1
|
Acero VP, Das S, Rivellini O, Purvis EM, Adewole DO, Cullen DK. Emergent structural and functional properties of hippocampal multi-cellular aggregates. Front Neurosci 2023; 17:1171115. [PMID: 37397454 PMCID: PMC10311220 DOI: 10.3389/fnins.2023.1171115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Hippocampal neural networks are distinctly capable of integrating multi-modal sensory inputs to drive memory formation. Neuroscientific investigations using simplified in vitro models have greatly relied on planar (2D) neuronal cultures made from dissociated tissue. While these models have served as simple, cost-effective, and high-throughput tools for examining various morphological and electrophysiological characteristics of hippocampal networks, 2D cultures fail to reconstitute critical elements of the brain microenvironment that may be necessary for the emergence of sophisticated integrative network properties. To address this, we utilized a forced aggregation technique to generate high-density (>100,000 cells/mm3) multi-cellular three-dimensional aggregates using rodent embryonic hippocampal tissue. We contrasted the emergent structural and functional properties of aggregated (3D) and dissociated (2D) cultures over 28 days in vitro (DIV). Hippocampal aggregates displayed robust axonal fasciculation across large distances and significant neuronal polarization, i.e., spatial segregation of dendrites and axons, at earlier time points compared to dissociated cultures. Moreover, we found that astrocytes in aggregate cultures self-organized into non-overlapping quasi-domains and developed highly stellate morphologies resembling astrocyte structures in vivo. We maintained cultures on multi-electrode arrays (MEAs) to assess spontaneous electrophysiological activity for up to 28 DIV. We found that 3D networks of aggregated cultures developed highly synchronized networks and with high burstiness by 28 DIV. We also demonstrated that dual-aggregate networks became active by 7 DIV, in contrast to single-aggregate networks which became active and developed synchronous bursting activity with repeating motifs by 14 DIV. Taken together, our findings demonstrate that the high-density, multi-cellular, 3D microenvironment of hippocampal aggregates supports the recapitulation of emergent biofidelic morphological and functional properties. Our findings suggest that neural aggregates may be used as segregated, modular building blocks for the development of complex, multi-nodal neural network topologies.
Collapse
Affiliation(s)
- Victor P. Acero
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Suradip Das
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Olivia Rivellini
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Erin M. Purvis
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dayo O. Adewole
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
2
|
Xu Y, Kusuyama J, Osana S, Matsuhashi S, Li L, Takada H, Inada H, Nagatomi R. Lactate promotes neuronal differentiation of SH-SY5Y cells by lactate-responsive gene sets through NDRG3-dependent and -independent manners. J Biol Chem 2023:104802. [PMID: 37172727 DOI: 10.1016/j.jbc.2023.104802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Lactate serves as the major glucose alternative to an energy substrate in the brain. Lactate level is increased in the fetal brain from the middle stage of gestation, indicating the involvement of lactate in brain development and neuronal differentiation. Recent reports show that lactate functions as a signaling molecule to regulate gene expression and protein stability. However, the roles of lactate signaling in neuronal cells remain unknown. Here, we showed that lactate promotes the all stages of neuronal differentiation of SH-SY5Y and Neuro2A, human and mouse neuroblastoma cell lines, characterized by increased neuronal marker expression and the rates of neurites extension. Transcriptomics revealed many lactate-responsive genes sets such as SPARCL1 in SH-SY5Y, Neuro2A, and primary embryonic mouse neuronal cells. The effects of lactate on neuronal function were mainly mediated through monocarboxylate transporters 1 (MCT1). We found that NDRG family member 3 (NDRG3), a lactate-binding protein, was highly expressed and stabilized by lactate treatment during neuronal differentiation. Combinative RNA-seq of SH-SY5Y with lactate treatment and NDRG3 knockdown shows that the promotive effects of lactate on neural differentiation are regulated through NDRG3-dependent and independent manners. Moreover, we identified TEA domain family member 1 (TEAD1) and ETS-related transcription factor 4 (ELF4) are the specific transcription factors that are regulated by both lactate and NDRG3 in neuronal differentiation. TEAD1 and ELF4 differently affect the expression of neuronal marker genes in SH-SY5Y cells. These results highlight the biological roles of extracellular and intracellular lactate as a critical signaling molecule that modifies neuronal differentiation.
Collapse
Affiliation(s)
- Yidan Xu
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Joji Kusuyama
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan; Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan; Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Shion Osana
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan; Graduate School of Informatics and Engineering, University of Electro-Communications
| | - Satayuki Matsuhashi
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Longfei Li
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Takada
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Hitoshi Inada
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan; Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan.
| |
Collapse
|
3
|
Tsuchimochi R, Yamagami K, Kubo N, Amimoto N, Raudzus F, Samata B, Kikuchi T, Doi D, Yoshimoto K, Mihara A, Takahashi J. Viral delivery of L1CAM promotes axonal extensions by embryonic cerebral grafts in mouse brain. Stem Cell Reports 2023; 18:899-914. [PMID: 36963389 PMCID: PMC10147836 DOI: 10.1016/j.stemcr.2023.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/26/2023] Open
Abstract
Cell replacement therapy is expected as a new and more radical treatment against brain damage. We previously reported that transplanted human cerebral organoids extend their axons along the corticospinal tract in rodent brains. The axons reached the spinal cord but were still sparse. Therefore, this study optimized the host brain environment by the adeno-associated virus (AAV)-mediated expression of axon guidance proteins in mouse brain. Among netrin-1, SEMA3, and L1CAM, only L1CAM significantly promoted the axonal extension of mouse embryonic brain tissue-derived grafts. L1CAM was also expressed by donor neurons, and this promotion was exerted in a haptotactic manner by their homophilic binding. Primary cortical neurons cocultured on L1CAM-expressing HEK-293 cells supported this mechanism. These results suggest that optimizing the host environment by the AAV-mediated expression of axon guidance molecules enhances the effect of cell replacement therapy.
Collapse
Affiliation(s)
- Ryosuke Tsuchimochi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Keitaro Yamagami
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Naoko Kubo
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Naoya Amimoto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Fabian Raudzus
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Bumpei Samata
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Tetsuhiro Kikuchi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Daisuke Doi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Aya Mihara
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| |
Collapse
|
4
|
Zhou R, Han B, Nowak R, Lu Y, Heller E, Xia C, Chishti AH, Fowler VM, Zhuang X. Proteomic and functional analyses of the periodic membrane skeleton in neurons. Nat Commun 2022; 13:3196. [PMID: 35680881 PMCID: PMC9184744 DOI: 10.1038/s41467-022-30720-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/09/2022] [Indexed: 12/29/2022] Open
Abstract
Actin, spectrin, and associated molecules form a membrane-associated periodic skeleton (MPS) in neurons. The molecular composition and functions of the MPS remain incompletely understood. Here, using co-immunoprecipitation and mass spectrometry, we identified hundreds of potential candidate MPS-interacting proteins that span diverse functional categories. We examined representative proteins in several of these categories using super-resolution imaging, including previously unknown MPS structural components, as well as motor proteins, cell adhesion molecules, ion channels, and signaling proteins, and observed periodic distributions characteristic of the MPS along the neurites for ~20 proteins. Genetic perturbations of the MPS and its interacting proteins further suggested functional roles of the MPS in axon-axon and axon-dendrite interactions and in axon diameter regulation, and implicated the involvement of MPS interactions with cell adhesion molecules and non-muscle myosin in these roles. These results provide insights into the interactome of the MPS and suggest previously unknown functions of the MPS in neurons.
Collapse
Affiliation(s)
- Ruobo Zhou
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA.
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Boran Han
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Roberta Nowak
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92307, USA
| | - Yunzhe Lu
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Evan Heller
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Chenglong Xia
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Athar H Chishti
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Velia M Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92307, USA
- Department of Biological Sciences, The University of Delaware, Newark, DE, 19716, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
5
|
Licheri V, Brigman JL. Altering Cell-Cell Interaction in Prenatal Alcohol Exposure Models: Insight on Cell-Adhesion Molecules During Brain Development. Front Mol Neurosci 2022; 14:753537. [PMID: 34975396 PMCID: PMC8715949 DOI: 10.3389/fnmol.2021.753537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Alcohol exposure during pregnancy disrupts the development of the brain and produces long lasting behavioral and cognitive impairments collectively known as Fetal Alcohol Spectrum Disorders (FASDs). FASDs are characterized by alterations in learning, working memory, social behavior and executive function. A large body of literature using preclinical prenatal alcohol exposure models reports alcohol-induced changes in architecture and activity in specific brain regions affecting cognition. While multiple putative mechanisms of alcohol’s long-lasting effects on morphology and behavior have been investigated, an area that has received less attention is the effect of alcohol on cell adhesion molecules (CAMs). The embryo/fetal development represents a crucial period for Central Nervous System (CNS) development during which the cell-cell interaction plays an important role. CAMs play a critical role in neuronal migration and differentiation, synaptic organization and function which may be disrupted by alcohol. In this review, we summarize the physiological structure and role of CAMs involved in brain development, review the current literature on prenatal alcohol exposure effects on CAM function in different experimental models and pinpoint areas needed for future study to better understand how CAMs may mediate the morphological, sensory and behavioral outcomes in FASDs.
Collapse
Affiliation(s)
- Valentina Licheri
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States.,New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
6
|
Sengupta T, Koonce NL, Vázquez-Martínez N, Moyle MW, Duncan LH, Emerson SE, Han X, Shao L, Wu Y, Santella A, Fan L, Bao Z, Mohler W, Shroff H, Colón-Ramos DA. Differential adhesion regulates neurite placement via a retrograde zippering mechanism. eLife 2021; 10:71171. [PMID: 34783657 PMCID: PMC8843091 DOI: 10.7554/elife.71171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
During development, neurites and synapses segregate into specific neighborhoods or layers within nerve bundles. The developmental programs guiding placement of neurites in specific layers, and hence their incorporation into specific circuits, are not well understood. We implement novel imaging methods and quantitative models to document the embryonic development of the C. elegans brain neuropil, and discover that differential adhesion mechanisms control precise placement of single neurites onto specific layers. Differential adhesion is orchestrated via developmentally-regulated expression of the IgCAM SYG-1, and its partner ligand SYG-2. Changes in SYG-1 expression across neuropil layers result in changes in adhesive forces, which sort SYG-2-expressing neurons. Sorting to layers occurs, not via outgrowth from the neurite tip, but via an alternate mechanism of retrograde zippering, involving interactions between neurite shafts. Our study indicates that biophysical principles from differential adhesion govern neurite placement and synaptic specificity in vivo in developing neuropil bundles.
Collapse
Affiliation(s)
- Titas Sengupta
- Yale University School of Medicine, New Haven, United States
| | - Noelle L Koonce
- Yale University School of Medicine, New Haven, United States
| | | | - Mark W Moyle
- Yale University School of Medicine, New Haven, United States
| | | | - Sarah E Emerson
- Yale University School of Medicine, New Haven, United States
| | - Xiaofei Han
- National Institutes of Health, Bethesda, United States
| | - Lin Shao
- Yale University School of Medicine, New Haven, United States
| | - Yicong Wu
- National Institutes of Health, Bethesda, United States
| | - Anthony Santella
- Developmental Biology Program, Molecular Cytology Core, Sloan-Kettering Institute, New York, United States
| | - Li Fan
- Helen and Robert Appel Alzheimer's Disease Institute, Weill Cornell Medicine, New York, United States
| | - Zhirong Bao
- Developmental Biology Program, Sloan-Kettering Institute, New York, United States
| | - William Mohler
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, United States
| | - Hari Shroff
- National Institutes of Health, Bethesda, United States
| | | |
Collapse
|
7
|
Kim MH, Park SR, Choi BH. Comparative Analysis of the Expression of Chondroitin Sulfate Subtypes and Their Inhibitory Effect on Axonal Growth in the Embryonic, Adult, and Injured Rat Brains. Tissue Eng Regen Med 2020; 18:165-178. [PMID: 32939673 DOI: 10.1007/s13770-020-00295-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/01/2020] [Accepted: 08/16/2020] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Chondroitin sulfate glycosaminoglycans (CS-GAGs) are the primary inhibitory GAGs for neuronal growth after central nervous system (CNS) injury. However, the inhibitory or permissive activity of CS-GAG subtypes is controversial and depends on the physiological needs of CNS tissues. In this study, we investigated the characteristics and effects of CS-GAGs on axonal growth, which was isolated from the brain cortices of normal rat embryo at E18, normal adult rat brain and injured adult rat brain. METHODS Isolated CS-GAGs from embryo, normal adult, and injured adult rat brains were used for analyzing their effect on attachment and axonal growth using modified spot assay with dorsal root ganglion (DRG) explants and cerebellar granule neurons (CGNs). CS-GAGs were separated using high performance liquid chromatography (HPLC), and the subtypes of CS-GAGs were analyzed. RESULTS CS-GAGs of all three groups inhibited CGN attachment and axonal growth of DRGs. However, CS-GAGs of normal adult rat brain exhibited higher inhibitory activity than those of the other groups in both assays. When subtypes of CS-GAGs were analyzed using HPLC, CS-A (4S) was the most abundant in all three groups and found in largest amount in normal adult rat brain. In contrast, unsulfated CS (CS0) and CS-C (6S) were more abundant by 3-4-folds in E18 group than in the two adult groups. CONCLUSION When compared with the normal adult rat brain, injured rat brain showed relatively similar patterns to that of embryonic rat brain at E18 in the expression of CS subtypes and their inhibitory effect on axonal growth. This phenomenon could be due to differential expression of CS-GAGs subtypes causing decrease in the amount of CS-A and mature-type CS proteoglycan core proteins.
Collapse
Affiliation(s)
- Moon Hang Kim
- Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - So Ra Park
- Department of Physiology, Inha University College of Medicine, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Byung Hyune Choi
- Department of Biomedical Sciences, Inha University College of Medicine, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea.
| |
Collapse
|
8
|
ConFiG: Contextual Fibre Growth to generate realistic axonal packing for diffusion MRI simulation. Neuroimage 2020; 220:117107. [PMID: 32622984 PMCID: PMC7903162 DOI: 10.1016/j.neuroimage.2020.117107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 11/27/2022] Open
Abstract
This paper presents Contextual Fibre Growth (ConFiG), an approach to generate white matter numerical phantoms by mimicking natural fibre genesis. ConFiG grows fibres one-by-one, following simple rules motivated by real axonal guidance mechanisms. These simple rules enable ConFiG to generate phantoms with tuneable microstructural features by growing fibres while attempting to meet morphological targets such as user-specified density and orientation distribution. We compare ConFiG to the state-of-the-art approach based on packing fibres together by generating phantoms in a range of fibre configurations including crossing fibre bundles and orientation dispersion. Results demonstrate that ConFiG produces phantoms with up to 20% higher densities than the state-of-the-art, particularly in complex configurations with crossing fibres. We additionally show that the microstructural morphology of ConFiG phantoms is comparable to real tissue, producing diameter and orientation distributions close to electron microscopy estimates from real tissue as well as capturing complex fibre cross sections. Signals simulated from ConFiG phantoms match real diffusion MRI data well, showing that ConFiG phantoms can be used to generate realistic diffusion MRI data. This demonstrates the feasibility of ConFiG to generate realistic synthetic diffusion MRI data for developing and validating microstructure modelling approaches. We present ConFiG, a biologically motivated numerical phantom generator for white matter. ConFiG produces phantoms with state-of-the-art density and realistic microstructure. Diffusion MRI simulations in ConFiG phantoms are comparable to real dMRI signals.
Collapse
|
9
|
Slosarek EL, Schuh AL, Pustova I, Johnson A, Bird J, Johnson M, Frankel EB, Bhattacharya N, Hanna MG, Burke JE, Ruhl DA, Quinney K, Block S, Peotter JL, Chapman ER, Sheets MD, Butcher SE, Stagg SM, Audhya A. Pathogenic TFG Mutations Underlying Hereditary Spastic Paraplegia Impair Secretory Protein Trafficking and Axon Fasciculation. Cell Rep 2020; 24:2248-2260. [PMID: 30157421 PMCID: PMC6152936 DOI: 10.1016/j.celrep.2018.07.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 06/30/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
Length-dependent axonopathy of the corticospinal tract causes lower limb spasticity and is characteristic of several neurological disorders, including hereditary spastic paraplegia (HSP) and amyotrophic lateral sclerosis. Mutations in Trk-fused gene (TFG) have been implicated in both diseases, but the pathomechanisms by which these alterations cause neuropathy remain unclear. Here, we biochemically and genetically define the impact of a mutation within the TFG coiled-coil domain, which underlies earlyonset forms of HSP. We find that the TFG (p.R106C) mutation alters compaction of TFG ring complexes, which play a critical role in the export of cargoes from the endoplasmic reticulum (ER). Using CRISPR-mediated genome editing, we engineered human stem cells that express the mutant form of TFG at endogenous levels and identified specific defects in secretion from the ER and axon fasciculation following neuronal differentiation. Together, our data highlight a key role for TFG-mediated protein transport in the pathogenesis of HSP. Slosarek et al. demonstrate that pathological mutations in TFG, which underlie various forms of neurodegenerative disease, impair secretory protein transport from the endoplasmic reticulum and compromise the ability of axons to self-associate. These findings highlight a critical function for the early secretory pathway in neuronal maintenance.
Collapse
Affiliation(s)
- Erin L Slosarek
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Amber L Schuh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Iryna Pustova
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Adam Johnson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Jennifer Bird
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Matthew Johnson
- Department of Chemistry and Biochemistry, Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL 32306, USA
| | - E B Frankel
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Nilakshee Bhattacharya
- Department of Chemistry and Biochemistry, Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL 32306, USA
| | - Michael G Hanna
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Jordan E Burke
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David A Ruhl
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kyle Quinney
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Samuel Block
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Jennifer L Peotter
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Edwin R Chapman
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michael D Sheets
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Scott M Stagg
- Department of Chemistry and Biochemistry, Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL 32306, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA.
| |
Collapse
|
10
|
Sensory axons inhibit motor axon regeneration in vitro. Exp Neurol 2019; 323:113073. [PMID: 31639375 DOI: 10.1016/j.expneurol.2019.113073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 11/22/2022]
Abstract
During mammalian embryonic development sensory and motor axons interact as an integral part of the pathfinding process. During regeneration, however, little is known of their interactions with one another. It is thus possible that sensory axons might influence motor axon regeneration in ways not currently appreciated. To explore this possibility we have developed an organotypic model of post-natal nerve regeneration in which sensory and motor axons are color-coded by modality. Motor axons that express yellow fluorescent protein (YFP) and sensory axons that express red fluorescent protein (RFP) are blended within a three-dimensional segment of peripheral nerve. This nerve is then transected, allowing axons to interact with one another as they grow out on a collagen/laminin gel that is initially devoid of directional cues. Within hours it is apparent that sensory axons extend more rapidly than motor axons and precede them during the early stages of regeneration, the opposite of their developmental order. Motor axons thus enter an environment already populated with sensory axons, and they adhere to these axons throughout most of their course. As a result, motor axon growth is reduced dramatically. Physical delay of sensory regeneration, allowing motor axons to grow ahead, restores normal motor growth; direct axonal interactions on the gel, rather than some other aspect of the model, are thus responsible for motor inhibition. Potential mechanisms for this inhibition are explored by electroporating siRNA to the neural cell adhesion molecule (NCAM) and the L1 adhesion molecule (L1CAM) into dorsal root ganglia (DRGs) to block expression of these molecules by regenerating sensory axons. Although neither maneuver improved motor regeneration, the results were consistent with early receptor-mediated signaling among axons rather than physical adhesion as the mechanism of motor inhibition in this model.
Collapse
|
11
|
Standardized human bone marrow-derived stem cells infusion improves survival and recovery in a rat model of spinal cord injury. J Neurol Sci 2019; 402:16-29. [DOI: 10.1016/j.jns.2019.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/02/2023]
|
12
|
Shahsavani M, Pronk RJ, Falk R, Lam M, Moslem M, Linker SB, Salma J, Day K, Schuster J, Anderlid BM, Dahl N, Gage FH, Falk A. An in vitro model of lissencephaly: expanding the role of DCX during neurogenesis. Mol Psychiatry 2018; 23:1674-1684. [PMID: 28924182 DOI: 10.1038/mp.2017.175] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/09/2017] [Accepted: 07/12/2017] [Indexed: 12/22/2022]
Abstract
Lissencephaly comprises a spectrum of brain malformations due to impaired neuronal migration in the developing cerebral cortex. Classical lissencephaly is characterized by smooth cerebral surface and cortical thickening that result in seizures, severe neurological impairment and developmental delay. Mutations in the X-chromosomal gene DCX, encoding doublecortin, is the main cause of classical lissencephaly. Much of our knowledge about DCX-associated lissencephaly comes from post-mortem analyses of patient's brains, mainly since animal models with DCX mutations do not mimic the disease. In the absence of relevant animal models and patient brain specimens, we took advantage of induced pluripotent stem cell (iPSC) technology to model the disease. We established human iPSCs from two males with mutated DCX and classical lissencephaly including smooth brain and abnormal cortical morphology. The disease was recapitulated by differentiation of iPSC into neural cells followed by expression profiling and dissection of DCX-associated functions. Here we show that neural stem cells, with absent or reduced DCX protein expression, exhibit impaired migration, delayed differentiation and deficient neurite formation. Hence, the patient-derived iPSCs and neural stem cells provide a system to further unravel the functions of DCX in normal development and disease.
Collapse
Affiliation(s)
- M Shahsavani
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - R J Pronk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - R Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - M Lam
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - M Moslem
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - S B Linker
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - J Salma
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - K Day
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - J Schuster
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - B-M Anderlid
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - N Dahl
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - F H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - A Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
13
|
Singh K, Loreth D, Pöttker B, Hefti K, Innos J, Schwald K, Hengstler H, Menzel L, Sommer CJ, Radyushkin K, Kretz O, Philips MA, Haas CA, Frauenknecht K, Lilleväli K, Heimrich B, Vasar E, Schäfer MKE. Neuronal Growth and Behavioral Alterations in Mice Deficient for the Psychiatric Disease-Associated Negr1 Gene. Front Mol Neurosci 2018; 11:30. [PMID: 29479305 PMCID: PMC5811522 DOI: 10.3389/fnmol.2018.00030] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/23/2018] [Indexed: 12/11/2022] Open
Abstract
Neuronal growth regulator 1 (NEGR1), a member of the immunoglobulin superfamily cell adhesion molecule subgroup IgLON, has been implicated in neuronal growth and connectivity. In addition, genetic variants in or near the NEGR1 locus have been associated with obesity and more recently with learning difficulties, intellectual disability and psychiatric disorders. However, experimental evidence is lacking to support a possible link between NEGR1, neuronal growth and behavioral abnormalities. Initial expression analysis of NEGR1 mRNA in C57Bl/6 wildtype (WT) mice by in situ hybridization demonstrated marked expression in the entorhinal cortex (EC) and dentate granule cells. In co-cultures of cortical neurons and NSC-34 cells overexpressing NEGR1, neurite growth of cortical neurons was enhanced and distal axons occupied an increased area of cells overexpressing NEGR1. Conversely, in organotypic slice co-cultures, Negr1-knockout (KO) hippocampus was less permissive for axons grown from EC of β-actin-enhanced green fluorescent protein (EGFP) mice compared to WT hippocampus. Neuroanatomical analysis revealed abnormalities of EC axons in the hippocampal dentate gyrus (DG) of Negr1-KO mice including increased numbers of axonal projections to the hilus. Neurotransmitter receptor ligand binding densities, a proxy of functional neurotransmitter receptor abundance, did not show differences in the DG of Negr1-KO mice but altered ligand binding densities to NMDA receptor and muscarinic acetylcholine receptors M1 and M2 were found in CA1 and CA3. Activity behavior, anxiety-like behavior and sensorimotor gating were not different between genotypes. However, Negr1-KO mice exhibited impaired social behavior compared to WT littermates. Moreover, Negr1-KO mice showed reversal learning deficits in the Morris water maze and increased susceptibility to pentylenetetrazol (PTZ)-induced seizures. Thus, our results from neuronal growth assays, neuroanatomical analyses and behavioral assessments provide first evidence that deficiency of the psychiatric disease-associated Negr1 gene may affect neuronal growth and behavior. These findings might be relevant to further evaluate the role of NEGR1 in cognitive and psychiatric disorders.
Collapse
Affiliation(s)
- Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Desirée Loreth
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bruno Pöttker
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kyra Hefti
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kathrin Schwald
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heidi Hengstler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lutz Menzel
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Clemens J Sommer
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Konstantin Radyushkin
- Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Mouse Behavioral Unit, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Oliver Kretz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin Frauenknecht
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Bernd Heimrich
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany.,Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
14
|
O'Brien BMJ, Palumbos SD, Novakovic M, Shang X, Sundararajan L, Miller DM. Separate transcriptionally regulated pathways specify distinct classes of sister dendrites in a nociceptive neuron. Dev Biol 2017; 432:248-257. [PMID: 29031632 DOI: 10.1016/j.ydbio.2017.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
Abstract
The dendritic processes of nociceptive neurons transduce external signals into neurochemical cues that alert the organism to potentially damaging stimuli. The receptive field for each sensory neuron is defined by its dendritic arbor, but the mechanisms that shape dendritic architecture are incompletely understood. Using the model nociceptor, the PVD neuron in C. elegans, we determined that two types of PVD lateral branches project along the dorsal/ventral axis to generate the PVD dendritic arbor: (1) Pioneer dendrites that adhere to the epidermis, and (2) Commissural dendrites that fasciculate with circumferential motor neuron processes. Previous reports have shown that the LIM homeodomain transcription factor MEC-3 is required for all higher order PVD branching and that one of its targets, the claudin-like membrane protein HPO-30, preferentially promotes outgrowth of pioneer branches. Here, we show that another MEC-3 target, the conserved TFIIA-like zinc finger transcription factor EGL-46, adopts the alternative role of specifying commissural dendrites. The known EGL-46 binding partner, the TEAD transcription factor EGL-44, is also required for PVD commissural branch outgrowth. Double mutants of hpo-30 and egl-44 show strong enhancement of the lateral branching defect with decreased numbers of both pioneer and commissural dendrites. Thus, HPO-30/Claudin and EGL-46/EGL-44 function downstream of MEC-3 and in parallel acting pathways to direct outgrowth of two distinct classes of PVD dendritic branches.
Collapse
Affiliation(s)
| | | | | | - Xueying Shang
- Vanderbilt University, 3120 MRB III, Nashville, TN 37240-7935, USA.
| | | | - David M Miller
- Vanderbilt University, 3120 MRB III, Nashville, TN 37240-7935, USA.
| |
Collapse
|
15
|
Šmít D, Fouquet C, Pincet F, Zapotocky M, Trembleau A. Axon tension regulates fasciculation/defasciculation through the control of axon shaft zippering. eLife 2017; 6:19907. [PMID: 28422009 PMCID: PMC5478281 DOI: 10.7554/elife.19907] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 04/04/2017] [Indexed: 01/16/2023] Open
Abstract
While axon fasciculation plays a key role in the development of neural networks, very little is known about its dynamics and the underlying biophysical mechanisms. In a model system composed of neurons grown ex vivo from explants of embryonic mouse olfactory epithelia, we observed that axons dynamically interact with each other through their shafts, leading to zippering and unzippering behavior that regulates their fasciculation. Taking advantage of this new preparation suitable for studying such interactions, we carried out a detailed biophysical analysis of zippering, occurring either spontaneously or induced by micromanipulations and pharmacological treatments. We show that zippering arises from the competition of axon-axon adhesion and mechanical tension in the axons, and provide the first quantification of the force of axon-axon adhesion. Furthermore, we introduce a biophysical model of the zippering dynamics, and we quantitatively relate the individual zipper properties to global characteristics of the developing axon network. Our study uncovers a new role of mechanical tension in neural development: the regulation of axon fasciculation.
Collapse
Affiliation(s)
- Daniel Šmít
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Coralie Fouquet
- Neuroscience Paris Seine - Institute of Biology Paris Seine, Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Paris, France
| | - Frédéric Pincet
- Laboratoire de Physique Statistique, Ecole Normale Superieure, PSL Research University, Paris, France
| | - Martin Zapotocky
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Alain Trembleau
- Neuroscience Paris Seine - Institute of Biology Paris Seine, Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Paris, France
| |
Collapse
|
16
|
Gulisano W, Bizzoca A, Gennarini G, Palmeri A, Puzzo D. Role of the adhesion molecule F3/Contactin in synaptic plasticity and memory. Mol Cell Neurosci 2016; 81:64-71. [PMID: 28038945 DOI: 10.1016/j.mcn.2016.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/07/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022] Open
Abstract
Cell adhesion molecules (CAMs) have a pivotal role in building and maintaining synaptic structures during brain development participating in axonal elongation and pathfinding, glial guidance of neuronal migration, as well as myelination. CAMs expression persists in the adult brain particularly in structures undergoing postnatal neurogenesis and involved in synaptic plasticity and memory as the hippocampus. Among the neural CAMs, we have recently focused on F3/Contactin, a glycosylphosphatidyl inositol-anchored glycoprotein belonging to the immunoglobulin superfamily, involved in neuronal development, synaptic maintenance and organization of neuronal networks. Here, we discuss our recent data suggesting that F3/Contactin exerts a role in hippocampal synaptic plasticity and memory in adult and aged mice. In particular, we have studied long-term potentiation (LTP), spatial and object recognition memory, and phosphorylation of the transcription factor cAMP-Responsive-Element Binding protein (CREB) in a transgenic mouse model of F3/Contactin overexpression. We also investigated whether F3/Contactin might influence neuronal apoptosis and the production of amyloid-beta peptide (Aβ), known to be one of the main pathogenetic hallmarks of Alzheimer's disease (AD). In conclusion, a further understanding of F3/Contactin role in synaptic plasticity and memory might have interesting clinical outcomes in cognitive disorders, such as aging and AD, offering innovative therapeutic opportunities.
Collapse
Affiliation(s)
- Walter Gulisano
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Antonella Bizzoca
- Section of Physiology, Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Bari, Italy
| | - Gianfranco Gennarini
- Section of Physiology, Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Bari, Italy
| | - Agostino Palmeri
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Daniela Puzzo
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
17
|
Wolff GH, Strausfeld NJ. Genealogical correspondence of a forebrain centre implies an executive brain in the protostome-deuterostome bilaterian ancestor. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150055. [PMID: 26598732 DOI: 10.1098/rstb.2015.0055] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Orthologous genes involved in the formation of proteins associated with memory acquisition are similarly expressed in forebrain centres that exhibit similar cognitive properties. These proteins include cAMP-dependent protein kinase A catalytic subunit (PKA-Cα) and phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (pCaMKII), both required for long-term memory formation which is enriched in rodent hippocampus and insect mushroom bodies, both implicated in allocentric memory and both possessing corresponding neuronal architectures. Antibodies against these proteins resolve forebrain centres, or their equivalents, having the same ground pattern of neuronal organization in species across five phyla. The ground pattern is defined by olfactory or chemosensory afferents supplying systems of parallel fibres of intrinsic neurons intersected by orthogonal domains of afferent and efferent arborizations with local interneurons providing feedback loops. The totality of shared characters implies a deep origin in the protostome-deuterostome bilaterian ancestor of elements of a learning and memory circuit. Proxies for such an ancestral taxon are simple extant bilaterians, particularly acoels that express PKA-Cα and pCaMKII in discrete anterior domains that can be properly referred to as brains.
Collapse
Affiliation(s)
- Gabriella H Wolff
- Department of Neuroscience, School of Mind, Brain, and Behavior, University of Arizona, Tucson, AZ 85721, USA
| | - Nicholas J Strausfeld
- Department of Neuroscience, School of Mind, Brain, and Behavior, University of Arizona, Tucson, AZ 85721, USA Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
18
|
Kolson DR, Wan J, Wu J, Dehoff M, Brandebura AN, Qian J, Mathers PH, Spirou GA. Temporal patterns of gene expression during calyx of held development. Dev Neurobiol 2015; 76:166-89. [PMID: 26014473 DOI: 10.1002/dneu.22306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/25/2015] [Accepted: 05/19/2015] [Indexed: 01/06/2023]
Abstract
Relating changes in gene expression to discrete developmental events remains an elusive challenge in neuroscience, in part because most neural territories are comprised of multiple cell types that mature over extended periods of time. The medial nucleus of the trapezoid body (MNTB) is an attractive vertebrate model system that contains a nearly homogeneous population of neurons, which are innervated by large glutamatergic nerve terminals called calyces of Held (CH). Key steps in maturation of CHs and MNTB neurons, including CH growth and competition, occur very quickly for most cells between postnatal days (P)2 and P6. Therefore, we characterized genome-wide changes in this system, with dense temporal sampling during the first postnatal week. We identified 541 genes whose expression changed significantly between P0-6 and clustered them into eight groups based on temporal expression profiles. Candidate genes from each of the eight profile groups were validated in separate samples by qPCR. Our tissue sample permitted comparison of known glial and neuronal transcripts and revealed that monotonically increasing or decreasing expression profiles tended to be associated with glia and neurons, respectively. Gene ontology revealed enrichment of genes involved in axon pathfinding, cell differentiation, cell adhesion and extracellular matrix. The latter category included elements of perineuronal nets, a prominent feature of MNTB neurons that is morphologically distinct by P6, when CH growth and competition are resolved onto nearly all MNTB neurons. These results provide a genetic framework for investigation of general mechanisms responsible for nerve terminal growth and maturation.
Collapse
Affiliation(s)
- Douglas R Kolson
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, West Virginia.,Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Jun Wan
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jonathan Wu
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, West Virginia.,Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Otolaryngology HNS, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Marlin Dehoff
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, West Virginia.,Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Ashley N Brandebura
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, West Virginia.,Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Jiang Qian
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Peter H Mathers
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, West Virginia.,Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Otolaryngology HNS, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - George A Spirou
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, West Virginia.,Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Otolaryngology HNS, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
19
|
Hopkins AM, Wheeler B, Staii C, Kaplan DL, Atherton TJ. Semi-automatic quantification of neurite fasciculation in high-density neurite images by the neurite directional distribution analysis (NDDA). J Neurosci Methods 2014; 228:100-9. [PMID: 24680908 DOI: 10.1016/j.jneumeth.2014.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND Bundling of neurite extensions occur during nerve development and regeneration. Understanding the factors that drive neurite bundling is important for designing biomaterials for nerve regeneration toward the innervation target and preventing nociceptive collateral sprouting. High-density neuron cultures including dorsal root ganglia explants are employed for in vitro screening of biomaterials designed to control directional outgrowth. Although some semi-automated image processing methods exist for quantification of neurite outgrowth, methods to quantify axonal fasciculation in terms of direction of neurite outgrowth are lacking. NEW METHOD This work presents a semi-automated program to analyze micrographs of high-density neurites; the program aims to quantify axonal fasciculation by determining the orientational distribution function of the tangent vectors of the neurites and calculating its Fourier series coefficients ('c' values). RESULTS We found that neurite directional distribution analysis (NDDA) of fasciculated neurites yielded 'c' values of ≥∼0.25 whereas branched outgrowth led to statistically significant lesser values of <∼0.2. The 'c' values correlated directly to the width of neurite bundles and indirectly to the number of branching points. COMPARISON WITH EXISTING METHODS Information about the directional distribution of outgrowth is lost in simple counting methods or achieved laboriously through manual analysis. The NDDA supplements previous quantitative analyses of axonal bundling using a vector-based approach that captures new information about the directionality of outgrowth. CONCLUSION The NDDA is a valuable addition to open source image processing tools available to biomedical researchers offering a robust, precise approach to quantification of imaged features important in tissue development, disease, and repair.
Collapse
Affiliation(s)
- Amy M Hopkins
- Department of Biomedical Engineering, Tufts University Science & Technology Center, 4 Colby Street, Medford, MA 02155, USA.
| | - Brandon Wheeler
- Department of Biomedical Engineering, Tufts University Science & Technology Center, 4 Colby Street, Medford, MA 02155, USA.
| | - Cristian Staii
- Department of Physics and Astronomy, and Center for Nanoscopic Physics, Tufts University Science & Technology Center, 4 Colby Street, Medford, MA 02155, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University Science & Technology Center, 4 Colby Street, Medford, MA 02155, USA.
| | - Timothy J Atherton
- Department of Physics and Astronomy, and Center for Nanoscopic Physics, Tufts University Science & Technology Center, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
20
|
Witteveen JS, Middelman A, van Hulten JA, Martens GJM, Homberg JR, Kolk SM. Lack of serotonin reuptake during brain development alters rostral raphe-prefrontal network formation. Front Cell Neurosci 2013; 7:143. [PMID: 24109430 PMCID: PMC3790074 DOI: 10.3389/fncel.2013.00143] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 08/15/2013] [Indexed: 11/13/2022] Open
Abstract
Besides its "classical" neurotransmitter function, serotonin (5-HT) has been found to also act as a neurodevelopmental signal. During development, the 5-HT projection system, besides an external placental source, represents one of the earliest neurotransmitter systems to innervate the brain. One of the targets of the 5-HT projection system, originating in the brainstem raphe nuclei, is the medial prefrontal cortex (mPFC), an area involved in higher cognitive functions and important in the etiology of many neurodevelopmental disorders. Little is known, however, about the exact role of 5-HT and its signaling molecules in the formation of the raphe-prefrontal network. Using explant essays, we here studied the role of the 5-HT transporter (5-HTT), an important modulator of the 5-HT signal, in rostral raphe-prefrontal network formation. We found that the chemotrophic nature of the interaction between the origin (rostral raphe cluster) and a target (mPFC) of the 5-HT projection system was affected in rats lacking the 5-HTT (5-HTT(-/-)). While 5-HTT deficiency did not affect the dorsal raphe 5-HT-positive outgrowing neurites, the median raphe 5-HT neurites switched from a strong repulsive to an attractive interaction when co-cultured with the mPFC. Furthermore, the fasciculation of the mPFC outgrowing neurites was dependent on the amount of 5-HTT. In the mPFC of 5-HTT(-/-) pups, we observed clear differences in 5-HT innervation and the identity of a class of projection neurons of the mPFC. In the absence of the 5-HTT, the 5-HT innervation in all subareas of the early postnatal mPFC increased dramatically and the number of Satb2-positive callosal projection neurons was decreased. Together, these results suggest a 5-HTT dependency during early development of these brain areas and in the formation of the raphe-prefrontal network. The tremendous complexity of the 5-HT projection system and its role in several neurodevelopmental disorders highlights the need for further research in this largely unexplored area.
Collapse
Affiliation(s)
- Josefine S Witteveen
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Puzzo D, Bizzoca A, Privitera L, Furnari D, Giunta S, Girolamo F, Pinto M, Gennarini G, Palmeri A. F3/Contactin promotes hippocampal neurogenesis, synaptic plasticity, and memory in adult mice. Hippocampus 2013; 23:1367-82. [PMID: 23939883 DOI: 10.1002/hipo.22186] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/23/2013] [Accepted: 08/02/2013] [Indexed: 12/18/2022]
Abstract
F3/contactin, a cell-adhesion molecule belonging to the immunoglobulin supergene family, is involved in several aspects of neural development including synapse building, maintenance and functioning. Here, we examine F3/contactin function in adult hippocampal neurogenesis, synaptic plasticity, and memory, using as a model TAG/F3 transgenic mice, where F3/contactin overexpression was induced under control of regulatory sequences from the human TAG-1 (TAX-1) gene. Transgenic mice aged 5 (M5) and 12 (M12) months exhibited an increase in hippocampal size, which correlated with positive effects on precursor proliferation and NeuN expression, these data suggesting a possible role for F3/contactin in promoting adult hippocampal neurogenesis. On the functional level, TAG/F3 mice exhibited increased CA1 long-term potentiation and improved spatial and object recognition memory, notably at 12 months of age. Interestingly, these mice showed an increased expression of the phosphorylated transcription factor CREB, which may represent the main molecular correlate of the observed morphological and functional effects. Altogether, these findings indicate for the first time that F3/contactin plays a role in promoting adult hippocampal neurogenesis and that this effect correlates with improved synaptic function and memory.
Collapse
Affiliation(s)
- Daniela Puzzo
- Section of Physiology, Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Barry J, Xu M, Gu Y, Dangel AW, Jukkola P, Shrestha C, Gu C. Activation of conventional kinesin motors in clusters by Shaw voltage-gated K+ channels. J Cell Sci 2013; 126:2027-41. [PMID: 23487040 DOI: 10.1242/jcs.122234] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The conventional kinesin motor transports many different cargos to specific locations in neurons. How cargos regulate motor function remains unclear. Here we focus on KIF5, the heavy chain of conventional kinesin, and report that the Kv3 (Shaw) voltage-gated K(+) channel, the only known tetrameric KIF5-binding protein, clusters and activates KIF5 motors during axonal transport. Endogenous KIF5 often forms clusters along axons, suggesting a potential role of KIF5-binding proteins. Our biochemical assays reveal that the high-affinity multimeric binding between the Kv3.1 T1 domain and KIF5B requires three basic residues in the KIF5B tail. Kv3.1 T1 competes with the motor domain and microtubules, but not with kinesin light chain 1 (KLC1), for binding to the KIF5B tail. Live-cell imaging assays show that four KIF5-binding proteins, Kv3.1, KLC1 and two synaptic proteins SNAP25 and VAMP2, differ in how they regulate KIF5B distribution. Only Kv3.1 markedly increases the frequency and number of KIF5B-YFP anterograde puncta. Deletion of Kv3.1 channels reduces KIF5 clusters in mouse cerebellar neurons. Therefore, clustering and activation of KIF5 motors by Kv3 regulate the motor number in carrier vesicles containing the channel proteins, contributing not only to the specificity of Kv3 channel transport, but also to the cargo-mediated regulation of motor function.
Collapse
Affiliation(s)
- Joshua Barry
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Gu Y, Barry J, Gu C. Kv3 channel assembly, trafficking and activity are regulated by zinc through different binding sites. J Physiol 2013; 591:2491-507. [PMID: 23420657 DOI: 10.1113/jphysiol.2013.251983] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Zinc, a divalent heavy metal ion and an essential mineral for life, regulates synaptic transmission and neuronal excitability via ion channels. However, its binding sites and regulatory mechanisms are poorly understood. Here, we report that Kv3 channel assembly, localization and activity are regulated by zinc through different binding sites. Local perfusion of zinc reversibly reduced spiking frequency of cultured neurons most likely by suppressing Kv3 channels. Indeed, zinc inhibited Kv3.1 channel activity and slowed activation kinetics, independent of its site in the N-terminal T1 domain. Biochemical assays surprisingly identified a novel zinc-binding site in the Kv3.1 C-terminus, critical for channel activity and axonal targeting, but not for the zinc inhibition. Finally, mutagenesis revealed an important role of the junction between the first transmembrane (TM) segment and the first extracellular loop in sensing zinc. Its mutant enabled fast spiking with relative resistance to the zinc inhibition. Therefore, our studies provide novel mechanistic insights into the multifaceted regulation of Kv3 channel activity and localization by divalent heavy metal ions.
Collapse
Affiliation(s)
- Yuanzheng Gu
- 182 Rightmire Hall, 1060 Carmack Road, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
24
|
Abstract
Axons of various hippocampal neurons are myelinated mainly postnatally, which is important for the proper function of neural circuits. Demyelination in the hippocampus has been observed in patients with multiple sclerosis, Alzheimer's disease or temporal lobe epilepsy. However, very little is known about the mechanisms and exact functions of the interaction between the myelin-making oligodendrocytes and the axons within the hippocampus. This is mainly attributable to the lack of a system suitable for molecular studies. We recently established a new myelin coculture from embryonic day (E) 18 rat embryos consisting of hippocampal neurons and oligodendrocytes, with which we identified a novel intra-axonal signaling pathway regulating the juxtaparanodal clustering of Kv1.2 channels. Here we describe the detailed protocol for this new coculture. It takes about 5 weeks to set up and use the system. This coculture is particularly useful for studying myelin-mediated regulation of ion channel trafficking and for understanding how neuronal excitability and synaptic transmission are regulated by myelination.
Collapse
|
25
|
K+ channel alterations in the progression of experimental autoimmune encephalomyelitis. Neurobiol Dis 2012; 47:280-93. [PMID: 22560931 DOI: 10.1016/j.nbd.2012.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 04/11/2012] [Accepted: 04/16/2012] [Indexed: 01/02/2023] Open
Abstract
Voltage-gated K(+) (Kv) channels play critical roles not only in regulating synaptic transmission and intrinsic excitability of neurons, but also in controlling the function and proliferation of other cells in the central nervous system (CNS). The non-specific Kv channel blocker, 4-AminoPyridine (4-AP) (Dalfampridine, Ampyra®), is currently used to treat multiple sclerosis (MS), an inflammatory demyelinating disease. However, little is known how various types of Kv channels are altered in any inflammatory demyelinating diseases. By using established animal models for MS, experimental autoimmune encephalomyelitis (EAE), we report that expression and distribution patterns of Kv channels are altered in the CNS correlating with EAE severity. The juxtaparanodal (JXP) targeting of Kv1.2/Kvβ2 along myelinated axons is disrupted within demyelinated lesions in the white matter of spinal cord in EAE. Moreover, somatodendritic Kv2.1 channels in the motor neurons of lower spinal cord significantly decrease correlating with EAE severity. Interestingly, Kv1.4 expression surrounding lesions is markedly up-regulated in the initial acute phase of both EAE models. Its expression in glial fibrillary acidic protein (GFAP)-positive astrocytes further increases in the remitting phase of remitting-relapsing EAE (rrEAE), but decreases in late chronic EAE (chEAE) and the relapse of rrEAE, suggesting that Kv1.4-positive astrocytes may be neuroprotective. Taken together, our studies reveal myelin-dependent and -independent alterations of Kv channels in the progression of EAE and lay a solid foundation for future study in search of a better treatment for MS.
Collapse
|
26
|
Role of L1CAM for axon sprouting and branching. Cell Tissue Res 2012; 349:39-48. [DOI: 10.1007/s00441-012-1345-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/25/2012] [Indexed: 01/02/2023]
|
27
|
Gabbott PL, Stewart MG. Visual deprivation alters dendritic bundle architecture in layer 4 of rat visual cortex. Neuroscience 2012; 207:65-77. [PMID: 22269141 DOI: 10.1016/j.neuroscience.2012.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 12/23/2011] [Accepted: 01/03/2012] [Indexed: 10/14/2022]
Abstract
The effect of visual deprivation followed by light exposure on the tangential organisation of dendritic bundles passing through layer 4 of the rat visual cortex was studied quantitatively in the light microscope. Four groups of animals were investigated: (I) rats reared in an environment illuminated normally--group 52 dL; (II) rats reared in the dark until 21 days postnatum (DPN) and subsequently light exposed for 31 days-group 21/31; (III) rats dark reared until 52 DPN and then subsequently light exposed for 3 days--group 3 dL; and (IV) rats totally dark reared until 52 DPN--group 52 DPN. Each group contained five animals. Semithin 0.5-1-μm thick resin-embedded sections were collected from tangential sampling levels through the middle of layer 4 in area 17 and stained with Toluidine Blue. These sections were used to quantitatively analyse the composition and distribution of dendritic clusters in the tangential plane. The key result of this study indicates a significant reduction in the mean number of medium- and small-sized dendritic profiles (diameter less than 2 μm) contributing to clusters in layer 4 of groups 3 dL and 52 dD compared with group 21/31. No differences were detected in the mean number of large-sized dendritic profiles composing a bundle in these experimental groups. Moreover, the mean number of clusters and their tangential distribution in layer 4 did not vary significantly between all four groups. Finally, the clustering parameters were not significantly different between groups 21/31 and the normally reared group 52 dL. This study demonstrates, for the first time, that extended periods of dark rearing followed by light exposure can alter the morphological composition of dendritic bundles in thalamorecipient layer 4 of rat visual cortex. Because these changes occur in the primary region of thalamocortical input, they may underlie specific alterations in the processing of visual information both cortically and subcortically during periods of dark rearing and light exposure.
Collapse
Affiliation(s)
- P L Gabbott
- Brain and Behaviour Discipline, Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK.
| | | |
Collapse
|
28
|
Gu C, Barry J. Function and mechanism of axonal targeting of voltage-sensitive potassium channels. Prog Neurobiol 2011; 94:115-32. [PMID: 21530607 DOI: 10.1016/j.pneurobio.2011.04.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 03/22/2011] [Accepted: 04/01/2011] [Indexed: 12/20/2022]
Abstract
Precise localization of various ion channels into proper subcellular compartments is crucial for neuronal excitability and synaptic transmission. Axonal K(+) channels that are activated by depolarization of the membrane potential participate in the repolarizing phase of the action potential, and hence regulate action potential firing patterns, which encode output signals. Moreover, some of these channels can directly control neurotransmitter release at axonal terminals by constraining local membrane excitability and limiting Ca(2+) influx. K(+) channels differ not only in biophysical and pharmacological properties, but in expression and subcellular distribution as well. Importantly, proper targeting of channel proteins is a prerequisite for electrical and chemical functions of axons. In this review, we first highlight recent studies that demonstrate different roles of axonal K(+) channels in the local regulation of axonal excitability. Next, we focus on research progress in identifying axonal targeting motifs and machinery of several different types of K(+) channels present in axons. Regulation of K(+) channel targeting and activity may underlie a novel form of neuronal plasticity. This research field can contribute to generating novel therapeutic strategies through manipulating neuronal excitability in treating neurological diseases, such as multiple sclerosis, neuropathic pain, and Alzheimer's disease.
Collapse
Affiliation(s)
- Chen Gu
- Department of Neuroscience and Center for Molecular Neurobiology, The Ohio State University, Columbus, USA.
| | | |
Collapse
|