1
|
Pereira EN, da Silva Arêas FZ, Neves Tavares SRS, Monteiro BC, Dantas ENT, Freire RC, da Luz Goulart C, de Almeida Val F, Henriques J, Arêas GPT. The acute effect of bilateral cathodic transcranial direct current stimulation on respiratory muscle strength and endurance. Respir Physiol Neurobiol 2025; 332:104382. [PMID: 39689738 DOI: 10.1016/j.resp.2024.104382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024]
Abstract
INTRODUCTION Transcranial direct current stimulation (tDCS) is a non-invasive technique with therapeutic potential, especially in respiratory muscle training (RMT) in pathological conditions such as chronic obstructive pulmonary disease and heart failure. OBJECTIVE To evaluate the effect of bilateral cathodic tDCS on respiratory muscle strength and endurance in healthy young and elderly women. METHODS An experimental, randomized study with 80 participants divided into young and old women, subdivided into intervention and sham control groups. The participants were evaluated by spirometry and dynamic muscle strength tests before and after the one session intervention. tDCS was applied with cathode electrodes positioned bilaterally in the motor area. RESULTS The elderly women in the intervention group showed significant improvement in dynamic inspiratory muscle strength (S-Index) and dominant hand strength, with moderate to large effect sizes. The young women showed a significant increase only in the strength of the dominant hand, with no improvement in inspiratory muscle strength. There were no significant differences in ventilatory parameters, including Maximal Ventilatory Capacity, in any of the age groups. CONCLUSION Bilateral cathodic tDCS was effective in increasing dynamic inspiratory muscle strength and dominant hand strength in elderly women, with more pronounced effects compared to young women. The technique did not produce significant changes in maximal ventilatory capacity in any of the age groups, suggesting that the response to tDCS may vary with age, being more beneficial in elderly women.
Collapse
Affiliation(s)
- Elder Nascimento Pereira
- Biology Science Institute, Universidade Federal do Amazonas, Manaus, Brasil; Bioscience Department, Universidade de Coimbra, Coimbra, Portugal
| | | | | | - Beatriz Campelo Monteiro
- Physical Education and Physical Therapy Faculty, Universidade Federal do Amazonas, Manaus, Brasil
| | | | - Renato Campos Freire
- Physical Education and Physical Therapy Faculty, Universidade Federal do Amazonas, Manaus, Brasil; Human Movement Science Graduation, Universidade Federal do Amazonas, Manaus, Brasil
| | | | - Fernando de Almeida Val
- Instituto Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brasil
| | - Jorge Henriques
- Habilitation at Informatics Engineering Department, Universidade de Coimbra, Coimbra, Portugal
| | - Guilherme Peixoto Tinoco Arêas
- Human Movement Science Graduation, Universidade Federal do Amazonas, Manaus, Brasil; Physiological Science Department, Universidade Federal do Amazonas, Manaus, Brasil.
| |
Collapse
|
2
|
Greenwell D, Nishio H, Feigh J, McCallion Q, Poston B, Riley ZA. The effects of bilateral M1 anodal tDCS on corticomotor excitability and acquisition the of a bimanual videogame skill. Neuroscience 2025; 568:231-239. [PMID: 39837365 DOI: 10.1016/j.neuroscience.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/20/2024] [Accepted: 01/11/2025] [Indexed: 01/23/2025]
Abstract
Most activities of daily life involve some degree of coordinated, bimanual activity from the upper limbs. However, compared to single-handed movements, bimanual movements are processed, learned, and controlled from both hemispheres of the brain. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that enhances motor learning by modulating the activity of movement-associated brain regions. While effective in simple, single-handed tasks, tDCS has shown mixed results in complex bimanual tasks. This study investigated the effects of bilateral M1 anodal tDCS (biM1 a-tDCS) on learning and cortical excitability during a customized, bimanual racing videogame task. Thirty-six right-handed adults completed three lab visits (∼48 h apart), practicing the task while receiving either biM1 a-tDCS or SHAM tDCS. Cortical excitability was measured with transcranial magnetic stimulation (TMS) and electromyography (EMG) before and after the first visit. Though all subjects demonstrated improvements over the course of the study, our analyses revealed significantly faster rates of learning on days 1 & 2, but not day 3, of practice in subjects receiving biM1 a-tDCS. Moreover, perhaps due to differences in baseline gaming experience and aptitude, this effect appeared to be stronger in female subjects. Interestingly, no significant differences in corticomotor excitability were observed between conditions. Though biM1 a-tDCS did not appear to impact corticomotor excitability, our results contribute to the growing body of evidence which seems to suggest that multifocal tDCS protocols may be superior to traditional, single-site tDCS for the enhancement of bimanual motor learning.
Collapse
Affiliation(s)
- Davin Greenwell
- School of Health and Human Sciences, Indiana University Indianapolis Indianapolis IN USA.
| | - Hayami Nishio
- Department of Human Physiology, University of Oregon Eugene OR USA
| | - Jacob Feigh
- School of Health and Human Sciences, Indiana University Indianapolis Indianapolis IN USA
| | - Quinn McCallion
- School of Health and Human Sciences, Indiana University Indianapolis Indianapolis IN USA
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas Las Vegas NV USA
| | - Zachary A Riley
- School of Health and Human Sciences, Indiana University Indianapolis Indianapolis IN USA
| |
Collapse
|
3
|
Hanna M, Kobaïter Maarrawi S, Abdul Malak R, Bou Merhy RM, Maarrawi J. Mu down regulation EEG-neurofeedback training combined to motor imagery facilitates early consolidation in a sequential finger tapping task. J Neural Eng 2024; 21:066026. [PMID: 39641438 DOI: 10.1088/1741-2552/ad8efb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
Objective.Motor imagery (MI) has demonstrated positive effects on motor performance and triggers activation in the motor cortex (MC). EEG-Neurofeedback (EEG-NF) is a neuromodulation technique that provides real-time feedback on one's brain activity, enabling self-regulation of brain states. While there is increasing evidence of humans controlling the activity of various brain networks, including the MC, through EEG-NF, the tangible benefits of this self-regulation on motor performance remain uncertain. This study investigates the potential benefits of EEG-NF training in explicit learning of a sequential movement, in comparison to MI training and to a combined EEG-NF and MI training.Approach.Ninety-one right-handed healthy adults were randomly assigned to one of four groups (a)NF(n= 24), (b)MI(n= 22), (c)MI + NF(n= 23) and (d)control(n= 22). Participants performed a sequential finger tapping task before and after (immediately, 20 min and 24 h) a single 30 min training session. Motor performance, movement speed and event related desynchronization data were analyzed.Main results.MI training led to a better motor performance compared to control condition immediately after training that was sustained at the 20 min retest time point (p= 0.02 and 0.05). In contrast, EEG-NF training alone did not yield better motor performance compared to control condition at any time-point (p> .05). Remarkably, only the combination of both trainings led to superior motor performance 24 h after training in comparison to control group (p= 0.02). Additionally, all experimental groups successfully decreased mu rhythm amplitude throughout most of the training.Significance.Combined EEG-NF and MI training appears particularly promising for enhancing motor consolidation holding the potential to advance rehabilitation approaches.
Collapse
Affiliation(s)
- Mira Hanna
- Laboratory of Research in Neuroscience (LAREN), Pôle Technologie Santé (PTS), Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
- Institute of Psychomotor Therapy (IPM), Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Sandra Kobaïter Maarrawi
- Laboratory of Research in Neuroscience (LAREN), Pôle Technologie Santé (PTS), Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
- Institute of Psychomotor Therapy (IPM), Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Rami Abdul Malak
- Laboratory of Research in Neuroscience (LAREN), Pôle Technologie Santé (PTS), Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Rose Mery Bou Merhy
- Institute of Psychomotor Therapy (IPM), Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Joseph Maarrawi
- Laboratory of Research in Neuroscience (LAREN), Pôle Technologie Santé (PTS), Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
- Department of Neurosurgery, Hôtel-Dieu de France University Medical Center, Beirut, Lebanon
| |
Collapse
|
4
|
Wilkins EW, Young RJ, Houston D, Kawana E, Lopez Mora E, Sunkara MS, Riley ZA, Poston B. Non-Dominant Hemisphere Excitability Is Unaffected during and after Transcranial Direct Current Stimulation of the Dominant Hemisphere. Brain Sci 2024; 14:694. [PMID: 39061434 PMCID: PMC11274959 DOI: 10.3390/brainsci14070694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) increases primary motor cortex (M1) excitability and improves motor performance when applied unilaterally to the dominant hemisphere. However, the influence of tDCS on contralateral M1 excitability both during and after application has not been quantified. The purpose was to determine the influence of tDCS applied to the dominant M1 on the excitability of the contralateral non-dominant M1. This study employed a double-blind, randomized, SHAM-controlled, within-subject crossover experimental design. Eighteen young adults performed two experimental sessions (tDCS, SHAM) in counterbalanced order separated by a one-week washout. Transcranial magnetic stimulation (TMS) was used to quantify the excitability of the contralateral M1 to which anodal tDCS was applied for 20 min with a current strength of 1 mA. Motor evoked potential (MEP) amplitudes were assessed in 5 TMS test blocks (Pre, D5, D10, D15, and Post). The Pre and Post TMS test blocks were performed immediately before and after tDCS application, whereas the TMS test blocks performed during tDCS were completed at the 5, 10, and 15 min stimulation timepoints. MEPs were analyzed with a 2 condition (tDCS, SHAM) × 5 test (Pre, D5, D10, D15, Post) within-subject ANOVA. The main effect for condition (p = 0.213), the main effect for test (p = 0.502), and the condition × test interaction (p = 0.860) were all not statistically significant. These results indicate that tDCS does not modulate contralateral M1 excitability during or immediately after application, at least under the current set of common tDCS parameters of stimulation.
Collapse
Affiliation(s)
- Erik W. Wilkins
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV 89154, USA;
- Interdisciplinary Ph.D. Program in Neuroscience, University of Nevada, Las Vegas, NV 89154, USA;
| | - Richard J. Young
- Interdisciplinary Ph.D. Program in Neuroscience, University of Nevada, Las Vegas, NV 89154, USA;
| | - Daniel Houston
- School of Medicine, University of Nevada, Las Vegas, NV 89154, USA; (D.H.); (E.K.); (E.L.M.)
| | - Eric Kawana
- School of Medicine, University of Nevada, Las Vegas, NV 89154, USA; (D.H.); (E.K.); (E.L.M.)
| | - Edgar Lopez Mora
- School of Medicine, University of Nevada, Las Vegas, NV 89154, USA; (D.H.); (E.K.); (E.L.M.)
| | - Meghana S. Sunkara
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Zachary A. Riley
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV 89154, USA;
- Interdisciplinary Ph.D. Program in Neuroscience, University of Nevada, Las Vegas, NV 89154, USA;
| |
Collapse
|
5
|
Meek AW, Greenwell DR, Nishio H, Poston B, Riley ZA. Anodal M1 tDCS enhances online learning of rhythmic timing videogame skill. PLoS One 2024; 19:e0295373. [PMID: 38870202 PMCID: PMC11175489 DOI: 10.1371/journal.pone.0295373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) has been shown to modify excitability of the primary motor cortex (M1) and influence online motor learning. However, research on the effects of tDCS on motor learning has focused predominantly on simplified motor tasks. The purpose of the present study was to investigate whether anodal stimulation of M1 over a single session of practice influences online learning of a relatively complex rhythmic timing video game. Fifty-eight healthy young adults were randomized to either a-tDCS or SHAM conditions and performed 2 familiarization blocks, a 20-minute 5 block practice period while receiving their assigned stimulation, and a post-test block with their non-dominant hand. To assess performance, a performance index was calculated that incorporated timing accuracy elements and incorrect key inputs. The results showed that M1 a-tDCS enhanced the learning of the video game based skill more than SHAM stimulation during practice, as well as overall learning at the post-test. These results provide evidence that M1 a-tDCS can enhance acquisition of skills where quality or success of performance depends on optimized timing between component motions of the skill, which could have implications for the application of tDCS in many real-world contexts.
Collapse
Affiliation(s)
- Anthony W. Meek
- School of Health and Human Sciences, Indiana University Indianapolis, Indianapolis, IN, United States of America
| | - Davin R. Greenwell
- School of Health and Human Sciences, Indiana University Indianapolis, Indianapolis, IN, United States of America
| | - Hayami Nishio
- Department of Human Physiology, University of Oregon, Eugene, WA, United States of America
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States of America
| | - Zachary A. Riley
- School of Health and Human Sciences, Indiana University Indianapolis, Indianapolis, IN, United States of America
| |
Collapse
|
6
|
Firouzi M, Baetens K, Swinnen E, Baeken C, Van Overwalle F, Deroost N. Does transcranial direct current stimulation of the primary motor cortex improve implicit motor sequence learning in Parkinson's disease? J Neurosci Res 2024; 102:e25311. [PMID: 38400585 DOI: 10.1002/jnr.25311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
Implicit motor sequence learning (IMSL) is a cognitive function that is known to be associated with impaired motor function in Parkinson's disease (PD). We previously reported positive effects of transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) on IMSL in 11 individuals with PD with mild cognitive impairments (MCI), with the largest effects occurring during reacquisition. In the present study, we included 35 individuals with PD, with (n = 15) and without MCI (n = 20), and 35 age- and sex-matched controls without PD, with (n = 13) and without MCI (n = 22). We used mixed-effects models to analyze anodal M1 tDCS effects on acquisition (during tDCS), short-term (five minutes post-tDCS) and long-term reacquisition (one-week post-tDCS) of general and sequence-specific learning skills, as measured by the serial reaction time task. At long-term reacquisition, anodal tDCS resulted in smaller general learning effects compared to sham, only in the PD group, p = .018, possibly due to floor effects. Anodal tDCS facilitated the acquisition of sequence-specific learning (M = 54.26 ms) compared to sham (M = 38.98 ms), p = .003, regardless of group (PD/controls). Further analyses revealed that this positive effect was the largest in the PD-MCI group (anodal: M = 69.07 ms; sham: M = 24.33 ms), p < .001. Although the observed effect did not exceed the stimulation period, this single-session tDCS study confirms the potential of tDCS to enhance IMSL, with the largest effects observed in patients with lower cognitive status. These findings add to the body of evidence that anodal tDCS can beneficially modulate the abnormal basal ganglia network activity that occurs in PD.
Collapse
Affiliation(s)
- Mahyar Firouzi
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Kris Baetens
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Eva Swinnen
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Chris Baeken
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
- Department of Psychiatry and Medical Psychology, Ghent University, University Hospital Ghent (UZ Ghent), Ghent, Belgium
- Department of Psychiatry, Vrije Universiteit Brussel (VUB), Faculty of Medicine and Pharmacy, University Hospital Brussel (UZ Brussel), Brussels, Belgium
| | - Frank Van Overwalle
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Natacha Deroost
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| |
Collapse
|
7
|
Qurat-ul-ain, Ahmad Z, Ilyas S, Ishtiaq S, Tariq I, Nawaz Malik A, Liu T, Wang J. Comparison of a single session of tDCS on cerebellum vs. motor cortex in stroke patients: a randomized sham-controlled trial. Ann Med 2023; 55:2252439. [PMID: 38100750 PMCID: PMC10732189 DOI: 10.1080/07853890.2023.2252439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/20/2023] [Indexed: 12/17/2023] Open
Abstract
OBJECTIVE The purpose of this study was to determine whether a single session of trans-cranial direct current stimulation (tDCS) of the cerebellum and M1 has any advantages over one another or sham stimulation in terms of balance, gait and lower limb function. METHODS A total of 66 patients who had experienced their first ever stroke were recruited into three groups for this double-blinded, parallel, randomized, sham-controlled trial: cerebellar stimulation group (CbSG), M1 stimulation group (MSG) and sham stimulation group (SSG). A single session of anodal tDCS with an intensity of 2 mA for a duration of 20 min was administered in addition to gait and balance training based on virtual reality using an Xbox 360 with Kinect. Balance, gait, cognition and risk of fall were assessed using outcome measures before intervention (T0), immediately after intervention (T1) and an hour after intervention (T2). RESULTS Across group analysis of all outcome measures showed statistically non-significant results (p > .05) except for Six Minute Walk Test (p value T0 = .003, p value T1 = .025, p value T2 = .016). The training effect difference showed a significant difference in balance, gait and cognition, as well as cerebral and cerebellar stimulation, in comparison to sham stimulation (p < .05). The risk of falls remained unaffected by any stimulation (p > .05). CONCLUSIONS In addition to Xbox Kinect-based rehabilitation training, a single session of anodal tDCS to the M1 or cerebellum may be beneficial for improving lower limb function, balance and gait performance.
Collapse
Affiliation(s)
- Qurat-ul-ain
- School of Life Science and Technology, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, PR China
- National Engineering Research Center for Healthcare Devices, Guangzhou, PR China
- The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an, PR China
| | - Zafran Ahmad
- Department of Logistics Engineering, Kunming University of Science & Technology, Kunming, China
| | - Saad Ilyas
- Faculty of Computing, Capital University of Science and Technology, Islamabad, Pakistan
- Department of Computing, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Summaiya Ishtiaq
- Faculty of Rehabilitation & Allied Health Sciences, Riphah College of Rehabilitation & Allied Health Sciences, Islamabad, Pakistan
| | - Iqbal Tariq
- Faculty of Rehabilitation & Allied Health Sciences, Riphah College of Rehabilitation & Allied Health Sciences, Islamabad, Pakistan
| | - Arshad Nawaz Malik
- Faculty of Rehabilitation & Allied Health Sciences, Riphah College of Rehabilitation & Allied Health Sciences, Islamabad, Pakistan
| | - Tian Liu
- School of Life Science and Technology, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, PR China
- National Engineering Research Center for Healthcare Devices, Guangzhou, PR China
- The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an, PR China
| | - Jue Wang
- School of Life Science and Technology, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, PR China
- National Engineering Research Center for Healthcare Devices, Guangzhou, PR China
- The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an, PR China
| |
Collapse
|
8
|
Bhat P, Kumaran SS, Goyal V, Srivastava AK, Behari M. Effect of rTMS at SMA on task-based connectivity in PD. Behav Brain Res 2023; 452:114602. [PMID: 37516209 DOI: 10.1016/j.bbr.2023.114602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) can aid in alleviating clinical symptoms in Parkinson's disease (PD). To better understand the neural mechanism of the intervention, neuroimaging modalities have been used to assess the effects of rTMS. OBJECTIVE To study the changes in cortical connectivity and motor performance with rTMS at supplementary motor area (SMA) in PD using clinical assessment tools and task-based functional MRI. METHODOLOGY 3000 pulses at 5 Hz TMS were delivered at the left SMA once a week for a total of 8 consecutive weeks in 4 sham sessions (week 1-4) and 4 real sessions (week 5 to week 8) in 16 subjects with PD. The outcomes were assessed with UPDRS, PDQ 39 and task-based fMRI at baseline, after sham sessions at week 4, and after real sessions at week 8. Visuo-spatial functional MRI task along with T1 weighted scans (at 3 Tesla) were used to evaluate the effects of rTMS intervention. Multivariate pattern analysis (MVPA) was used to analyse task-based fMRI using Conn toolbox. RESULTS Improvements (p < 0.05) were observed in UPDRS II, III, Mobility and ADL of PDQ39 after real sessions of rTMS. MVPA of task-based connectivity revealed clusters of activation in right hemispheric precentral area, superior frontal gyrus, middle frontal gyrus, thalamus and cerebellum (cluster threshold pFDR=0.001). CONCLUSIONS Weekly rTMS sessions at SMA incurred clinical motor benefits as revealed by an improvement in clinical scales and dexterity performance. These benefits could be attributed to changes in connectivity remote brain regions in the motor network.
Collapse
Affiliation(s)
- Priyanka Bhat
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India
| | - S Senthil Kumaran
- Department of NMR, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India.
| | - Vinay Goyal
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India
| | - Achal K Srivastava
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India
| | - Madhuri Behari
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
9
|
Qurat-ul-ain, Ahmad Z, Ishtiaq S, Ilyas S, Shahid I, Tariq I, Malik AN, Liu T, Wang J. Short term effects of anodal cerebellar vs. anodal cerebral transcranial direct current stimulation in stroke patients, a randomized control trial. Front Neurosci 2022; 16:1035558. [PMID: 36507323 PMCID: PMC9730515 DOI: 10.3389/fnins.2022.1035558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022] Open
Abstract
Background Balance and gait impairments are major motor deficits in stroke patients that require intensive neuro-rehabilitation. Anodal transcranial direct current stimulation is a neuro-modulatory technique recently used in stroke patients for balance and gait improvement. Majority of studies focusing on tDCS have assessed its effects on cerebral motor cortex and more recently cerebellum as well but to our best knowledge the comparison of stimulating these two regions in stroke patients is not investigated so far. Objective The current study aimed to compare the effect of anodal transcranial direct current stimulation on cerebellar and cerebral motor cortex M1 in stroke patients. Materials and methods This double-blinded, parallel, randomized, sham controlled trial included 66 patients with a first-ever ischemic stroke were recruited into three groups; Cerebellar stimulation group (CbSG), M1 Stimulation Group (MSG), and Sham stimulation group (SSG). A total of three sessions of anodal transcranial direct current stimulation were given on consecutive days in addition to non-immersive virtual reality using Xbox 360 with kinect. Anodal tDCS with an intensity of 2 mA was applied for a duration of 20 min. Primary outcome measures berg balance scale (BBS), timed up and go test (TUG), BESTest Balance Evaluation-Systems Test (BESTest) and secondary outcomes measures montreal cognitive assessment (MoCA), mini mental state examination (MMSE), Johns Hopkins Fall Risk Assessment Tool (JHFRAT), twenty five feet walk test (25FWT), six minute walk test (6MWT), and tDCS Adverse Effects was assessed before initiation of treatment (T0) and at the end of third session of stimulation (T1). Results The results of between group's analysis using mean difference showed a significant difference with p-value <0.05 for balance (BBS, TUG, BESTest), walking ability (6MWT, 25FWT), risk of fall (JHFRAT). Cognitive function did not show any significant change among the groups for MoCA with p-value >0.05 but MMSE was improved having significant p-value (p = 0.013). However, 6MWT and 25FWT showed non-significant results for both between group and within group analysis. In pairwise comparison both the cerebellar and cerebral stimulation groups showed Significant difference with p-value <0.05 in comparison to sham stimulation; BBS (cerebellar vs. sham p ≤ 0.001, cerebral vs. sham p = 0.011), TUG (cerebellar vs. sham p = 0.001, cerebral vs. sham p = 0.041), Bestest (cerebellar vs. sham p = 0.007, cerebral vs. sham p = 0.003). Whereas for JHFRAT only cerebellar stimulation in comparison to sham and motor cortex stimulation showed significant improvements (cerebellar vs. M1 p = 0.037, cerebellar vs. sham p = 0.037). MMSE showed significant improvement in M1 stimulation (M1 vs. cerebellar p = 0.036, M1 vs. sham p = 0.011). Conclusion Findings of the study suggest anodal tDCS stimulation of the cerebellum and cerebral motor cortex both improves gait, balance and risk of fall in stroke patients. However, both stimulation sites do not induce any notable improvement in cognitive function. Effects of both stimulation sites have similar effects on mobility in stroke patients.
Collapse
Affiliation(s)
- Qurat-ul-ain
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China,National Engineering Research Center for Healthcare Devices Guangzhou, Guangzhou, Guangdong, China,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs Xi’an, Xi’an, Shaanxi, China
| | - Zafran Ahmad
- School of Economics and Management, Yunnan University, Kunming, China
| | - Summaiya Ishtiaq
- Department of Rehabilitation Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Saad Ilyas
- Faculty of Computing, Capital University of Science and Technology, Islamabad, Pakistan
| | - Irum Shahid
- Institute of Physical Medical and Rehabilitation, Khyber Medical University, Peshawar, Pakistan
| | - Iqbal Tariq
- Faculty of Rehabilitation and Allied Health Sciences, Riphah College of Rehabilitation and Allied Health Sciences, Islamabad, Pakistan
| | - Arshad Nawaz Malik
- Faculty of Rehabilitation and Allied Health Sciences, Riphah College of Rehabilitation and Allied Health Sciences, Islamabad, Pakistan
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China,National Engineering Research Center for Healthcare Devices Guangzhou, Guangzhou, Guangdong, China,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs Xi’an, Xi’an, Shaanxi, China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China,National Engineering Research Center for Healthcare Devices Guangzhou, Guangzhou, Guangdong, China,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs Xi’an, Xi’an, Shaanxi, China,*Correspondence: Jue Wang,
| |
Collapse
|
10
|
Kunaratnam N, Saumer TM, Kuan G, Holmes Z, Swarbrick D, Kiss A, Mochizuki G, Chen JL. Transcranial direct current stimulation leads to faster acquisition of motor skills, but effects are not maintained at retention. PLoS One 2022; 17:e0269851. [PMID: 36099260 PMCID: PMC9469971 DOI: 10.1371/journal.pone.0269851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/29/2022] [Indexed: 11/28/2022] Open
Abstract
Practice is required to improve one’s shooting technique in basketball or to play a musical instrument well. Learning these motor skills may be further enhanced by transcranial direct current stimulation (tDCS). We aimed to investigate whether tDCS leads to faster attainment of a motor skill, and to confirm prior work showing it improves skill acquisition and retention performance. Fifty-two participants were tested; half received tDCS with the anode on primary motor cortex and cathode on the contralateral forehead while concurrently practicing a sequential visuomotor isometric pinch force task on Day 1, while the other half received sham tDCS during practice. On Day 2, retention of the skill was tested. Results from a Kaplan-Meier survival analysis showed that participants in the anodal group attained a pre-defined target level of skill faster than participants in the sham group (χ2 = 9.117, p = 0.003). Results from a nonparametric rank-based regression analysis showed that the rate of improvement was greater in the anodal versus sham group during skill acquisition (F(1,249) = 5.90, p = 0.016), but there was no main effect of group or time. There was no main effect of group or time, or group by time interaction when comparing performance at the end of acquisition to retention. These findings suggest anodal tDCS improves performance more quickly during skill acquisition but does not have additional benefits on motor learning after a period of rest.
Collapse
Affiliation(s)
- Nirsan Kunaratnam
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Tyler M. Saumer
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Giovanna Kuan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Zacharie Holmes
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Dana Swarbrick
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Alex Kiss
- Evaluative Clinical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - George Mochizuki
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Joyce L. Chen
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
11
|
Nooristani M, Augereau T, Moïn-Darbari K, Bacon BA, Champoux F. Using Transcranial Electrical Stimulation in Audiological Practice: The Gaps to Be Filled. Front Hum Neurosci 2021; 15:735561. [PMID: 34887736 PMCID: PMC8650084 DOI: 10.3389/fnhum.2021.735561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022] Open
Abstract
The effects of transcranial electrical stimulation (tES) approaches have been widely studied for many decades in the motor field, and are well known to have a significant and consistent impact on the rehabilitation of people with motor deficits. Consequently, it can be asked whether tES could also be an effective tool for targeting and modulating plasticity in the sensory field for therapeutic purposes. Specifically, could potentiating sensitivity at the central level with tES help to compensate for sensory loss? The present review examines evidence of the impact of tES on cortical auditory excitability and its corresponding influence on auditory processing, and in particular on hearing rehabilitation. Overall, data strongly suggest that tES approaches can be an effective tool for modulating auditory plasticity. However, its specific impact on auditory processing requires further investigation before it can be considered for therapeutic purposes. Indeed, while it is clear that electrical stimulation has an effect on cortical excitability and overall auditory abilities, the directionality of these effects is puzzling. The knowledge gaps that will need to be filled are discussed.
Collapse
Affiliation(s)
- Mujda Nooristani
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Thomas Augereau
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Karina Moïn-Darbari
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | | | - François Champoux
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| |
Collapse
|
12
|
Pinto EF, Gupta A, Kulkarni GB, Andrade C. A Randomized, Double-Blind, Sham-Controlled Study of Transcranial Direct Current Stimulation as an Augmentation Intervention for the Attenuation of Motor Deficits in Patients With Stroke. J ECT 2021; 37:281-290. [PMID: 33840803 DOI: 10.1097/yct.0000000000000769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Most studies of transcranial direct current stimulation (tDCS) for motor deficits in patients with stroke administered few sessions of tDCS and with low current amplitude. METHODS During 2015 to 2019, we randomized 60 inpatients with ischemic/hemorrhagic stroke and motor deficits to true or sham tDCS. Transcranial direct current stimulation was administered at 2- to 3-mA current strength, twice daily, 6 days a week, for 2 weeks; anode and cathode were placed over ipsilesional and contralesional motor cortices, respectively. All patients received individualized motor and cognitive rehabilitation. Motor outcomes were assessed 1 day before and 1 day after the tDCS course using the Fugl-Meyer Assessment, the Jebson-Taylor Hand Function Test, and the Barthel index (all coprimary outcomes). Mood and cognition were also assessed. Motor outcomes were compared between groups using age, baseline scores, and latency to treatment as covariates. The study was prospectively registered (CTRI/2017/01/007733). RESULTS The mean age of the patients was 46.9 years. The sample was 73.3% male. Six patients did not complete the study. The covariates were significantly related to motor outcomes. Although all patients showed motor improvements, after adjusting for covariates, tDCS was not superior to sham treatment on any motor, mood, or cognitive outcome. Laterality of hemispheric lesion influenced spatial but not motor outcomes with tDCS. One true tDCS patient developed blistering under the anode and was withdrawn from the study; 3 more reported transient itching during sessions. CONCLUSIONS An intensive course of tDCS, as delivered in this study, does not improve motor, mood, and cognitive outcomes in ischemic/hemorrhagic stroke in patients undergoing individualized rehabilitation. The study provides important leads for directions for future research.
Collapse
|
13
|
Firouzi M, Baetens K, Swinnen E, Baeken C, Van Overwalle F, Deroost N. Registered report: Does transcranial direct current stimulation of the primary motor cortex improve implicit motor sequence learning in Parkinson's disease? J Neurosci Res 2021; 99:2406-2415. [PMID: 34181300 DOI: 10.1002/jnr.24908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 03/10/2021] [Accepted: 05/06/2021] [Indexed: 11/10/2022]
Abstract
Implicit motor sequence learning (IMSL) is a cognitive function that is known to be directly associated with impaired motor function in Parkinson's disease (PD). Research on healthy young participants shows the potential for transcranial direct current stimulation (tDCS), a noninvasive brain stimulation technique, over the primary motor cortex (M1) to enhance IMSL. tDCS has direct effects on the underlying cortex, but also induces distant (basal ganglia) network effects-hence its potential value in PD, a prime model of basal ganglia dysfunction. To date, only null effects have been reported in persons with PD. However, these studies did not determine the reacquisition effects, although previous studies in healthy young adults suggest that tDCS specifically exerts its beneficial effects on IMSL on reacquisition rather than acquisition. In the current study, we will therefore establish possible reacquisition effects, which are of a particular interest, as long-term effects are vital for the successful functional rehabilitation of persons with PD. Using a sham-controlled, counterbalanced design, we will investigate the potential of tDCS delivered over M1 to enhance IMSL, as measured by the serial reaction time task, in persons with PD and a neurologically healthy age- and sex-matched control (HC) group. Multilevel Mixed Models will be implemented to analyze the sequence-specific aspect of IMSL (primary outcome) and general learning (secondary outcome). We will determine not only the immediate effects that may occur concurrently with the application of tDCS but also the short-term (5 min post-tDCS) and long-term (1 week post-tDCS) reacquisition effects.
Collapse
Affiliation(s)
- Mahyar Firouzi
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium.,Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Kris Baetens
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Eva Swinnen
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Chris Baeken
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium.,Department of Psychiatry and Medical Psychology, Ghent University, University Hospital Ghent (UZ Ghent), Ghent, Belgium.,Department of Psychiatry, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), University Hospital Brussel (UZ Brussel), Brussels, Belgium
| | - Frank Van Overwalle
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Natacha Deroost
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| |
Collapse
|
14
|
Lerud KD, Vines BW, Shinde AB, Schlaug G. Modulating short-term auditory memory with focal transcranial direct current stimulation applied to the supramarginal gyrus. Neuroreport 2021; 32:702-710. [PMID: 33852539 PMCID: PMC8085037 DOI: 10.1097/wnr.0000000000001647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous studies have shown that transcranial direct current stimulation (tDCS) can affect performance by decreasing regional excitability in a brain region that contributes to the task of interest. To our knowledge, no research to date has found both enhancing and diminishing effects on performance, depending upon which polarity of the current is applied. The supramarginal gyrus (SMG) is an ideal brain region for testing tDCS effects because it is easy to identify using the 10-20 electroencephalography coordinate system, and results of neuroimaging studies have implicated the left SMG in short-term memory for phonological and nonphonological sounds. In the present study, we found that applying tDCS to the left SMG affected pitch memory in a manner that depended upon the polarity of stimulation: cathodal tDCS had a negative impact on performance whereas anodal tDCS had a positive impact. These effects were significantly different from sham stimulation, which did not influence performance; they were also specific to the left hemisphere - no effect was found when applying cathodal stimulation to the right SMG - and were unique to pitch memory as opposed to memory for visual shapes. Our results provide further evidence that the left SMG is a nodal point for short-term auditory storage and demonstrate the potential of tDCS to influence cognitive performance and to causally examine hypotheses derived from neuroimaging studies.
Collapse
Affiliation(s)
- Karl D. Lerud
- Department of Neurology and Pioneer Valley Life Sciences Institute, Baystate Medical Center – UMass Medical School, Springfield, MA, USA
| | - Bradley W. Vines
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Anant B. Shinde
- Department of Neurology and Pioneer Valley Life Sciences Institute, Baystate Medical Center – UMass Medical School, Springfield, MA, USA
- Department of Biomedical Engineering and Institute of Applied Life Sciences, UMass Amherst, Amherst, MA, USA
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Gottfried Schlaug
- Department of Neurology and Pioneer Valley Life Sciences Institute, Baystate Medical Center – UMass Medical School, Springfield, MA, USA
- Department of Biomedical Engineering and Institute of Applied Life Sciences, UMass Amherst, Amherst, MA, USA
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Shinde AB, Lerud KD, Munsch F, Alsop DC, Schlaug G. Effects of tDCS dose and electrode montage on regional cerebral blood flow and motor behavior. Neuroimage 2021; 237:118144. [PMID: 33991697 PMCID: PMC8653867 DOI: 10.1016/j.neuroimage.2021.118144] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/04/2022] Open
Abstract
We used three dose levels (Sham, 2 mA, and 4 mA) and two different electrode montages (unihemispheric and bihemispheric) to examine DOSE and MONTAGE effects on regional cerebral blood flow (rCBF) as a surrogate marker of neural activity, and on a finger sequence task, as a surrogate behavioral measure drawing on brain regions targeted by transcranial direct current stimulation (tDCS). We placed the anodal electrode over the right motor region (C4) while the cathodal or return electrode was placed either over a left supraorbital region (unihemispheric montage) or over the left motor region (C3 in the bihemispheric montage). Performance changes in the finger sequence task for both hands (left hand: p = 0.0026, and right hand: p = 0.0002) showed a linear tDCS dose response but no montage effect. rCBF in the right hemispheric perirolandic area increased with dose under the anodal electrode (p = 0.027). In contrast, in the perirolandic ROI in the left hemisphere, rCBF showed a trend to increase with dose (p = 0.053) and a significant effect of montage (p = 0.00004). The bihemispheric montage showed additional rCBF increases in frontomesial regions in the 4mA condition but not in the 2 mA condition. Furthermore, we found strong correlations between simulated current density in the left and right perirolandic region and improvements in the finger sequence task performance (FSP) for the contralateral hand. Our data support not only a strong direct tDCS dose effect for rCBF and FSP as surrogate measures of targeted brain regions but also indirect effects on rCBF in functionally connected regions (e.g., frontomesial regions), particularly in the higher dose condition and on FSP of the ipsilateral hand (to the anodal electrode). At a higher dose and irrespective of polarity, a wider network of sensorimotor regions is positively affected by tDCS.
Collapse
Affiliation(s)
- Anant B Shinde
- Department of Neurology, Baystate Medical Center - UMass Medical School, Springfield, MA 01107, USA; Department of Biomedical Engineering and Institute of Applied Life Sciences, UMass Amherst, Amherst, MA 01003, USA.
| | - Karl D Lerud
- Department of Neurology, Baystate Medical Center - UMass Medical School, Springfield, MA 01107, USA
| | - Fanny Munsch
- Department of Radiology, MRI Research, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, MA 02215, USA
| | - David C Alsop
- Department of Radiology, MRI Research, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, MA 02215, USA
| | - Gottfried Schlaug
- Department of Neurology, Baystate Medical Center - UMass Medical School, Springfield, MA 01107, USA; Department of Biomedical Engineering and Institute of Applied Life Sciences, UMass Amherst, Amherst, MA 01003, USA; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, MA 02215, USA
| |
Collapse
|
16
|
Small Enhancement of Bimanual Typing Performance after 20 Sessions of tDCS in Healthy Young Adults. Neuroscience 2021; 466:26-35. [PMID: 33974964 DOI: 10.1016/j.neuroscience.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/04/2021] [Accepted: 05/02/2021] [Indexed: 01/10/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that may improve motor learning. However, the long-term effects of tDCS have not been explored, and the ecological validity of the evaluated tasks was limited. To determine whether 20 sessions of tDCS over the primary motor cortex (M1) would enhance the performance of a complex life motor skill, i.e., typing, in healthy young adults. Healthy young adults (n = 60) were semi-randomly assigned to three groups: the tDCS group (n = 20) received anodal tDCS over M1; the SHAM group (n = 20) received sham tDCS, both while performing a typing task; and the Control group (CON, n = 20) only performed the typing task. Typing speed and errors at maximum (mTT) and submaximal (iTT) speeds were measured before training, and after 10 and 20 sessions of tDCS. Every subject increased maximum typing speed after 10 and 20 tDCS sessions, with no significant differences (p > 0.05) between the groups. The number of errors at submaximal rates decreased significantly (p < 0.05) by 4% after 10 tDCS sessions compared with the 3% increase in the SHAM and the 2% increase in the CON groups. Between the 10th and 20th tDCS sessions, the number of typing errors increased significantly in all groups. While anodal tDCS reduced typing errors marginally, such performance-enhancing effects plateaued after 10 sessions without any further improvements in typing speed. These findings suggest that long-term tDCS may not have functionally relevant effects on healthy young adults' typing performance.
Collapse
|
17
|
Firouzi M, Van Herk K, Kerckhofs E, Swinnen E, Baeken C, Van Overwalle F, Deroost N. Transcranial direct‐current stimulation enhances implicit motor sequence learning in persons with Parkinson's disease with mild cognitive impairment. J Neuropsychol 2020; 15:363-378. [DOI: 10.1111/jnp.12231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/07/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Mahyar Firouzi
- Brain, Body and Cognition Department of Psychology and Educational Sciences Vrije Universiteit Brussel Belgium
- Rehabilitation Research Department of Physiotherapy Human Physiology and Anatomy Vrije Universiteit Brussel Belgium
- Center for Neurosciences (C4N) Vrije Universiteit Brussel Belgium
| | - Karlijn Van Herk
- Rehabilitation Research Department of Physiotherapy Human Physiology and Anatomy Vrije Universiteit Brussel Belgium
| | - Eric Kerckhofs
- Brain, Body and Cognition Department of Psychology and Educational Sciences Vrije Universiteit Brussel Belgium
- Rehabilitation Research Department of Physiotherapy Human Physiology and Anatomy Vrije Universiteit Brussel Belgium
- Center for Neurosciences (C4N) Vrije Universiteit Brussel Belgium
| | - Eva Swinnen
- Rehabilitation Research Department of Physiotherapy Human Physiology and Anatomy Vrije Universiteit Brussel Belgium
- Center for Neurosciences (C4N) Vrije Universiteit Brussel Belgium
| | - Chris Baeken
- Brain, Body and Cognition Department of Psychology and Educational Sciences Vrije Universiteit Brussel Belgium
- Center for Neurosciences (C4N) Vrije Universiteit Brussel Belgium
- Department of Psychiatry and Medical Psychology Ghent University University Hospital Ghent Belgium
- Department of Psychiatry Faculty of Medicine and Pharmacy Vrije Universiteit Brussel University Hospital Brussel Belgium
| | - Frank Van Overwalle
- Brain, Body and Cognition Department of Psychology and Educational Sciences Vrije Universiteit Brussel Belgium
- Center for Neurosciences (C4N) Vrije Universiteit Brussel Belgium
| | - Natacha Deroost
- Brain, Body and Cognition Department of Psychology and Educational Sciences Vrije Universiteit Brussel Belgium
- Rehabilitation Research Department of Physiotherapy Human Physiology and Anatomy Vrije Universiteit Brussel Belgium
- Center for Neurosciences (C4N) Vrije Universiteit Brussel Belgium
| |
Collapse
|
18
|
Chiou SY, Morris L, Gou W, Alexander E, Gay E. Motor cortical circuits contribute to crossed facilitation of trunk muscles induced by rhythmic arm movement. Sci Rep 2020; 10:17067. [PMID: 33051482 PMCID: PMC7555543 DOI: 10.1038/s41598-020-74005-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Training of one limb improves performance of the contralateral, untrained limb, a phenomenon known as cross transfer. It has been used for rehabilitation interventions, i.e. mirror therapy, in people with neurologic disorders. However, it remains unknown whether training of the upper limb can induce the cross-transfer effect to the trunk muscles. Using transcranial magnetic stimulation over the primary motor cortex (M1) we examined motor evoked potentials (MEPs) in the contralateral erector spinae (ES) muscle before and after 30 min of unilateral arm cycling in healthy volunteers. ES MEPs were increased after the arm cycling. To understand the origin of this facilitatory effect, we examined short-interval intracrotical inhibition (SICI) and cervicomedullary MEPs (CMEPs) in neural populations controlling in the ES muscle. Notably, SICI reduced after the arm cycling, while CMEPs remained the same. Using bilateral transcranial direct current stimulation (tDCS) in conjunction with 20 min of the arm cycling, the amplitude of ES MEPs increased to a similar extent as with 30 min of the arm cycling alone. These findings demonstrate that a single session of unilateral arm cycling induces short-term plasticity in corticospinal projections to the trunk muscle in healthy humans. The changes are likely driven by cortical mechanisms.
Collapse
Affiliation(s)
- Shin-Yi Chiou
- School of Sport, Exercise, Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. .,Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| | - Laura Morris
- School of Sport, Exercise, Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Weidong Gou
- School of Sport, Exercise, Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Emma Alexander
- School of Sport, Exercise, Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Eliot Gay
- School of Sport, Exercise, Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
19
|
King BR, Rumpf JJ, Heise KF, Veldman MP, Peeters R, Doyon J, Classen J, Albouy G, Swinnen SP. Lateralized effects of post-learning transcranial direct current stimulation on motor memory consolidation in older adults: An fMRI investigation. Neuroimage 2020; 223:117323. [PMID: 32882377 DOI: 10.1016/j.neuroimage.2020.117323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 01/09/2023] Open
Abstract
Previous research has consistently demonstrated that older adults have difficulties transforming recently learned movements into robust, long-lasting memories (i.e., motor memory consolidation). One potential avenue to enhance consolidation in older individuals is the administration of transcranial direct current stimulation (tDCS) to task-relevant brain regions after initial learning. Although this approach has shown promise, the underlying cerebral correlates have yet to be revealed. Moreover, it is unknown whether the effects of tDCS are lateralized, an open question with implications for rehabilitative approaches following predominantly unilateral neurological injuries. In this research, healthy older adults completed a sequential motor task before and 6 h after receiving anodal or sham stimulation to right or left primary motor cortex (M1) while functional magnetic resonance images were acquired. Unexpectedly, anodal stimulation to right M1 following left-hand sequence learning significantly hindered consolidation as compared to a sham control, whereas no differences were observed with left M1 stimulation following right-hand learning. Impaired performance following right M1 stimulation was paralleled by sustained engagement of regions known to be critical for early learning stages, including the caudate nucleus and the premotor and parietal cortices. Thus, post-learning tDCS in older adults not only exerts heterogenous effects across the two hemispheres but can also disrupt ongoing memory processing.
Collapse
Affiliation(s)
- Bradley R King
- Department of Movement Sciences, KU Leuven, Leuven, Belgium; LBI - KU Leuven Brain Institute, Leuven, Belgium.
| | | | - Kirstin-Friederike Heise
- Department of Movement Sciences, KU Leuven, Leuven, Belgium; LBI - KU Leuven Brain Institute, Leuven, Belgium
| | - Menno P Veldman
- Department of Movement Sciences, KU Leuven, Leuven, Belgium; LBI - KU Leuven Brain Institute, Leuven, Belgium
| | - Ronald Peeters
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium; Department of Imaging and Pathology, Biomedical Sciences Group, Leuven, Belgium
| | - Julien Doyon
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Genevieve Albouy
- Department of Movement Sciences, KU Leuven, Leuven, Belgium; LBI - KU Leuven Brain Institute, Leuven, Belgium
| | - Stephan P Swinnen
- Department of Movement Sciences, KU Leuven, Leuven, Belgium; LBI - KU Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
20
|
Halakoo S, Ehsani F, Hosnian M, Zoghi M, Jaberzadeh S. The comparative effects of unilateral and bilateral transcranial direct current stimulation on motor learning and motor performance: A systematic review of literature and meta-analysis. J Clin Neurosci 2020; 72:8-14. [PMID: 31973922 DOI: 10.1016/j.jocn.2019.12.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/01/2019] [Indexed: 11/17/2022]
Abstract
Application of unilateral tDCS (Uni-tDCS) vs. bilateral tDCS (Bi-tDCS) is another important factor that can affect the physiological results of tDCS intervention on motor learning and motor performance. According to the evidence, some studies indicated that motor performance or motor learning are facilitated in healthy individuals by application of the Bi-tDCS more than the Uni-tDCS. On the other hand, some studies showed that there was no significant differences between Uni-tDCS and Bi-tDCS; and both techniques were more effective than sham stimulation. In contrast, the other studies have shown more significant effectiveness of Uni-tDCS than Bi-tDCS on motor performance and motor learning. The aim of this study was to systematically review the studies which investigated the effectiveness of Uni-tDCS and Bi-tDCS intervention on the motor learning and motor performance. The search was performed from databases in the Google Scholar, PubMed, Elsevier, Medline, Ovid and Science Direct with the keywords of motor behavior, motor performance, motor learning, Bi-tDCS or bilateral tDCS, dual tDCS, Uni-tDCS or unilateral tDCS, anodal tDCS and cathodal tDCS from 2000 to 2019. The results indicated that the study population was a key factor in determining study's findings. Data meta-analysis showed that Uni-tDCS was more effective than Bi-tDCS in patients with stroke, while, Bi-tDCS was more effective than Uni-tDCS to improve motor learning and motor performance in healthy individuals.
Collapse
Affiliation(s)
- Sara Halakoo
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Ehsani
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| | - Motahareh Hosnian
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Zoghi
- Discipline of Physiotherapy, Department of Rehabilitation, Nutrition and Sport, School of Allied Health, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Shapour Jaberzadeh
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
21
|
Patel R, Ashcroft J, Patel A, Ashrafian H, Woods AJ, Singh H, Darzi A, Leff DR. The Impact of Transcranial Direct Current Stimulation on Upper-Limb Motor Performance in Healthy Adults: A Systematic Review and Meta-Analysis. Front Neurosci 2019; 13:1213. [PMID: 31803003 PMCID: PMC6873898 DOI: 10.3389/fnins.2019.01213] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/28/2019] [Indexed: 11/25/2022] Open
Abstract
Background: Transcranial direct current stimulation (tDCS) has previously been reported to improve facets of upper limb motor performance such as accuracy and strength. However, the magnitude of motor performance improvement has not been reviewed by contemporaneous systematic review or meta-analysis of sham vs. active tDCS. Objective: To systematically review and meta-analyse the existing evidence regarding the benefits of tDCS on upper limb motor performance in healthy adults. Methods: A systematic search was conducted to obtain relevant articles from three databases (MEDLINE, EMBASE, and PsycINFO) yielding 3,200 abstracts. Following independent assessment by two reviewers, a total of 86 articles were included for review, of which 37 were deemed suitable for meta-analysis. Results: Meta-analyses were performed for four outcome measures, namely: reaction time (RT), execution time (ET), time to task failure (TTF), and force. Further qualitative review was performed for accuracy and error. Statistically significant improvements in RT (effect size −0.01; 95% CI −0.02 to 0.001, p = 0.03) and ET (effect size −0.03; 95% CI −0.05 to −0.01, p = 0.017) were demonstrated compared to sham. In exercise tasks, increased force (effect size 0.10; 95% CI 0.08 to 0.13, p < 0.001) and a trend towards improved TTF was also observed. Conclusions: This meta-analysis provides evidence attesting to the impact of tDCS on upper limb motor performance in healthy adults. Improved performance is demonstrable in reaction time, task completion time, elbow flexion tasks and accuracy. Considerable heterogeneity exists amongst the literature, further confirming the need for a standardised approach to reporting tDCS studies.
Collapse
Affiliation(s)
- Ronak Patel
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - James Ashcroft
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Ashish Patel
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Hutan Ashrafian
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Adam J Woods
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Harsimrat Singh
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Ara Darzi
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Daniel Richard Leff
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
Frazer AK, Howatson G, Ahtiainen JP, Avela J, Rantalainen T, Kidgell DJ. Priming the Motor Cortex With Anodal Transcranial Direct Current Stimulation Affects the Acute Inhibitory Corticospinal Responses to Strength Training. J Strength Cond Res 2019; 33:307-317. [PMID: 30688872 DOI: 10.1519/jsc.0000000000002959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Frazer, AK, Howatson, G, Ahtiainen, JP, Avela, J, Rantalainen, T, and Kidgell, DJ. Priming the motor cortex with anodal transcranial direct current stimulation affects the acute inhibitory corticospinal responses to strength training. J Strength Cond Res 33(2): 307-317, 2019-Synaptic plasticity in the motor cortex (M1) is associated with strength training (ST) and can be modified by transcranial direct current stimulation (tDCS). The M1 responses to ST increase when anodal tDCS is applied during training due to gating. An additional approach to improve the M1 responses to ST, which has not been explored, is to use anodal tDCS to prime the M1 before a bout of ST. We examined the priming effects of anodal tDCS of M1 on the acute corticospinal responses to ST. In a randomized double-blinded cross-over design, changes in isometric strength, corticospinal excitability, and inhibition (assessed as area under the recruitment curve [AURC] using transcranial magnetic stimulation) were analyzed in 13 adults exposed to 20 minutes of anodal tDCS and sham tDCS followed by a ST session of the right elbow flexors. We observed a significant decrease in isometric elbow-flexor strength immediately after training (11-12%; p < 0.05), which was not different between anodal tDCS and sham tDCS. Transcranial magnetic stimulation revealed a 24% increase in AURC for corticospinal excitability after anodal tDCS and ST; this increase was not different between conditions. However, there was a 14% reduction in AURC for corticospinal inhibition when anodal tDCS was applied before ST when compared with sham tDCS and ST (all p < 0.05). Priming anodal tDCS had a limited effect in facilitating corticospinal excitability after an acute bout of ST. Interestingly, the interaction of anodal tDCS and ST seems to affect the excitability of intracortical inhibitory circuits of the M1 through nonhomeostatic mechanisms.
Collapse
Affiliation(s)
- Ashlyn K Frazer
- Department of Physiotherapy, School of Primary Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom.,Water Research Group, School of Biological Sciences, North West University, Potchefstroom, South Africa
| | - Juha P Ahtiainen
- Department of Biology and Physical Activity, Neuromuscular Research Center, Biology and Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Janne Avela
- Department of Biology and Physical Activity, Neuromuscular Research Center, Biology and Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Timo Rantalainen
- Department of Biology and Physical Activity, Neuromuscular Research Center, Biology and Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Department of Biology and Physical Activity, Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Dawson J Kidgell
- Department of Physiotherapy, School of Primary Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Talimkhani A, Abdollahi I, Mohseni-Bandpei MA, Ehsani F, Khalili S, Jaberzadeh S. Differential Effects of Unihemispheric Concurrent Dual-Site and Conventional tDCS on Motor Learning: A Randomized, Sham-Controlled Study. Basic Clin Neurosci 2019; 10:59-72. [PMID: 31031894 PMCID: PMC6484181 DOI: 10.32598/bcn.9.10.350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/03/2017] [Accepted: 04/30/2018] [Indexed: 11/20/2022] Open
Abstract
Introduction: Based on the literature, unihemispheric concurrent dual-site anodal transcranial Direct Current Stimulation (a-tDCSUHCDS) of primary Motor cortex (M1) and Dorsolateral Prefrontal Cortex (DLPFC) would be more efficient than conventional a-tDCS of M1 to induce larger and longer-lasting M1 corticospinal excitability. The main objective of the present study was to compare the effects of a-tDCSUHCDS and conventional M1 a-tDCS on the extent and durability of the motor sequence acquisition in healthy individuals. Methods: In this randomized sham-controlled study, healthy volunteers were randomly divided into three groups: experimental (a-tDCSUHCDS), control (M1 a-tDCS), and sham stimulation groups. The participants practiced serial response time task over three consecutive days when they simultaneously received a-tDCS. Using the skill measure, we assessed motor learning up to 4 weeks after the completion of experimental conditions. Results: Data analysis revealed that all groups exhibited the improved trend over the training course (P<0.001). There were no significant differences in skill acquisition among groups at post-intervention (P>0.05), while a significant improvement was observed between experimental and sham group at the retention time (P<0.05). Moreover, there were no significant differences between the control and two other groups with regard to the retention time (P>0.05). Conclusion: These results revealed a significant increase in the skill acquisition by a-tDCSUHCDS technique with regard to retention issue, which could be a valuable finding in neuro-rehabilitation field.
Collapse
Affiliation(s)
- Ailin Talimkhani
- Department of Physical Therapy, School of Rehabilitation Sciences, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Physical Therapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Iraj Abdollahi
- Pediatric Neurorehabilitation Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.,University Institute of Physical Therapy, Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan
| | | | - Fatemeh Ehsani
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Sanaz Khalili
- Department of Biostatistics and Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shapour Jaberzadeh
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Monash University, Melbourne, Australia.,Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
24
|
Anic A, Olsen KN, Thompson WF. Investigating the Role of the Primary Motor Cortex in Musical Creativity: A Transcranial Direct Current Stimulation Study. Front Psychol 2018; 9:1758. [PMID: 30327622 PMCID: PMC6174363 DOI: 10.3389/fpsyg.2018.01758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/30/2018] [Indexed: 12/30/2022] Open
Abstract
Neuroscientific research has revealed interconnected brain networks implicated in musical creativity, such as the executive control network, the default mode network, and premotor cortices. The present study employed brain stimulation to evaluate the role of the primary motor cortex (M1) in creative and technically fluent jazz piano improvisations. We implemented transcranial direct current stimulation (tDCS) to alter the neural activation patterns of the left hemispheric M1 whilst pianists performed improvisations with their right hand. Two groups of expert jazz pianists (n = 8 per group) performed five improvisations in each of two blocks. In Block 1, they improvised in the absence of brain stimulation. In Block 2, one group received inhibitory tDCS and the second group received excitatory tDCS while performing five new improvisations. Three independent expert-musicians judged the 160 performances on creativity and technical fluency using a 10-point Likert scale. As the M1 is involved in the acquisition and consolidation of motor skills and the control of hand orientation and velocity, we predicted that excitatory tDCS would increase the quality of improvisations relative to inhibitory tDCS. Indeed, improvisations under conditions of excitatory tDCS were rated as significantly more creative than those under conditions of inhibitory tDCS. A music analysis indicated that excitatory tDCS elicited improvisations with greater pitch range and number/variety of notes. Ratings of technical fluency did not differ significantly between tDCS groups. We discuss plausible mechanisms by which the M1 region contributes to musical creativity.
Collapse
Affiliation(s)
- Aydin Anic
- Department of Psychology, Macquarie University, Sydney, NSW, Australia.,Centre for Elite Performance, Expertise and Training, Macquarie University, Sydney, NSW, Australia
| | - Kirk N Olsen
- Department of Psychology, Macquarie University, Sydney, NSW, Australia.,Centre for Elite Performance, Expertise and Training, Macquarie University, Sydney, NSW, Australia
| | - William Forde Thompson
- Department of Psychology, Macquarie University, Sydney, NSW, Australia.,Centre for Elite Performance, Expertise and Training, Macquarie University, Sydney, NSW, Australia.,Australian Research Council Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
25
|
Liao WW, Whitall J, Barton JE, McCombe Waller S. Neural motor control differs between bimanual common-goal vs. bimanual dual-goal tasks. Exp Brain Res 2018; 236:1789-1800. [PMID: 29663024 DOI: 10.1007/s00221-018-5261-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
Abstract
Coordinating bimanual movements is essential for everyday activities. Two common types of bimanual tasks are common goal, where two arms share a united goal, and dual goal, which involves independent goals for each arm. Here, we examine how the neural control mechanisms differ between these two types of bimanual tasks. Ten non-disabled individuals performed isometric force tasks of the elbow at 10% of their maximal voluntary force in both bimanual common and dual goals as well as unimanual conditions. Using transcranial magnetic stimulation, we concurrently examined the intracortical inhibitory modulation (short-interval intracortical inhibition, SICI) as well as the interlimb coordination strategies utilized between common- vs. dual-goal tasks. Results showed a reduction of SICI in both hemispheres during dual-goal compared to common-goal tasks (dominant hemisphere: P = 0.04, non-dominant hemisphere: P = 0.03) and unimanual tasks (dominant hemisphere: P = 0.001, non-dominant hemisphere: P = 0.001). For the common-goal task, a reduction of SICI was only seen in the dominant hemisphere compared to unimanual tasks (P = 0.03). Behaviorally, two interlimb coordination patterns were identified. For the common-goal task, both arms were organized into a cooperative "give and take" movement pattern. Control of the non-dominant arm affected stabilization of bimanual force (R2 = 0.74, P = 0.001). In contrast, for the dual-goal task, both arms were coupled together in a positive fashion and neither arm affected stabilization of bimanual force (R2 = 0.31, P = 0.1). The finding that intracortical inhibition and interlimb coordination patterns were different based on the goal conceptualization of bimanual tasks has implications for future research.
Collapse
Affiliation(s)
- Wan-Wen Liao
- Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland Baltimore, 100 Penn Street, Allied Health Building, Baltimore, MD, 21201, USA
| | - Jill Whitall
- Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland Baltimore, 100 Penn Street, Allied Health Building, Baltimore, MD, 21201, USA.,Faculty of Health Sciences, University of Southampton, Southampton, UK
| | - Joseph E Barton
- Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland Baltimore, 100 Penn Street, Allied Health Building, Baltimore, MD, 21201, USA.,Department of Neurology, School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Sandy McCombe Waller
- Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland Baltimore, 100 Penn Street, Allied Health Building, Baltimore, MD, 21201, USA.
| |
Collapse
|
26
|
Mondini V, Mangia AL, Cappello A. Single-session tDCS over the dominant hemisphere affects contralateral spectral EEG power, but does not enhance neurofeedback-guided event-related desynchronization of the non-dominant hemisphere's sensorimotor rhythm. PLoS One 2018. [PMID: 29513682 PMCID: PMC5841755 DOI: 10.1371/journal.pone.0193004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Transcranial direct current stimulation (tDCS) and neurofeedback-guided motor imagery (MI) have attracted considerable interest in neurorehabilitation, given their ability to influence neuroplasticity. As tDCS has been shown to modulate event-related desynchronization (ERD), the neural signature of motor imagery detected for neurofeedback, a combination of the techniques was recently proposed. One limitation of this approach is that the area targeted for stimulation is the same from which the signal for neurofeedback is acquired. As tDCS may interfere with proximal electroencephalographic (EEG) electrodes, in this study our aim was to test whether contralateral tDCS could have interhemispheric effects on the spectral power of the unstimulated hemisphere, possibly mediated by transcallosal connection, and whether such effects could be used to enhance ERD magnitudes. A contralateral stimulation approach would indeed facilitate co-registration, as the stimulation electrode would be far from the recording sites. METHODS Twenty right-handed healthy volunteers (aged 21 to 32) participated in the study: ten assigned to cathodal, ten to anodal versus sham stimulation. We applied stimulation over the dominant (left) hemisphere, and assessed ERD and spectral power over the non-dominant (right) hemisphere. The effect of tDCS was evaluated over time. Spectral power was assessed in theta, alpha and beta bands, under both rest and MI conditions, while ERD was evaluated in alpha and beta bands. RESULTS Two main findings emerged: (1) contralateral alpha-ERD was reduced after anodal (p = 0.0147), but not enhanced after cathodal tDCS; (2) both stimulations had remote effects on the spectral power of the contralateral hemisphere, particularly in theta and alpha (significant differences in the topographical t-value maps). CONCLUSION The absence of contralateral cathodal ERD enhancement suggests that the protocol is not applicable in the context of MI training. Nevertheless, ERD results of anodal and spectral power results of both stimulations complement recent findings on the distant tDCS effects between functionally related areas.
Collapse
Affiliation(s)
- Valeria Mondini
- Department of Electrical, Electronic and Information Engineering (DEI), University of Bologna, Cesena, Italy
- * E-mail:
| | - Anna Lisa Mangia
- Department of Electrical, Electronic and Information Engineering (DEI), University of Bologna, Cesena, Italy
| | - Angelo Cappello
- Department of Electrical, Electronic and Information Engineering (DEI), University of Bologna, Cesena, Italy
| |
Collapse
|
27
|
Vecchio F, Di Iorio R, Miraglia F, Granata G, Romanello R, Bramanti P, Rossini PM. Transcranial direct current stimulation generates a transient increase of small-world in brain connectivity: an EEG graph theoretical analysis. Exp Brain Res 2018; 236:1117-1127. [PMID: 29441471 DOI: 10.1007/s00221-018-5200-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/07/2018] [Indexed: 12/01/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive technique able to modulate cortical excitability in a polarity-dependent way. At present, only few studies investigated the effects of tDCS on the modulation of functional connectivity between remote cortical areas. The aim of this study was to investigate-through graph theory analysis-how bipolar tDCS modulate cortical networks high-density EEG recordings were acquired before and after bipolar cathodal, anodal and sham tDCS involving the primary motor and pre-motor cortices of the dominant hemispherein 14 healthy subjects. Results showed that, after bipolar anodal tDCS stimulation, brain networks presented a less evident "small world" organization with a global tendency to be more random in its functional connections with respect to prestimulus condition in both hemispheres. Results suggest that tDCS globally modulates the cortical connectivity of the brain, modifying the underlying functional organization of the stimulated networks, which might be related to changes in synaptic efficiency of the motor network and related brain areas. This study demonstrated that graph analysis approach to EEG recordings is able to intercept changes in cortical functions mediated by bipolar anodal tDCS mainly involving the dominant M1 and related motor areas. Concluding, tDCS could be an useful technique to help understanding brain rhythms and their topographic functional organization and specificity.
Collapse
Affiliation(s)
- Fabrizio Vecchio
- Brain Connectivity Laboratory, IRCCS San Raffaele-Pisana, Via Val Cannuta, 247, 00166, Rome, Italy.
| | - Riccardo Di Iorio
- Department Geriatrics, Neurosciences, Orthopedics, Policlinic A. Gemelli, Institute of Neurology, Catholic University, Rome, Italy
| | - Francesca Miraglia
- Brain Connectivity Laboratory, IRCCS San Raffaele-Pisana, Via Val Cannuta, 247, 00166, Rome, Italy.,Department Geriatrics, Neurosciences, Orthopedics, Policlinic A. Gemelli, Institute of Neurology, Catholic University, Rome, Italy
| | - Giuseppe Granata
- Department Geriatrics, Neurosciences, Orthopedics, Policlinic A. Gemelli, Institute of Neurology, Catholic University, Rome, Italy
| | - Roberto Romanello
- Department Geriatrics, Neurosciences, Orthopedics, Policlinic A. Gemelli, Institute of Neurology, Catholic University, Rome, Italy
| | | | - Paolo Maria Rossini
- Brain Connectivity Laboratory, IRCCS San Raffaele-Pisana, Via Val Cannuta, 247, 00166, Rome, Italy.,Department Geriatrics, Neurosciences, Orthopedics, Policlinic A. Gemelli, Institute of Neurology, Catholic University, Rome, Italy
| |
Collapse
|
28
|
Dodd KC, Nair VA, Prabhakaran V. Role of the Contralesional vs. Ipsilesional Hemisphere in Stroke Recovery. Front Hum Neurosci 2017; 11:469. [PMID: 28983244 PMCID: PMC5613154 DOI: 10.3389/fnhum.2017.00469] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/07/2017] [Indexed: 11/13/2022] Open
Abstract
Following a stroke, the resulting lesion creates contralateral motor impairment and an interhemispheric imbalance involving hyperexcitability of the contralesional hemisphere. Neuronal reorganization may occur on both the ipsilesional and contralesional hemispheres during recovery to regain motor functionality and therefore bilateral activation for the hemiparetic side is often observed. Although ipsilesional hemispheric reorganization is traditionally thought to be most important for successful recovery, definitive conclusions into the role and importance of the contralesional motor cortex remain under debate. Through examining recent research in functional neuroimaging investigating motor cortex changes post-stroke, as well as brain-computer interface (BCI) and transcranial magnetic stimulation (TMS) therapies, this review attempts to clarify the contributions of each hemisphere toward recovery. Several functional magnetic resonance imaging studies suggest that continuation of contralesional hemisphere hyperexcitability correlates with lesser recovery, however a subset of well-recovered patients demonstrate contralesional motor activity and show decreased functional capability when the contralesional hemisphere is inhibited. BCI therapy may beneficially activate either the contralesional or ipsilesional hemisphere, depending on the study design, for chronic stroke patients who are otherwise at a functional plateau. Repetitive TMS used to excite the ipsilesional motor cortex or inhibit the contralesional hemisphere has shown promise in enhancing stroke patients' recovery.
Collapse
Affiliation(s)
- Keith C Dodd
- Department of Biomedical Engineering, University of Wisconsin-MadisonMadison, WI, United States
| | - Veena A Nair
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-MadisonMadison, WI, United States
| | - Vivek Prabhakaran
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-MadisonMadison, WI, United States.,Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-MadisonMadison, WI, United States.,Neuroscience Training Program, University of Wisconsin-MadisonMadison, WI, United States.,Department of Neurology, University of Wisconsin-MadisonMadison, WI, United States.,Department of Psychology and Department of Psychiatry, University of Wisconsin-MadisonMadison, WI, United States
| |
Collapse
|
29
|
Schabrun SM, Palsson TS, Thapa T, Graven-Nielsen T. Movement Does Not Promote Recovery of Motor Output Following Acute Experimental Muscle Pain. PAIN MEDICINE 2017; 19:608-614. [DOI: 10.1093/pm/pnx099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Siobhan M Schabrun
- Western Sydney University, Brain Neuroplasticity and Rehabilitation Unit (BRAiN-u), School of Science and Health, Penrith, NSW, Australia
| | - Thorvaldur S Palsson
- Department of Health Science and Technology, Laboratory for Musculoskeletal Pain and Motor Control, Center for Neuroplasticity and Pain (CNAP), Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Tribikram Thapa
- Western Sydney University, Brain Neuroplasticity and Rehabilitation Unit (BRAiN-u), School of Science and Health, Penrith, NSW, Australia
| | - Thomas Graven-Nielsen
- Department of Health Science and Technology, Laboratory for Musculoskeletal Pain and Motor Control, Center for Neuroplasticity and Pain (CNAP), Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
30
|
Task-specificity of unilateral anodal and dual-M1 tDCS effects on motor learning. Neuropsychologia 2017; 94:84-95. [DOI: 10.1016/j.neuropsychologia.2016.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/25/2016] [Accepted: 12/02/2016] [Indexed: 01/24/2023]
|
31
|
Das S, Holland P, Frens MA, Donchin O. Impact of Transcranial Direct Current Stimulation (tDCS) on Neuronal Functions. Front Neurosci 2016; 10:550. [PMID: 27965533 PMCID: PMC5127836 DOI: 10.3389/fnins.2016.00550] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/15/2016] [Indexed: 02/04/2023] Open
Abstract
Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, modulates neuronal excitability by the application of a small electrical current. The low cost and ease of the technique has driven interest in potential clinical applications. However, outcomes are highly sensitive to stimulation parameters, leading to difficulty maximizing the technique's effectiveness. Although reversing the polarity of stimulation often causes opposite effects, this is not always the case. Effective clinical application will require an understanding of how tDCS works; how it modulates a neuron; how it affects the local network; and how it alters inter-network signaling. We have summarized what is known regarding the mechanisms of tDCS from sub-cellular processing to circuit level communication with a particular focus on what can be learned from the polarity specificity of the effects.
Collapse
Affiliation(s)
- Suman Das
- Department of Biomedical Engineering and Zlotowski Center for Neuroscience, Ben Gurion University of the NegevBe'er Sheva, Israel; Department of Neuroscience, Erasmus MCRotterdam, Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit AmsterdamAmsterdam, Netherlands
| | - Peter Holland
- Department of Biomedical Engineering and Zlotowski Center for Neuroscience, Ben Gurion University of the NegevBe'er Sheva, Israel; Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | - Maarten A Frens
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands; Faculty of Social and Behavioral Sciences, Erasmus University College, Erasmus UniversityRotterdam, Netherlands
| | - Opher Donchin
- Department of Biomedical Engineering and Zlotowski Center for Neuroscience, Ben Gurion University of the NegevBe'er Sheva, Israel; Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| |
Collapse
|
32
|
Ehsani F, Bakhtiary A, Jaberzadeh S, Talimkhani A, Hajihasani A. Differential effects of primary motor cortex and cerebellar transcranial direct current stimulation on motor learning in healthy individuals: A randomized double-blind sham-controlled study. Neurosci Res 2016; 112:10-19. [DOI: 10.1016/j.neures.2016.06.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/11/2016] [Accepted: 06/16/2016] [Indexed: 11/26/2022]
|
33
|
Kronberg G, Bridi M, Abel T, Bikson M, Parra LC. Direct Current Stimulation Modulates LTP and LTD: Activity Dependence and Dendritic Effects. Brain Stimul 2016; 10:51-58. [PMID: 28104085 DOI: 10.1016/j.brs.2016.10.001] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/15/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has been reported to improve various forms of learning in humans. Stimulation is often applied during training, producing lasting enhancements that are specific to the learned task. These learning effects are thought to be mediated by altered synaptic plasticity. However, the effects of DCS during the induction of endogenous synaptic plasticity remain largely unexplored. OBJECTIVE/HYPOTHESIS Here we are interested in the effects of DCS applied during synaptic plasticity induction. METHODS To model endogenous plasticity we induced long-term potentiation (LTP) and depression (LTD) at Schaffer collateral synapses in CA1 of rat hippocampal slices. Anodal and cathodal DCS at 20 V/m were applied throughout plasticity induction in both apical and basal dendritic compartments. RESULTS When DCS was paired with concurrent plasticity induction, the resulting plasticity was biased towards potentiation, such that LTP was enhanced and LTD was reduced. Remarkably, both anodal and cathodal stimulation can produce this bias, depending on the dendritic location and type of plasticity induction. Cathodal DCS enhanced LTP in apical dendrites while anodal DCS enhanced LTP in basal dendrites. Both anodal and cathodal DCS reduced LTD in apical dendrites. DCS did not affect synapses that were weakly active or when NMDA receptors were blocked. CONCLUSIONS These results highlight the role of DCS as a modulator, rather than inducer of synaptic plasticity, as well as the dependence of DCS effects on the spatial and temporal properties of endogenous synaptic activity. The relevance of the present results to human tDCS should be validated in future studies.
Collapse
Affiliation(s)
- Greg Kronberg
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, USA.
| | - Morgan Bridi
- Laboratory of Neural Circuits and Behavior, Hussman Institute for Autism, Baltimore, MD 21201, USA
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, USA
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, USA
| |
Collapse
|
34
|
Conley AC, Fulham WR, Marquez JL, Parsons MW, Karayanidis F. No Effect of Anodal Transcranial Direct Current Stimulation Over the Motor Cortex on Response-Related ERPs during a Conflict Task. Front Hum Neurosci 2016; 10:384. [PMID: 27547180 PMCID: PMC4974251 DOI: 10.3389/fnhum.2016.00384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/14/2016] [Indexed: 11/25/2022] Open
Abstract
Anodal transcranial direct current stimulation (tDCS) over the motor cortex is considered a potential treatment for motor rehabilitation following stroke and other neurological pathologies. However, both the context under which this stimulation is effective and the underlying mechanisms remain to be determined. In this study, we examined the mechanisms by which anodal tDCS may affect motor performance by recording event-related potentials (ERPs) during a cued go/nogo task after anodal tDCS over dominant primary motor cortex (M1) in young adults (Experiment 1) and both dominant and non-dominant M1 in older adults (Experiment 2). In both experiments, anodal tDCS had no effect on either response time (RT) or response-related ERPs, including the cue-locked contingent negative variation (CNV) and both target-locked and response-locked lateralized readiness potentials (LRP). Bayesian model selection analyses showed that, for all measures, the null effects model was stronger than a model including anodal tDCS vs. sham. We conclude that anodal tDCS has no effect on RT or response-related ERPs during a cued go/nogo task in either young or older adults.
Collapse
Affiliation(s)
- Alexander C Conley
- Functional Neuroimaging Laboratory, School of Psychology, Faculty of Science and IT, University of NewcastleNewcastle, NSW, Australia; Priority Research Centre for Stroke and Brain Injury, University of NewcastleNewcastle, NSW, Australia; Hunter Medical Research InstituteNewcastle, NSW, Australia
| | - W R Fulham
- Functional Neuroimaging Laboratory, School of Psychology, Faculty of Science and IT, University of NewcastleNewcastle, NSW, Australia; Priority Research Centre for Stroke and Brain Injury, University of NewcastleNewcastle, NSW, Australia; Hunter Medical Research InstituteNewcastle, NSW, Australia
| | - Jodie L Marquez
- Priority Research Centre for Stroke and Brain Injury, University of NewcastleNewcastle, NSW, Australia; Hunter Medical Research InstituteNewcastle, NSW, Australia; School of Health Sciences, Faculty of Health, University of NewcastleNewcastle, NSW, Australia
| | - Mark W Parsons
- Priority Research Centre for Stroke and Brain Injury, University of NewcastleNewcastle, NSW, Australia; Hunter Medical Research InstituteNewcastle, NSW, Australia; School of Medicine and Public Health, Faculty of Health, University of NewcastleNewcastle, NSW, Australia
| | - Frini Karayanidis
- Functional Neuroimaging Laboratory, School of Psychology, Faculty of Science and IT, University of NewcastleNewcastle, NSW, Australia; Priority Research Centre for Stroke and Brain Injury, University of NewcastleNewcastle, NSW, Australia; Hunter Medical Research InstituteNewcastle, NSW, Australia
| |
Collapse
|
35
|
Marangolo P, Fiori V, Sabatini U, De Pasquale G, Razzano C, Caltagirone C, Gili T. Bilateral Transcranial Direct Current Stimulation Language Treatment Enhances Functional Connectivity in the Left Hemisphere: Preliminary Data from Aphasia. J Cogn Neurosci 2016; 28:724-38. [DOI: 10.1162/jocn_a_00927] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
Several studies have already shown that transcranial direct current stimulation (tDCS) is a useful tool for enhancing recovery in aphasia. However, no reports to date have investigated functional connectivity changes on cortical activity because of tDCS language treatment. Here, nine aphasic persons with articulatory disorders underwent an intensive language therapy in two different conditions: bilateral anodic stimulation over the left Broca's area and cathodic contralesional stimulation over the right homologue of Broca's area and a sham condition. The language treatment lasted 3 weeks (Monday to Friday, 15 sessions). In all patients, language measures were collected before (T0) and at the end of treatment (T15). Before and after each treatment condition (real vs. sham), each participant underwent a resting-state fMRI study. Results showed that, after real stimulation, patients exhibited the greatest recovery not only in terms of better accuracy in articulating the treated stimuli but also for untreated items on different tasks of the language test. Moreover, although after the sham condition connectivity changes were confined to the right brain hemisphere, real stimulation yielded to stronger functional connectivity increase in the left hemisphere. In conclusion, our data provide converging evidence from behavioral and functional imaging data that bilateral tDCS determines functional connectivity changes within the lesioned hemisphere, enhancing the language recovery process in stroke patients.
Collapse
Affiliation(s)
- Paola Marangolo
- 1IRCCS Fondazione Santa Lucia, Rome, Italy
- 2Università Federico II, Naples, Italy
| | - Valentina Fiori
- 1IRCCS Fondazione Santa Lucia, Rome, Italy
- 3Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - Umberto Sabatini
- 1IRCCS Fondazione Santa Lucia, Rome, Italy
- 4University of Magna Grecia, Catanzaro, Italy
| | | | | | - Carlo Caltagirone
- 1IRCCS Fondazione Santa Lucia, Rome, Italy
- 3Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - Tommaso Gili
- 1IRCCS Fondazione Santa Lucia, Rome, Italy
- 5Museo Storico della Fiscia e Ricerche “Enrico Fermi”, Rome, Italy
| |
Collapse
|
36
|
Brain stimulation: Neuromodulation as a potential treatment for motor recovery following traumatic brain injury. Brain Res 2016; 1640:130-138. [PMID: 26855256 DOI: 10.1016/j.brainres.2016.01.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 02/05/2023]
Abstract
There is growing evidence that electrical and magnetic brain stimulation can improve motor function and motor learning following brain damage. Rodent and primate studies have strongly demonstrated that combining cortical stimulation (CS) with skilled motor rehabilitative training enhances functional motor recovery following stroke. Brain stimulation following traumatic brain injury (TBI) is less well studied, but early pre-clinical and human pilot studies suggest that it is a promising treatment for TBI-induced motor impairments as well. This review will first discuss the evidence supporting brain stimulation efficacy derived from the stroke research field as proof of principle and then will review the few studies exploring neuromodulation in experimental TBI studies. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
|
37
|
Hashemirad F, Zoghi M, Fitzgerald PB, Jaberzadeh S. The effect of anodal transcranial direct current stimulation on motor sequence learning in healthy individuals: A systematic review and meta-analysis. Brain Cogn 2015; 102:1-12. [PMID: 26685088 DOI: 10.1016/j.bandc.2015.11.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 11/25/2022]
Abstract
A large number of studies have indicated the effect of anodal transcranial direct current stimulation (a-tDCS) on the primary motor cortex (M1) during motor skill training. The effects of a-tDCS on different stages of motor sequence learning are not yet completely understood. The purpose of this meta-analysis was to determine the effects of single and multiple sessions of a-tDCS on two different tasks: the sequential finger tapping task/serial reaction time task (SEQTAP/SRTT) and the sequential visual isometric pinch task (SVIPT). We searched electronic databases for M1 a-tDCS studies. Thirteen studies met the inclusion criteria. The results indicate that application of multiple sessions of a-tDCS, compared to single session a-tDCS induced a significant improvement in skill in both SEQTAP/SRTT and SVIPT. Retention after a single day and multiple days of a-tDCS was statistically significant for the SEQTAP/SRTT task but not for SVIPT. Therefore, our findings suggest that application of M1 a-tDCS across the three or five consecutive days can be helpful to improve motor sequence learning.
Collapse
Affiliation(s)
- Fahimeh Hashemirad
- Department of Physiotherapy, School of Primary Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.
| | - Maryam Zoghi
- Department of Medicine at Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University Central Clinical School, Melbourne, Australia
| | - Shapour Jaberzadeh
- Department of Physiotherapy, School of Primary Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
38
|
Javadi AH, Beyko A, Walsh V, Kanai R. Transcranial Direct Current Stimulation of the Motor Cortex Biases Action Choice in a Perceptual Decision Task. J Cogn Neurosci 2015; 27:2174-85. [PMID: 26151605 PMCID: PMC4745131 DOI: 10.1162/jocn_a_00848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One of the multiple interacting systems involved in the selection and execution of voluntary actions is the primary motor cortex (PMC). We aimed to investigate whether the transcranial direct current stimulation (tDCS) of this area can modulate hand choice. A perceptual decision-making task was administered. Participants were asked to classify rectangles with different height-to-width ratios into horizontal and vertical rectangles using their right and left index fingers while their PMC was stimulated either bilaterally or unilaterally. Two experiments were conducted with different stimulation conditions: the first experiment (n = 12) had only one stimulation condition (bilateral stimulation), and the second experiment (n = 45) had three stimulation conditions (bilateral, anodal unilateral, and cathodal unilateral stimulations). The second experiment was designed to confirm the results of the first experiment and to further investigate the effects of anodal and cathodal stimulations alone in the observed effects. Each participant took part in two sessions. The laterality of stimulation was reversed over the two sessions. Our results showed that anodal stimulation of the PMC biases participants' responses toward using the contralateral hand whereas cathodal stimulation biases responses toward the ipsilateral hand. Brain stimulation also modulated the RT of the left hand in all stimulation conditions: Responses were faster when the response bias was in favor of the left hand and slower when the response bias was against it. We propose two possible explanations for these findings: the perceptual bias account (bottom-up effects of stimulation on perception) and the motor-choice bias account (top-down modulation of the decision-making system by facilitation of response in one hand over the other). We conclude that motor responses and the choice of hand can be modulated using tDCS.
Collapse
Affiliation(s)
| | | | | | - Ryota Kanai
- University College London
- University of Sussex
| |
Collapse
|
39
|
Abstract
The roles of the motor cortex in the acquisition and performance of skilled finger movements have been extensively investigated over decades. Yet it is still not known whether these roles of motor cortex are expertise-dependent. The present study addresses this issue by comparing the effects of noninvasive transcranial direction current stimulation (tDCS) on the fine control of sequential finger movements in highly trained pianists and musically untrained individuals. Thirteen pianists and 13 untrained controls performed timed-sequence finger movements with each of the right and left hands before and after receiving bilateral tDCS over the primary motor cortices. The results demonstrate an improvement of fine motor control in both hands in musically untrained controls, but deterioration in pianists following anodal tDCS over the contralateral cortex and cathodal tDCS over the ipsilateral cortex compared with the sham stimulation. However, this change in motor performance was not evident after stimulating with the opposite montage. These findings support the notion that changes in dexterous finger movements induced by bihemispheric tDCS are expertise-dependent.
Collapse
|
40
|
Shin YI, Foerster Á, Nitsche MA. Reprint of: Transcranial direct current stimulation (tDCS) – Application in neuropsychology. Neuropsychologia 2015; 74:74-95. [DOI: 10.1016/j.neuropsychologia.2015.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 01/07/2023]
|
41
|
Rroji O, van Kuyck K, Nuttin B, Wenderoth N. Anodal tDCS over the Primary Motor Cortex Facilitates Long-Term Memory Formation Reflecting Use-Dependent Plasticity. PLoS One 2015; 10:e0127270. [PMID: 25996937 PMCID: PMC4440644 DOI: 10.1371/journal.pone.0127270] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/13/2015] [Indexed: 11/19/2022] Open
Abstract
Previous research suggests that anodal transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) modulates NMDA receptor dependent processes that mediate synaptic plasticity. Here we test this proposal by applying anodal versus sham tDCS while subjects practiced to flex the thumb as fast as possible (ballistic movements). Repetitive practice of this task has been shown to result in performance improvements that reflect use-dependent plasticity resulting from NMDA receptor mediated, long-term potentiation (LTP)-like processes. Using a double-blind within-subject cross-over design, subjects (n=14) participated either in an anodal or a sham tDCS session which were at least 3 months apart. Sham or anodal tDCS (1 mA) was applied for 20 min during motor practice and retention was tested 30 min, 24 hours and one week later. All subjects improved performance during each of the two sessions (p < 0.001) and learning gains were similar. Our main result is that long term retention performance (i.e. 1 week after practice) was significantly better when practice was performed with anodal tDCS than with sham tDCS (p < 0.001). This effect was large (Cohen's d=1.01) and all but one subject followed the group trend. Our data strongly suggest that anodal tDCS facilitates long-term memory formation reflecting use-dependent plasticity. Our results support the notion that anodal tDCS facilitates synaptic plasticity mediated by an LTP-like mechanism, which is in accordance with previous research.
Collapse
Affiliation(s)
- Orjon Rroji
- Department of Kinesiology, Research Center for Movement Control and Neuroplasticity, KU Leuven, Leuven, Belgium
| | - Kris van Kuyck
- Department of Neurosciences, Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
| | - Bart Nuttin
- Department of Neurosciences, Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
| | - Nicole Wenderoth
- Department of Kinesiology, Research Center for Movement Control and Neuroplasticity, KU Leuven, Leuven, Belgium
- Department of Health Sciences and Technology, Neural Control of Movement Laboratory, ETH Zurich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
42
|
Plasticity Induced by Intermittent Theta Burst Stimulation in Bilateral Motor Cortices Is Not Altered in Older Adults. Neural Plast 2015; 2015:323409. [PMID: 26064691 PMCID: PMC4438185 DOI: 10.1155/2015/323409] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/22/2015] [Indexed: 01/28/2023] Open
Abstract
Numerous studies have reported that plasticity induced in the motor cortex by transcranial magnetic stimulation (TMS) is attenuated in older adults. Those investigations, however, have focused solely on the stimulated hemisphere. Compared to young adults, older adults exhibit more widespread activity across bilateral motor cortices during the performance of unilateral motor tasks, suggesting that the manifestation of plasticity might also be altered. To address this question, twenty young (<35 years old) and older adults (>65 years) underwent intermittent theta burst stimulation (iTBS) whilst attending to the hand targeted by the plasticity-inducing procedure. The amplitude of motor evoked potentials (MEPs) elicited by single pulse TMS was used to quantify cortical excitability before and after iTBS. Individual responses to iTBS were highly variable, with half the participants showing an unexpected decrease in cortical excitability. Contrary to predictions, however, there were no age-related differences in the magnitude or manifestation of plasticity across bilateral motor cortices. The findings suggest that advancing age does not influence the capacity for, or manifestation of, plasticity induced by iTBS.
Collapse
|
43
|
Anodal tDCS over the Motor Cortex on Prepared and Unprepared Responses in Young Adults. PLoS One 2015; 10:e0124509. [PMID: 25933204 PMCID: PMC4416898 DOI: 10.1371/journal.pone.0124509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/15/2015] [Indexed: 02/06/2023] Open
Abstract
Anodal transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) has been proposed as a possible therapeutic rehabilitation technique for motor impairment. However, despite extensive investigation into the effects of anodal tDCS on motor output, there is little information on how anodal tDCS affects response processes. In this study, we used a cued go/nogo task with both directional and non-directional cues to assess the effects of anodal tDCS over the dominant (left) primary motor cortex on prepared and unprepared motor responses. Three experiments explored whether the effectiveness of tDCS varied with timing between stimulation and test. Healthy, right-handed young adults participated in a double-blind randomised controlled design with crossover of anodal tDCS and sham stimulation. In Experiment 1, twenty-four healthy young adults received anodal tDCS over dominant M1 at least 40 mins before task performance. In Experiment 2, eight participants received anodal tDCS directly before task performance. In Experiment 3, twenty participants received anodal tDCS during task performance. In all three experiments, participants responded faster to directional compared to non-directional cues and with their right hand. However, anodal tDCS had no effect on go/nogo task performance at any stimulation – test interval. Bayesian analysis confirmed that anodal stimulation had no effect on response speed. We conclude that anodal tDCS over M1 does not improve response speed of prepared or unprepared responses of young adults in a go/nogo task.
Collapse
|
44
|
Transcranial direct current stimulation (tDCS) – Application in neuropsychology. Neuropsychologia 2015; 69:154-75. [DOI: 10.1016/j.neuropsychologia.2015.02.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 12/21/2022]
|
45
|
Foerster Á, Rocha S, Araújo MDGR, Lemos A, Monte-Silva K. Effects of transcranial direct current stimulation on motor learning in healthy individuals: a systematic review. FISIOTERAPIA EM MOVIMENTO 2015. [DOI: 10.1590/0103-5150.028.001.ar01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction Transcranial direct current stimulation (tDCS) has been used to modify cortical excitability and promote motor learning. Objective To systematically review published data to investigate the effects of transcranial direct current stimulation on motor learning in healthy individuals. Methods Randomized or quasi-randomized studies that evaluated the tDCS effects on motor learning were included and the risk of bias was examined by Cochrane Collaboration’s tool. The following electronic databases were used: PubMed, Scopus, Web of Science, LILACS, CINAHL with no language restriction. Results It was found 160 studies; after reading the title and abstract, 17 of those were selected, but just 4 were included. All studies involved healthy, right-handed adults. All studies assessed motor learning by the Jebsen Taylor Test or by the Serial Finger Tapping Task (SFTT). Almost all studies were randomized and all were blinding for participants. Some studies presented differences at SFTT protocol. Conclusion The result is insufficient to draw conclusions if tDCS influences the motor learning. Furthermore, there was significant heterogeneity of the stimulation parameters used. Further researches are needed to investigate the parameters that are more important for motor learning improvement and measure whether the effects are long-lasting or limited in time.
Collapse
|
46
|
von Rein E, Hoff M, Kaminski E, Sehm B, Steele CJ, Villringer A, Ragert P. Improving motor performance without training: the effect of combining mirror visual feedback with transcranial direct current stimulation. J Neurophysiol 2015; 113:2383-9. [PMID: 25632079 DOI: 10.1152/jn.00832.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/20/2015] [Indexed: 11/22/2022] Open
Abstract
Mirror visual feedback (MVF) during motor training has been shown to improve motor performance of the untrained hand. Here we thought to determine if MVF-induced performance improvements of the left hand can be augmented by upregulating plasticity in right primary motor cortex (M1) by means of anodal transcranial direct current stimulation (a-tDCS) while subjects trained with the right hand. Participants performed a ball-rotation task with either their left (untrained) or right (trained) hand on two consecutive days (days 1 and 2). During training with the right hand, MVF was provided concurrent with two tDCS conditions: group 1 received a-tDCS over right M1 (n = 10), whereas group 2 received sham tDCS (s-tDCS, n = 10). On day 2, performance was reevaluated under the same experimental conditions compared with day 1 but without tDCS. While baseline performance of the left hand (day 1) was not different between groups, a-tDCS exhibited stronger MVF-induced performance improvements compared with s-tDCS. Similar results were observed for day 2 (without tDCS application). A control experiment (n = 8) with a-tDCS over right M1 as outlined above but without MVF revealed that left hand improvement was significantly less pronounced than that induced by combined a-tDCS and MVF. Based on these results, we provide novel evidence that upregulating activity in the untrained M1 by means of a-tDCS is capable of augmenting MVF-induced performance improvements in young normal volunteers. Our findings suggest that concurrent MVF and tDCS might have synergistic and additive effects on motor performance of the untrained hand, a result of relevance for clinical approaches in neurorehabilitation and/or exercise science.
Collapse
Affiliation(s)
- Erik von Rein
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and
| | - Maike Hoff
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and
| | - Elisabeth Kaminski
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and
| | - Bernhard Sehm
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and
| | - Christopher J Steele
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Mind and Brain Institute, Charité and Humboldt University, Berlin, Germany
| | - Patrick Ragert
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and
| |
Collapse
|
47
|
Kwon YH, Jang SH. Onsite-effects of dual-hemisphere versus conventional single-hemisphere transcranial direct current stimulation: A functional MRI study. Neural Regen Res 2015; 7:1889-94. [PMID: 25624815 PMCID: PMC4298903 DOI: 10.3969/j.issn.1673-5374.2012.24.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/30/2012] [Indexed: 11/19/2022] Open
Abstract
We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation.
Collapse
Affiliation(s)
- Yong Hyun Kwon
- Department of Physical Therapy, Yeungnam College of Science & Technology, Daegu 705-703, Republic of Korea
| | - Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea
| |
Collapse
|
48
|
Tazoe T, Endoh T, Kitamura T, Ogata T. Polarity specific effects of transcranial direct current stimulation on interhemispheric inhibition. PLoS One 2014; 9:e114244. [PMID: 25478912 PMCID: PMC4257682 DOI: 10.1371/journal.pone.0114244] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/05/2014] [Indexed: 11/19/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been used as a useful interventional brain stimulation technique to improve unilateral upper-limb motor function in healthy humans, as well as in stroke patients. Although tDCS applications are supposed to modify the interhemispheric balance between the motor cortices, the tDCS after-effects on interhemispheric interactions are still poorly understood. To address this issue, we investigated the tDCS after-effects on interhemispheric inhibition (IHI) between the primary motor cortices (M1) in healthy humans. Three types of tDCS electrode montage were tested on separate days; anodal tDCS over the right M1, cathodal tDCS over the left M1, bilateral tDCS with anode over the right M1 and cathode over the left M1. Single-pulse and paired-pulse transcranial magnetic stimulations were given to the left M1 and right M1 before and after tDCS to assess the bilateral corticospinal excitabilities and mutual direction of IHI. Regardless of the electrode montages, corticospinal excitability was increased on the same side of anodal stimulation and decreased on the same side of cathodal stimulation. However, neither unilateral tDCS changed the corticospinal excitability at the unstimulated side. Unilateral anodal tDCS increased IHI from the facilitated side M1 to the unchanged side M1, but it did not change IHI in the other direction. Unilateral cathodal tDCS suppressed IHI both from the inhibited side M1 to the unchanged side M1 and from the unchanged side M1 to the inhibited side M1. Bilateral tDCS increased IHI from the facilitated side M1 to the inhibited side M1 and attenuated IHI in the opposite direction. Sham-tDCS affected neither corticospinal excitability nor IHI. These findings indicate that tDCS produced polarity-specific after-effects on the interhemispheric interactions between M1 and that those after-effects on interhemispheric interactions were mainly dependent on whether tDCS resulted in the facilitation or inhibition of the M1 sending interhemispheric volleys.
Collapse
Affiliation(s)
- Toshiki Tazoe
- Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
- * E-mail:
| | - Takashi Endoh
- Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
- Faculty of Child Development and Education, Uekusa Gakuen University, Chiba, Japan
| | - Taku Kitamura
- Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
- Division of Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Toru Ogata
- Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| |
Collapse
|
49
|
de Xivry JJO, Shadmehr R. Electrifying the motor engram: effects of tDCS on motor learning and control. Exp Brain Res 2014; 232:3379-95. [PMID: 25200178 PMCID: PMC4199902 DOI: 10.1007/s00221-014-4087-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/26/2014] [Indexed: 01/08/2023]
Abstract
Learning to control our movements is accompanied by neuroplasticity of motor areas of the brain. The mechanisms of neuroplasticity are diverse and produce what is referred to as the motor engram, i.e., the neural trace of the motor memory. Transcranial direct current stimulation (tDCS) alters the neural and behavioral correlates of motor learning, but its precise influence on the motor engram is unknown. In this review, we summarize the effects of tDCS on neural activity and suggest a few key principles: (1) Firing rates are increased by anodal polarization and decreased by cathodal polarization, (2) anodal polarization strengthens newly formed associations, and (3) polarization modulates the memory of new/preferred firing patterns. With these principles in mind, we review the effects of tDCS on motor control, motor learning, and clinical applications. The increased spontaneous and evoked firing rates may account for the modulation of dexterity in non-learning tasks by tDCS. The facilitation of new association may account for the effect of tDCS on learning in sequence tasks while the ability of tDCS to strengthen memories of new firing patterns may underlie the effect of tDCS on consolidation of skills. We then describe the mechanisms of neuroplasticity of motor cortical areas and how they might be influenced by tDCS. We end with current challenges for the fields of brain stimulation and motor learning.
Collapse
Affiliation(s)
- Jean-Jacques Orban de Xivry
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM) and Institute of Neuroscience (IoNS), Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Department of Biomedical Engineering Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
50
|
Fujimoto S, Yamaguchi T, Otaka Y, Kondo K, Tanaka S. Dual-hemisphere transcranial direct current stimulation improves performance in a tactile spatial discrimination task. Clin Neurophysiol 2014; 125:1669-74. [DOI: 10.1016/j.clinph.2013.12.100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 11/30/2022]
|