCN modulators. In this review, we discuss the structural and functional properties of HCN channels, their pharmacological inhibitors, and the potential strategies for designing new drugs to block the HCN channel function associated with pain perception.
Collapse
|
19
|
Thiery T, Lajnef T, Combrisson E, Dehgan A, Rainville P, Mashour GA, Blain-Moraes S, Jerbi K. Long-range temporal correlations in the brain distinguish conscious wakefulness from induced unconsciousness. Neuroimage 2018; 179:30-39. [PMID: 29885482 DOI: 10.1016/j.neuroimage.2018.05.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/18/2018] [Accepted: 05/29/2018] [Indexed: 12/20/2022] Open
Abstract
Rhythmic neuronal synchronization across large-scale networks is thought to play a key role in the regulation of conscious states. Changes in neuronal oscillation amplitude across states of consciousness have been widely reported, but little is known about possible changes in the temporal dynamics of these oscillations. The temporal structure of brain oscillations may provide novel insights into the neural mechanisms underlying consciousness. To address this question, we examined long-range temporal correlations (LRTC) of EEG oscillation amplitudes recorded during both wakefulness and anesthetic-induced unconsciousness. Importantly, the time-varying EEG oscillation envelopes were assessed over the course of a sevoflurane sedation protocol during which the participants alternated between states of consciousness and unconsciousness. Both spectral power and LRTC in oscillation amplitude were computed across multiple frequency bands. State-dependent differences in these features were assessed using non-parametric tests and supervised machine learning. We found that periods of unconsciousness were associated with increases in LRTC in beta (15-30Hz) amplitude over frontocentral channels and with a suppression of alpha (8-13Hz) amplitude over occipitoparietal electrodes. Moreover, classifiers trained to predict states of consciousness on single epochs demonstrated that the combination of beta LRTC with alpha amplitude provided the highest classification accuracy (above 80%). These results suggest that loss of consciousness is accompanied by an augmentation of temporal persistence in neuronal oscillation amplitude, which may reflect an increase in regularity and a decrease in network repertoire compared to the brain's activity during resting-state consciousness.
Collapse
Affiliation(s)
- Thomas Thiery
- Psychology Department, University of Montreal, QC, Canada.
| | - Tarek Lajnef
- Psychology Department, University of Montreal, QC, Canada
| | - Etienne Combrisson
- Psychology Department, University of Montreal, QC, Canada; Center of Research and Innovation in Sport, Mental Processes and Motor Performance, University Claude Bernard Lyon I, University of Lyon, Villeurbanne, France; Brain Dynamics and Cognition, Lyon Neuroscience Research Center, INSERM U1028, UMR 5292, University of Lyon, Villeurbanne, France
| | - Arthur Dehgan
- Psychology Department, University of Montreal, QC, Canada
| | | | - George A Mashour
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, USA
| | - Stefanie Blain-Moraes
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
| | - Karim Jerbi
- Psychology Department, University of Montreal, QC, Canada
| |
Collapse
|
20
|
Abstract
The precise mechanism by which propofol enhances GABAergic transmission remains unclear, but much progress has been made regarding the underlying structural and dynamic mechanisms. Furthermore, it is now clear that propofol has additional molecular targets, many of which are functionally influenced at concentrations achieved clinically. Focusing primarily on molecular targets, this brief review attempts to summarize some of this recent progress while pointing out knowledge gaps and controversies. It is not intended to be comprehensive but rather to stimulate further thought, discussion, and study on the mechanisms by which propofol produces its pleiotropic effects.
Collapse
Affiliation(s)
- Pei Tang
- Department of Anesthesiology, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Roderic Eckenhoff
- Department of Anesthesiology & Critical Care, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| |
Collapse
|
21
|
Soplata AE, McCarthy MM, Sherfey J, Lee S, Purdon PL, Brown EN, Kopell N. Thalamocortical control of propofol phase-amplitude coupling. PLoS Comput Biol 2017; 13:e1005879. [PMID: 29227992 PMCID: PMC5739502 DOI: 10.1371/journal.pcbi.1005879] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/21/2017] [Accepted: 10/02/2017] [Indexed: 11/18/2022] Open
Abstract
The anesthetic propofol elicits many different spectral properties on the EEG, including alpha oscillations (8-12 Hz), Slow Wave Oscillations (SWO, 0.1-1.5 Hz), and dose-dependent phase-amplitude coupling (PAC) between alpha and SWO. Propofol is known to increase GABAA inhibition and decrease H-current strength, but how it generates these rhythms and their interactions is still unknown. To investigate both generation of the alpha rhythm and its PAC to SWO, we simulate a Hodgkin-Huxley network model of a hyperpolarized thalamus and corticothalamic inputs. We find, for the first time, that the model thalamic network is capable of independently generating the sustained alpha seen in propofol, which may then be relayed to cortex and expressed on the EEG. This dose-dependent sustained alpha critically relies on propofol GABAA potentiation to alter the intrinsic spindling mechanisms of the thalamus. Furthermore, the H-current conductance and background excitation of these thalamic cells must be within specific ranges to exhibit any intrinsic oscillations, including sustained alpha. We also find that, under corticothalamic SWO UP and DOWN states, thalamocortical output can exhibit maximum alpha power at either the peak or trough of this SWO; this implies the thalamus may be the source of propofol-induced PAC. Hyperpolarization level is the main determinant of whether the thalamus exhibits trough-max PAC, which is associated with lower propofol dose, or peak-max PAC, associated with higher dose. These findings suggest: the thalamus generates a novel rhythm under GABAA potentiation such as under propofol, its hyperpolarization may determine whether a patient experiences trough-max or peak-max PAC, and the thalamus is a critical component of propofol-induced cortical spectral phenomena. Changes to the thalamus may be a critical part of how propofol accomplishes its effects, including unconsciousness.
Collapse
Affiliation(s)
- Austin E. Soplata
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| | - Michelle M. McCarthy
- Department of Mathematics & Statistics, Boston University, Boston, Massachusetts, United States of America
| | - Jason Sherfey
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Shane Lee
- Department of Neuroscience, Brown University, Providence, Rhode Island, United States of America
| | - Patrick L. Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Emery N. Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Nancy Kopell
- Department of Mathematics & Statistics, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
22
|
Kratzer S, Mattusch C, Garcia PS, Schmid S, Kochs E, Rammes G, Schneider G, Kreuzer M, Haseneder R. Propofol and Sevoflurane Differentially Modulate Cortical Depolarization following Electric Stimulation of the Ventrobasal Thalamus. Front Comput Neurosci 2017; 11:109. [PMID: 29321737 PMCID: PMC5732174 DOI: 10.3389/fncom.2017.00109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/13/2017] [Indexed: 01/14/2023] Open
Abstract
The neuronal mechanisms how anesthetics lead to loss of consciousness are unclear. Thalamocortical interactions are crucially involved in conscious perception; hence the thalamocortical network might be a promising target for anesthetic modulation of neuronal information pertaining to arousal and waking behavior. General anesthetics affect the neurophysiology of the thalamus and the cortex but the exact mechanisms of how anesthetics interfere with processing thalamocortical information remain to be elucidated. Here we investigated the effect of the anesthetic agents sevoflurane and propofol on thalamocortical network activity in vitro. We used voltage-sensitive dye imaging techniques to analyze the cortical depolarization in response to stimulation of the thalamic ventrobasal nucleus in brain slices from mice. Exposure to sevoflurane globally decreased cortical depolarization in a dose-dependent manner. Sevoflurane reduced the intensity and extent of cortical depolarization and delayed thalamocortical signal propagation. In contrast, propofol neither affected area nor amplitude of cortical depolarization. However, propofol exposure resulted in regional changes in spatial distribution of maximum fluorescence intensity in deep regions of the cortex. In summary, our experiments revealed substance-specific effects on the thalamocortical network. Functional changes of the neuronal network are known to be pivotally involved in the anesthetic-induced loss of consciousness. Our findings provide further evidence that the mechanisms of anesthetic-mediated loss of consciousness are drug- and pathway-specific.
Collapse
Affiliation(s)
- Stephan Kratzer
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Corinna Mattusch
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Paul S Garcia
- Department of Anesthesiology, Emory University, Atlanta, GA, United States
- Research Service, Atlanta VA Medical Center, Atlanta, GA, United States
| | - Sebastian Schmid
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Eberhard Kochs
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Gerhard Rammes
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Gerhard Schneider
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Matthias Kreuzer
- Department of Anesthesiology, Emory University, Atlanta, GA, United States
- Research Service, Atlanta VA Medical Center, Atlanta, GA, United States
| | - Rainer Haseneder
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
23
|
Sartiani L, Mannaioni G, Masi A, Novella Romanelli M, Cerbai E. The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels. Pharmacol Rev 2017; 69:354-395. [PMID: 28878030 DOI: 10.1124/pr.117.014035] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/07/2017] [Indexed: 12/22/2022] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are important members of the voltage-gated pore loop channels family. They show unique features: they open at hyperpolarizing potential, carry a mixed Na/K current, and are regulated by cyclic nucleotides. Four different isoforms have been cloned (HCN1-4) that can assemble to form homo- or heterotetramers, characterized by different biophysical properties. These proteins are widely distributed throughout the body and involved in different physiologic processes, the most important being the generation of spontaneous electrical activity in the heart and the regulation of synaptic transmission in the brain. Their role in heart rate, neuronal pacemaking, dendritic integration, learning and memory, and visual and pain perceptions has been extensively studied; these channels have been found also in some peripheral tissues, where their functions still need to be fully elucidated. Genetic defects and altered expression of HCN channels are linked to several pathologies, which makes these proteins attractive targets for translational research; at the moment only one drug (ivabradine), which specifically blocks the hyperpolarization-activated current, is clinically available. This review discusses current knowledge about HCN channels, starting from their biophysical properties, origin, and developmental features, to (patho)physiologic role in different tissues and pharmacological modulation, ending with their present and future relevance as drug targets.
Collapse
Affiliation(s)
- Laura Sartiani
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| |
Collapse
|
24
|
Ionic mechanisms of the action of anaesthetics on sinoatrial node automaticity. Eur J Pharmacol 2017; 814:63-72. [DOI: 10.1016/j.ejphar.2017.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/06/2017] [Accepted: 08/07/2017] [Indexed: 12/11/2022]
|
25
|
Scheib CM. Brainstem Influence on Thalamocortical Oscillations during Anesthesia Emergence. Front Syst Neurosci 2017; 11:66. [PMID: 28959192 PMCID: PMC5603712 DOI: 10.3389/fnsys.2017.00066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/31/2017] [Indexed: 12/23/2022] Open
Abstract
Theories of mechanisms that impair or prevent consciousness during anesthesia that are related to thalamocortical oscillations have been proposed. Many methods of EEG analysis have been proposed as measures of anesthetic effects but only a few have potential to provide measures of those anesthetic effects that are directly related to thalamocortical oscillations. Some of these methods will be explained and demonstrated with examples chosen to provide evidence for or against two of the proposed mechanisms. The first of the two mechanisms to be addressed is the “traveling peak” (Ching et al., 2010), which relates to anesthetic agents synchronizing neural oscillations that occur in subjects who are awake and reducing their frequency from the gamma (25–40 Hz) to the beta range (13–24 Hz) as a state of sedation develops. The mechanism continues to lower the frequency of this oscillation to the alpha (8–12 Hz) range. In the alpha frequency range, responses to sounds and words stop. It has been proposed that the mechanism changes fundamentally at this point and the oscillations are not compatible with consciousness. The second mechanism that will be addressed is a modification of the generally accepted mechanism for the spindle oscillations that occur during natural sleep (Steriade et al., 1993a,b). These two different mechanisms imply two different patterns for changes in the frequency of the thalamocortical oscillations during emergence. The first mechanism implies that the frequency of the oscillations should increase from the alpha range to the beta range during emergence. The “spindle” mechanism implies that the frequency of the oscillation would not increase much beyond the alpha range. Examples of EEG recordings during anesthesia and emergence from anesthesia were found which were consistent with either mechanism alone or both mechanisms at the same time. Neither theory was able to explain all examples. It is possible that both mechanisms can occur and that brainstem activity may influence the characteristics of emergence. The brainstem activity in question may be influenced by nociception and analgesic supplementation. It may be possible to control the path of emergence by controlling brainstem activity with opioids and other agents in order to allow the patient to awaken without going through an excitement phase or delirium at the transition to consciousness.
Collapse
Affiliation(s)
- Christopher M Scheib
- Anesthesia Department, W. G. (Bill) Hefner VA Medical CenterSalisbury, NC, United States
| |
Collapse
|
26
|
Dynamics of Propofol-Induced Loss of Consciousness Across Primate Neocortex. J Neurosci 2017; 36:7718-26. [PMID: 27445148 DOI: 10.1523/jneurosci.4577-15.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/01/2016] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED The precise neural mechanisms underlying transitions between consciousness and anesthetic-induced unconsciousness remain unclear. Here, we studied intracortical neuronal dynamics leading to propofol-induced unconsciousness by recording single-neuron activity and local field potentials directly in the functionally interconnecting somatosensory (S1) and frontal ventral premotor (PMv) network during a gradual behavioral transition from full alertness to loss of consciousness (LOC) and on through a deeper anesthetic level. Macaque monkeys were trained for a behavioral task designed to determine the trial-by-trial alertness and neuronal response to tactile and auditory stimulation. We show that disruption of coherent beta oscillations between S1 and PMv preceded, but did not coincide with, the LOC. LOC appeared to correspond to pronounced but brief gamma-/high-beta-band oscillations (lasting ∼3 min) in PMv, followed by a gamma peak in S1. We also demonstrate that the slow oscillations appeared after LOC in S1 and then in PMv after a delay, together suggesting that neuronal dynamics are very different across S1 versus PMv during LOC. Finally, neurons in both S1 and PMv transition from responding to bimodal (tactile and auditory) stimulation before LOC to only tactile modality during unconsciousness, consistent with an inhibition of multisensory integration in this network. Our results show that propofol-induced LOC is accompanied by spatiotemporally distinct oscillatory neuronal dynamics across the somatosensory and premotor network and suggest that a transitional state from wakefulness to unconsciousness is not a continuous process, but rather a series of discrete neural changes. SIGNIFICANCE STATEMENT How information is processed by the brain during awake and anesthetized states and, crucially, during the transition is not clearly understood. We demonstrate that neuronal dynamics are very different within an interconnecting cortical network (primary somatosensory and frontal premotor area) during the loss of consciousness (LOC) induced by propofol in nonhuman primates. Coherent beta oscillations between these regions are disrupted before LOC. Pronounced but brief gamma-band oscillations appear to correspond to LOC. In addition, neurons in both of these cortices transition from responding to both tactile and auditory stimulation before LOC to only tactile modality during unconsciousness. We demonstrate that propofol-induced LOC is accompanied by spatiotemporally distinctive neuronal dynamics in this network with concurrent changes in multisensory processing.
Collapse
|
27
|
Fu B, Yu T, Yuan J, Gong X, Zhang M. Noradrenergic transmission in the central medial thalamic nucleus modulates the electroencephalographic activity and emergence from propofol anesthesia in rats. J Neurochem 2017; 140:862-873. [DOI: 10.1111/jnc.13939] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Bao Fu
- Department of Anesthesiology; Shanghai Children's Medical Center; Shanghai Jiaotong University School of Medicine; Shanghai China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection; Zunyi Medical University; Zunyi Guizhou China
| | - Jie Yuan
- Department of Anesthesiology; Shanghai Children's Medical Center; Shanghai Jiaotong University School of Medicine; Shanghai China
| | - Xingrui Gong
- Department of Anesthesiology; Shanghai Children's Medical Center; Shanghai Jiaotong University School of Medicine; Shanghai China
| | - Mazhong Zhang
- Department of Anesthesiology; Shanghai Children's Medical Center; Shanghai Jiaotong University School of Medicine; Shanghai China
| |
Collapse
|
28
|
Kaneko K, Koyanagi Y, Oi Y, Kobayashi M. Propofol-induced spike firing suppression is more pronounced in pyramidal neurons than in fast-spiking neurons in the rat insular cortex. Neuroscience 2016; 339:548-560. [DOI: 10.1016/j.neuroscience.2016.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/15/2016] [Accepted: 10/04/2016] [Indexed: 11/15/2022]
|
29
|
Ding W, You Z, Shen S, Chen L, Zhu S, Mao J. Inhibition of HCN channel activity in the thalamus attenuates chronic pain in rats. Neurosci Lett 2016; 631:97-103. [PMID: 27542339 DOI: 10.1016/j.neulet.2016.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 10/21/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate neuronal excitability in both peripheral and central nerve systems. Emerging evidence indicates that HCN channels are involved in the development and maintenance of chronic pain. However, the impact of HCN channel activity in the thalamus on chronic pain has not been examined. In this report, we evaluated the effect on nociceptive behaviors after infusion of a HCN channel blocker ZD7288 into the ventral posterolateral (VPL) nucleus of the thalamus in rats with neuropathic pain or monoarthritis. We show that ZD7288 dose-dependently attenuated mechanical allodynia and thermal hyperalgesia in rats with chronic pain. In the thalamus, immunoreactivity of both HCN1 and HCN2 subunits was increased in both rat models. These results suggest that the increased HCN channel activity in the thalamus of the ascending nociceptive pathway contributes to both chronic neuropathic and inflammatory pain conditions.
Collapse
Affiliation(s)
- Weihua Ding
- MGH Center for Translational Pain Research Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Boston, MA, 02114, United States; The First Affiliated Hospital of Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China; Hangzhou First People's Hospital, 261 Huanshan Road, Hangzhou, 310006, China
| | - Zerong You
- MGH Center for Translational Pain Research Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Boston, MA, 02114, United States
| | - Shiqian Shen
- MGH Center for Translational Pain Research Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Boston, MA, 02114, United States
| | - Lucy Chen
- MGH Center for Translational Pain Research Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Boston, MA, 02114, United States
| | - Shengmei Zhu
- The First Affiliated Hospital of Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China.
| | - Jianren Mao
- MGH Center for Translational Pain Research Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Boston, MA, 02114, United States.
| |
Collapse
|
30
|
Voss LJ, Harvey MG, Sleigh JW. Inhibition of astrocyte metabolism is not the primary mechanism for anaesthetic hypnosis. SPRINGERPLUS 2016; 5:1041. [PMID: 27462489 PMCID: PMC4940352 DOI: 10.1186/s40064-016-2734-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/30/2016] [Indexed: 11/10/2022]
Abstract
Astrocytes have been promoted as a possible mechanistic target for anaesthetic hypnosis. The aim of this study was to explore this using the neocortical brain slice preparation. The methods were in two parts. Firstly, multiple general anaesthetic compounds demonstrating varying in vivo hypnotic potency were analysed for their effect on "zero-magnesium" seizure-like event (SLE) activity in mouse neocortical slices. Subsequently, the effect of astrocyte metabolic inhibition was investigated in neocortical slices, and compared with that of the anaesthetic drugs. The rationale was that, if suppression of astrocytes was both necessary and sufficient to cause hypnosis in vivo, then inhibition of astrocytic metabolism in slices should mimic the anaesthetic effect. In vivo anaesthetic potency correlated strongly with the magnitude of reduction in SLE frequency in neocortical slices (R(2) 37.7 %, p = 0.002). Conversely, SLE frequency and length were significantly enhanced during exposure to both fluoroacetate (23 and 20 % increase, respectively, p < 0.01) and aminoadipate (12 and 38 % increase, respectively, p < 0.01 and p < 0.05). The capacity of an anaesthetic agent to reduce SLE frequency in the neocortical slice is a good indicator of its in vivo hypnotic potency. The results do not support the hypothesis that astrocytic metabolic inhibition is a mechanism of anaesthetic hypnosis.
Collapse
Affiliation(s)
- Logan J Voss
- Anaesthesia Department, Waikato District Health Board, Pembroke St, Hamilton, 3240 New Zealand
| | - Martyn G Harvey
- Emergency Department, Waikato District Health Board, Hamilton, 3240 New Zealand
| | - James W Sleigh
- University of Auckland Waikato Clinical School, Hamilton, 3240 New Zealand
| |
Collapse
|
31
|
Heuermann RJ, Jaramillo TC, Ying SW, Suter BA, Lyman KA, Han Y, Lewis AS, Hampton TG, Shepherd GMG, Goldstein PA, Chetkovich DM. Reduction of thalamic and cortical Ih by deletion of TRIP8b produces a mouse model of human absence epilepsy. Neurobiol Dis 2016; 85:81-92. [PMID: 26459112 PMCID: PMC4688217 DOI: 10.1016/j.nbd.2015.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/22/2015] [Accepted: 10/08/2015] [Indexed: 12/19/2022] Open
Abstract
Absence seizures occur in several types of human epilepsy and result from widespread, synchronous feedback between the cortex and thalamus that produces brief episodes of loss of consciousness. Genetic rodent models have been invaluable for investigating the pathophysiological basis of these seizures. Here, we identify tetratricopeptide-containing Rab8b-interacting protein (TRIP8b) knockout mice as a new model of absence epilepsy, featuring spontaneous spike-wave discharges on electroencephalography (EEG) that are the electrographic hallmark of absence seizures. TRIP8b is an auxiliary subunit of the hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels, which have previously been implicated in the pathogenesis of absence seizures. In contrast to mice lacking the pore-forming HCN channel subunit HCN2, TRIP8b knockout mice exhibited normal cardiac and motor function and a less severe seizure phenotype. Evaluating the circuit that underlies absence seizures, we found that TRIP8b knockout mice had significantly reduced HCN channel expression and function in thalamic-projecting cortical layer 5b neurons and thalamic relay neurons, but preserved function in inhibitory neurons of the reticular thalamic nucleus. Our results expand the known roles of TRIP8b and provide new insight into the region-specific functions of TRIP8b and HCN channels in constraining cortico-thalamo-cortical excitability.
Collapse
Affiliation(s)
- Robert J Heuermann
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward Building, Room 10-201, Chicago, IL 60611, USA.
| | - Thomas C Jaramillo
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward Building, Room 10-201, Chicago, IL 60611, USA.
| | - Shui-Wang Ying
- C.V. Starr Laboratory for Molecular Neuropharmacology, Department of Anesthesiology, Weill Medical College of Cornell University, 1300 York Ave., Room A-1050, New York, New York 10021, USA.
| | - Benjamin A Suter
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward Building, Room 10-201, Chicago, IL 60611, USA.
| | - Kyle A Lyman
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward Building, Room 10-201, Chicago, IL 60611, USA.
| | - Ye Han
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward Building, Room 10-201, Chicago, IL 60611, USA.
| | - Alan S Lewis
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward Building, Room 10-201, Chicago, IL 60611, USA.
| | - Thomas G Hampton
- Mouse Specifics, Inc., 2 Central Street, Level 1 Suite 1, Framingham, MA 01701, USA.
| | - Gordon M G Shepherd
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward Building, Room 10-201, Chicago, IL 60611, USA.
| | - Peter A Goldstein
- C.V. Starr Laboratory for Molecular Neuropharmacology, Department of Anesthesiology, Weill Medical College of Cornell University, 1300 York Ave., Room A-1050, New York, New York 10021, USA.
| | - Dane M Chetkovich
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward Building, Room 10-201, Chicago, IL 60611, USA; Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward Building, Room 10-201, Chicago, IL 60611, USA.
| |
Collapse
|
32
|
|
33
|
Barttfeld P, Bekinschtein TA, Salles A, Stamatakis EA, Adapa R, Menon DK, Sigman M. Factoring the brain signatures of anesthesia concentration and level of arousal across individuals. Neuroimage Clin 2015; 9:385-91. [PMID: 26509121 PMCID: PMC4588413 DOI: 10.1016/j.nicl.2015.08.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 02/02/2023]
Abstract
Combining resting-state functional magnetic resonance imaging (fMRI) connectivity and behavioral analysis during sedation, we factored out general effects of the anesthetic drug propofol and a specific index of conscious report, participants' level of responsiveness. The factorial analysis shows that increasing concentration of propofol in blood specifically decreases the connectivity strength of fronto-parietal cortical loops. In contrast, loss of responsiveness is indexed by a functional disconnection between the thalamus and the frontal cortex, balanced by an increase in connectivity strength of the thalamus to the occipital and temporal regions of the cortex.
Collapse
Affiliation(s)
- Pablo Barttfeld
- Universidad Torcuato di Tella, Almirante Juan Saenz Valiente 1010, Buenos Aires C1428BIJ, Argentina ; Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France
| | - Tristan A Bekinschtein
- Cognition and Brain Sciences Unit, Medical Research Council, Cambridge CB2 7EF, UK ; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Alejo Salles
- Universidad Torcuato di Tella, Almirante Juan Saenz Valiente 1010, Buenos Aires C1428BIJ, Argentina ; Instituto de Cálculo, FCEN, Universidad de Buenos Aires and CONICET, Argentina
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Ram Adapa
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Mariano Sigman
- Universidad Torcuato di Tella, Almirante Juan Saenz Valiente 1010, Buenos Aires C1428BIJ, Argentina
| |
Collapse
|
34
|
Impact of Hyperpolarization-activated, Cyclic Nucleotide-gated Cation Channel Type 2 for the Xenon-mediated Anesthetic Effect: Evidence from In Vitro and In Vivo Experiments. Anesthesiology 2015; 122:1047-59. [PMID: 25782754 DOI: 10.1097/aln.0000000000000635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The thalamus is thought to be crucially involved in the anesthetic state. Here, we investigated the effect of the inhaled anesthetic xenon on stimulus-evoked thalamocortical network activity and on excitability of thalamocortical neurons. Because hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels are key regulators of neuronal excitability in the thalamus, the effect of xenon on HCN channels was examined. METHODS The effects of xenon on thalamocortical network activity were investigated in acutely prepared brain slices from adult wild-type and HCN2 knockout mice by means of voltage-sensitive dye imaging. The influence of xenon on single-cell excitability in brain slices was investigated using the whole-cell patch-clamp technique. Effects of xenon on HCN channels were verified in human embryonic kidney cells expressing HCN2 channels. RESULTS Xenon concentration-dependently diminished thalamocortical signal propagation. In neurons, xenon reduced HCN channel-mediated Ih current amplitude by 33.4 ± 12.2% (at -133 mV; n = 7; P = 0.041) and caused a left-shift in the voltage of half-maximum activation (V1/2) from -98.8 ± 1.6 to -108.0 ± 4.2 mV (n = 8; P = 0.035). Similar effects were seen in human embryonic kidney cells. The impairment of HCN channel function was negligible when intracellular cyclic adenosine monophosphate level was increased. Using HCN2 mice, we could demonstrate that xenon did neither attenuate in vitro thalamocortical signal propagation nor did it show sedating effects in vivo. CONCLUSIONS Here, we clearly showed that xenon impairs HCN2 channel function, and this impairment is dependent on intracellular cyclic adenosine monophosphate levels. We provide evidence that this effect reduces thalamocortical signal propagation and probably contributes to the hypnotic properties of xenon.
Collapse
|
35
|
Abstract
Abstract
Despite considerable progress in the identification of the molecular targets of general anesthetics, it remains unclear how these drugs affect the brain at the systems level to suppress consciousness. According to recent proposals, anesthetics may achieve this feat by interfering with corticocortical top–down processes, that is, by interrupting information flow from association to early sensory cortices. Such a view entails two immediate questions. First, at which anatomical site, and by virtue of which physiological mechanism, do anesthetics interfere with top–down signals? Second, why does a breakdown of top–down signaling cause unconsciousness? While an answer to the first question can be gleaned from emerging neurophysiological evidence on dendritic signaling in cortical pyramidal neurons, a response to the second is offered by increasingly popular theoretical frameworks that place the element of prediction at the heart of conscious perception.
Collapse
|
36
|
Kojima A, Ito Y, Kitagawa H, Matsuura H. Ionic mechanisms underlying the negative chronotropic action of propofol on sinoatrial node automaticity in guinea pig heart. Br J Pharmacol 2014; 172:799-814. [PMID: 25220338 DOI: 10.1111/bph.12936] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/16/2014] [Accepted: 09/09/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Propofol is a widely used intravenous anaesthetic agent, but has undesirable cardiac side effects, including bradyarrhythmia and its severe form asystole. This study examined the ionic and cellular mechanisms underlying propofol-induced bradycardia. EXPERIMENTAL APPROACH Sinoatrial node cells, isolated from guinea pig hearts, were current- and voltage-clamped to record action potentials and major ionic currents involved in their spontaneous activity, such as the hyperpolarization-activated cation current (If ), T-type and L-type Ca(2+) currents (ICa,T and ICa,L , respectively) and the rapidly and slowly activating delayed rectifier K(+) currents (IKr and IK s , respectively). ECGs were recorded from Langendorff-perfused, isolated guinea pig hearts. KEY RESULTS Propofol (≥5 μM) reversibly decreased the firing rate of spontaneous action potentials and their diastolic depolarization rate. Propofol impaired If activation by shifting the voltage-dependent activation to more hyperpolarized potentials (≥1 μM), slowing the activation kinetics (≥3 μM) and decreasing the maximal conductance (≥10 μM). Propofol decreased ICa,T (≥3 μM) and ICa,L (≥1 μM). Propofol suppressed IKs (≥3 μM), but had a minimal effect on IKr . Furthermore, propofol (≥5 μM) decreased heart rates in Langendorff-perfused hearts. The sinoatrial node cell model reasonably well reproduced the negative chronotropic action of propofol. CONCLUSIONS AND IMPLICATIONS Micromolar concentrations of propofol suppressed the slow diastolic depolarization and firing rate of sinoatrial node action potentials by impairing If activation and reducing ICa,T , ICa,L and IKs . These observations suggest that the direct inhibitory effect of propofol on sinoatrial node automaticity, mediated via multiple channel inhibition, underlies the propofol-induced bradycardia observed in clinical settings.
Collapse
Affiliation(s)
- Akiko Kojima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | | | | |
Collapse
|
37
|
Samios VN, Inoue T. Interleukin-1β and interleukin-6 affect electrophysiological properties of thalamic relay cells. Neurosci Res 2014; 87:16-25. [PMID: 25091392 DOI: 10.1016/j.neures.2014.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 11/28/2022]
Abstract
By acknowledging the relation between brain and body in health and disease, inflammatory processes may play a key role in this reciprocal relation. Pro-inflammatory cytokines such as interleukin-1β (IL-1β) and interleukin-6 (IL-6) are some of the agents involved in those processes. What exactly is their role in the CNS however is not that clear so far. To address the question of how pro-inflammatory cytokines may affect information processing at the cellular and molecular levels, relay neurons in the thalamic dorsal lateral geniculate nucleus in mouse brain slices were exposed to those cytokines and studied with the patch-clamp technique. IL-1β promoted hyperpolarization of the resting membrane potential (Vrest), decrease of input resistance (Rin), decrease of Ih rectification, decrease in action potential (AP) threshold and decrease in the number of APs in low threshold calcium spike (LTS) bursts, while IL-6 promoted decrease of Rin and decrease in the number of APs in LTS bursts. Computer simulations provided candidates for ionic conductance affected by those cytokines. Collectively, these findings demonstrate that IL-1β and IL-6 have modulatory effects on electrophysiological properties of thalamic neurons, implying that the thalamic functions may be affected by systemic disorders that present with high levels of those cytokines.
Collapse
Affiliation(s)
| | - Takafumi Inoue
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.
| |
Collapse
|
38
|
Thalamocortical neurons display suppressed burst-firing due to an enhanced Ih current in a genetic model of absence epilepsy. Pflugers Arch 2014; 467:1367-82. [PMID: 24953239 PMCID: PMC4435665 DOI: 10.1007/s00424-014-1549-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
Abstract
Burst-firing in distinct subsets of thalamic relay (TR) neurons is thought to be a key requirement for the propagation of absence seizures. However, in the well-regarded Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model as yet there has been no link described between burst-firing in TR neurons and spike-and-wave discharges (SWDs). GAERS ventrobasal (VB) neurons are a specific subset of TR neurons that do not normally display burst-firing during absence seizures in the GAERS model, and here, we assessed the underlying relationship of VB burst-firing with Ih and T-type calcium currents between GAERS and non-epileptic control (NEC) animals. In response to 200-ms hyperpolarizing current injections, adult epileptic but not pre-epileptic GAERS VB neurons displayed suppressed burst-firing compared to NEC. In response to longer duration 1,000-ms hyperpolarizing current injections, both pre-epileptic and epileptic GAERS VB neurons required significantly more hyperpolarizing current injection to burst-fire than those of NEC animals. The current density of the Hyperpolarization and Cyclic Nucleotide-activated (HCN) current (Ih) was found to be increased in GAERS VB neurons, and the blockade of Ih relieved the suppressed burst-firing in both pre-epileptic P15-P20 and adult animals. In support, levels of HCN-1 and HCN-3 isoform channel proteins were increased in GAERS VB thalamic tissue. T-type calcium channel whole-cell currents were found to be decreased in P7-P9 GAERS VB neurons, and also noted was a decrease in CaV3.1 mRNA and protein levels in adults. Z944, a potent T-type calcium channel blocker with anti-epileptic properties, completely abolished hyperpolarization-induced VB burst-firing in both NEC and GAERS VB neurons.
Collapse
|
39
|
Ching S, Brown EN. Modeling the dynamical effects of anesthesia on brain circuits. Curr Opin Neurobiol 2014; 25:116-22. [PMID: 24457211 DOI: 10.1016/j.conb.2013.12.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/14/2013] [Accepted: 12/18/2013] [Indexed: 11/28/2022]
Abstract
General anesthesia is a neurophysiological state that consists of unconsciousness, amnesia, analgesia, and immobility along with maintenance of physiological stability. General anesthesia has been used in the United States for more than 167 years. Now, using systems neuroscience paradigms how anesthetics act in the brain and central nervous system to create the states of general anesthesia is being understood. Propofol is one of the most widely used and the most widely studied anesthetics. When administered for general anesthesia or sedation, the electroencephalogram (EEG) under propofol shows highly structured, rhythmic activity that is strongly associated with changes in the patient's level of arousal. These highly structured oscillations lend themselves readily to mathematical descriptions using dynamical systems models. We review recent model descriptions of the commonly observed EEG patterns associated with propofol: paradoxical excitation, strong frontal alpha oscillations, anteriorization and burst suppression. Our analysis suggests that propofol's actions at GABAergic networks in the cortex, thalamus and brainstem induce profound brain dynamics that are one of the likely mechanisms through which this anesthetic induces altered arousal states from sedation to unconsciousness. Because these dynamical effects are readily observed in the EEG, the mathematical descriptions of how propofol's EEG signatures relate to its mechanisms of action in neural circuits provide anesthesiologists with a neurophysiologically based approach to monitoring the brain states of patients receiving anesthesia care.
Collapse
Affiliation(s)
- Shinung Ching
- Department of Electrical & Systems Engineering, Division of Biology & Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Emery N Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, United States; Institute for Medical Engineering and Science, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
40
|
Thalamocortical mechanisms for the anteriorization of α rhythms during propofol-induced unconsciousness. J Neurosci 2013; 33:11070-5. [PMID: 23825412 DOI: 10.1523/jneurosci.5670-12.2013] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As humans are induced into a state of general anesthesia via propofol, the normal alpha rhythm (8-13 Hz) in the occipital cortex disappears and a frontal alpha rhythm emerges. This spatial shift in alpha activity is called anteriorization. We present a thalamocortical model that suggests mechanisms underlying anteriorization. Our model captures the neural dynamics of anteriorization when we adjust it to reflect two key actions of propofol: its potentiation of GABA and its reduction of the hyperpolarization-activated current Ih. The reduction in Ih abolishes the occipital alpha by silencing a specialized subset of thalamocortical cells, thought to generate occipital alpha at depolarized membrane potentials (>-60 mV). The increase in GABA inhibition imposes an alpha timescale on both the cortical and thalamic portions of the frontal component that are reinforced by reciprocal thalamocortical feedback. Anteriorization can thus be understood as a differential effect of anesthetic drugs on thalamic nuclei with disparate spatial projections, i.e.: (1) they disrupt the normal, depolarized alpha in posterior-projecting thalamic nuclei while (2) they engage a new, hyperpolarized alpha in frontothalamic nuclei. Our model generalizes to other anesthetics that include GABA as a target, since the molecular targets of many such anesthetics alter the model dynamics in a manner similar to that of propofol.
Collapse
|
41
|
Tibbs GR, Rowley TJ, Sanford RL, Herold KF, Proekt A, Hemmings HC, Andersen OS, Goldstein PA, Flood PD. HCN1 channels as targets for anesthetic and nonanesthetic propofol analogs in the amelioration of mechanical and thermal hyperalgesia in a mouse model of neuropathic pain. J Pharmacol Exp Ther 2013; 345:363-73. [PMID: 23549867 DOI: 10.1124/jpet.113.203620] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic pain after peripheral nerve injury is associated with afferent hyperexcitability and upregulation of hyperpolarization-activated, cyclic nucleotide-regulated (HCN)-mediated IH pacemaker currents in sensory neurons. HCN channels thus constitute an attractive target for treating chronic pain. HCN channels are ubiquitously expressed; analgesics targeting HCN1-rich cells in the peripheral nervous system must spare the cardiac pacemaker current (carried mostly by HCN2 and HCN4) and the central nervous system (where all four isoforms are expressed). The alkylphenol general anesthetic propofol (2,6-di-iso-propylphenol) selectively inhibits HCN1 channels versus HCN2-HCN4 and exhibits a modest pharmacokinetic preference for the periphery. Consequently, we hypothesized that propofol, and congeners, should be antihyperalgesic. Alkyl-substituted propofol analogs have different rank-order potencies with respect to HCN1 inhibition, GABA(A) receptor (GABA(A)-R) potentiation, and general anesthesia. Thus, 2,6- and 2,4-di-tertbutylphenol (2,6- and 2,4-DTBP, respectively) are more potent HCN1 antagonists than propofol, whereas 2,6- and 2,4-di-sec-butylphenol (2,6- and 2,4-DSBP, respectively) are less potent. In contrast, DSBPs, but not DTBPs, enhance GABA(A)-R function and are general anesthetics. 2,6-DTBP retained propofol's selectivity for HCN1 over HCN2-HCN4. In a peripheral nerve ligation model of neuropathic pain, 2,6-DTBP and subhypnotic propofol are antihyperalgesic. The findings are consistent with these alkylphenols exerting analgesia via non-GABA(A)-R targets and suggest that antagonism of central HCN1 channels may be of limited importance to general anesthesia. Alkylphenols are hydrophobic, and thus potential modifiers of lipid bilayers, but their effects on HCN channels are due to direct drug-channel interactions because they have little bilayer-modifying effect at therapeutic concentrations. The alkylphenol antihyperalgesic target may be HCN1 channels in the damaged peripheral nervous system.
Collapse
Affiliation(s)
- Gareth R Tibbs
- Department of Anesthesiology, College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci U S A 2013; 110:E1142-51. [PMID: 23487781 DOI: 10.1073/pnas.1221180110] [Citation(s) in RCA: 493] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Unconsciousness is a fundamental component of general anesthesia (GA), but anesthesiologists have no reliable ways to be certain that a patient is unconscious. To develop EEG signatures that track loss and recovery of consciousness under GA, we recorded high-density EEGs in humans during gradual induction of and emergence from unconsciousness with propofol. The subjects executed an auditory task at 4-s intervals consisting of interleaved verbal and click stimuli to identify loss and recovery of consciousness. During induction, subjects lost responsiveness to the less salient clicks before losing responsiveness to the more salient verbal stimuli; during emergence they recovered responsiveness to the verbal stimuli before recovering responsiveness to the clicks. The median frequency and bandwidth of the frontal EEG power tracked the probability of response to the verbal stimuli during the transitions in consciousness. Loss of consciousness was marked simultaneously by an increase in low-frequency EEG power (<1 Hz), the loss of spatially coherent occipital alpha oscillations (8-12 Hz), and the appearance of spatially coherent frontal alpha oscillations. These dynamics reversed with recovery of consciousness. The low-frequency phase modulated alpha amplitude in two distinct patterns. During profound unconsciousness, alpha amplitudes were maximal at low-frequency peaks, whereas during the transition into and out of unconsciousness, alpha amplitudes were maximal at low-frequency nadirs. This latter phase-amplitude relationship predicted recovery of consciousness. Our results provide insights into the mechanisms of propofol-induced unconsciousness, establish EEG signatures of this brain state that track transitions in consciousness precisely, and suggest strategies for monitoring the brain activity of patients receiving GA.
Collapse
|
43
|
Ying SW, Kanda VA, Hu Z, Purtell K, King EC, Abbott GW, Goldstein PA. Targeted deletion of Kcne2 impairs HCN channel function in mouse thalamocortical circuits. PLoS One 2012; 7:e42756. [PMID: 22880098 PMCID: PMC3411840 DOI: 10.1371/journal.pone.0042756] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/12/2012] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels generate the pacemaking current, I(h), which regulates neuronal excitability, burst firing activity, rhythmogenesis, and synaptic integration. The physiological consequence of HCN activation depends on regulation of channel gating by endogenous modulators and stabilization of the channel complex formed by principal and ancillary subunits. KCNE2 is a voltage-gated potassium channel ancillary subunit that also regulates heterologously expressed HCN channels; whether KCNE2 regulates neuronal HCN channel function is unknown. METHODOLOGY/PRINCIPAL FINDINGS We investigated the effects of Kcne2 gene deletion on I(h) properties and excitability in ventrobasal (VB) and cortical layer 6 pyramidal neurons using brain slices prepared from Kcne2(+/+) and Kcne2(-/-) mice. Kcne2 deletion shifted the voltage-dependence of I(h) activation to more hyperpolarized potentials, slowed gating kinetics, and decreased I(h) density. Kcne2 deletion was associated with a reduction in whole-brain expression of both HCN1 and HCN2 (but not HCN4), although co-immunoprecipitation from whole-brain lysates failed to detect interaction of KCNE2 with HCN1 or 2. Kcne2 deletion also increased input resistance and temporal summation of subthreshold voltage responses; this increased intrinsic excitability enhanced burst firing in response to 4-aminopyridine. Burst duration increased in corticothalamic, but not thalamocortical, neurons, suggesting enhanced cortical excitatory input to the thalamus; such augmented excitability did not result from changes in glutamate release machinery since miniature EPSC frequency was unaltered in Kcne2(-/-) neurons. CONCLUSIONS/SIGNIFICANCE Loss of KCNE2 leads to downregulation of HCN channel function associated with increased excitability in neurons in the cortico-thalamo-cortical loop. Such findings further our understanding of the normal physiology of brain circuitry critically involved in cognition and have implications for our understanding of various disorders of consciousness.
Collapse
Affiliation(s)
- Shui-Wang Ying
- Department of Anesthesiology, Weill Cornell Medical College, New York, New York, United States of America
| | - Vikram A. Kanda
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, United States of America
| | - Zhaoyang Hu
- Departments of Pharmacology, and Physiology and Biophysics, University of California Irvine, Irvine, California, United States of America
| | - Kerry Purtell
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, United States of America
| | - Elizabeth C. King
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, United States of America
| | - Geoffrey W. Abbott
- Departments of Pharmacology, and Physiology and Biophysics, University of California Irvine, Irvine, California, United States of America
| | - Peter A. Goldstein
- Department of Anesthesiology, Weill Cornell Medical College, New York, New York, United States of America
| |
Collapse
|
44
|
Zhou C, Liu J, Chen XD. General anesthesia mediated by effects on ion channels. World J Crit Care Med 2012; 1:80-93. [PMID: 24701405 PMCID: PMC3953864 DOI: 10.5492/wjccm.v1.i3.80] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 10/24/2011] [Accepted: 05/25/2012] [Indexed: 02/06/2023] Open
Abstract
Although it has been more than 165 years since the first introduction of modern anesthesia to the clinic, there is surprisingly little understanding about the exact mechanisms by which general anesthetics induce unconsciousness. As a result, we do not know how general anesthetics produce anesthesia at different levels. The main handicap to understanding the mechanisms of general anesthesia is the diversity of chemically unrelated compounds including diethyl ether and halogenated hydrocarbons, gases nitrous oxide, ketamine, propofol, benzodiazepines and etomidate, as well as alcohols and barbiturates. Does this imply that general anesthesia is caused by many different mechanisms Until now, many receptors, molecular targets and neuronal transmission pathways have been shown to contribute to mechanisms of general anesthesia. Among these molecular targets, ion channels are the most likely candidates for general anesthesia, in particular γ-aminobutyric acid type A, potassium and sodium channels, as well as ion channels mediated by various neuronal transmitters like acetylcholine, amino acids amino-3-hydroxy-5-methyl-4-isoxazolpropionic acid or N-methyl-D-aspartate. In addition, recent studies have demonstrated the involvement in general anesthesia of other ion channels with distinct gating properties such as hyperpolarization-activated, cyclic- nucleotide-gated channels. The main aim of the present review is to summarize some aspects of current knowledge of the effects of general anesthetics on various ion channels.
Collapse
Affiliation(s)
- Cheng Zhou
- Cheng Zhou, Jin Liu, Xiang-Dong Chen, Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jin Liu
- Cheng Zhou, Jin Liu, Xiang-Dong Chen, Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xiang-Dong Chen
- Cheng Zhou, Jin Liu, Xiang-Dong Chen, Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
45
|
|
46
|
Ying SW, Tibbs GR, Picollo A, Abbas SY, Sanford RL, Accardi A, Hofmann F, Ludwig A, Goldstein PA. PIP2-mediated HCN3 channel gating is crucial for rhythmic burst firing in thalamic intergeniculate leaflet neurons. J Neurosci 2011; 31:10412-23. [PMID: 21753018 PMCID: PMC6623048 DOI: 10.1523/jneurosci.0021-11.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/21/2011] [Accepted: 05/30/2011] [Indexed: 01/26/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels generate a pacemaking current, I(h), which regulates neuronal excitability and oscillatory activity in the brain. Although all four HCN isoforms are expressed in the brain, the functional contribution of HCN3 is unknown. Using immunohistochemistry, confocal microscopy, and whole-cell patch-clamp recording techniques, we investigated HCN3 function in thalamic intergeniculate leaflet (IGL) neurons, as HCN3 is reportedly preferentially expressed in these cells. We observed that I(h) recorded from IGL, but not ventral geniculate nucleus, neurons in HCN2(+/+) mice and rats activated slowly and were cAMP insensitive, which are hallmarks of HCN3 channels. We also observed strong immunolabeling for HCN3, with no labeling for HCN1 and HCN4, and only very weak labeling for HCN2. Deletion of HCN2 did not alter I(h) characteristics in mouse IGL neurons. These data together indicate that the HCN3 channel isoform generated I(h) in IGL neurons. Intracellular phosphatidylinositol-4,5-bisphosphate (PIP(2)) shifted I(h) activation to more depolarized potentials and accelerated activation kinetics. Upregulation of HCN3 function by PIP(2) augmented low-threshold burst firing and spontaneous oscillations; conversely, depletion of PIP(2) or pharmacologic block of I(h) resulted in a profound inhibition of excitability. The results indicate that functional expression of HCN3 channels in IGL neurons is crucial for intrinsic excitability and rhythmic burst firing, and PIP(2) serves as a powerful modulator of I(h)-dependent properties via an effect on HCN3 channel gating. Since the IGL is a major input to the suprachiasmatic nucleus, regulation of pacemaking function by PIP(2) in the IGL may influence sleep and circadian rhythms.
Collapse
Affiliation(s)
- Shui-Wang Ying
- Department of Anesthesiology, Weill Cornell Medical College, New York, New York 10065, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Klöckner U, Rueckschloss U, Grossmann C, Ebelt H, Müller-Werdan U, Loppnow H, Werdan K, Gekle M. Differential reduction of HCN channel activity by various types of lipopolysaccharide. J Mol Cell Cardiol 2011; 51:226-35. [PMID: 21609720 DOI: 10.1016/j.yjmcc.2011.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 01/31/2023]
Abstract
Recently it was shown that lipopolysaccharide (LPS) impairs the pacemaker current in human atrial myocytes. It was speculated that reduced heart rate variability (HRV), typical of patients with severe sepsis, may partially be explained by this impairment. We evaluated the effect of various types of LPS on the activity of human hyperpolarization-activated cyclic nucleotide-gated channel 2 (hHCN2) expressed in HEK293 cells, and on pacemaker channels in native murine sino-atrial node (SAN) cells, in order to determine the structure of LPS necessary to modulate pacemaker channel function. Application of LPS caused a robust inhibition of hHCN2-mediated current (I(hHCN2)) owing to a negative shift of the voltage dependence of current activation and to a reduced maximal conductance. In addition, kinetics of channel gating were modulated by LPS. Pro-inflammatory LPS-types lacking the O-chain did not reduce I(hHCN2), whereas pro-inflammatory LPS-types containing the O-chain reduced I(hHCN2). On the other hand, a detoxified LPS without inflammatory activity, but containing the O-chain reduced I(hHCN2). Similar observations were made in HEK293 cells expressing hHCN4 and in murine SAN cells. This mechanistic analysis showed the novel finding that the O-chain of LPS is required for reduction of HCN channel activity. In the clinical situation the observed modulation of HCN channels may slow down diastolic depolarization of pacemaker cells and, hence, influence heart rate variability and heart rate.
Collapse
Affiliation(s)
- Udo Klöckner
- Julius-Bernstein-Institut für Physiologie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Yue L, Xie A, Bruzik KS, Frølund B, Qian H, Pepperberg DR. Potentiating action of propofol at GABAA receptors of retinal bipolar cells. Invest Ophthalmol Vis Sci 2011; 52:2497-509. [PMID: 21071744 DOI: 10.1167/iovs.10-5991] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Propofol (2,6-diisopropyl phenol), a widely used systemic anesthetic, is known to potentiate GABA(A) receptor activity in a number of CNS neurons and to produce changes in electroretinographically recorded responses of the retina. However, little is known about propofol's effects on specific retinal neurons. The authors investigated the action of propofol on GABA-elicited membrane current responses of retinal bipolar cells, which have both GABA(A) and GABA(C) receptors. METHODS Single, enzymatically dissociated bipolar cells obtained from rat retina were treated with propofol delivered by brief application in combination with GABA or other pharmacologic agents or as a component of the superfusing medium. RESULTS When applied with GABA at subsaturating concentrations and with TPMPA (a known GABA(C) antagonist), propofol markedly increased the peak amplitude and altered the kinetics of the response. Propofol increased the response elicited by THIP (a GABA(A)-selective agonist), and the response was reduced by bicuculline (a GABA(A) antagonist). The response to 5-methyl I4AA, a GABA(C)-selective agonist, was not enhanced by propofol. Serial brief applications of (GABA + TPMPA + propofol) led to a progressive increase in peak response amplitude and, at higher propofol concentrations, additional changes that included a prolonged time course of response recovery. Pre-exposure of the cell to perfusing propofol typically enhanced the rate of development of potentiation produced by (GABA + TPMPA + propofol) applications. CONCLUSIONS Propofol exerts a marked and selective potentiation on GABA(A) receptors of retinal bipolar cells. The data encourage the use of propofol in future studies of bipolar cell function.
Collapse
Affiliation(s)
- Lan Yue
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
49
|
Lewis AS, Chetkovich DM. HCN channels in behavior and neurological disease: too hyper or not active enough? Mol Cell Neurosci 2010; 46:357-67. [PMID: 21130878 DOI: 10.1016/j.mcn.2010.11.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 11/11/2010] [Indexed: 02/08/2023] Open
Abstract
The roles of cells within the nervous system are based on their properties of excitability, which are in part governed by voltage-gated ion channels. HCN channels underlie the hyperpolarization-activated current, I(h), an important regulator of excitability and rhythmicity through control of basic membrane properties. I(h) is present in multiple neuronal types and regions of the central nervous system, and changes in I(h) alter cellular input-output properties and neuronal circuitry important for behavior such as learning and memory. Furthermore, the pathophysiology of neurological diseases of both the central and peripheral nervous system involves defects in excitability, rhythmicity, and signaling, and animal models of many of these disorders have implicated changes in HCN channels and I(h) as critical for pathogenesis. In this review, we focus on recent research elucidating the role of HCN channels and I(h) in behavior and disease. These studies have utilized knockout mice as well as animal models of disease to examine how I(h) may be important in regulating learning and memory, sleep, and consciousness, as well as how misregulation of I(h) may contribute to epilepsy, chronic pain, and other neurological disorders. This review will help guide future studies aimed at further understanding the function of this unique conductance in both health and disease of the mammalian brain.
Collapse
Affiliation(s)
- Alan S Lewis
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | |
Collapse
|
50
|
Finol-Urdaneta RK, McArthur JR, Juranka PF, French RJ, Morris CE. Modulation of KvAP unitary conductance and gating by 1-alkanols and other surface active agents. Biophys J 2010; 98:762-72. [PMID: 20197029 DOI: 10.1016/j.bpj.2009.10.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 10/23/2009] [Accepted: 10/26/2009] [Indexed: 11/18/2022] Open
Abstract
The actions of alcohols and anesthetics on ion channels are poorly understood. Controversy continues about whether bilayer restructuring is relevant to the modulatory effects of these surface active agents (SAAs). Some voltage-gated K channels (Kv), but not KvAP, have putative low affinity alcohol-binding sites, and because KvAP structures have been determined in bilayers, KvAP could offer insights into the contribution of bilayer mechanics to SAA actions. We monitored KvAP unitary conductance and macroscopic activation and inactivation kinetics in PE:PG/decane bilayers with and without exposure to classic SAAs (short-chain 1-alkanols, cholesterol, and selected anesthetics: halothane, isoflurane, chloroform). At levels that did not measurably alter membrane specific capacitance, alkanols caused functional changes in KvAP behavior including lowered unitary conductance, modified kinetics, and shifted voltage dependence for activation. A simple explanation is that the site of SAA action on KvAP is its entire lateral interface with the PE:PG/decane bilayer, with SAA-induced changes in surface tension and bilayer packing order combining to modulate the shape and stability of various conformations. The KvAP structural adjustment to diverse bilayer pressure profiles has implications for understanding desirable and undesirable actions of SAA-like drugs and, broadly, predicts that channel gating, conductance and pharmacology may differ when membrane packing order differs, as in raft versus nonraft domains.
Collapse
Affiliation(s)
- Rocio K Finol-Urdaneta
- Hotchkiss Brain Institute and Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|