1
|
Yilihamu Y, Xu R, Jia W, Kukun H, Aihemaiti D, Chang Y, Ding S, Wang Y. Role of long non-coding RNA TCONS_02443383 in regulating cell adhesion and peroxisome proliferator-activated receptor (PPAR) signaling genes in atherosclerosis: A New Zealand white rabbit model study. Gene 2024; 927:148694. [PMID: 38878987 DOI: 10.1016/j.gene.2024.148694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVE In this study, we performed RNA sequencing (RNA-seq) on the abdominal aorta tissue of New Zealand rabbits and investigated the potential association of lncRNA TCONS_02443383 with the development of AS through bioinformatics analysis of the sequencing data. The obtained results were further validated using quantitative real-time polymerase chain reaction (qRT-PCR). METHOD We induced an AS model in New Zealand rabbits by causing balloon injury to the abdominal aorta vascular wall and administering a high-fat diet. We then upregulated the expression level of the lncRNA TCONS_02443383 by injecting lentiviral plasmids through the ear vein. RNA sequencing (RNA-seq) was performed on the abdominal aorta tissues. We conducted Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway and Gene Ontology (GO) analyses. RESULT The overexpression of the lncRNA TCONS_02443383 led to an upregulation of peroxisome proliferator-activated receptor (PPAR) signaling pathways as well as genes related to cell adhesion. CONCLUSION The overexpression of the lncRNA TCONS_02443383 can inhibit the occurrence and development of AS by upregulating peroxisome proliferator-activated receptor (PPAR) signaling pathways and genes related to cell adhesion.
Collapse
Affiliation(s)
- Yilinuer Yilihamu
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830054, China
| | - Rui Xu
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830054, China
| | - Wenxiao Jia
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830054, China
| | - Hanjiaerbieke Kukun
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830054, China
| | - Dilinuerkezi Aihemaiti
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830054, China
| | - Yifan Chang
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830054, China
| | - Shuang Ding
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830054, China.
| | - Yunling Wang
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830054, China.
| |
Collapse
|
2
|
Yu D, Li M, Linghu G, Hu Y, Hajdarovic KH, Wang A, Singh R, Webb AE. CellBiAge: Improved single-cell age classification using data binarization. Cell Rep 2023; 42:113500. [PMID: 38032797 PMCID: PMC10791072 DOI: 10.1016/j.celrep.2023.113500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Aging is a major risk factor for many diseases. Accurate methods for predicting age in specific cell types are essential to understand the heterogeneity of aging and to assess rejuvenation strategies. However, classifying organismal age at single-cell resolution using transcriptomics is challenging due to sparsity and noise. Here, we developed CellBiAge, a robust and easy-to-implement machine learning pipeline, to classify the age of single cells in the mouse brain using single-cell transcriptomics. We show that binarization of gene expression values for the top highly variable genes significantly improved test performance across different models, techniques, sexes, and brain regions, with potential age-related genes identified for model prediction. Additionally, we demonstrate CellBiAge's ability to capture exercise-induced rejuvenation in neural stem cells. This study provides a broadly applicable approach for robust classification of organismal age of single cells in the mouse brain, which may aid in understanding the aging process and evaluating rejuvenation methods.
Collapse
Affiliation(s)
- Doudou Yu
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, RI 02912, USA; Data Science Institute, Brown University, Providence, RI 02912, USA
| | - Manlin Li
- Data Science Institute, Brown University, Providence, RI 02912, USA
| | - Guanjie Linghu
- Data Science Institute, Brown University, Providence, RI 02912, USA
| | - Yihuan Hu
- Data Science Institute, Brown University, Providence, RI 02912, USA
| | | | - An Wang
- Department of Applied Mathematics & Statistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ritambhara Singh
- Department of Computer Science, Brown University, Providence, RI 02912, USA; Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA.
| | - Ashley E Webb
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA; Center on the Biology of Aging, Brown University, Providence, RI 02912, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA; Center for Translational Neuroscience, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
3
|
Hsia HE, Tüshaus J, Brummer T, Zheng Y, Scilabra SD, Lichtenthaler SF. Functions of 'A disintegrin and metalloproteases (ADAMs)' in the mammalian nervous system. Cell Mol Life Sci 2019; 76:3055-3081. [PMID: 31236626 PMCID: PMC11105368 DOI: 10.1007/s00018-019-03173-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022]
Abstract
'A disintegrin and metalloproteases' (ADAMs) are a family of transmembrane proteins with diverse functions in multicellular organisms. About half of the ADAMs are active metalloproteases and cleave numerous cell surface proteins, including growth factors, receptors, cytokines and cell adhesion proteins. The other ADAMs have no catalytic activity and function as adhesion proteins or receptors. Some ADAMs are ubiquitously expressed, others are expressed tissue specifically. This review highlights functions of ADAMs in the mammalian nervous system, including their links to diseases. The non-proteolytic ADAM11, ADAM22 and ADAM23 have key functions in neural development, myelination and synaptic transmission and are linked to epilepsy. Among the proteolytic ADAMs, ADAM10 is the best characterized one due to its substrates Notch and amyloid precursor protein, where cleavage is required for nervous system development or linked to Alzheimer's disease (AD), respectively. Recent work demonstrates that ADAM10 has additional substrates and functions in the nervous system and its substrate selectivity may be regulated by tetraspanins. New roles for other proteolytic ADAMs in the nervous system are also emerging. For example, ADAM8 and ADAM17 are involved in neuroinflammation. ADAM17 additionally regulates neurite outgrowth and myelination and its activity is controlled by iRhoms. ADAM19 and ADAM21 function in regenerative processes upon neuronal injury. Several ADAMs, including ADAM9, ADAM10, ADAM15 and ADAM30, are potential drug targets for AD. Taken together, this review summarizes recent progress concerning substrates and functions of ADAMs in the nervous system and their use as drug targets for neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Hung-En Hsia
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Tobias Brummer
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Yuanpeng Zheng
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Simone D Scilabra
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
- Fondazione Ri.MED, Department of Research, IRCCS-ISMETT, via Tricomi 5, 90127, Palermo, Italy
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany.
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany.
- Munich Center for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
4
|
Zhang BJ, Yuan CX. Effects of ADAM2 silencing on isoflurane-induced cognitive dysfunction via the P13K/Akt signaling pathway in immature rats. Biomed Pharmacother 2018; 109:217-225. [PMID: 30396079 DOI: 10.1016/j.biopha.2018.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/22/2018] [Accepted: 10/03/2018] [Indexed: 11/17/2022] Open
Abstract
Volatile anesthetics, including isoflurane, have been reported to have negative effects on cognitive dysfunction characterized by cognitive deficits following anesthesia. The aim of the current study was to investigate the effects involved with disintegrin and metallopeptidase domain 2 (ADAM2) silencing on isoflurane-induced cognitive dysfunction via the P13 K/Akt signaling pathway in immature rats. One week old healthy Sprague-Dawley (SD) rats were recruited and administered isoflurane anesthesia. The rats were then subjected to shADAM2 or wortmannin (PI3K/Akt signaling pathway inhibitor) to identify the effects of ADAM2 and the PI3K/Akt signaling pathway on the cognitive function of rats. Morris water maze and passive-avoidance tests were performed to examine the cognitive function of the rats. TUNEL staining was conducted to detect neuronal apoptosis in the hippocampal CA1 region. The obtained experimental results demonstrated that isoflurane anesthesia led to increased escape latency, reaction time, number of errors and TUNEL-positive neurons, along with a decreased latency time. In response to treatment with shADAM2, escape latency, reaction time, number of errors and TUNEL-positive cells were all noted to have decreased, in addition to elevated latency time, while contrasting trends were observed in regard to treatment with wortmannin. Taken together, the key findings of the present study revealed that shADAM2 activated the PI3K/Akt signaling pathway, resulting in elevated expressions of PI3K and Akt. Our study ultimately identified that ADAM2 silencing alleviates isoflurane-induced cognitive dysfunction by activating the P13 K/Akt signaling pathway in immature rats.
Collapse
Affiliation(s)
- Bao-Juan Zhang
- Department of Anesthesiology, Jining No.1 People's Hospital, Jining, 272011, PR China
| | - Chang-Xiu Yuan
- Department of Anesthesiology, Jining No.1 People's Hospital, Jining, 272011, PR China.
| |
Collapse
|
5
|
Kaneko N, Sawada M, Sawamoto K. Mechanisms of neuronal migration in the adult brain. J Neurochem 2017; 141:835-847. [DOI: 10.1111/jnc.14002] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/06/2017] [Accepted: 02/21/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Naoko Kaneko
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medial Sciences; Nagoya Aichi Japan
| | - Masato Sawada
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medial Sciences; Nagoya Aichi Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medial Sciences; Nagoya Aichi Japan
- Division of Neural Development and Regeneration; National Institute for Physiological Sciences; Okazaki Aichi Japan
| |
Collapse
|
6
|
Secretagogin-dependent matrix metalloprotease-2 release from neurons regulates neuroblast migration. Proc Natl Acad Sci U S A 2017; 114:E2006-E2015. [PMID: 28223495 DOI: 10.1073/pnas.1700662114] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The rostral migratory stream (RMS) is viewed as a glia-enriched conduit of forward-migrating neuroblasts in which chemorepulsive signals control the pace of forward migration. Here we demonstrate the existence of a scaffold of neurons that receive synaptic inputs within the rat, mouse, and human fetal RMS equivalents. These neurons express secretagogin, a Ca2+-sensor protein, to execute an annexin V-dependent externalization of matrix metalloprotease-2 (MMP-2) for reconfiguring the extracellular matrix locally. Mouse genetics combined with pharmacological probing in vivo and in vitro demonstrate that MMP-2 externalization occurs on demand and that its loss slows neuroblast migration. Loss of function is particularly remarkable upon injury to the olfactory bulb. Cumulatively, we identify a signaling cascade that provokes structural remodeling of the RMS through recruitment of MMP-2 by a previously unrecognized neuronal constituent. Given the life-long presence of secretagogin-containing neurons in human, this mechanism might be exploited for therapeutic benefit in rescue strategies.
Collapse
|
7
|
Cao L, Pu J, Scott RH, Ching J, McCaig CD. Physiological electrical signals promote chain migration of neuroblasts by up-regulating P2Y1 purinergic receptors and enhancing cell adhesion. Stem Cell Rev Rep 2015; 11:75-86. [PMID: 25096637 PMCID: PMC4333314 DOI: 10.1007/s12015-014-9524-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neuroblasts migrate as directed chains of cells during development and following brain damage. A fuller understanding of the mechanisms driving this will help define its developmental significance and in the refinement of strategies for brain repair using transplanted stem cells. Recently, we reported that in adult mouse there are ionic gradients within the extracellular spaces that create an electrical field (EF) within the rostral migratory stream (RMS), and that this acts as a guidance cue for neuroblast migration. Here, we demonstrate an endogenous EF in brain slices and show that mimicking this by applying an EF of physiological strength, switches on chain migration in mouse neurospheres and in the SH-SY5Y neuroblastoma cell line. Firstly, we detected a substantial endogenous EF of 31.8 ± 4.5 mV/mm using microelectrode recordings from explants of the subventricular zone (SVZ). Pharmacological inhibition of this EF, effectively blocked chain migration in 3D cultures of SVZ explants. To mimic this EF, we applied a physiological EF and found that this increased the expression of N-cadherin and β-catenin, both of which promote cell-cell adhesion. Intriguingly, we found that the EF up-regulated P2Y purinoceptor 1 (P2Y1) to contribute to chain migration of neuroblasts through regulating the expression of N-cadherin, β-catenin and the activation of PKC. Our results indicate that the naturally occurring EF in brain serves as a novel stimulant and directional guidance cue for neuronal chain migration, via up-regulation of P2Y1.
Collapse
Affiliation(s)
- Lin Cao
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD UK
| | - Jin Pu
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD UK
| | - Roderick H. Scott
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD UK
| | - Jared Ching
- Department of Neurosurgery, Aberdeen Royal Infirmary, Aberdeen, AB25 2ZD UK
| | - Colin D. McCaig
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD UK
| |
Collapse
|
8
|
Evolution of Vertebrate Adam Genes; Duplication of Testicular Adams from Ancient Adam9/9-like Loci. PLoS One 2015; 10:e0136281. [PMID: 26308360 PMCID: PMC4550289 DOI: 10.1371/journal.pone.0136281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 08/02/2015] [Indexed: 01/20/2023] Open
Abstract
Members of the disintegrin metalloproteinase (ADAM) family have important functions in regulating cell-cell and cell-matrix interactions as well as cell signaling. There are two major types of ADAMs: the somatic ADAMs (sADAMs) that have a significant presence in somatic tissues, and the testicular ADAMs (tADAMs) that are expressed predominantly in the testis. Genes encoding tADAMs can be further divided into two groups: group I (intronless) and group II (intron-containing). To date, tAdams have only been reported in placental mammals, and their evolutionary origin and relationship to sAdams remain largely unknown. Using phylogenetic and syntenic tools, we analyzed the Adam genes in various vertebrates ranging from fishes to placental mammals. Our analyses reveal duplication and loss of some sAdams in certain vertebrate species. In particular, there exists an Adam9-like gene in non-mammalian vertebrates but not mammals. We also identified putative group I and group II tAdams in all amniote species that have been examined. These tAdam homologues are more closely related to Adams 9 and 9-like than to other sAdams. In all amniote species examined, group II tAdams lie in close vicinity to Adam9 and hence likely arose from tandem duplication, whereas group I tAdams likely originated through retroposition because of their lack of introns. Clusters of multiple group I tAdams are also common, suggesting tandem duplication after retroposition. Therefore, Adam9/9-like and some of the derived tAdam loci are likely preferred targets for tandem duplication and/or retroposition. Consistent with this hypothesis, we identified a young retroposed gene that duplicated recently from Adam9 in the opossum. As a result of gene duplication, some tAdams were pseudogenized in certain species, whereas others acquired new expression patterns and functions. The rapid duplication of Adam genes has a major contribution to the diversity of ADAMs in various vertebrate species.
Collapse
|
9
|
|
10
|
Okada A, Tomooka Y. A role of Sema6A expressed in oligodendrocyte precursor cells. Neurosci Lett 2013; 539:48-53. [DOI: 10.1016/j.neulet.2013.01.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/28/2012] [Accepted: 01/17/2013] [Indexed: 12/17/2022]
|
11
|
Dynamic changes in the transcriptional profile of subventricular zone-derived postnatally born neuroblasts. Mech Dev 2012; 130:424-32. [PMID: 23220001 DOI: 10.1016/j.mod.2012.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/06/2012] [Accepted: 11/12/2012] [Indexed: 02/07/2023]
Abstract
The subventricular zone (SVZ) of the lateral ventricles is a major neurogenic region in the postnatal mammalian brain. Thousands of neuroblasts are generated daily throughout the life of an animal. Newly born neuroblasts migrate via the rostral migratory stream (RMS) into the olfactory bulb where they mature into distinct neuronal subtypes. Neuroblasts exiting the SVZ retain the ability to proliferate, however, proliferation declines in the course of migration to the olfactory bulb. While migrating in the RMS, neuroblasts receive a plethora of stimuli that modify transcription according to the local microenvironment, and eventually modulate neuroblast migration. In the target area, the olfactory bulb, neuroblasts develop into mature neurons. In this review, we discuss dynamic changes of the transcriptome that occur during the "lifetime" of a neuroblast, thereby governing the activation or inhibition of distinct genes/pathways that are responsible for proliferation, migration and differentiation.
Collapse
|
12
|
Emsley JG, Menezes JRL, Madeiro Da Costa RF, Martinez AMB, Macklis JD. Identification of radial glia-like cells in the adult mouse olfactory bulb. Exp Neurol 2012; 236:283-97. [PMID: 22634209 DOI: 10.1016/j.expneurol.2012.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 04/18/2012] [Accepted: 05/12/2012] [Indexed: 01/08/2023]
Abstract
Immature neurons migrate tangentially within the rostral migratory stream (RMS) to the adult olfactory bulb (OB), then radially to their final positions as granule and periglomerular neurons; the controls over this transition are not well understood. Using adult transgenic mice with the human GFAP promoter driving expression of enhanced GFP, we identified a population of radial glia-like cells that we term adult olfactory radial glia-like cells (AORGs). AORGs have large, round somas and simple, radially oriented processes. Confocal reconstructions indicate that AORGs variably express typical radial glial markers, only rarely express mouse GFAP, and do not express astroglial, oligodendroglial, neuronal, or tanycyte markers. Electron microscopy provides further supporting evidence that AORGs are not immature neurons. Developmental analyses indicate that AORGs are present as early as P1, and are generated through adulthood. Tracing studies show that AORGs are not born in the SVZa, suggesting that they are born either in the RMS or the OB. Migrating immature neurons from the adult SVZa are closely apposed to AORGs during radial migration in vivo and in vitro. Taken together, these data indicate a newly-identified population of radial glia-like cells in the adult OB that might function uniquely in neuronal radial migration during adult OB neurogenesis.
Collapse
Affiliation(s)
- Jason G Emsley
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
13
|
Possible roles of Plexin-A4 in positioning of oligodendrocyte precursor cells in developing cerebral cortex. Neurosci Lett 2012; 516:259-64. [DOI: 10.1016/j.neulet.2012.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/26/2012] [Accepted: 04/02/2012] [Indexed: 12/29/2022]
|
14
|
MARK2/Par-1 guides the directionality of neuroblasts migrating to the olfactory bulb. Mol Cell Neurosci 2012; 49:97-103. [DOI: 10.1016/j.mcn.2011.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/23/2011] [Accepted: 10/14/2011] [Indexed: 11/19/2022] Open
|
15
|
Yan X, Lin J, Rolfs A, Luo J. Differential expression of the ADAMs in developing chicken retina. Dev Growth Differ 2011; 53:726-39. [PMID: 21671920 DOI: 10.1111/j.1440-169x.2011.01282.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The expression patterns of the seven members of the ADAM (a disintegrin and metalloprotease) family, ADAM9, ADAM10, ADAM12, ADAM13, ADAM17, ADAM22, and ADAM23 were analyzed in the developing chicken retina by in situ hybridization and immunohistochemistry. Results show that each individual ADAM is expressed and regulated spatiotemporally in the developing retinal layers. ADAM9, ADAM10 and ADAM17 are widely expressed in the differential layers of the retina throughout the whole embryonic period, while ADAM12 and ADAM13 are mainly expressed in the ganglion cell layer at a later stage. ADAM22 and ADAM23 are restricted to the inner nuclear layer and the ganglion cell layer at a later stage. Furthermore, ADAM10 protein is co-expressed with the four members of the classic cadherins, N-cadherin, R-cadherin, cadherin-6B and cadherin-7 in distinct retinal layers. Therefore, the differential expression of the investigated ADAMs in the developing retina suggests the contribution of them to the retina development.
Collapse
Affiliation(s)
- Xin Yan
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, D-18147 Rostock, Germany
| | | | | | | |
Collapse
|
16
|
Girdin is an intrinsic regulator of neuroblast chain migration in the rostral migratory stream of the postnatal brain. J Neurosci 2011; 31:8109-22. [PMID: 21632933 DOI: 10.1523/jneurosci.1130-11.2011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In postnatally developing and adult brains, interneurons of the olfactory bulb (OB) are continuously generated at the subventricular zone of the forebrain. The newborn neuroblasts migrate tangentially to the OB through a well defined pathway, the rostral migratory stream (RMS), where the neuroblasts undergo collective migration termed "chain migration." The cell-intrinsic regulatory mechanism of neuroblast chain migration, however, has not been uncovered. Here we show that mice lacking the actin-binding Akt substrate Girdin (a protein that interacts with Disrupted-In-Schizophrenia 1 to regulate neurogenesis in the dentate gyrus) have profound defects in neuroblast chain migration along the RMS. Analysis of two gene knock-in mice harboring Girdin mutants identified unique amino acid residues in Girdin's C-terminal domain that are responsible for the regulation of neuroblast chain migration but revealed no apparent requirement of Girdin phosphorylation by Akt. Electron microscopic analyses demonstrated the involvement of Girdin in neuroblast cell-cell interactions. These findings suggest that Girdin is an important intrinsic factor that specifically governs neuroblast chain migration along the RMS.
Collapse
|
17
|
Quantitative and dynamic expression profile of premature and active forms of the regional ADAM proteins during chicken brain development. Cell Mol Biol Lett 2011; 16:431-51. [PMID: 21786032 PMCID: PMC6276021 DOI: 10.2478/s11658-011-0016-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 06/09/2011] [Indexed: 01/28/2023] Open
Abstract
The ADAM (A Disintegrin and Metalloprotease) family of transmembrane proteins plays important roles in embryogenesis and tissue formation based on their multiple functional domains. In the present study, for the first time, the expression patterns of the premature and the active forms of six members of the ADAM proteins — ADAM9, ADAM10, ADAM12, ADAM17, ADAM22 and ADAM23 — in distinct parts of the developing chicken brain were investigated by quantitative Western blot analysis from embryonic incubation day (E) 10 to E20. The results show that the premature and the active forms of various ADAM proteins are spatiotemporally regulated in different parts of the brain during development, suggesting that the ADAMs play a very important role during embryonic development.
Collapse
|
18
|
Fàbrega A, Guyonnet B, Dacheux JL, Gatti JL, Puigmulé M, Bonet S, Pinart E. Expression, immunolocalization and processing of fertilins ADAM-1 and ADAM-2 in the boar (Sus domesticus) spermatozoa during epididymal maturation. Reprod Biol Endocrinol 2011; 9:96. [PMID: 21718510 PMCID: PMC3141649 DOI: 10.1186/1477-7827-9-96] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 06/30/2011] [Indexed: 11/10/2022] Open
Abstract
Fertilin alpha (ADAM-1) and beta (ADAM-2) are integral membrane proteins of the ADAM family that form a fertilin complex involved in key steps of the sperm-oocyte membrane interaction. In the present work, we analyzed the presence of ADAM-1 and ADAM-2 mRNAs, the spermatozoa proteins' processing and their sub-cellular localization in epididymal samples from adult boars. ADAM-1 and ADAM-2 mRNAs were highly produced in the testis, but also in the vas efferens and the epididymis. On immunoblots of sperm extracts, ADAM-1 subunit appeared as a main reactive band of ~50-55 kDa corresponding to occurrence of different isoforms throughout the epididymal duct, especially in the corpus region where isoforms ranged from acidic to basic pI. In contrast, ADAM-2 was detected as several bands of ~90 kDa, ~75 kDa, ~50-55 kDa and ~40 kDa. The intensity of high molecular mass bands decreased progressively in the distal corpus where lower bands were also transiently observed, and only the ~40 kDa was observed in the cauda. The presence of bands of different molecular weights likely results from a proteolytic processing occurring mainly in the testis for ADAM-1, and also throughout the caput epididymis for ADAM-2. Immunolocalization showed that fertilin migrates from the acrosomal region to the acrosomal ridge during the sperm transit from the distal corpus to the proximal cauda. This migration is accompanied by an important change in the extractability of a part of ADAM-1 from the sperm membrane. This suggests that the fertilin surface migration may be triggered by the biochemical changes induced by the epididymal post-translational processing of both ADAM1 and ADAM-2. Different patterns of fertilin immunolocalization then define several populations of spermatozoa in the cauda epididymis. Characterization of such fertilin complex maturation patterns is an important step to develop fertility markers based on epididymal maturation of surface membrane proteins in domestic mammals.
Collapse
Affiliation(s)
- Anna Fàbrega
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Campus Montilivi, s/n, 17071 Girona, Spain
| | - Benoît Guyonnet
- Gamètes Males et Fertilité, Physiologie de la Reproduction et des Comportements, UMR 6175 INRA-CNRS-Université de Tours, 37380 Nouzilly, France
| | - Jean-Louis Dacheux
- Gamètes Males et Fertilité, Physiologie de la Reproduction et des Comportements, UMR 6175 INRA-CNRS-Université de Tours, 37380 Nouzilly, France
| | - Jean-Luc Gatti
- Gamètes Males et Fertilité, Physiologie de la Reproduction et des Comportements, UMR 6175 INRA-CNRS-Université de Tours, 37380 Nouzilly, France
- ESIM, UMR 1301 IBSV INRA-CNRS-Université Nice Sophia Antipolis, 400 route des Chappes, 06903 Sophia Antipolis, France
| | - Marta Puigmulé
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Campus Montilivi, s/n, 17071 Girona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Campus Montilivi, s/n, 17071 Girona, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Campus Montilivi, s/n, 17071 Girona, Spain
| |
Collapse
|
19
|
Endocannabinoids regulate the migration of subventricular zone-derived neuroblasts in the postnatal brain. J Neurosci 2011; 31:4000-11. [PMID: 21411643 DOI: 10.1523/jneurosci.5483-10.2011] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the adult brain, neural stem cells proliferate within the subventricular zone before differentiating into migratory neuroblasts that travel along the rostral migratory stream (RMS) to populate the olfactory bulb with new neurons. Because neuroblasts have been shown to migrate to areas of brain injury, understanding the cues regulating this migration could be important for brain repair. Recent studies have highlighted an important role for endocannabinoid (eCB) signaling in the proliferation of the stem cell population, but it remained to be determined whether this pathway also played a role in cell migration. We now show that mouse migratory neuroblasts express cannabinoid receptors, diacylglycerol lipase α (DAGLα), the enzyme that synthesizes the endocannabinoid 2-arachidonoylglycerol (2-AG), and monoacylglycerol lipase, the enzyme responsible for its degradation. Using a scratch wound assay for a neural stem cell line and RMS explant cultures, we show that inhibition of DAGL activity or CB(1)/CB(2) receptors substantially decreases migration. In contrast, direct activation of cannabinoid receptors or preventing the breakdown of 2-AG increases migration. Detailed analysis of primary neuroblast migration by time-lapse imaging reveals that nucleokinesis, as well as the length and branching of the migratory processes are under dynamic control of the eCB system. Finally, similar effects are observed in vivo by analyzing the morphology of green fluorescent protein-labeled neuroblasts in brain slices from mice treated with CB(1) or CB(2) antagonists. These results describe a novel role for the endocannabinoid system in neuroblast migration in vivo, highlighting its importance in regulating an additional essential step in adult neurogenesis.
Collapse
|
20
|
Sun W, Kim H, Moon Y. Control of neuronal migration through rostral migration stream in mice. Anat Cell Biol 2010; 43:269-79. [PMID: 21267400 PMCID: PMC3026178 DOI: 10.5115/acb.2010.43.4.269] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 12/02/2010] [Accepted: 12/03/2010] [Indexed: 01/18/2023] Open
Abstract
During the nervous system development, immature neuroblasts have a strong potential to migrate toward their destination. In the adult brain, new neurons are continuously generated in the neurogenic niche located near the ventricle, and the newly generated cells actively migrate toward their destination, olfactory bulb, via highly specialized migratory route called rostral migratory stream (RMS). Neuroblasts in the RMS form chains by their homophilic interactions, and the neuroblasts in chains continually migrate through the tunnels formed by meshwork of astrocytes, glial tube. This review focuses on the development and structure of RMS and the regulation of neuroblast migration in the RMS. Better understanding of RMS migration may be crucial for improving functional replacement therapy by supplying endogenous neuronal cells to the injury sites more efficiently.
Collapse
Affiliation(s)
- Woong Sun
- Department of Anatomy and Division of Brain Korea 21 Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
21
|
Lin J, Yan X, Markus A, Redies C, Rolfs A, Luo J. Expression of seven members of the ADAM family in developing chicken spinal cord. Dev Dyn 2010; 239:1246-54. [PMID: 20235233 DOI: 10.1002/dvdy.22272] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The expression patterns of seven members of the ADAM (a disintegrin and metalloprotease) family, including ADAM9, ADAM10, ADAM12, ADAM13, ADAM17, ADAM22, and ADAM23, were analyzed in the developing chicken lumbar spinal cord by in situ hybridization and immunohistochemistry. Results show that each individual ADAM is expressed and regulated spatiotemporally in the lumbar cord and its surrounding tissues. ADAM9, ADAM10, ADAM22, and ADAM23 are expressed predominantly by motoneurons in the motor column and by sensory neurons in the dorsal root ganglia, each with a different expression pattern. ADAM12 and ADAM13 are mainly expressed in the meninges around the lumbar cord and in the condensed sheets of chondroblasts around the vertebrae. ADAM17 expression is strong in the ventricular layer and limited to early stages. The differential expression of the ADAMs in the lumbar cord suggests that the ADAMs play a regulatory role in development of the spinal cord.
Collapse
Affiliation(s)
- Juntang Lin
- Institute of Anatomy I, Friedrich Schiller University Jena, Jena, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Marins M, Xavier AL, Viana NB, Fortes FS, Fróes MM, Menezes JR. Gap junctions are involved in cell migration in the early postnatal subventricular zone. Dev Neurobiol 2009; 69:715-30. [DOI: 10.1002/dneu.20737] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
ADAM function in embryogenesis. Semin Cell Dev Biol 2008; 20:153-63. [PMID: 18935966 DOI: 10.1016/j.semcdb.2008.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/22/2008] [Accepted: 09/24/2008] [Indexed: 12/22/2022]
Abstract
Cleavage of proteins inserted into the plasma membrane (shedding) is an essential process controlling many biological functions including cell signaling, cell adhesion and migration as well as proliferation and differentiation. ADAM surface metalloproteases have been shown to play an essential role in these processes. Gene inactivation during embryonic development have provided evidence of the central role of ADAM proteins in nematodes, flies, frogs, birds and mammals. The relative contribution of four subfamilies of ADAM proteins to developmental processes is the focus of this review.
Collapse
|
24
|
Abstract
The ADAMs (a disintegrin and metalloproteinase) are a fascinating family of transmembrane and secreted proteins with important roles in regulating cell phenotype via their effects on cell adhesion, migration, proteolysis and signalling. Though all ADAMs contain metalloproteinase domains, in humans only 13 of the 21 genes in the family encode functional proteases, indicating that at least for the other eight members, protein–protein interactions are critical aspects of their biological functions. The functional ADAM metalloproteinases are involved in “ectodomain shedding” of diverse growth factors, cytokines, receptors and adhesion molecules. The archetypal activity is shown by ADAM-17 (tumour necrosis factor-α convertase, TACE), which is the principal protease involved in the activation of pro-TNF-α, but whose sheddase functions cover a broad range of cell surface molecules. In particular, ADAM-17 is required for generation of the active forms of Epidermal Growth Factor Receptor (EGFR) ligands, and its function is essential for the development of epithelial tissues. Several other ADAMs have important sheddase functions in particular tissue contexts. Another major family member, ADAM-10, is a principal player in signalling via the Notch and Eph/ephrin pathways. For a growing number of substrates, foremost among them being Notch, cleavage by ADAM sheddases is essential for their subsequent “regulated intramembrane proteolysis” (RIP), which generates cleaved intracellular domains that translocate to the nucleus and regulate gene transcription. Several ADAMs play roles in spermatogenesis and sperm function, potentially by effecting maturation of sperm and their adhesion and migration in the uterus. Other non-catalytic ADAMs function in the CNS via effects on guidance mechanisms. The ADAM family are thus fundamental to many control processes in development and homeostasis, and unsurprisingly they are also linked to pathological states when their functions are dysregulated, including cancer, cardiovascular disease, asthma, Alzheimer’s disease. This review will provide an overview of current knowledge of the human ADAMs, discussing their structure, function, regulation and disease involvement.
Collapse
Affiliation(s)
- Dylan R Edwards
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | | | | |
Collapse
|