1
|
Domin H, Śmiałowska M. The diverse role of corticotropin-releasing factor (CRF) and its CRF1 and CRF2 receptors under pathophysiological conditions: Insights into stress/anxiety, depression, and brain injury processes. Neurosci Biobehav Rev 2024; 163:105748. [PMID: 38857667 DOI: 10.1016/j.neubiorev.2024.105748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Corticotropin-releasing factor (CRF, corticoliberin) is a neuromodulatory peptide activating the hypothalamic-pituitary-adrenal (HPA) axis, widely distributed in the central nervous system (CNS) in mammals. In addition to its neuroendocrine effects, CRF is essential in regulating many functions under physiological and pathophysiological conditions through CRF1 and CRF2 receptors (CRF1R, CRF2R). This review aims to present selected examples of the diverse and sometimes opposite effects of CRF and its receptor ligands in various pathophysiological states, including stress/anxiety, depression, and processes associated with brain injury. It seems interesting to draw particular attention to the fact that CRF and its receptor ligands exert different effects depending on the brain structures or subregions, likely stemming from the varied distribution of CRFRs in these regions and interactions with other neurotransmitters. CRFR-mediated region-specific effects might also be related to brain site-specific ligand binding and the associated activated signaling pathways. Intriguingly, different types of CRF molecules can also influence the diverse actions of CRF in the CNS.
Collapse
Affiliation(s)
- Helena Domin
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, Kraków 31-343, Poland.
| | - Maria Śmiałowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, Kraków 31-343, Poland
| |
Collapse
|
2
|
Gupta R, Advani D, Yadav D, Ambasta RK, Kumar P. Dissecting the Relationship Between Neuropsychiatric and Neurodegenerative Disorders. Mol Neurobiol 2023; 60:6476-6529. [PMID: 37458987 DOI: 10.1007/s12035-023-03502-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/11/2023] [Indexed: 09/28/2023]
Abstract
Neurodegenerative diseases (NDDs) and neuropsychiatric disorders (NPDs) are two common causes of death in elderly people, which includes progressive neuronal cell death and behavioral changes. NDDs include Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and motor neuron disease, characterized by cognitive defects and memory impairment, whereas NPDs include depression, seizures, migraine headaches, eating disorders, addictions, palsies, major depressive disorders, anxiety, and schizophrenia, characterized by behavioral changes. Mounting evidence demonstrated that NDDs and NPDs share an overlapping mechanism, which includes post-translational modifications, the microbiota-gut-brain axis, and signaling events. Mounting evidence demonstrated that various drug molecules, namely, natural compounds, repurposed drugs, multitarget directed ligands, and RNAs, have been potentially implemented as therapeutic agents against NDDs and NPDs. Herein, we highlighted the overlapping mechanism, the role of anxiety/stress-releasing factors, cytosol-to-nucleus signaling, and the microbiota-gut-brain axis in the pathophysiology of NDDs and NPDs. We summarize the therapeutic application of natural compounds, repurposed drugs, and multitarget-directed ligands as therapeutic agents. Lastly, we briefly described the application of RNA interferences as therapeutic agents in the pathogenesis of NDDs and NPDs. Neurodegenerative diseases and neuropsychiatric diseases both share a common signaling molecule and molecular phenomenon, namely, pro-inflammatory cytokines, γCaMKII and MAPK/ERK, chemokine receptors, BBB permeability, and the gut-microbiota-brain axis. Studies have demonstrated that any alterations in the signaling mentioned above molecules and molecular phenomena lead to the pathophysiology of neurodegenerative diseases, namely, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, and neuropsychiatric disorders, such as bipolar disorder, schizophrenia, depression, anxiety, autism spectrum disorder, and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Divya Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India.
| |
Collapse
|
3
|
Blockade of Cholecystokinin Type 2 Receptors Prevents the Onset of Vincristine-Induced Neuropathy in Mice. Pharmaceutics 2022; 14:pharmaceutics14122823. [PMID: 36559317 PMCID: PMC9788598 DOI: 10.3390/pharmaceutics14122823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Vincristine (VCR) is responsible for the onset of the VCR-induced peripheral neuropathy (VIPN), associated with neuropathic pain. Several reports have strongly linked the cholecystokinin type 2 receptor (CCK2R) to nociceptive modulation. Thus, our aim was to evaluate the effect of CCK2R blockade on the onset of VIPN, as well as its interaction on VCR anticancer efficacy. VCR was administrated in mice for 8 days (100 µg/kg/d, i.p.). Transcriptomic analysis of the dorsal root ganglia (DRG) was performed at day 7 in VCR and control mice. Proglumide (30 mg/kg/d), a CCK1R and CCK2R antagonist, and Ly225910 (1 mg/kg/d), a selective CCK2R antagonist, were administrated one day before and during VCR treatment. Tactile sensitivity was assessed during treatments. Immunofluorescence and morphological analyses were performed on the skin, DRG and sciatic nerve at day 7. The cytotoxicity of VCR in combination with proglumide/Ly225910 was evaluated in human cancer cell lines. Cck2r was highly upregulated in the DRG of VCR mice. Proglumide accelerated the recovery of normal sensitivity, while Ly225910 totally prevented the onset of allodynia and nerve injuries induced by VCR. Proglumide or Ly225910 in combination with VCR did not affect the cytotoxicity of VCR. Targeting CCK2R could therefore be an effective strategy to prevent the onset of VIPN.
Collapse
|
4
|
García-Revilla J, Herrera AJ, de Pablos RM, Venero JL. Inflammatory Animal Models of Parkinson’s Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S165-S182. [PMID: 35662128 PMCID: PMC9535574 DOI: 10.3233/jpd-213138] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Accumulating evidence suggests that microglia and peripheral immune cells may play determinant roles in the pathogenesis of Parkinson’s disease (PD). Consequently, there is a need to take advantage of immune-related models of PD to study the potential contribution of microglia and peripheral immune cells to the degeneration of the nigrostriatal system and help develop potential therapies for PD. In this review, we have summarised the main PD immune models. From a historical perspective, we highlight first the main features of intranigral injections of different pro-inflammogens, including lipopolysaccharide (LPS), thrombin, neuromelanin, etc. The use of adenoviral vectors to promote microglia-specific overexpression of different molecules in the ventral mesencephalon, including α-synuclein, IL-1β, and TNF, are also presented and briefly discussed. Finally, we summarise different models associated with peripheral inflammation whose contribution to the pathogenesis of neurodegenerative diseases is now an outstanding question. Illustrative examples included systemic LPS administration and dextran sulfate sodium-induced colitis in rodents.
Collapse
Affiliation(s)
- Juan García-Revilla
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Antonio J. Herrera
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Rocío M. de Pablos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luis Venero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| |
Collapse
|
5
|
Sharma A, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Sahib S, Tian ZR, Buzoianu AD, Patnaik R, Wiklund L, Sharma HS. Mild traumatic brain injury exacerbates Parkinson's disease induced hemeoxygenase-2 expression and brain pathology: Neuroprotective effects of co-administration of TiO 2 nanowired mesenchymal stem cells and cerebrolysin. PROGRESS IN BRAIN RESEARCH 2020; 258:157-231. [PMID: 33223035 DOI: 10.1016/bs.pbr.2020.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mild traumatic brain injury (mTBI) is one of the leading predisposing factors in the development of Parkinson's disease (PD). Mild or moderate TBI induces rapid production of tau protein and alpha synuclein (ASNC) in the cerebrospinal fluid (CSF) and in several brain areas. Enhanced tau-phosphorylation and ASNC alters the molecular machinery of the brain leading to PD pathology. Recent evidences show upregulation of constitutive isoform of hemeoxygenase (HO-2) in PD patients that correlates well with the brain pathology. mTBI alone induces profound upregulation of HO-2 immunoreactivity. Thus, it would be interesting to explore whether mTBI exacerbates PD pathology in relation to tau, ASNC and HO-2 expression. In addition, whether neurotrophic factors and stem cells known to reduce brain pathology in TBI could induce neuroprotection in PD following mTBI. In this review role of mesenchymal stem cells (MSCs) and cerebrolysin (CBL), a well-balanced composition of several neurotrophic factors and active peptide fragments using nanowired delivery in PD following mTBI is discussed based on our own investigation. Our results show that mTBI induces concussion exacerbates PD pathology and nanowired delivery of MSCs and CBL induces superior neuroprotection. This could be due to reduction in tau, ASNC and HO-2 expression in PD following mTBI, not reported earlier. The functional significance of our findings in relation to clinical strategies is discussed.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
Baskin J, Jeon JE, Lewis SJG. Nanoparticles for drug delivery in Parkinson's disease. J Neurol 2020; 268:1981-1994. [PMID: 33141248 DOI: 10.1007/s00415-020-10291-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022]
Abstract
Although effective symptomatic treatments for Parkinson's disease (PD) have been available for some time, efficient and well-controlled drug delivery to the brain has proven to be challenging. The emergence of nanotechnology has created new opportunities not only for improving the pharmacokinetics of conventional therapies but also for developing novel treatment approaches and disease modifying therapies. Several exciting strategies including drug carrier nanoparticles targeting specific intracellular pathways and structural reconformation of tangled proteins as well as introducing reprogramming genes have already shown promise and are likely to deliver more tailored approaches to the treatment of PD in the future. This paper reviews the role of nanoparticles in PD including a discussion of both their composition and functional capacity as well as their potential to deliver better therapeutic agents.
Collapse
Affiliation(s)
- Jonathan Baskin
- Parkinson's Disease Research Clinic, Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia.
| | - June Evelyn Jeon
- Parkinson's Disease Research Clinic, Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Simon J G Lewis
- Parkinson's Disease Research Clinic, Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
7
|
Tran NM, Shekhar K, Whitney IE, Jacobi A, Benhar I, Hong G, Yan W, Adiconis X, Arnold ME, Lee JM, Levin JZ, Lin D, Wang C, Lieber CM, Regev A, He Z, Sanes JR. Single-Cell Profiles of Retinal Ganglion Cells Differing in Resilience to Injury Reveal Neuroprotective Genes. Neuron 2019; 104:1039-1055.e12. [PMID: 31784286 PMCID: PMC6923571 DOI: 10.1016/j.neuron.2019.11.006] [Citation(s) in RCA: 346] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/25/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023]
Abstract
Neuronal types in the central nervous system differ dramatically in their resilience to injury or other insults. Here we studied the selective resilience of mouse retinal ganglion cells (RGCs) following optic nerve crush (ONC), which severs their axons and leads to death of ∼80% of RGCs within 2 weeks. To identify expression programs associated with differential resilience, we first used single-cell RNA-seq (scRNA-seq) to generate a comprehensive molecular atlas of 46 RGC types in adult retina. We then tracked their survival after ONC; characterized transcriptomic, physiological, and morphological changes that preceded degeneration; and identified genes selectively expressed by each type. Finally, using loss- and gain-of-function assays in vivo, we showed that manipulating some of these genes improved neuronal survival and axon regeneration following ONC. This study provides a systematic framework for parsing type-specific responses to injury and demonstrates that differential gene expression can be used to reveal molecular targets for intervention.
Collapse
Affiliation(s)
- Nicholas M Tran
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Karthik Shekhar
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Irene E Whitney
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Anne Jacobi
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Inbal Benhar
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Guosong Hong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Department of Material Science and Engineering and Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Wenjun Yan
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Xian Adiconis
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - McKinzie E Arnold
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jung Min Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Joshua Z Levin
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Dingchang Lin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Chen Wang
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Charles M Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Aviv Regev
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA and Department of Biology and Koch Institute, MIT, Cambridge, MA 02139, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
8
|
Samal J, Rebelo AL, Pandit A. A window into the brain: Tools to assess pre-clinical efficacy of biomaterials-based therapies on central nervous system disorders. Adv Drug Deliv Rev 2019; 148:68-145. [PMID: 30710594 DOI: 10.1016/j.addr.2019.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/04/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
Abstract
Therapeutic conveyance into the brain is a cardinal requirement for treatment of diverse central nervous system (CNS) disorders and associated pathophysiology. Effectual shielding of the brain by the blood-brain barrier (BBB) sieves out major proportion of therapeutics with the exception of small lipophilic molecules. Various nano-delivery systems (NDS) provide an effective solution around this obstacle owing to their small size and targeting properties. To date, these systems have been used for several pre-clinical disease models including glioma, neurodegenerative diseases and psychotic disorders. An efficacy screen for these systems involves a test battery designed to probe into the multiple facets of therapeutic delivery. Despite their wide application in redressing various disease targets, the efficacy evaluation strategies for all can be broadly grouped into four modalities, namely: histological, bio-imaging, molecular and behavioural. This review presents a comprehensive insight into all of these modalities along with their strengths and weaknesses as well as perspectives on an ideal design for a panel of tests to screen brain nano-delivery systems.
Collapse
Affiliation(s)
- Juhi Samal
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Ana Lucia Rebelo
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
9
|
Newland B, Dunnett SB, Dowd E. Targeting delivery in Parkinson's disease. Drug Discov Today 2016; 21:1313-20. [DOI: 10.1016/j.drudis.2016.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/23/2016] [Accepted: 06/06/2016] [Indexed: 01/24/2023]
|
10
|
Huang HY, Chiu TL, Chang HF, Hsu HR, Pang CY, Liew HK, Wang MJ. Epigenetic regulation contributes to urocortin-enhanced midbrain dopaminergic neuron differentiation. Stem Cells 2016; 33:1601-17. [PMID: 25641682 DOI: 10.1002/stem.1949] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 12/18/2014] [Indexed: 01/08/2023]
Abstract
The production of midbrain dopaminergic (mDA) neurons requires precise extrinsic inductive signals and intrinsic transcriptional cascade at a specific time point in development. Urocortin (UCN) is a peptide of the corticotropin-releasing hormone family that mediates various responses to stress. UCN was first cloned from adult rat midbrain. However, the contribution of UCN to the development of mDA neurons is poorly understood. Here, we show that UCN is endogenously expressed in the developing ventral midbrain (VM) and its receptors are exhibited in Nurr1(+) postmitotic mDA precursors and TH(+) neurons, suggesting possible roles in regulating their terminal differentiation. UCN treatment increased DA cell numbers in rat VM precursor cultures by promoting the conversion of Nurr1(+) precursors into DA neurons. Furthermore, neutralization of secreted UCN with anti-UCN antibody resulted in a reduction in the number of DA neurons. UCN induced an abundance of acetylated histone H3 and enhanced late DA regulator Nurr1, Foxa2, and Pitx3 expressions. Using pharmacological and RNA interference approaches, we further demonstrated that histone deacetylase (HDAC) inhibition and late transcriptional factors upregulation contribute to UCN-mediated DA neuron differentiation. Chromatin immunoprecipitation analyses revealed that UCN promoted histone acetylation of chromatin surrounding the TH promoter by directly inhibiting HDAC and releasing of methyl CpG binding protein 2-CoREST-HDAC1 repressor complex from the promoter, ultimately leading to an increase in Nurr1/coactivators-mediated transcription of TH gene. Moreover, UCN treatment in vivo also resulted in increased DA neuron differentiation. These findings suggest that UCN might contribute to regulate late mDA neuron differentiation during VM development.
Collapse
Affiliation(s)
- Hsin-Yi Huang
- Department of Medical Research, Neuro-Medical Scientific Center, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | | | | | | | | | | | | |
Collapse
|
11
|
Liu C, Liu X, Song F, Li J, Zhang X, Yang J. The effects of neuropeptide urocortin 2 on the spontaneous discharge and glutamatergic neurotransmission of striatum neurons. Neuropeptides 2015; 50:17-21. [PMID: 25837973 DOI: 10.1016/j.npep.2015.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/13/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
Abstract
The primary cause of the neurodegenerative process that underlies Parkinson's disease (PD) is still unknown. Different mechanisms probably contribute to triggering neuronal death in the nigro-striatum pathway. The neuropeptide urocortin 2 (UCN2) plays an important role in the regulation of striatum (STR) neurons projection. We investigated the effects of UCN2 on spontaneous discharge and glutamatergic responses in STR for a better understanding of the pathogenesis of PD. The experiment used microiontophoresis method to observe the effects of UCN2 on STR neurons' firing rates in vivo. Corticotrophin releasing factor receptor 2 (CRF-R2) selective inhibitor, astressin-2B (AST-2B), was administered simultaneously with UCN2 to investigate the effects of UCN2 on CRF-R2. Moreover, we further explored the effects of UCN2 on glutamatergic responses in STR neurons. We found that UCN2 could significantly inhibit the firing rate of 84% of the tested STR neurons, and its inhibitory effect followed a concentration-dependent manner. During the microiontophoresis of GLU, the excitatory firing of glutamatergic neurons could be attenuated by the addition of UCN2, but enhanced by the application of AST-2B. The results suggest that UCN2 could regulate the effects of STR neurotransmitters (GLU) via CRF-R2 and may thereby contribute to the improvement of PD.
Collapse
Affiliation(s)
- Chunna Liu
- Department of Pharmacology, Liaoning Medical University, JinZhou 121001, China.
| | - Xinyu Liu
- The First Affiliated Hospital of Liaoning Medical University, JinZhou 121001, China
| | - Feiran Song
- The China Medical University, ShenYang 110001, China
| | - Jian Li
- The First Affiliated Hospital of Liaoning Medical University, JinZhou 121001, China
| | - Xia Zhang
- Department of Pharmacology, Liaoning Medical University, JinZhou 121001, China
| | - Jing Yang
- Department of Pharmacology, Liaoning Medical University, JinZhou 121001, China
| |
Collapse
|
12
|
Lawrence K, Jackson T, Jamieson D, Stevens A, Owens G, Sayan B, Locke I, Townsend P. Urocortin – From Parkinson's disease to the skeleton. Int J Biochem Cell Biol 2015; 60:130-8. [DOI: 10.1016/j.biocel.2014.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/12/2014] [Accepted: 12/13/2014] [Indexed: 01/04/2023]
|
13
|
Fu SP, Wang JF, Xue WJ, Liu HM, Liu BR, Zeng YL, Li SN, Huang BX, Lv QK, Wang W, Liu JX. Anti-inflammatory effects of BHBA in both in vivo and in vitro Parkinson's disease models are mediated by GPR109A-dependent mechanisms. J Neuroinflammation 2015; 12:9. [PMID: 25595674 PMCID: PMC4310035 DOI: 10.1186/s12974-014-0230-3] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 12/21/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Accumulating evidence suggests that neuroinflammation plays an important role in the progression of Parkinson's disease (PD). Excessively activated microglia produce several pro-inflammatory enzymes and pro-inflammatory cytokines, leading to damage to surrounding neurons and eventually inducing neurodegeneration. Therefore, the inhibition of microglial overactivation may be a potential therapeutic strategy to prevent the further progression of PD. β-Hydroxybutyric acid (BHBA) has been shown to suppress lipopolysaccharide (LPS)-induced inflammation in BV-2 cells and to protect dopaminergic neurons in previous studies, but the underlying mechanisms remain unclear. Thus, in this study, we further investigated this mechanism in LPS-induced in vivo and in vitro PD models. METHODS For the in vitro experiments, primary mesencephalic neuron-glia cultures were pretreated with BHBA and stimulated with LPS. [(3)H]dopamine (DA) uptake, tyrosine hydroxylase-immunoreactive (TH-ir) neurons and morphological analysis were evaluated and analyzed in primary mesencephalic neuron-glia cultures. In vivo, microglial activation and the injury of dopaminergic neurons were induced by LPS intranigral injection, and the effects of BHBA treatment on microglial activation and the survival ratio and function of dopaminergic neurons were investigated. Four our in vitro mechanistic experiment, primary microglial cells were pretreated with BHBA and stimulated with LPS; the cells were then assessed for the responses of pro-inflammatory enzymes and pro-inflammatory cytokines, and the NF-κB signaling pathway was evaluated and analyzed. RESULTS We found that BHBA concentration-dependently attenuated the LPS-induced decrease in [(3)H]DA uptake and loss of TH-ir neurons in the primary mesencephalic neuron/glia mixed culture. BHBA treatment significantly improved the motor dysfunction of the PD model rats induced by intranigral injection of LPS, and this beneficial effect of BHBA was attributed to the inhibition of microglial overactivation and the protection of dopaminergic neurons in the substantia nigra (SN). Our in vitro mechanistic study revealed that the inhibitory effect of BHBA on microglia was mediated by G-protein-coupled receptor 109A (GPR109A) and involved the NF-κB signaling pathway, causing the inhibition of pro-inflammatory enzyme (iNOS and COX-2) and pro-inflammatory cytokine (TNF-α, IL-1β, and IL-6) production. CONCLUSIONS In conclusion, the present study supports the effectiveness of BHBA in protecting dopaminergic neurons against inflammatory challenge.
Collapse
Affiliation(s)
- Shou-Peng Fu
- College of Veterinary Medicine Jilin University, Changchun, 130062, P R China.
| | - Jian-Fa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, P R China.
| | - Wen-Jing Xue
- College of Veterinary Medicine Jilin University, Changchun, 130062, P R China.
| | - Hong-Mei Liu
- College of Veterinary Medicine Jilin University, Changchun, 130062, P R China.
| | - Bing-run Liu
- College of Veterinary Medicine Jilin University, Changchun, 130062, P R China.
| | - Ya-Long Zeng
- College of Veterinary Medicine Jilin University, Changchun, 130062, P R China.
| | - Su-Nan Li
- College of Veterinary Medicine Jilin University, Changchun, 130062, P R China.
| | - Bing-Xu Huang
- College of Veterinary Medicine Jilin University, Changchun, 130062, P R China.
| | - Qing-Kang Lv
- College of Veterinary Medicine Jilin University, Changchun, 130062, P R China.
| | - Wei Wang
- College of Veterinary Medicine Jilin University, Changchun, 130062, P R China.
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, P R China.
| | - Ju-Xiong Liu
- College of Veterinary Medicine Jilin University, Changchun, 130062, P R China.
| |
Collapse
|
14
|
Immunohistochemical demonstration of urocortin 1 in Edinger–Westphal nucleus of the human neonate: Colocalization with tyrosine hydroxylase under acute perinatal hypoxia. Neurosci Lett 2013; 554:47-52. [DOI: 10.1016/j.neulet.2013.08.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/12/2013] [Accepted: 08/25/2013] [Indexed: 11/23/2022]
|
15
|
Huang HY, Liu DD, Chang HF, Chen WF, Hsu HR, Kuo JS, Wang MJ. Histone deacetylase inhibition mediates urocortin-induced antiproliferation and neuronal differentiation in neural stem cells. Stem Cells 2013; 30:2760-73. [PMID: 22961741 DOI: 10.1002/stem.1226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 08/14/2012] [Indexed: 01/15/2023]
Abstract
During cortical development, cell proliferation and cell cycle exit are carefully regulated to ensure that the appropriate numbers of cells are produced. Urocortin (UCN) is a member of the corticotrophin releasing hormone (CRH) family of neuropeptides that regulates stress responses. UCN is widely distributed in adult rat brain. However, the expression and function of UCN in embryonic brain is, as yet, unclear. Here, we show that UCN is endogenously expressed in proliferative zones of the developing cerebral cortex and its receptors are exhibited in neural stem cells (NSCs), thus implicating the neuropeptide in cell cycle regulation. Treatment of cultured NSCs or organotypic slice cultures with UCN markedly reduced cell proliferation. Furthermore, blocking of endogenous UCN/CRHRs system either by treatment with CRHRs antagonists or by neutralization of secreted UCN with anti-UCN antibody increased NSCs proliferation. Cell cycle kinetics analysis demonstrated that UCN lengthened the total cell cycle duration via increasing the G1 phase and accelerated cell cycle exit. UCN directly inhibited the histone deacetylase (HDAC) activity and induced a robust increase in histone H3 acetylation levels. Using pharmacological and RNA interference approaches, we further demonstrated that antiproliferative action of UCN appeared to be mediated through a HDAC inhibition-induced p21 upregulation. Moreover, UCN treatment in vitro and in vivo led to an increase in neuronal differentiation of NSCs. These findings suggest that UCN might contribute to regulate NSCs proliferation and differentiation during cortical neurogenesis.
Collapse
Affiliation(s)
- Hsin-Yi Huang
- Department of Medical Research, Neuro-Medical Scientific Center, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
P73 is a member of the p53 transcription factors family with a prominent role in neurobiology, affecting brain development as well as controlling neuronal survival. Accordingly, p73 has been identified as key player in many age-related neurodegenerative diseases, such as Alzheimer's disease, neuroAIDS and Niemann-Pick type C disease. Here we investigate possible correlations of p73 with Parkinson disease. Tyrosine hydroxylase is a crucial player in Parkinson disease being the enzyme necessary for dopamine synthesis. In this work we show that levels of tyrosine hydroxylase can be influenced by p73. We also demonstrate that p73 can protect against tyrosine hydroxylase depletion in an in vitro model of Parkinson disease.
Collapse
Affiliation(s)
- Francesca Grespi
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | | |
Collapse
|
17
|
Urocortin protects chondrocytes from NO-induced apoptosis: a future therapy for osteoarthritis? Cell Death Dis 2013; 4:e717. [PMID: 23846219 PMCID: PMC3730405 DOI: 10.1038/cddis.2013.231] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA) is characterized by a loss of joint mobility and pain resulting from progressive destruction and loss of articular cartilage secondary to chondrocyte death and/ or senescence. Certain stimuli including nitric oxide (NO) and the pro-inflammatory cytokine tumor necrosis factor α (TNF-α have been implicated in this chondrocyte death and the subsequent accelerated damage to cartilage. In this study, we demonstrate that a corticotrophin releasing factor (CRF) family peptide, urocortin (Ucn), is produced by a human chondrocyte cell line, C-20/A4, and acts both as an endogenous survival signal and as a cytoprotective agent reducing the induction of apoptosis by NO but not TNF-α when added exogenously. Furthermore, treatment with the NO donor S-nitroso-N-acetyl-D-L-penicillamine upregulates chondrocyte Ucn expression, whereas treatment with TNF-α does not. The chondroprotective effects of Ucn are abolished by both specific ligand depletion (with an anti-Ucn antibody) and by CRF receptor blockade with the pan-CRFR antagonist α-helical CRH(9-41). CRFR expression was confirmed by reverse transcription-PCR with subsequent amplicon sequence analysis and demonstrates that C-20/A4 cells express both CRFR1 and CRFR2, specifically CRFR1α and CRFR2β. Protein expression of these receptors was confirmed by western blotting. The presence of both Ucn and its receptors in these cells, coupled with the induction of Ucn by NO, suggests the existence of an endogenous autocrine/paracrine chondroprotective mechanism against stimuli inducing chondrocyte apoptosis via the intrinsic/mitochondrial pathway.
Collapse
|
18
|
Gao H, Pang Z, Jiang X. Targeted Delivery of Nano-Therapeutics for Major Disorders of the Central Nervous System. Pharm Res 2013; 30:2485-98. [DOI: 10.1007/s11095-013-1122-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/11/2013] [Indexed: 12/22/2022]
|
19
|
Abuirmeileh A, Harkavyi A, Rampersaud N, Lever R, Tadross JA, Bloom SR, Whitton PS. Exendin-4 treatment enhances L-DOPA evoked release of striatal dopamine and decreases dyskinetic movements in the 6-hydoxydopamine lesioned rat. J Pharm Pharmacol 2012; 64:637-43. [PMID: 22471359 DOI: 10.1111/j.2042-7158.2011.01394.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To determine whether the glucagon-like 1 peptide analogue exendin-4 (EX-4) augments the neurochemical effects of a single L-DOPA treatment and whether EX-4 can decrease L-DOPA induced dyskinesias (LIDS). METHODS Rats were lesioned with 6-hydroxydopamine (6-OHDA) and 7 days later given EX-4 for 7 days. The following day, rats were given L-DOPA and extracellular dopamine was measured. The animals were then killed to determine tissue dopamine. To study LIDS, EX-4 and/or L-DOPA were co-administered daily, 7 days after 6-OHDA. LIDS were determined on Days 2, 4, 8, 12 and 16 prior to neurochemical assessment. KEY FINDINGS EX-4 reduced 6-OHDA induced damage. Acute effects of L-DOPA were potentiated by EX-4 in lesioned rats. Treatments with EX-4 caused a progressive reduction in LIDS. CONCLUSIONS EX-4 treatment potentiates the effects of a single dose of L-DOPA. This augmentation indicates that lower L-DOPA doses might be used to the same effect in patients. The reduction in LIDS suggests that co-treatment with EX-4 could allow the use of L-DOPA with fewer side-effects and possibly therefore allow earlier introduction of L-DOPA in the clinic.
Collapse
|
20
|
Concordant signaling pathways produced by pesticide exposure in mice correspond to pathways identified in human Parkinson's disease. PLoS One 2012; 7:e36191. [PMID: 22563483 PMCID: PMC3341364 DOI: 10.1371/journal.pone.0036191] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/03/2012] [Indexed: 11/19/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease in which the etiology of 90 percent of the patients is unknown. Pesticide exposure is a major risk factor for PD, and paraquat (PQ), pyridaben (PY) and maneb (MN) are amongst the most widely used pesticides. We studied mRNA expression using transcriptome sequencing (RNA-Seq) in the ventral midbrain (VMB) and striatum (STR) of PQ, PY and paraquat+maneb (MNPQ) treated mice, followed by pathway analysis. We found concordance of signaling pathways between the three pesticide models in both the VMB and STR as well as concordance in these two brain areas. The concordant signaling pathways with relevance to PD pathogenesis were e.g. axonal guidance signaling, Wnt/β-catenin signaling, as well as pathways not previously linked to PD, e.g. basal cell carcinoma, human embryonic stem cell pluripotency and role of macrophages, fibroblasts and endothelial cells in rheumatoid arthritis. Human PD pathways previously identified by expression analysis, concordant with VMB pathways identified in our study were axonal guidance signaling, Wnt/β-catenin signaling, IL-6 signaling, ephrin receptor signaling, TGF-β signaling, PPAR signaling and G-protein coupled receptor signaling. Human PD pathways concordant with the STR pathways in our study were Wnt/β-catenin signaling, axonal guidance signaling and G-protein coupled receptor signaling. Peroxisome proliferator activated receptor delta (Ppard) and G-Protein Coupled Receptors (GPCRs) were common genes in VMB and STR identified by network analysis. In conclusion, the pesticides PQ, PY and MNPQ elicit common signaling pathways in the VMB and STR in mice, which are concordant with known signaling pathways identified in human PD, suggesting that these pathways contribute to the pathogenesis of idiopathic PD. The analysis of these networks and pathways may therefore lead to improved understanding of disease pathogenesis, and potential novel therapeutic targets.
Collapse
|
21
|
Hu K, Shi Y, Jiang W, Han J, Huang S, Jiang X. Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: preparation, characterization and efficacy in Parkinson's disease. Int J Pharm 2011; 415:273-83. [PMID: 21651967 DOI: 10.1016/j.ijpharm.2011.05.062] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 05/04/2011] [Accepted: 05/24/2011] [Indexed: 11/25/2022]
Abstract
A novel biodegradable brain drug delivery system, the lactoferrin (Lf) conjugated polyethylene glycol-polylactide-polyglycolide (PEG-PLGA) nanoparticle (Lf-NP) was constructed in this paper with its in vitro and in vivo delivery properties evaluated by a fluorescent probe coumarin-6. Lf was thiolated and conjugated to the distal maleimide function surrounding on the pegylated nanoparticle to form Lf-NP. TEM observation and ELISA analysis confirmed the existence of active Lf on the surface of Lf-NP. The results of qualitative and quantitative uptake studies of coumarin-6 incorporated Lf-NP showed a more pronounced accumulation of Lf-NP in bEnd.3 cells than that of unconjugated nanoparticle (NP). Further uptake inhibition study indicated that the increased uptake of Lf-NP was via an additional clathrin mediated endocytosis processes. Following intravenous administration, a near 3 fold of coumarin-6 was found in the mice brain carried by Lf-NP compared to that carried by NP. Intravenous injection of urocortin loaded Lf-NP effectively attenuated the striatum lesion caused by 6-hydroxydopamine in rats as indicated by the behavioral test, the immunohistochemistry test and striatal transmitter content detection results. The cell viability test and CD68 immunohistochemistry demonstrated the acceptable toxicity of the system. All these results demonstrated that Lf-NP was a promising brain drug delivery system with reasonable toxicity.
Collapse
Affiliation(s)
- Kaili Hu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
Wen Z, Yan Z, Hu K, Pang Z, Cheng X, Guo L, Zhang Q, Jiang X, Fang L, Lai R. Odorranalectin-conjugated nanoparticles: preparation, brain delivery and pharmacodynamic study on Parkinson's disease following intranasal administration. J Control Release 2011; 151:131-8. [PMID: 21362449 DOI: 10.1016/j.jconrel.2011.02.022] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/12/2011] [Accepted: 02/20/2011] [Indexed: 10/18/2022]
Abstract
Odorranalectin (OL) was recently identified as the smallest lectin with much less immunogenicity than other members of the lectin family. In this study, to improve nose-to-brain drug delivery and reduce the immunogenicity of traditional lectin modified delivery system, OL was conjugated to poly(ethylene glycol)-poly(lactic-co-glycolic acid) (PEG-PLGA) nanoparticles and its biorecognitive activity on nanoparticles was verified by haemagglutination tests. Nose-to-brain delivery characteristic of OL-conjugated nanoparticles (OL-NP) was investigated by in vivo fluorescence imaging technique using DiR as a tracer. Besides, urocortin peptide (UCN), as a macromolecular model drug, was incorporated into nanoparticles and evaluated for its therapeutic efficacy on hemiparkinsonian rats following intranasal administration by rotation behavior test, neurotransmitter determination and tyrosine hydroxylase (TH) test. The results suggested that OL modification increased the brain delivery of nanoparticles and enhanced the therapeutic effects of UCN-loaded nanoparticles on Parkinson's disease. In summary, the OL-NPs could be potentially used as carriers for nose-to-brain drug delivery, especially for macromolecular drugs, in the treatment of CNS disorders.
Collapse
Affiliation(s)
- Ziyi Wen
- Department of Pharmaceutical Science, School of Pharmacy, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tufekci KU, Genc S, Genc K. The endotoxin-induced neuroinflammation model of Parkinson's disease. PARKINSON'S DISEASE 2011; 2011:487450. [PMID: 21331154 PMCID: PMC3034925 DOI: 10.4061/2011/487450] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/18/2010] [Accepted: 12/16/2010] [Indexed: 01/22/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra. Although the exact cause of the dopaminergic neurodegeneration remains elusive, recent postmortem and experimental studies have revealed an essential role for neuroinflammation that is initiated and driven by activated microglial and infiltrated peripheral immune cells and their neurotoxic products (such as proinflammatory cytokines, reactive oxygen species, and nitric oxide) in the pathogenesis of PD. A bacterial endotoxin-based experimental model of PD has been established, representing a purely inflammation-driven animal model for the induction of nigrostriatal dopaminergic neurodegeneration. This model, by itself or together with genetic and toxin-based animal models, provides an important tool to delineate the precise mechanisms of neuroinflammation-mediated dopaminergic neuron loss. Here, we review the characteristics of this model and the contribution of neuroinflammatory processes, induced by the in vivo administration of bacterial endotoxin, to neurodegeneration. Furthermore, we summarize the recent experimental therapeutic strategies targeting endotoxin-induced neuroinflammation to elicit neuroprotection in the nigrostriatal dopaminergic system. The potential of the endotoxin-based PD model in the development of an early-stage specific diagnostic biomarker is also emphasized.
Collapse
Affiliation(s)
- Kemal Ugur Tufekci
- Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Inciralti, 35340 Izmir, Turkey
| | - Sermin Genc
- Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Inciralti, 35340 Izmir, Turkey
| | - Kursad Genc
- Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Inciralti, 35340 Izmir, Turkey
| |
Collapse
|
24
|
Kim Y, Park MK, Chung S. Protective effect of urocortin on 1-methyl-4-phenylpyridinium-induced dopaminergic neuronal death. Mol Cells 2010; 30:427-33. [PMID: 20821057 DOI: 10.1007/s10059-010-0132-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 07/29/2010] [Accepted: 08/02/2010] [Indexed: 10/19/2022] Open
Abstract
Recent studies have indicated that the corticotropin releasing hormone (CRF)-related peptide, urocortin, restores key indicators of damage in animal models for Parkinson's disease (PD). However, the molecular mechanism for the neuroprotective effect of urocortin is unknown. 1-Methy-4-phenylpyridinium (MPP(+)) induces dopaminergic neuronal death. In the present study, MPP(+)-induced neuroblastoma SH-SY5Y cell death was significantly attenuated by urocortin in a concentration-dependent manner. The protective effect of urocortin involved the activation of CRF receptor type 1, resulting in the increase of cyclic AMP (cAMP) levels. Various cAMP-enhancing reagents mimicked the effect of urocortin, while inhibitors for protein kinase A (PKA) blocked the effect of urocortin, strongly implicating the involvement of cAMP-PKA pathway in the neuroprotective effect of urocortin on MPP(+)-induced cell death. As the downstream of this signal pathway, urocortin promoted phosphorylation of both glycogen synthase kinase 3β and extracellular signal-regulated kinases, which are known to promote cell survival. These neuroprotective signaling pathways of urocortin may serve as potential therapeutic targets for PD.
Collapse
Affiliation(s)
- Yonjung Kim
- Department of Physiology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 440-746, Korea
| | | | | |
Collapse
|
25
|
Huang HY, Lin SZ, Chen WF, Li KW, Kuo JS, Wang MJ. Urocortin modulates dopaminergic neuronal survival via inhibition of glycogen synthase kinase-3β and histone deacetylase. Neurobiol Aging 2009; 32:1662-77. [PMID: 19875195 DOI: 10.1016/j.neurobiolaging.2009.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 08/19/2009] [Accepted: 09/27/2009] [Indexed: 11/27/2022]
Abstract
Urocortin (UCN) is a member of the corticotropin-releasing hormone (CRH) family of neuropeptides that regulates stress responses. Although UCN is principally expressed in dopaminergic neurons in rat substantia nigra (SN), the function of UCN in modulating dopaminergic neuronal survival remains unclear. Using primary mesencephalic cultures, we demonstrated that dopaminergic neurons underwent spontaneous cell death when their age increased in culture. Treatment of mesencephalic cultures with UCN markedly prolonged the survival of dopaminergic neurons, whereas neutralization of UCN with anti-UCN antibody accelerated dopaminergic neurons degeneration. UCN increased intracellular cAMP levels followed by phosphorylating glycogen synthase kinase-3β (GSK-3β) on Ser9. Moreover, UCN directly inhibited the histone deacetylase (HDAC) activity and induced a robust increase in histone H3 acetylation levels. Using pharmacological approaches, we further demonstrated that inhibition of GSK-3β and HDAC contributes to UCN-mediated neuroprotection. These results suggest that dopaminergic neuron-derived UCN might be involved in an autocrine protective signaling mechanism.
Collapse
Affiliation(s)
- Hsin-Yi Huang
- Department of Research, Neuro-Medical Scientific Center, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
26
|
Szabadfi K, Atlasz T, Reglodi D, Kiss P, Dányádi B, Fekete EM, Zorrilla EP, Tamás A, Szabó K, Gábriel R. Urocortin 2 protects against retinal degeneration following bilateral common carotid artery occlusion in the rat. Neurosci Lett 2009; 455:42-5. [PMID: 19429103 DOI: 10.1016/j.neulet.2009.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 12/27/2022]
Abstract
Urocortin 2 (Ucn 2) is corticotropin-releasing factor (CRF) paralog that preferentially activates CRF(2) receptors. Ucns exert CRF(2)-mediated cytoprotective effects against ischemia-reperfusion injury in cardiomyocytes. However, little is known regarding potential retinoprotective effects of Ucns despite the known presence of CRF family peptides and their receptors (predominantly CRF(2 alpha)) in retina. Therefore, the present study investigated the effects of post-ischemic intravitreal Ucn 2 (2 nmol) administration on ischemia-induced retinal degeneration. Two-month-old rats were subjected to permanent bilateral common carotid artery occlusion, and their retinas were processed histologically after two weeks survival to determine the density of viable cells in the ganglion cell layer and the thickness of all retinal layers. In vehicle-treated subjects, carotid occlusion reduced retina thickness by approximately 60% as compared to sham-operated animals. In contrast, intraocular Ucn 2 treatment led to a marked amelioration of the retinal layers, and the thickness of all layers was significantly increased by 40% compared to ischemic vehicle-treated subjects. Ucn 2 treatment also increased the number of cells by 55% in the ganglion cell layer as compared to those from carotid-occluded retinas of vehicle-treated subjects. These findings suggest that intraocular Ucn 2 treatment may protect against ischemia-induced retinal degeneration, results with potential therapeutic implications for ophthalmic diseases.
Collapse
Affiliation(s)
- Krisztina Szabadfi
- Dept. of Experimental Zoology and Neurobiology, Univ. of Pécs, Ifjúsag útja 6, H-7624 Pécs, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abuirmeileh A, Harkavyi A, Kingsbury A, Lever R, Whitton PS. The CRF-like peptide urocortin greatly attenuates loss of extracellular striatal dopamine in rat models of Parkinson's disease by activating CRF(1) receptors. Eur J Pharmacol 2008; 604:45-50. [PMID: 19026631 DOI: 10.1016/j.ejphar.2008.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Revised: 10/17/2008] [Accepted: 11/01/2008] [Indexed: 11/17/2022]
Abstract
We have recently observed that the corticotrophin releasing factor (CRF) related peptide urocortin reverses key features of nigrostriatal damage in two paradigms of Parkinson's disease. Here we have studied whether these effects are supported by a retention of striatal basal and evoked extracellular dopamine and the receptor(s) that may mediate this effect. Fourteen days following stereotaxic injections of 6-hydroxydopamine (6-OHDA) or lipopolysaccharide (LPS) and urocortin, extracellular dopamine levels in striata ipsilateral to injection sites of 6-OHDA/LPS and urocortin treated rats were comparable with sham injected rats, whilst rats given 6-OHDA/LPS and vehicle had considerably lower dopamine levels. Striatal dopamine levels in animals where urocortin injection was delayed by seven days were only modestly decreased compared to animals receiving 6-OHDA/LPS and urocortin concomitantly. Additionally, the dopamine metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were also preserved in dialysates from urocortin treated rats. The effects of urocortin were entirely blocked by the non-selective CRF receptor antagonist alpha-helical CRF as well as the selective CRF(1) antagonist NBI 27914 and were not replicated by the selective CRF(2) ligand urocortin III. In the substantia nigra tissue dopamine changes mirrored those seen in striatal extracellular dopamine. Our data strongly suggest that urocortin is capable of maintaining adequate nigrostriatal function in vivo via CRF(1) receptors following. neurotoxic challenge.
Collapse
Affiliation(s)
- Amjad Abuirmeileh
- Department of Pharmacology, The School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | | | | | | |
Collapse
|
28
|
The CRF-like peptide urocortin produces a long-lasting recovery in rats made hemiparkinsonian by 6-hydroxydopamine or lipopolysaccharide. J Neurol Sci 2008; 271:131-6. [PMID: 18508084 DOI: 10.1016/j.jns.2008.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/01/2008] [Accepted: 04/04/2008] [Indexed: 11/22/2022]
Abstract
We have recently observed that the corticotropin releasing factor related peptide urocortin (UCN) reverses key features of nigrostriatal neurodegeneration following intracerebral injection of either 6-hydroxydopamine (6-OHDA) or lipopolysaccharide (LPS). To determine the potential therapeutic utility of UCN here we have studied whether these effects are sustained for several weeks following peptide injection. In addition we have studied whether UCN still shows efficacy in rats with more pronounced nigrostriatal lesions. Rats were lesioned using 6-OHDA or LPS and injected with UCN either 7 or 14 days later. At different time points animals were tested for rotational behaviour (apomorphine, 0.5 mg/kg) and subsequently implanted with bilateral dialysis probes into the striata. The following day rats were dialysed to estimate extracellular striatal dopamine (DA) and then sacrificed for estimation of striatal tissue DA and subsequent immunohistochemistry of TH(+) cells in the substantia nigra (SN). Toxin treated rats given UCN 7 days later showed clear evidence of reduced nigrostriatal damage both 28 and 84 days following UCN compared with saline injection. In rats given UCN 14 days after toxin injection, by which time deficits were maximal, a restoration of nigrostriatal damage was observed. This suggests that UCN is able to elicit a sustained restoration of functional nigrostriatal integrity and has the ability to produce a recovery in severely lesioned rats. These findings suggest that stimulation of CRF (probably CRF(1)) receptors could have therapeutic utility in PD.
Collapse
|
29
|
Harkavyi A, Abuirmeileh A, Lever R, Kingsbury AE, Biggs CS, Whitton PS. Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson's disease. J Neuroinflammation 2008; 5:19. [PMID: 18492290 PMCID: PMC2426681 DOI: 10.1186/1742-2094-5-19] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 05/21/2008] [Indexed: 12/04/2022] Open
Abstract
Background It has recently become apparent that neuroinflammation may play a significant role in Parkinson's disease (PD). This is also the case in animal paradigms of the disease. The potential neuroprotective action of the glucagon-like peptide 1 receptor (GLP-1R) agonist exendin-4 (EX-4), which is protective against cytokine mediated apoptosis and may stimulate neurogenesis, was investigated In paradigms of PD. Methods Two rodent 'models' of PD, 6-hydroxydopamine (6-OHDA) and lipopolysaccaride (LPS), were used to test the effects of EX-4. Rats were then investigated in vivo and ex vivo with a wide range of behavioural, neurochemical and histological tests to measure integrity of the nigrostriatal system. Results EX-4 (0.1 and 0.5 μg/kg) was given seven days after intracerebral toxin injection. Seven days later circling behaviour was measured following apomorphine challenge. Circling was significantly lower in rats given EX-4 at both doses compared to animals given 6-OHDA/LPS and vehicle. Consistent with these observations, striatal tissue DA concentrations were markedly higher in 6-OHDA/LPS + EX-4 treated rats versus 6-OHDA/LPS + vehicle groups, whilst assay of L-DOPA production by tyrosine hydroxylase was greatly reduced in the striata of 6-OHDA/LPS + vehicle rats, but this was not the case in rats co-administered EX-4. Furthermore nigral TH staining recorded in 6-OHDA/LPS + vehicle treated animals was markedly lower than in sham-operated or EX-4 treated rats. Finally, EX-4 clearly reversed the loss of extracellular DA in the striata of toxin lesioned freely moving rats. Conclusion The apparent ability of EX-4 to arrest progression of, or even reverse nigral lesions once established, suggests that pharmacological manipulation of the GLP-1 receptor system could have substantial therapeutic utility in PD. Critically, in contrast to other peptide agents that have been demonstrated to possess neuroprotective properties in pre-clinical models of PD, EX-4 is in current clinical use in the management of type-II diabetes and freely crosses the blood brain barrier; hence, assessment of the clinical efficacy of EX-4 in patients with PD could be pursued without delay.
Collapse
Affiliation(s)
- Alexander Harkavyi
- Department of Pharmacology, The School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | | | | | | | | | | |
Collapse
|