1
|
Salazar-Mendoza P, Miyagusuku-Cruzado G, Giusti MM, Rodriguez-Saona C. Genotypic Variation and Potential Mechanisms of Resistance against Multiple Insect Herbivores in Cranberries. J Chem Ecol 2024; 50:751-766. [PMID: 39028464 DOI: 10.1007/s10886-024-01522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024]
Abstract
Plant genotypes often exhibit varying resistance levels to herbivores. However, the impact of this genotypic variation on resistance against multiple herbivores remains poorly understood, especially in crops undergoing recent process of domestication. To address this gap, we studied the magnitude and mechanism of resistance in 12 cranberry (Vaccinium macrocarpon) genotypes to three leaf-chewing herbivores - Sparganothis fruitworm (Sparganothis sulfureana), spotted fireworm (Choristoneura parallela), and spongy moth (Lymantria dispar) - along a domestication gradient (native 'wild' genotypes, 'early hybrid' genotypes, and 'modern hybrid' genotypes). Like cranberries, S. sulfureana and C. parallela are native to the United Sates, while L. dispar is an invasive pest. We measured the survival and growth of larvae on each genotype, as well as variation in plant performance (height and biomass) and leaf defensive chemical traits (C/N ratio, total phenolics, total proanthocyanidins, and flavonols levels) in these genotypes to elucidate potential resistance mechanisms. We found differences in C. parallela and L. dispar larval performance across genotypes, with larvae performing better on the modern hybrid genotypes, while S. sulfureana showed no differences. Morphological and chemical traits varied among genotypes, with total phenolics being the only trait correlated with C. parallela and L. dispar larval performance. Notably, the wild genotypes 'McFarlin' and 'Potter' had higher total phenolics and were more resistant to both herbivores than the modern hybrids 'Demoranville' and 'Mullica Queen.' This research contributes to a comprehensive understanding of the impact of crop domestication on multiple insect herbivores, offering insights for future breeding efforts to enhance host-plant resistance against agricultural pests.
Collapse
Affiliation(s)
- Paolo Salazar-Mendoza
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil.
| | - Gonzalo Miyagusuku-Cruzado
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Rd., Columbus, OH, 43210-1007, USA
| | - M Monica Giusti
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Rd., Columbus, OH, 43210-1007, USA
| | - Cesar Rodriguez-Saona
- Department of Entomology, Rutgers University P.E Marucci Center, 125A Lake Oswego Rd., Chatsworth, NJ, 08019, USA
| |
Collapse
|
2
|
Kato-Noguchi H, Kato M. Defense Molecules of the Invasive Plant Species Ageratum conyzoides. Molecules 2024; 29:4673. [PMID: 39407602 PMCID: PMC11478290 DOI: 10.3390/molecules29194673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Ageratum conyzoides L. is native to Tropical America, and it has naturalized in many other tropical, subtropical, and temperate countries in South America, Central and Southern Africa, South and East Asia, Eastern Austria, and Europe. The population of the species has increased dramatically as an invasive alien species, and it causes significant problems in agriculture and natural ecosystems. The life history traits of Ageratum conyzoides, such as its short life cycle, early reproductive maturity, prolific seed production, and high adaptive ability to various environmental conditions, may contribute to its naturalization and increasing population. Possible evidence of the molecules involved in the defense of Ageratum conyzoides against its natural enemies, such as herbivore insects and fungal pathogens, and the allelochemicals involved in its competitive ability against neighboring plant species has been accumulated in the literature. The volatiles, essential oils, extracts, residues, and/or rhizosphere soil of Ageratum conyzoides show insecticidal, fungicidal, nematocidal, and allelopathic activity. The pyrrolizidine alkaloids lycopsamine and echinatine, found in the species, are highly toxic and show insecticidal activity. Benzopyran derivatives precocenes I and II show inhibitory activity against insect juvenile hormone biosynthesis and trichothecene mycotoxin biosynthesis. A mixture of volatiles emitted from Ageratum conyzoides, such as β-caryophyllene, β-bisabolene, and β-farnesene, may work as herbivore-induced plant volatiles, which are involved in the indirect defense function against herbivore insects. Flavonoids, such as nobiletin, eupalestin, 5'-methoxynobiletin, 5,6,7,3',4',5'-hexamethoxyflavone, and 5,6,8,3,4',5'-hexamethoxyflavone, show inhibitory activity against the spore germination of pathogenic fungi. The benzoic acid and cinnamic acid derivatives found in the species, such as protocatechuic acid, gallic acid, p-coumaric acid, p-hydroxybenzoic acid, and ferulic acid, may act as allelopathic agents, causing the germination and growth inhibition of competitive plant species. These molecules produced by Ageratum conyzoides may act as defense molecules against its natural enemies and as allelochemicals against neighboring plant species, and they may contribute to the naturalization of the increasing population of Ageratum conyzoides in new habitats as an invasive plant species. This article presents the first review focusing on the defense function and allelopathy of Ageratum conyzoides.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan
| | | |
Collapse
|
3
|
Pfadenhauer WG, Bradley BA. Quantifying vulnerability to plant invasion across global ecosystems. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024:e3031. [PMID: 39353622 DOI: 10.1002/eap.3031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/10/2024] [Indexed: 10/04/2024]
Abstract
The widely referenced "tens rule" in invasion ecology suggests that approximately 10% of established, non-native species will become invasive. However, the accuracy of this estimate has been questioned, as the original analysis focused on small groups of plant species in Great Britain and Australia. Using a novel database of 9501 established plants and 2924 invasive plants, we provide a comprehensive evaluation of the tens rule and the first empirical analysis of how invasion rates vary across spatial scales, islands/mainlands, and climate zones. We found that invasion rates (the percentage of established species with negative impacts) are highly variable across the globe. Well-sampled environments (those with at least 2000 total non-native species recorded) had invasion rates that ranged from 7.2% to 33.8%. Invasion rates were strongly scale-dependent, averaging 17% at the country scale and 25% at the continental scale. We found significantly higher invasion rates on islands when compared with mainlands, regardless of scale. Tropical ecosystems are often considered to be resistant to invasion; however, our results showed significantly higher invasion rates on both tropical islands and mainlands, suggesting unexpectedly high vulnerability of these species-rich ecosystems. We conclude that the tens rule is a poor general estimate of invasion rates for plants, as calculated invasion rates vary widely and are frequently much higher than 10%. Most locations would be better served by using invasion rates that vary based on the recipient environment. Our updated estimates of invasion rates should be highly relevant for invasive species management strategies, including weed risk assessments, which can be adjusted to identify more species as high-risk in areas where invasion rates are higher. Assuming that 10% of established species will become invasive is likely to substantially underestimate invasion rates in most geographies.
Collapse
Affiliation(s)
- William G Pfadenhauer
- Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Bethany A Bradley
- Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
4
|
Xu L, DeAngelis DL. Modeling the Effects of Temperature and Limiting Nutrients on the Competition of an Invasive Floating Plant, Pontederia crassipes, with Submersed Vegetation in a Shallow Lake. PLANTS (BASEL, SWITZERLAND) 2024; 13:2621. [PMID: 39339596 PMCID: PMC11435338 DOI: 10.3390/plants13182621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
The potential for a non-native plant species to invade a new habitat depends on broadscale factors such as climate, local factors such as nutrient availability, and the biotic community of the habitat into which the plant species is introduced. We developed a spatially explicit model to assess the risk of expansion of a floating invasive aquatic plant species (FAV), the water hyacinth (Pontederia crassipes), an invader in the United States, beyond its present range. Our model used known data on growth rates and competition with a native submersed aquatic macrophyte (SAV). In particular, the model simulated an invasion into a habitat with a mean annual temperature different from its own growth optimum, in which we also simulated seasonal fluctuations in temperature. Twenty different nutrient concentrations and eight different temperature scenarios, with different mean annual amplitudes of seasonal temperature variation around the mean of the invaded habitat, were simulated. In each case, the ability of the water hyacinth to invade and either exclude or coexist with the native vegetation was determined. As the temperature pattern was changed from tropical towards increasingly cooler temperate levels, the competitive advantage shifted from the tropical FAV to the more temperate SAV, with a wide range in which coexistence occurred. High nutrient concentrations allowed the coexistence of FAV, even at cooler annual temperatures. But even at the highest nutrient concentrations in the model, the FAV was unlikely to persist under the current climates of latitudes in the Southeastern United States above that of Northern Alabama. This result may have some implications for where control efforts need to be concentrated.
Collapse
Affiliation(s)
- Linhao Xu
- Department of Biology, University of Miami, Coral Gables, FL 33124, USA;
| | - Donald L. DeAngelis
- Wetland and Aquatic Research Center, U. S., Geological Survey, Davie, FL 33314, USA
| |
Collapse
|
5
|
Shan L, Hou M. Herbivore and native plant diversity synergistically resist alien plant invasion regardless of nutrient conditions. PLANT DIVERSITY 2024; 46:640-647. [PMID: 39290889 PMCID: PMC11403117 DOI: 10.1016/j.pld.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 09/19/2024]
Abstract
Alien plant invasion success can be inhibited by two key biotic factors: native herbivores and plant diversity. However, few studies have experimentally tested whether these factors interact to synergistically resist invasion success, especially factoring in changing global environments (e.g. nutrient enrichment). Here we tested how the synergy between native herbivores and plant diversity affects alien plant invasion success in various nutrient conditions. For this purpose, we exposed alien plant species in pot-mesocosms to different levels of native plant diversity (4 vs. 8 species), native generalist herbivores, and high and low soil nutrient levels. We found that generalist herbivores preferred alien plants to native plants, inhibiting invasion success in a native community. This inhibition was amplified by highly diverse native communities. Further, the amplified effect between herbivory and native plant diversity was independent of nutrient conditions. Our results suggest that a higher diversity of native communities can strengthen the resistance of native generalist herbivores to alien plant invasions by enhancing herbivory tolerance. The synergistic effect remains in force in nutrient-enriched habitats that are always invaded by alien plant species. Our results shed light on the effective control of plant invasions using multi-trophic means, even in the face of future global changes.
Collapse
Affiliation(s)
- Liping Shan
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Meng Hou
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
6
|
Zhai J, Hou B, Hu F, Yu G, Li Z, Palmer-Young EC, Xiang H, Gao L. Active defense strategies for invasive plants may alter the distribution pattern of pests in the invaded area. FRONTIERS IN PLANT SCIENCE 2024; 15:1428752. [PMID: 39055354 PMCID: PMC11269258 DOI: 10.3389/fpls.2024.1428752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
Introduction In the invaded areas, it is believed that invasive species reduce their investment in defense due to the absence of natural enemies. Methods By field investigation and a series of laboratory assays, This study explored the defense strategies of invasive plants. Results Field investigation indicated that invasive plants have a antifeedant effect on herbivorous pests, and the distribution frequency of wormholes of native plants shows a peak at a distance of 2-3 m from the invasive species. The feeding preference experiment conducted with two generalist herbivorous insects (native insect Spodoptera litura and invasive insect Spodoptera frugiperda) showed that the invasive plants have a stronger antifeedant effect than native plants. By analyzing the content of secondary metabolites in the leaves of three invasive plants (Sphagneticola trilobata, Mikania micrantha, Ipomoea cairica) and three native plants (Ipomoea nil, Paederia foetida, Polygonum chinense), the leaves of invasive plants had higher concentrations of substances associated with defenses, including total phenols, flavonoids, jasmonic acid, tannin, H2O2, and total antioxidant capacity (TAC), and lower soluble protein concentrations than native plants. After leaf damage, compared to native plants, the leaves of invasive plants showed an overall increase in substances associated with defense, except for soluble sugar. Discussion These results suggest that invasive plants maintain active defense strategies in invaded areas, leading to changes in the distribution patterns of herbivorous insects in a manner that facilitates invasion.
Collapse
Affiliation(s)
- Junjie Zhai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Bin Hou
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Fangyu Hu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Guozhu Yu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Zhiqi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Evan C. Palmer-Young
- United States Department of Agriculture- Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD, United States
| | - Hui Xiang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
7
|
Stroud JT, Delory BM, Barnes EM, Chase JM, De Meester L, Dieskau J, Grainger TN, Halliday FW, Kardol P, Knight TM, Ladouceur E, Little CJ, Roscher C, Sarneel JM, Temperton VM, van Steijn TLH, Werner CM, Wood CW, Fukami T. Priority effects transcend scales and disciplines in biology. Trends Ecol Evol 2024; 39:677-688. [PMID: 38508922 DOI: 10.1016/j.tree.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/22/2024]
Abstract
Although primarily studied through the lens of community ecology, phenomena consistent with priority effects appear to be widespread across many different scenarios spanning a broad range of spatial, temporal, and biological scales. However, communication between these research fields is inconsistent and has resulted in a fragmented co-citation landscape, likely due to the diversity of terms used to refer to priority effects across these fields. We review these related terms, and the biological contexts in which they are used, to facilitate greater cross-disciplinary cohesion in research on priority effects. In breaking down these semantic barriers, we aim to provide a framework to better understand the conditions and mechanisms of priority effects, and their consequences across spatial and temporal scales.
Collapse
Affiliation(s)
- J T Stroud
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - B M Delory
- Institute of Ecology, Leuphana University Lüneburg, Lüneburg, Germany; Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands.
| | - E M Barnes
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - J M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - L De Meester
- Leibniz Institut für Gewässerökologie und Binnenfischerei (IGB), Müggelseedamm 310, 12587 Berlin, Germany; Institute of Biology, Freie Universität Berlin, Königin-Luise-Strasse 1-3, 14195 Berlin, Germany; Laboratory of Aquatic Ecology, Evolution, and Conservation, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - J Dieskau
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Department of Geobotany and Botanical Garden, Martin-Luther University, Germany
| | - T N Grainger
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - F W Halliday
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - P Kardol
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - T M Knight
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Department of Community Ecology, Helmholtz Centre for Environmental Research (UFZ), Halle (Saale), Germany; Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - E Ladouceur
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - C J Little
- School of Environmental Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - C Roscher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Department of Physiological Diversity, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - J M Sarneel
- Department of Ecology and Environmental Science, Umea University, 901 87 Umea, Sweden
| | - V M Temperton
- Institute of Ecology, Leuphana University Lüneburg, Lüneburg, Germany
| | - T L H van Steijn
- Department of Ecology and Environmental Science, Umea University, 901 87 Umea, Sweden
| | - C M Werner
- Department of Environmental Science, Policy, and Sustainability, Southern Oregon University, Ashland, OR 97520, USA
| | - C W Wood
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - T Fukami
- Departments of Biology and Earth System Science, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Zhu Y, Momeni B. Revisiting the invasion paradox: Resistance-richness relationship is driven by augmentation and displacement trends. PLoS Comput Biol 2024; 20:e1012193. [PMID: 38865380 PMCID: PMC11198907 DOI: 10.1371/journal.pcbi.1012193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/25/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Host-associated resident microbiota can protect their host from pathogens-a community-level trait called colonization resistance. The effect of the diversity of the resident community in previous studies has shown contradictory results, with higher diversity either strengthening or weakening colonization resistance. To control the confounding factors that may lead to such contradictions, we use mathematical simulations with a focus on species interactions and their impact on colonization resistance. We use a mediator-explicit model that accounts for metabolite-mediated interactions to perform in silico invasion experiments. We show that the relationship between colonization resistance and species richness of the resident community is not monotonic because it depends on two underlying trends as the richness of the resident community increases: a decrease in instances of augmentation (invader species added, without driving out resident species) and an increase in instances of displacement (invader species added, driving out some of the resident species). These trends hold consistently under different parameters, regardless of the number of compounds that mediate interactions between species or the proportion of the facilitative versus inhibitory interactions among species. Our results show a positive correlation between resistance and diversity in low-richness communities and a negative correlation in high-richness communities, offering an explanation for the seemingly contradictory trend in the resistance-diversity relationship in previous reports.
Collapse
Affiliation(s)
- Yu Zhu
- Biology Department, Boston College, Chestnut Hill, Massachusetts, Unites States of America
| | - Babak Momeni
- Biology Department, Boston College, Chestnut Hill, Massachusetts, Unites States of America
| |
Collapse
|
9
|
Cheng C, Liu Z, Song W, Chen X, Zhang Z, Li B, van Kleunen M, Wu J. Biodiversity increases resistance of grasslands against plant invasions under multiple environmental changes. Nat Commun 2024; 15:4506. [PMID: 38802365 PMCID: PMC11130343 DOI: 10.1038/s41467-024-48876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Biodiversity often helps communities resist invasion. However, it is unclear whether this diversity-invasion relationship holds true under environmental changes. Here, we conduct a meta-analysis of 1010 observations from 25 grassland studies in which plant species richness is manipulated together with one or more environmental change factors to test invasibility (measured by biomass or cover of invaders). We find that biodiversity increases resistance to invaders across various environmental conditions. However, the positive biodiversity effect on invasion resistance is strengthened under experimental warming, whereas it is weakened under experimentally imposed drought. When multiple factors are imposed simultaneously, the positive biodiversity effect is strengthened. Overall, we show that biodiversity helps grassland communities resist plant invasions under multiple environmental changes. Therefore, investment in the protection and restoration of native biodiversity is not only important for prevention of invasions under current conditions but also under continued global environmental change.
Collapse
Affiliation(s)
- Cai Cheng
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station of Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zekang Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station of Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wei Song
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station of Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xue Chen
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station of Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zhijie Zhang
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
| | - Bo Li
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Mark van Kleunen
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Jihua Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
10
|
Svenning JC, Buitenwerf R, Le Roux E. Trophic rewilding as a restoration approach under emerging novel biosphere conditions. Curr Biol 2024; 34:R435-R451. [PMID: 38714176 DOI: 10.1016/j.cub.2024.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Rewilding is a restoration approach that aims to promote self-regulating complex ecosystems by restoring non-human ecological processes while reducing human control and pressures. Rewilding is forward-looking in that it aims to enhance functionality for biodiversity, accepting and indeed promoting the dynamic nature of ecosystems, rather than fixating on static composition or structure. Rewilding is thus especially relevant in our epoch of increasingly novel biosphere conditions, driven by strong human-induced global change. Here, we explore this hypothesis in the context of trophic rewilding - the restoration of trophic complexity mediated by wild, large-bodied animals, known as 'megafauna'. This focus reflects the strong ecological impacts of large-bodied animals, their widespread loss during the last 50,000 years and their high diversity and ubiquity in the preceding 50 million years. Restoring abundant, diverse, wild-living megafauna is expected to promote vegetation heterogeneity, seed dispersal, nutrient cycling and biotic microhabitats. These are fundamental drivers of biodiversity and ecosystem function and are likely to gain importance for maintaining a biodiverse biosphere under increasingly novel ecological conditions. Non-native megafauna species may contribute to these effects as ecological surrogates of extinct species or by promoting ecological functionality within novel assemblages. Trophic rewilding has strong upscaling potential via population growth and expansion of wild fauna. It is likely to facilitate biotic adaptation to changing climatic conditions and resilience to ecosystem collapse, and to curb some negative impacts of globalization, notably the dominance of invasive alien plants. Finally, we discuss the complexities of realizing the biodiversity benefits that trophic rewilding offers under novel biosphere conditions in a heavily populated world.
Collapse
Affiliation(s)
- Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark.
| | - Robert Buitenwerf
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
| | - Elizabeth Le Roux
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark; Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, Mammal Research Institute, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
11
|
Ameline A, Denoirjean T, Casati M, Dorland J, Decocq G. How generalist insect herbivores respond to alien plants? The case of Aphis fabae-Myzus persicae-Rhododendron ponticum. PEST MANAGEMENT SCIENCE 2024; 80:1795-1801. [PMID: 38032050 DOI: 10.1002/ps.7908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND The enemy release hypothesis (ERH) predicts that alien plant species are unsuitable hosts for native phytophagous insects. However, the biotic resistance hypothesis (BRH) predicts that generalist herbivores may prefer an alien plant over their common host plant. In this study, we have tested these two hypotheses by comparing the potential colonization of the invasive Pontic rhododendron (Rhododendron ponticum L.) versus the common rearing host plants by two generalist aphid species (Aphis fabae and Myzus persicae). We assessed (i) the probing behavior using the electrical penetration graph (EPG) technique and (ii) survival and fecundity in Petri dishes. RESULTS The results showed the inability of A. fabae and Myzus persicae to immediately colonize R. ponticum. Despite their ability to feed on this invasive plant, the two aphid species hardly survived and poorly reproduced. CONCLUSION Our results are consistent with the ERH, since R. ponticum appeared as an unsuitable host for native phytophagous insects. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Arnaud Ameline
- UMR CNRS 7058 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, Amiens Cedex, France
| | - Thomas Denoirjean
- UMR CNRS 7058 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, Amiens Cedex, France
| | - Marion Casati
- UMR CNRS 7058 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, Amiens Cedex, France
| | - Jean Dorland
- UMR CNRS 7058 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, Amiens Cedex, France
| | - Guillaume Decocq
- UMR CNRS 7058 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, Amiens Cedex, France
| |
Collapse
|
12
|
Mlambo S, Mubayiwa M, Tarusikirwa VL, Machekano H, Mvumi BM, Nyamukondiwa C. The Fall Armyworm and Larger Grain Borer Pest Invasions in Africa: Drivers, Impacts and Implications for Food Systems. BIOLOGY 2024; 13:160. [PMID: 38534430 DOI: 10.3390/biology13030160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 03/28/2024]
Abstract
Invasive alien species (IAS) are a major biosecurity threat affecting globalisation and the international trade of agricultural products and natural ecosystems. In recent decades, for example, field crop and postharvest grain insect pests have independently accounted for a significant decline in food quantity and quality. Nevertheless, how their interaction and cumulative effects along the ever-evolving field production to postharvest continuum contribute towards food insecurity remain scant in the literature. To address this within the context of Africa, we focus on the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), and the larger grain borer, Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae), two of the most important field and postharvest IAS, respectively, that have invaded Africa. Both insect pests have shown high invasion success, managing to establish themselves in >50% of the African continent within a decade post-introduction. The successive and summative nature of field and postharvest damage by invasive insect pests on the same crop along its value chain results in exacerbated food losses. This systematic review assesses the drivers, impacts and management of the fall armyworm and larger grain borer and their effects on food systems in Africa. Interrogating these issues is important in early warning systems, holistic management of IAS, maintenance of integral food systems in Africa and the development of effective management strategies.
Collapse
Affiliation(s)
- Shaw Mlambo
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye 10071, Botswana
| | - Macdonald Mubayiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye 10071, Botswana
| | - Vimbai L Tarusikirwa
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Honest Machekano
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Brighton M Mvumi
- Department of Agricultural and Biosystems Engineering, University of Zimbabwe, Mount Pleasant, Harare P.O. Box MP167, Zimbabwe
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye 10071, Botswana
- Department of Zoology and Entomology, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
13
|
Arduini I, Alessandrini V. The Novel Invader Salpichroa origanifolia Modifies the Soil Seed Bank of a Mediterranean Mesophile Forest. PLANTS (BASEL, SWITZERLAND) 2024; 13:226. [PMID: 38256778 PMCID: PMC10821032 DOI: 10.3390/plants13020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
The composition and structure of soil seed banks provide insight into the long-term implications of plant invasions on resident communities. The effect of Salpichroa origanifolia (Sa) on the seed bank of a coastal mesophile forest (Tuscany) was studied by growing Sa-rhizomes in soils from low and high invaded sites, in full sun and canopy shade. Sa growth patterns, and the composition, biomass, nitrogen, and phosphorus contents of seedlings which emerged from seed banks were determined. Seed bank abundance and richness were also determined from under and 2 m apart established Sa populations. Sa plants' leaf traits and biomass allocation changed in response to light conditions. The germination of seed bank seedlings was not affected or even promoted by Sa, while their biomass as well as N and P uptake were more than halved in both light conditions, leading to a progressive depletion of the forest seed bank. Richness was lower under established Sa populations. Sa seedlings exerted a greater suppression on residents than Sa adults, and these appeared more competitive against their own seedlings than on residents. Sa is an invader of concern for Mediterranean forests because of its adaptability to shaded conditions, the competitiveness of its seedlings, and its vegetative spread by means of rhizomes.
Collapse
Affiliation(s)
- Iduna Arduini
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy;
| | | |
Collapse
|
14
|
Tao Z, Shen C, Qin W, Nie B, Chen P, Wan J, Zhang K, Huang W, Siemann E. Fluctuations in resource availability shape the competitive balance among non-native plant species. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2795. [PMID: 36502292 DOI: 10.1002/eap.2795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Fluctuating resource availability plays a critical role in determining non-native plant invasions through mediating the competitive balance between non-native and native species. However, the impact of fluctuating resource availability on interactions among non-native species remains largely unknown. This represents a barrier to understanding invasion mechanisms, particularly in habitats that harbor multiple non-native species with different responses to fluctuating resource availability. To examine the responses of non-native plant species to nutrient fluctuations, we compared the growth of each of 12 non-native species found to be common in local natural areas to nutrients supplied at a constant rate or supplied as a single large pulse in a pot experiment. We found that seven species produced more biomass with pulsed nutrients compared to constant nutrients (hereafter "benefitting species"), while the other five species did not differ between nutrient enrichment treatments (hereafter "non-benefitting species"). To investigate how nutrient fluctuations influence the interactions among non-native plant species, we established experimental non-native communities in the field with two benefitting and two non-benefitting non-native species. Compared with constant nutrient supply, the single large pulse of nutrient did not influence community biomass, but strongly increased the biomass and cover of the benefitting species and decreased those of the non-benefitting species. Furthermore, the benefitting species had higher leaf N content and greater plant height when nutrients were supplied as a single large pulse than at a constant rate, whereas the non-benefitting species showed no differences in leaf N content and were shorter when nutrients were supplied as a single large pulse than at a constant rate. Our results add to the growing evidence that the individual responses of non-native species to nutrient fluctuation are species-specific. More importantly, benefitting species were favored by nutrients coming in a pulse, while non-benefitting ones were favored by nutrients coming constantly when they grew together. This suggests that nutrient fluctuations can mediate the competitive balance among non-native plants and may thus determine their invasion success in a community harboring multiple non-native plant species.
Collapse
Affiliation(s)
- Zhibin Tao
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Changchao Shen
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenchao Qin
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baoguo Nie
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengdong Chen
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinlong Wan
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Kaoping Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Wei Huang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, Texas, USA
| |
Collapse
|
15
|
Le H, Zhao C, Xiong G, Shen G, Xu W, Deng Y, Xie Z. Disentangling the role of environmental filtering and biotic resistance on alien invasions in a reservoir area. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2835. [PMID: 36890673 DOI: 10.1002/eap.2835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Large-scale water conservancy projects benefit human life but have modified the landscape and provided opportunities for alien plant invasions. Understanding the environmental (e.g., climate), human-related (e.g., population density, proximity to human activities), and biotic (e.g., native plant, community structure) factors driving invasions is essential in the management of alien plants and biodiversity conservation in areas with intense human pressure. To this end, we investigated the spatial patterns of alien plant species distribution in the Three Gorges Reservoir Area (TGRA) of China and distinguished the role of the external environment and community characteristics in determining the occurrence of alien plants with differing levels of known invasion impacts in China using random forest analyses and structural equation models. A total of 102 alien plant species belonging to 30 families and 67 genera were recorded, the majority being annual and biennial herbs (65.7%). The results showed a negative diversity-invasibility relationship and supported the biotic resistance hypothesis. Moreover, percentage coverage of native plants was found to interact with native species richness and had a predominant role in resisting alien plant species. We found alien dominance was mainly the result of disturbance (e.g., changes in hydrological regime), which drove native plant loss. Our results also demonstrated that disturbance and temperature were more important for the occurrence of malignant invaders than all alien plants. Overall, our study highlights the importance of restoring diverse and productive native communities in resistance to invasion.
Collapse
Affiliation(s)
- Haichuan Le
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changming Zhao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Gaoming Xiong
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Guozhen Shen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Wenting Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Ying Deng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Zongqiang Xie
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
16
|
Shan L, Oduor AMO, Huang W, Liu Y. Nutrient enrichment promotes invasion success of alien plants via increased growth and suppression of chemical defenses. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2791. [PMID: 36482783 DOI: 10.1002/eap.2791] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/23/2022] [Accepted: 08/25/2022] [Indexed: 06/17/2023]
Abstract
In support of the prediction of the enemy release hypothesis regarding a growth-defense trade-off, invasive alien plants often exhibit greater growth and lower anti-herbivory defenses than native plants. However, it remains unclear how nutrient enrichment of invaded habitats may influence competitive interactions between invasive alien and co-occurring native plants, as well as production of anti-herbivore defense compounds, growth-promoting hormones, and defense-regulating hormones by the two groups of plants. Here, we tested whether: (i) nutrient enrichment causes invasive alien plants to produce greater biomass and lower concentrations of the defense compounds flavonoids and tannins than native plants; and (ii) invasive alien plants produce lower concentrations of a defense-regulating hormone jasmonic acid (JA) and higher concentrations of a growth-promoting hormone gibberellic acid (GA3). In a greenhouse experiment, we grew five congeneric pairs of invasive alien and native plant species under two levels each of nutrient enrichment (low vs. high), simulated herbivory (leaf clipping vs. no-clipping), and competition (alone vs. competition) in 2.5-L pots. In the absence of competition, high-nutrient treatment induced a greater increase in total biomass of invasive alien species than that of native species, whereas the reverse was true under competition as native species benefitted more from nutrient enrichment than invasive alien species. Moreover, high-nutrient treatment caused a greater increase in total biomass of invasive alien species than that of native species in the presence of simulated herbivory. Competition induced higher production of flavonoids and tannins. Simulated herbivory induced higher flavonoid expression in invasive alien plants under low-nutrient than high-nutrient treatments. However, flavonoid concentrations of native plants did not change under nutrient enrichment and simulated herbivory treatments. Invasive alien plants produced higher concentrations of GA3 than native plants. Taken together, these results suggest that impact of nutrient enrichment on growth of invasive alien and co-occurring native plants may depend on the level of competition that they experience. Moreover, invasive alien plants might adjust their flavonoid-based defense more efficiently than native plants in response to variation in soil nutrient availability and herbivory pressure. Our findings suggest that large-scale efforts to reduce nutrient enrichment of invaded habitats may help to control future invasiveness of target alien plant species.
Collapse
Affiliation(s)
- Liping Shan
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Ayub M O Oduor
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Department of Applied Biology, Technical University of Kenya, Nairobi, Kenya
| | - Wei Huang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Yanjie Liu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
17
|
He J, Xiao Y, Yimingniyazi A. Effect of Parasitic Native Plant Cuscuta australis on Growth and Competitive Ability of Two Invasive Xanthium Plants. BIOLOGY 2023; 13:23. [PMID: 38248454 PMCID: PMC10813136 DOI: 10.3390/biology13010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
The competitive ability of invasive plants is a key factor in their successful invasion, and research on this ability of invasive plants can provide a theoretical basis for the prevention and control of invasive plants. This study used Cuscuta australis, Xanthium spinosum, and Xanthium italicum as research materials and conducted outdoor controlled pot experiments to compare and study the changes in the biomass, competitiveness, and growth cycle of X. spinosum and X. italicum parasitized by C. australis at different growth stages. The results showed that (1) parasitism by C. australis increased the biomass of X. spinosum and decreased that of X. italicum, but under parasitism, the root cap ratio of X. spinosum and X. italicum increased, and the fruit biomass ratio decreased, indicating that X. spinosum and X. italicum reduced the energy input for reproduction and increased the energy input for nutrient growth to resist the impact of C. australis parasitism; (2) the relative competitive intensity calculated based on the total biomass of a single plant showed a negative value for X. spinosum during parasitism at the flowering and fruit stages, indicating an increase in competitive ability, and X. italicum showed a positive value during parasitism at the seedling and flowering stages, indicating a decrease in competitive ability; and (3) the parasitism of C. australis significantly shortened the fruit stage of X. spinosum and X. italicum, leading to a significant advance in their flowering, fruiting, and fruit ripening times. Simultaneously, it significantly reduced the morphological indicators of biomass, plant height, and crown width. Thus, C. australis parasitism has a certain inhibitory effect on the competitive ability of some invasive plants and can shorten their growth cycle, the latter of which has an important impact on their reproduction and diffusion.
Collapse
Affiliation(s)
- Jianxiao He
- Key Laboratory of Grassland Resources and Ecology of the Ministry of Education in Western Arid Desert Region, College of Grassland Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (J.H.); (Y.X.)
| | - Yongkang Xiao
- Key Laboratory of Grassland Resources and Ecology of the Ministry of Education in Western Arid Desert Region, College of Grassland Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (J.H.); (Y.X.)
| | - Amanula Yimingniyazi
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture, Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China
| |
Collapse
|
18
|
Yan Y, Xu L, Wu X, Xue W, Nie Y, Ye L. Land use intensity controls the diversity-productivity relationship in northern temperate grasslands of China. FRONTIERS IN PLANT SCIENCE 2023; 14:1296544. [PMID: 38235199 PMCID: PMC10792768 DOI: 10.3389/fpls.2023.1296544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024]
Abstract
Introduction The diversity-productivity relationship is a central issue in maintaining the grassland ecosystem's multifunctionality and supporting its sustainable management. Currently, the mainstream opinion on the diversity-productivity relationship recognizes that increases in species diversity promote ecosystem productivity. Methods Here, we challenge this opinion by developing a generalized additive model-based framework to quantify the response rate of grassland productivity to plant species diversity using vegetation survey data we collected along a land-use intensity gradient in northern China. Results Our results show that the grassland aboveground biomass responds significantly positively to the Shannon-Wiener diversity index at a rate of 46.8 g m-2 per unit increase of the Shannon-Wiener index in enclosure-managed grasslands, under the co-influence of climate and landscape factors. The aboveground biomass response rate stays positive at a magnitude of 47.1 g m-2 in forest understory grassland and 39.7 g m-2 in wetland grassland. Conversely, the response rate turns negative in heavily grazed grasslands at -55.8 g m-2, transiting via near-neutral rates of -7.0 and -7.3 g m-2 in mowing grassland and moderately grazed grassland, respectively. Discussion These results suggest that the diversity-productivity relationship in temperate grasslands not only varies by magnitude but also switches directions under varying levels of land use intensity. This highlights the need to consider land use intensity as a more important ecological integrity indicator for future ecological conservation programs in temperate grasslands.
Collapse
Affiliation(s)
- Yidan Yan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijun Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinjia Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Xue
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingying Nie
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liming Ye
- Department of Geology, Ghent University, Ghent, Belgium
| |
Collapse
|
19
|
Gillespie RG, Bik HM, Hickerson MJ, Krehenwinkel H, Overcast I, Rominger AJ. Insights into Ecological & Evolutionary Processes via community metabarcoding. Mol Ecol 2023; 32:6083-6092. [PMID: 37999451 DOI: 10.1111/mec.17208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/05/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Affiliation(s)
- Rosemary G Gillespie
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Holly M Bik
- Department of Marine Sciences and Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Michael J Hickerson
- Graduate Center of the City University of New York, New York City, New York, USA
- Biology Department, City College of New York, New York City, New York, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York City, New York, USA
| | | | - Isaac Overcast
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
- Department of Vertebrate Zoology, Division of Invertebrate Zoology, American Museum of Natural History, New York City, New York, USA
- California Academy of Sciences, San Francisco, California, USA
| | - Andrew J Rominger
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| |
Collapse
|
20
|
Brian JI, Catford JA. A mechanistic framework of enemy release. Ecol Lett 2023; 26:2147-2166. [PMID: 37921034 DOI: 10.1111/ele.14329] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
The enemy release hypothesis (ERH) is the best-known hypothesis explaining high performance (e.g. rapid population growth) of exotic species. However, the current framing of the ERH does not explicitly link evidence of enemy release with exotic performance. This leads to uncertainty regarding the role of enemy release in biological invasions. Here, we demonstrate that the effect of enemy release on exotic performance is the product of three factors: enemy impact, enemy diversity, and host adaptation. These factors are modulated by seven contexts: time since introduction, resource availability, phylogenetic relatedness of exotic and native species, host-enemy asynchronicity, number of introduction events, type of enemy, and strength of growth-defence trade-offs. ERH-focused studies frequently test different factors under different contexts. This can lead to inconsistent findings, which typifies current evidence for the ERH. For example, over 80% of meta-analyses fail to consider ecological contexts which can alter study findings; we demonstrate this by re-analysing a recent ERH synthesis. Structuring the ERH around factors and contexts promotes generalisable predictions about when and where exotic species may benefit from enemy release, empowering effective management. Our mechanistic factor-context framework clearly lays out the evidence required to support the ERH, unifies many enemy-related invasion hypotheses, and enhances predictive capacity.
Collapse
Affiliation(s)
- Joshua I Brian
- Department of Geography, King's College London, London, UK
| | - Jane A Catford
- Department of Geography, King's College London, London, UK
- Fenner School of Environment & Society, The Australian National University, Canberra, Australia
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
| |
Collapse
|
21
|
Ruiz-Velasco S, Ros M, Guerra-García JM. Estuarine versus coastal marinas: Influence of the habitat on the settlement of non-indigenous peracarids on the polychaete Sabella spallanzanii (Gmelin, 1791). MARINE POLLUTION BULLETIN 2023; 197:115740. [PMID: 37951124 DOI: 10.1016/j.marpolbul.2023.115740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/13/2023]
Abstract
Recreational marinas are key points for the introduction and secondary spread of non-indigenous species (NIS). However, little is known about the influence of the habitat surrounding the marina on NIS communities. To explore this issue, we compared peracarid assemblages associated to the widespread ecosystem engineer Sabella spallanzanii in lower estuarine marinas (with oceanic salinity) and coastal marinas of the south of the Iberian Peninsula. Sabella spallanzanii hosted a total of 23 species, 7 of them NIS. While NIS richness was similar between marinas located in estuaries and coastal habitats, NIS abundance was significantly higher in estuarine marinas. The NIS community structure was influenced by both the marina itself and the surrounding habitat. These results suggest that lower estuarine conditions promote NIS abundance in marinas, increasing potential invasion risks. This supports prioritization of estuarine marinas in NIS monitoring programs and the suitability of S. spallanzanii as a bioinvasion monitoring tool.
Collapse
Affiliation(s)
- Sofía Ruiz-Velasco
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Seville, Spain.
| | - Macarena Ros
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Seville, Spain
| | - José Manuel Guerra-García
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Seville, Spain
| |
Collapse
|
22
|
Afshana, Reshi ZA, Shah MA, Malik RA, Rashid I. Species composition of root-associated mycobiome of ruderal invasive Anthemis cotula L. varies with elevation in Kashmir Himalaya. Int Microbiol 2023; 26:1053-1071. [PMID: 37093323 DOI: 10.1007/s10123-023-00359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Investigating the microbial communities associated with invasive plant species can provide insights into how these species establish and thrive in new environments. Here, we explored the fungal species associated with the roots of the invasive species Anthemis cotula L. at 12 sites with varying elevations in the Kashmir Himalaya. Illumina MiSeq platform was used to identify the species composition, diversity, and guild structure of these root-associated fungi. The study found a total of 706 fungal operational taxonomic units (OTUs) belonging to 8 phyla, 20 classes, 53 orders, 109 families, and 160 genera associated with roots of A. cotula, with the most common genus being Funneliformis. Arbuscular mycorrhizal fungi (AMF) constituted the largest guild at higher elevations. The study also revealed that out of the 12 OTUs comprising the core mycobiome, 4 OTUs constituted the stable component while the remaining 8 OTUs comprised the dynamic component. While α-diversity did not vary across sites, significant variation was noted in β-diversity. The study confirmed the facilitative role of the microbiome through a greenhouse trial in which a significant effect of soil microbiome on height, shoot biomass, root biomass, number of flower heads, and internal CO2 concentration of the host plant was observed. The study indicates that diverse fungal mutualists get associated with this invasive alien species even in nutrient-rich ruderal habitats and may be contributing to its spread into higher elevations. This study highlights the importance of understanding the role of root-associated fungi in invasion dynamics and the potential use of mycobiome management strategies to control invasive species.
Collapse
Affiliation(s)
- Afshana
- Department of Botany, University of Kashmir, Srinagar, 190006, J&K, India
| | - Zafar A Reshi
- Department of Botany, University of Kashmir, Srinagar, 190006, J&K, India.
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, 190006, J&K, India
| | - Rayees A Malik
- Department of Botany, University of Kashmir, Srinagar, 190006, J&K, India
| | - Irfan Rashid
- Department of Botany, University of Kashmir, Srinagar, 190006, J&K, India
| |
Collapse
|
23
|
Davidson JL, Shoemaker LG. Resistance and resilience to invasion is stronger in synchronous than compensatory communities. Ecology 2023; 104:e4162. [PMID: 37672010 DOI: 10.1002/ecy.4162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/19/2023] [Indexed: 09/07/2023]
Abstract
While community synchrony is a key framework for predicting ecological constancy, the interplay between community synchrony and ecological invasions remains unclear. Yet the degree of synchrony in a resident community may influence its resistance and resilience to the introduction of an invasive species. Here we used a generalizable mathematical framework, constructed with a modified Lotka-Volterra competition model, to first simulate resident communities across a range of competitive strengths and species' responses to environmental fluctuations, which yielded communities that ranged from strongly synchronous to compensatory. We then invaded these communities at different timesteps with invaders of varying demographic traits, after which we quantified the resident community's susceptibility to initial invasion attempts (resistance) and the degree to which community synchrony was altered after invasion (resiliency of synchrony). We found that synchronous communities were not only more resistant but also more resilient to invasion than compensatory communities, likely due to stronger competition between resident species and thus lower cumulative abundances in compensatory communities, providing greater opportunities for invasion. The growth rate of the invader was most influenced by the resident and invader competition coefficients and the growth rate of the invader species. Our findings support prioritizing the conservation of compensatory and weakly synchronous communities which may be at increased risk of invasion.
Collapse
|
24
|
Häkkinen H, Hodgson D, Early R. Global terrestrial invasions: Where naturalised birds, mammals, and plants might spread next and what affects this process. PLoS Biol 2023; 21:e3002361. [PMID: 37963110 PMCID: PMC10645288 DOI: 10.1371/journal.pbio.3002361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/04/2023] [Indexed: 11/16/2023] Open
Abstract
More species live outside their native range than at any point in human history. Yet, there is little understanding of the geographic regions that will be threatened if these species continue to spread, nor of whether they will spread. We predict the world's terrestrial regions to which 833 naturalised plants, birds, and mammals are most imminently likely to spread, and investigate what factors have hastened or slowed their spread to date. There is huge potential for further spread of naturalised birds in North America, mammals in Eastern Europe, and plants in North America, Eastern Europe, and Australia. Introduction history, dispersal, and the spatial distribution of suitable areas are more important predictors of species spread than traits corresponding to habitat usage or biotic interactions. Natural dispersal has driven spread in birds more than in plants. Whether these taxa continue to spread more widely depends partially on connectivity of suitable environments. Plants show the clearest invasion lag, and the putative importance of human transportation indicates opportunities to slow their spread. Despite strong predictive effects, questions remain, particularly why so many birds in North America do not occupy climatically suitable areas close to their existing ranges.
Collapse
Affiliation(s)
- Henry Häkkinen
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn, United Kingdom
| | - Dave Hodgson
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn, United Kingdom
| | - Regan Early
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn, United Kingdom
| |
Collapse
|
25
|
Halassy M, Batáry P, Csecserits A, Török K, Valkó O. Meta-analysis identifies native priority as a mechanism that supports the restoration of invasion-resistant plant communities. Commun Biol 2023; 6:1100. [PMID: 37903920 PMCID: PMC10616274 DOI: 10.1038/s42003-023-05485-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
The restoration of invasion-resistant plant communities is an important strategy to combat the negative impacts of alien invasions. Based on a systematic review and meta-analysis of seed-based ecological restoration experiments, here we demonstrate the potential of functional similarity, seeding density and priority effect in increasing invasion resistance. Our results indicate that native priority is the most promising mechanism to control invasion that can reduce the performance of invasive alien species by more than 50%. High-density seeding is effective in controlling invasive species, but threshold seeding rates may exist. Overall seeding functionally similar species do not have a significant effect. Generally, the impacts are more pronounced on perennial and grassy invaders and on the short-term. Our results suggest that biotic resistance can be best enhanced by the early introduction of native plant species during restoration. Seeding of a single species with high functional similarity to invasive alien species is unpromising, and instead, preference should be given to high-density multifunctional seed mixtures, possibly including native species favored by the priority effect. We highlight the need to integrate research across geographical regions, global invasive species and potential resistance mechanisms.
Collapse
Affiliation(s)
- Melinda Halassy
- National Laboratory for Health Security, Centre for Ecological Research, Budapest, Hungary.
- Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary.
| | - Péter Batáry
- National Laboratory for Health Security, Centre for Ecological Research, Budapest, Hungary
- 'Lendület' Landscape and Conservation Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary
| | - Anikó Csecserits
- National Laboratory for Health Security, Centre for Ecological Research, Budapest, Hungary
- Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary
| | - Katalin Török
- Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary
| | - Orsolya Valkó
- National Laboratory for Health Security, Centre for Ecological Research, Budapest, Hungary
- 'Lendület' Seed Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary
| |
Collapse
|
26
|
Mokotjomela TM, Vukeya LR, Pamla L, Scott Z. The critical role of coastal protected areas in buffering impacts of extreme climatic conditions on bird diversity and their ecosystem services' provisioning in the Eastern Cape Province, South Africa. Ecol Evol 2023; 13:e10452. [PMID: 37869441 PMCID: PMC10587736 DOI: 10.1002/ece3.10452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/28/2023] [Accepted: 08/16/2023] [Indexed: 10/24/2023] Open
Abstract
In this study, we documented the diversity of bird species in the Eastern Cape coastal nature reserves (i.e., Hluleka, Dwesa, Silaka and Mkhambati nature reserves), and determined the potential role of each bird species in habitat maintenance using two functional traits (i.e., body mass and feeding mode) as the function's proxy. We applied the timed species count approach during bird observations, coupled with drive-by surveys to maximise spatial coverage of each nature reserve over four years. To evaluate functional diversity, bird species were classified based on functional traits such as the adult body, and their potential ecological role derived from their feeding mode and habitat associations. Over 864 h, we accumulated 818 bird records containing 178 different bird species that were classified into 58 families with 32 species occurring in all nature reserves. Shannon-Wiener Diversity Indices showed very high overall species diversity across the nature reserves (H > 3.5) with no differences detected across sites. Although no significant correlations between vegetation changes measured through Normalised Difference vegetation Index (NDVI) in each nature reserve and the number of bird records, forest bird species were dominant (42.1%; N = 178) throughout years of observation and diversity remained high (H > 3.5). Bird species abundance only increased significantly across all nature reserves during 2018-2019. All four nature reserves had a similar distribution of bird functional traits with both high functional richness (FRic = 1), and divergence (FDiv = 0.8) and moderate evenness (FEve = 0.4). Multiple Correspondence Analysis (MCA) demonstrated a positive correlation between bird sizes and functions with large birds mainly associated with predators and carrion. Small birds and medium birds had a similar composition of species in terms of functionality being seed dispersers across the nature reserves. A significant effect that insectivores and carrions displayed in MCA plots, suggest the availability of indirect pollination services. Despite extreme drought conditions across the country in 2019, NDVI levels remained largely consistent over time in these four reserves; and thus, they offer important refuge for birds during extreme climatic conditions such as drought.
Collapse
Affiliation(s)
- Thabiso Michael Mokotjomela
- South Africa National Biodiversity InstituteFree State National Botanical GardenBloemfonteinSouth Africa
- School of Life SciencesUniversity of KwaZulu‐NatalPietermaritzburgSouth Africa
| | | | - Lwandiso Pamla
- Scientific Services UnitEastern Cape Parks and Tourism AgencyEast LondonSouth Africa
| | - Zimbini Scott
- South Africa National Biodiversity InstituteFree State National Botanical GardenBloemfonteinSouth Africa
| |
Collapse
|
27
|
Zhao W, Xue Z, Liu T, Wang H, Han Z. Factors affecting establishment and population growth of the invasive weed Ambrosia artemisiifolia. FRONTIERS IN PLANT SCIENCE 2023; 14:1251441. [PMID: 37810382 PMCID: PMC10556694 DOI: 10.3389/fpls.2023.1251441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023]
Abstract
Ambrosia artemisiifolia is a highly invasive weed. Identifying the characteristics and the factors influencing its establishment and population growth may help to identify high invasion risk areas and facilitate monitoring and prevention efforts. Six typical habitats: river banks, forests, road margins, farmlands, grasslands, and wastelands, were selected from the main distribution areas of A. artemisiifolia in the Yili Valley, China. Six propagule quantities of A. artemisiifolia at 1, 5, 10, 20, 50, and 100 seeds m-2 were seeded by aggregation, and dispersion in an area without A. artemisiifolia. Using establishment probability models and Allee effect models, we determined the minimum number of seeds and plants required for the establishment and population growth of A. artemisiifolia, respectively. We also assessed the moisture threshold requirements for establishment and survival, and the influence of native species. The influence of propagule pressure on the establishment of A. artemisiifolia was significant. The minimum number of seeds required varied across habitats, with the lowest being 60 seeds m-2 for road margins and the highest being 398 seeds for forests. The minimum number of plants required for population growth in each habitat was 5 and the largest number was 43 in pasture. The aggregation distribution of A. artemisiifolia resulted in a higher establishment and survival rate. The minimum soil volumetric water content required for establishment was significantly higher than that required for survival. The presence of native dominant species significantly reduced the establishment and survival rate of A. artemisiifolia. A. artemisiifolia has significant habitat selectivity and is more likely to establish successfully in a habitat with aggregated seeding with sufficient water and few native species. Establishment requires many seeds but is less affected by the Allee effect after successful establishment, and only a few plants are needed to ensure reproductive success and population growth in the following year. Monitoring should be increased in high invasion risk habitats.
Collapse
Affiliation(s)
- Wenxuan Zhao
- College of Life Science, Shihezi University, Shihezi, China
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi, China
| | - Zhifang Xue
- College of Life Science, Shihezi University, Shihezi, China
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi, China
| | - Tong Liu
- College of Life Science, Shihezi University, Shihezi, China
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi, China
| | - Hanyue Wang
- College of Life Science, Shihezi University, Shihezi, China
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi, China
| | - Zhiquan Han
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi, China
- College of Science, Shihezi University, Shihezi, China
| |
Collapse
|
28
|
Wyckhuys KAG, Leatemia JA, Fanani MZ, Furlong MJ, Gu B, Hadi BAR, Hasinu JV, Melo MC, Noya SH, Rauf A, Taribuka J, Gc YD. Generalist Predators Shape Biotic Resistance along a Tropical Island Chain. PLANTS (BASEL, SWITZERLAND) 2023; 12:3304. [PMID: 37765468 PMCID: PMC10536499 DOI: 10.3390/plants12183304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Islands offer exclusive prisms for an experimental investigation of biodiversity x ecosystem function interplay. Given that species in upper trophic layers, e.g., arthropod predators, experience a comparative disadvantage on small, isolated islands, such settings can help to clarify how predation features within biotic resistance equations. Here, we use observational and manipulative studies on a chain of nine Indonesian islands to quantify predator-mediated biotic resistance against the cassava mealybug Phenacoccus manihoti (Homoptera: Pseudococcidae) and the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). Across island settings, a diverse set of generalist lacewing, spider and ladybeetle predators aggregates on P. manihoti infested plants, attaining max. (field-level) abundance levels of 1.0, 8.0 and 3.2 individuals per plant, respectively. Though biotic resistance-as imperfectly defined by a predator/prey ratio index-exhibits no inter-island differences, P. manihoti population regulation is primarily provided through an introduced monophagous parasitoid. Meanwhile, resident predators, such as soil-dwelling ants, inflict apparent mortality rates up to 100% for various S. frugiperda life stages, which translates into a 13- to 800-fold lower S. frugiperda survivorship on small versus large islands. While biotic resistance against S. frugiperda is ubiquitous along the island chain, its magnitude differs between island contexts, seasons and ecological realms, i.e., plant canopy vs. soil surface. Hence, under our experimental context, generalist predators determine biotic resistance and exert important levels of mortality even in biodiversity-poor settings. Given the rapid pace of biodiversity loss and alien species accumulation globally, their active conservation in farmland settings (e.g., through pesticide phasedown) is pivotal to ensuring the overall resilience of production ecosystems.
Collapse
Affiliation(s)
- Kris A G Wyckhuys
- Chrysalis Consulting, Danang 50000, Vietnam
- Institute for Plant Protection, China Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- School of the Environment, University of Queensland, Saint Lucia, QLD 4067, Australia
| | - Johanna Audrey Leatemia
- Department of Agrotechnology, Faculty of Agriculture, Universitas Pattimura, Ambon 97233, Indonesia
| | - Muhammad Zainal Fanani
- Department of Agrotechnology, Faculty of Agriculture, Universitas Djuanda, Jl. Tol Jagorawi No 1, Ciawi, Bogor 16720, West Java, Indonesia
- Department of Plant Protection, Faculty of Agriculture, Institut Pertanian Bogor, Jl. Kamper Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia
| | - Michael J Furlong
- School of the Environment, University of Queensland, Saint Lucia, QLD 4067, Australia
| | - Baogen Gu
- Food and Agriculture Organization (FAO), 00153 Rome, Italy
| | | | - Jeffij Virgowat Hasinu
- Department of Agrotechnology, Faculty of Agriculture, Universitas Pattimura, Ambon 97233, Indonesia
| | - Maria C Melo
- School of the Environment, University of Queensland, Saint Lucia, QLD 4067, Australia
| | - Saartje Helena Noya
- Department of Agrotechnology, Faculty of Agriculture, Universitas Pattimura, Ambon 97233, Indonesia
| | - Aunu Rauf
- Department of Plant Protection, Faculty of Agriculture, Institut Pertanian Bogor, Jl. Kamper Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia
| | - Johanna Taribuka
- Department of Agrotechnology, Faculty of Agriculture, Universitas Pattimura, Ambon 97233, Indonesia
| | - Yubak Dhoj Gc
- Food and Agriculture Organization (FAO), Bangkok 10200, Thailand
| |
Collapse
|
29
|
Andersen JC, Havill NP, Chandler JL, Boettner GH, Griffin BP, Elkinton JS. Seasonal differences in the timing of flight between the invasive winter moth and native Bruce spanworm promotes reproductive isolation. ENVIRONMENTAL ENTOMOLOGY 2023; 52:740-749. [PMID: 37459357 DOI: 10.1093/ee/nvad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/16/2023] [Accepted: 06/23/2023] [Indexed: 08/19/2023]
Abstract
The European winter moth, Operophtera brumata L. (Lepidoptera: Geometridae), was accidentally introduced to North America on at least 4 separate occasions, where it has been hybridizing with the native Bruce spanworm, O. bruceata Hulst, at rates up to 10% per year. Both species are known to respond to the same sex pheromones and to produce viable offspring, but whether they differ in the seasonal timing of their mating flights is unknown. Therefore, we collected adult male moths weekly along 2 transects in the northeastern United States and genotyped individuals using polymorphic microsatellite markers as males of these 2 species cannot be differentiated morphologically. Along each transect, we then estimated the cumulative proportions (i.e., the number of individuals out of the total collected) of each species on each calendar day. Our results indicate that there are significant differences between the species regarding their seasonal timing of flight, and these allochronic differences likely are acting to promote reproductive isolation between these 2 species. Lastly, our results suggest that the later flight observed by winter moth compared to Bruce spanworm may be limiting its inland spread in the northeastern United States because of increased exposure to extreme winter events.
Collapse
Affiliation(s)
- Jeremy C Andersen
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Nathan P Havill
- USDA-Forest Service, Northern Research Station, Hamden, CT 06514, USA
| | - Jennifer L Chandler
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - George H Boettner
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Brian P Griffin
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Joseph S Elkinton
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
30
|
Qin H, Cai R, Wang Y, Deng X, Chen J, Xing J. Intensive management facilitates bacterial invasion on soil microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117963. [PMID: 37105104 DOI: 10.1016/j.jenvman.2023.117963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 05/12/2023]
Abstract
Intensive management has greatly altered natural forests, especially forests around the world are increasingly being converted into economic plantations. Soil microbiota are critical for community functions in all ecosystems, but the effects of microbial disturbance during economic plantation remain unclear. Here, we used Escherichia coli O157:H7, a model pathogenic species for bacterial invasion, to assess the invasion impacts on the soil microbial community under intensive management. The E. coli invasion was tracked for 135 days to explore the instant and legacy impacts on the resident community. Our results showed that bamboo economic plantations altered soil abiotic and biotic properties, especially increasing pH and community diversity. Higher pH in bamboo soils resulted in longer pathogen survivals than in natural hardwood soils, indicating that pathogen suppression during intensive management should arouse our attention. A longer invasion legacy effect on the resident community (P < 0.05) were found in bamboo soils underlines the need to quantify the soil resilience even when the invasion was unsuccessful. Deterministic processes drove community assembly in bamboo plantations, and this selection acted more strongly during by E. coli invasion than in hardwood soils. We also showed more associated co-occurrence patterns in bamboo plantations, suggesting more complex potential interactions within the microbial community. Apart from community structure, community functions are also strongly related to the resident species associated with invaders. These findings provide new perspectives to understand intensive management facilitates the bacterial invasion, and the impacts would leave potential risks on environmental and human health.
Collapse
Affiliation(s)
- Hua Qin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ruihang Cai
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 310021, China
| | - Yanan Wang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 310021, China
| | - Xuhui Deng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junhui Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jiajia Xing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
31
|
Hanberry BB, Faison EK. Re-framing deer herbivory as a natural disturbance regime with ecological and socioeconomic outcomes in the eastern United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161669. [PMID: 36681343 DOI: 10.1016/j.scitotenv.2023.161669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Natural disturbances are critical ecosystem processes, with both ecological and socioeconomic benefits and disadvantages. Large herbivores are natural disturbances that have removed plant biomass for millions of years, although herbivore influence likely has declined during the past thousands of years corresponding with extinctions and declines in distributions and abundances of most animal species. Nonetheless, the conventional view, particularly in eastern North America, is that herbivory by large wild herbivores is at unprecedented levels, resulting in unnatural damage to forests. Here, we propose consideration of large herbivores as a natural disturbance that also imparts many crucial ecological advantages, using white-tailed deer (Odocoileus virginianus), the only wild large herbivore remaining throughout the eastern U.S., as our focal species. We examined evidence of detrimental effects of browsing on trees and forbs. We then considered that deer contribute to both fuel reduction and ecological restoration of herbaceous plants and historical open forests of savannas and woodlands by controlling tree and shrub densities, mimicking the consumer role of fire. Similarly to other disturbances, deer disturbance 'regimes' are uneven in severity across different ecosystems and landscapes, resulting in heterogeneity and diversity. In addition to biodiversity support and fuel reduction, socioeconomic benefits include >$20 billion dollars per year by 10 million hunters that support jobs and wildlife agencies, non-consumptive enjoyment of nature by 80 million people, cultural importance, and deer as ecological ambassadors, whereas costs include about $5 billion and up to 450 human deaths per year for motor vehicle accidents, along with crop damage and disease transmission. From a perspective of historical ecology rather than current baselines, deer impart a fundamental disturbance process with many ecological benefits and a range of socioeconomic effects.
Collapse
Affiliation(s)
- Brice B Hanberry
- USDA Forest Service, Rocky Mountain Research Station, Rapid City, SD 57702, United States of America.
| | - Edward K Faison
- Highstead, PO Box 1097, Redding, CT 06875, United States of America
| |
Collapse
|
32
|
Bueno FGB, Kendall L, Alves DA, Tamara ML, Heard T, Latty T, Gloag R. Stingless bee floral visitation in the global tropics and subtropics. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
33
|
Lu H, Lyu B, Tang J, Wu Q, Wyckhuys KAG, Le KH, Chongchitmate P, Qiu H, Zhang Q. Ecology, invasion history and biodiversity-driven management of the coconut black-headed caterpillar Opisina arenosella in Asia. FRONTIERS IN PLANT SCIENCE 2023; 14:1116221. [PMID: 37051087 PMCID: PMC10084852 DOI: 10.3389/fpls.2023.1116221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
The coconut black-headed caterpillar (BHC), Opisina arenosella Walker (Lepidoptera: Xyloryctidae) is an important herbivore of palm trees that originates in South Asia. Over the past decades, O. arenosella has spread to several countries in Eastern and Southeast Asia. BHC larval feeding can cause severe defoliation and occasional plant death, resulting in direct production losses (e.g., for coconut) while degrading the aesthetic value of urban and rural landscapes. In this review paper, we systematically cover taxonomy, bio-ecology, invasion history and current management of O. arenosella throughout Asia. Given that O. arenosella is routinely controlled with insecticides, we equally explore options for more sustainable management through agroecological and biodiversity-based tactics e.g., cultural control or biological control. Also, recent advances in chemical ecology have unlocked lucrative opportunities for volatile-mediated monitoring, mating disruption and mass-trapping. Substantial progress has been made in augmentation biological control, with scheduled releases of laboratory-reared parasitoids lowering BHC infestation pressure up to 95%. Equally, resident ants provide 75-98% mortality of BHC egg masses within the palm canopy. Biological control has been effectively paired with sanitary measures and good agronomy (i.e., proper fertilization, irrigation), and promoted through participatory farmer training programs. Our comprehensive listing of non-chemical preventative and curative tactics offer bright prospects for a more environmentally-sound, biodiversity-driven mitigation of a palm pest of regional allure.
Collapse
Affiliation(s)
- Hui Lu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Baoqian Lyu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Jihong Tang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Qiqi Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Kris A. G. Wyckhuys
- School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia
- Institute for Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Chrysalis Consulting, Danang, Vietnam
| | - Khac Hoang Le
- Plant Protection Department, Agronomy Faculty, Nong Lam University, Hochiminh City, Vietnam
| | - Patchareewan Chongchitmate
- Plant Protection Research and Development Office, Department of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Haiyan Qiu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Qikai Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| |
Collapse
|
34
|
Abiotic and Biotic Factors from the Past as Predictors of Alien Bird Richness and Temporal Beta-Diversity. DIVERSITY 2023. [DOI: 10.3390/d15030417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The challenge of predicting the distribution of alien species has long been a focus of invasion ecology. Herein, we assessed biotic and abiotic factors from the 1980s as potential predictors of alien bird species patterns 20 years later in the state of New York. To assess the ability of each factor to predict future alien species patterns, we analysed the influence of biotic (native taxonomic, functional and phylogenetic diversity, and human population density) and abiotic (climate and land use) factors from the 1980s on the observed alien species richness patterns in the 2000s and the temporal change in the composition of the alien communities between the 1980s and the 2000s using both single-predictor and multivariate models. Alien species richness from the 1980s was a reliable predictor of the alien species richness and temporal beta-diversity patterns in the 2000s. Among abiotic factors, maximum temperature and agricultural land-uses constituted sufficient predictors of future alien species richness and better predictors than the native biotic factors. The performance of single-predictor models was generally weaker in predicting temporal alien beta-diversity; however, past alien species richness and maximum temperature again outperformed the other factors. Predictions and management decisions should focus on warm and agricultural areas, as well as areas with an already high number of established alien species.
Collapse
|
35
|
Native diversity contributes to composition heterogeneity of exotic floras. Ecosphere 2023. [DOI: 10.1002/ecs2.4452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
|
36
|
Relationships of community diversity with distributions of rare species, non-native plants, and compositional stability in a temperate forest–open habitat landscape. COMMUNITY ECOL 2023. [DOI: 10.1007/s42974-023-00138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
37
|
de Oliveira Junior ND, Diniz ÉS, Avila Jr RSD. Composition and phylogenetic structure of Pampean grasslands under distinct land use and presence of alien species. COMMUNITY ECOL 2023. [DOI: 10.1007/s42974-023-00136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
38
|
Anthony CR, Germino MJ. Does post-fire recovery of native grasses across abiotic-stress and invasive-grass gradients match theoretical predictions, in sagebrush steppe? Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
39
|
Daly EZ, Chabrerie O, Massol F, Facon B, Hess MC, Tasiemski A, Grandjean F, Chauvat M, Viard F, Forey E, Folcher L, Buisson E, Boivin T, Baltora‐Rosset S, Ulmer R, Gibert P, Thiébaut G, Pantel JH, Heger T, Richardson DM, Renault D. A synthesis of biological invasion hypotheses associated with the introduction–naturalisation–invasion continuum. OIKOS 2023. [DOI: 10.1111/oik.09645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ella Z. Daly
- Univ. of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR 6553 Rennes France
| | - Olivier Chabrerie
- Univ. de Picardie Jules Verne, UMR 7058 CNRS EDYSAN Amiens Cedex 1 France
| | - Francois Massol
- Univ. Lille, CNRS, Inserm, CHU Lille, Inst. Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille Lille France
| | - Benoit Facon
- CBGP, INRAE, CIRAD, IRD, Montpellier Institut Agro, Univ. Montpellier Montpellier France
| | - Manon C.M. Hess
- Inst. Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), UMR: Aix Marseille Univ., Avignon Université, CNRS, IRD France
- Inst. de Recherche pour la Conservation des zones Humides Méditerranéennes Tour du Valat, Le Sambuc Arles France
| | - Aurélie Tasiemski
- Univ. Lille, CNRS, Inserm, CHU Lille, Inst. Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille Lille France
| | - Frédéric Grandjean
- Univ. de Poitiers, UMR CNRS 7267 EBI‐Ecologie et Biologie des Interactions, équipe EES Poitiers Cedex 09 France
| | | | | | - Estelle Forey
- Normandie Univ., UNIROUEN, INRAE, USC ECODIV Rouen France
| | - Laurent Folcher
- ANSES – Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Laboratoire de la Santé des Végétaux – Unité de Nématologie Le Rheu France
| | - Elise Buisson
- Inst. Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), UMR: Aix Marseille Univ., Avignon Université, CNRS, IRD France
| | - Thomas Boivin
- INRAE, UR629 Écologie des Forêts Méditerranéennes, Centre de Recherche Provence‐Alpes‐Côte d'Azur Avignon France
| | | | - Romain Ulmer
- Univ. de Picardie Jules Verne, UMR 7058 CNRS EDYSAN Amiens Cedex 1 France
| | - Patricia Gibert
- UMR 5558 CNRS – Univ. Claude Bernard Lyon 1, Biométrie et Biologie Evolutive, Bât. Gregor Mendel Villeurbanne Cedex France
| | - Gabrielle Thiébaut
- Univ. of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR 6553 Rennes France
| | - Jelena H. Pantel
- Ecological Modelling, Faculty of Biology, Univ. of Duisburg‐Essen Essen Germany
| | - Tina Heger
- Leibniz Inst. of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
- Technical Univ. of Munich, Restoration Ecology Freising Germany
| | - David M. Richardson
- Centre for Invasion Biology, Dept. Botany & Zoology, Stellenbosch University Stellenbosch South Africa
- Inst. of Botany, Czech Academy of Sciences Průhonice Czech Republic
| | - David Renault
- Univ. of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR 6553 Rennes France
- Inst. Universitaire de France Paris Cedex 05 France
| |
Collapse
|
40
|
The chronicles of a small invader: the canal, the core and the tsunami. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02979-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Bradley BA, Beaury EM, Fusco EJ, Lopez BE. Invasive Species Policy Must Embrace a Changing Climate. Bioscience 2022. [DOI: 10.1093/biosci/biac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
With increasing impacts of climate change observed across ecosystems, there is an urgent need to consider climate change in all future environmental policy. But existing policy and management might be slow to respond to this challenge, leading to missed opportunities to incorporate climate change into practice. Furthermore, invasive species threats continue to rise and interact with climate change—exacerbating negative impacts. Enabling natural resource managers and individuals to be proactive about climate-driven invasive species threats creates a win–win for conservation. Recommendations include expanding opportunities for information sharing across borders, supporting proactive screening and regulation of high-risk species on the horizon, and incentivizing individual actions that reduce ecological impacts. In addition, invasive species risk should be considered when crafting climate mitigation and adaptation policy to reduce compounding stressors on ecosystems. As we develop much-needed tools to reduce harm, policy and management must consider the combined threats of invasions and climate change.
Collapse
Affiliation(s)
- Bethany A Bradley
- Department of Environmental Conservation, University of Massachusetts , Amherst, Amherst, Massachusetts, United States
| | - Evelyn M Beaury
- High Meadows Environmental Institute, Princeton University , Princeton, New Jersey, United States
| | - Emily J Fusco
- Department of Environmental Conservation, University of Massachusetts , Amherst, Amherst, Massachusetts, United States
| | - Bianca E Lopez
- American Association for the Advancement of Science , Washington, DC, United States
| |
Collapse
|
42
|
Andersen JC, Havill NP, Boettner GH, Chandler JL, Caccone A, Elkinton JS. Real-time geographic settling of a hybrid zone between the invasive winter moth (Operophtera brumata L.) and the native Bruce spanworm (O. bruceata Hulst). Mol Ecol 2022; 31:6617-6633. [PMID: 35034394 DOI: 10.1111/mec.16349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/04/2022] [Indexed: 01/13/2023]
Abstract
Hybridization plays an important and underappreciated role in shaping the evolutionary trajectories of species. Following the introduction of a non-native organism to a novel habitat, hybridization with a native congener may affect the probability of establishment of the introduced species. In most documented cases of hybridization between a native and a non-native species, a mosaic hybrid zone is formed, with hybridization occurring heterogeneously across the landscape. In contrast, most naturally occurring hybrid zones are clinal in structure. Here, we report on a long-term microsatellite data set that monitored hybridization between the invasive winter moth, Operophtera brumata (Lepidoptera: Geometridae), and the native Bruce spanworm, O. bruceata, over a 12-year period. Our results document one of the first examples of the real-time formation and geographic settling of a clinal hybrid zone. In addition, by comparing one transect in Massachusetts where extreme winter cold temperatures have been hypothesized to restrict the distribution of winter moth, and one in coastal Connecticut, where winter temperatures are moderated by Long Island Sound, we found that the location of the hybrid zone appeared to be independent of environmental variables and maintained under a tension model wherein the stability of the hybrid zone was constrained by population density, reduced hybrid fitness, and low dispersal rates. Documenting the formation of a contemporary clinal hybrid zone may provide important insights into the factors that shaped other well-established hybrid zones.
Collapse
Affiliation(s)
- Jeremy C Andersen
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Nathan P Havill
- Northern Research Station, USDA Forest Service, Hamden, Connecticut, USA
| | - George H Boettner
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jennifer L Chandler
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Adalgisa Caccone
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Joseph S Elkinton
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
43
|
Clarke AR, Measham PF. Competition: A Missing Component of Fruit Fly (Diptera: Tephritidae) Risk Assessment and Planning. INSECTS 2022; 13:1065. [PMID: 36421968 PMCID: PMC9697728 DOI: 10.3390/insects13111065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Tephritid fruit flies are internationally significant pests of horticulture. Because they are also highly invasive and of major quarantine concern, significant effort is placed in developing full or partial pest risk assessments (PRAs) for fruit flies, while large investments can be made for their control. Competition between fruit fly species, driven by the need to access and utilise fruit for larval development, has long been recognised by researchers as a fundamental component of fruit fly biology, but is entirely absent from the fruit fly PRA literature and appears not be considered in major initiative planning. First presenting a summary of the research data which documents fruit fly competition, this paper then identifies four major effects of fruit fly competition that could impact a PRA or large-scale initiative: (i) numerical reduction of an existing fruit fly pest species following competitive displacement by an invasive fruit fly; (ii) displacement of a less competitive fruit fly pest species in space, time or host; (iii) ecological resistance to fruit fly invasion in regions already with competitively dominant fruit fly species; and (iv) lesser-pest fruit fly resurgence following control of a competitively superior species. From these four major topics, six more detailed issues are identified, with each of these illustrated by hypothetical, but realistic biosecurity scenarios from Australia/New Zealand and Europe. The scenarios identify that the effects of fruit fly competition might both positively or negatively affect the predicted impacts of an invasive fruit fly or targeted fruit fly control initiative. Competition as a modifier of fruit fly risk needs to be recognised by policy makers and incorporated into fruit fly PRAs and major investment initiatives.
Collapse
Affiliation(s)
- Anthony R. Clarke
- School of Biology and Environmental Science, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Penelope F. Measham
- Horticulture and Forestry Science, Department of Agriculture and Fisheries, GPO Box 267, Ecosciences Precinct Dutton Park, Brisbane, QLD 4102, Australia
| |
Collapse
|
44
|
Lucero JE, Filazzola A, Callaway RM, Braun J, Ghazian N, Haas S, Miguel MF, Owen M, Seifan M, Zuliani M, Lortie CJ. Increasing global aridity destabilizes shrub facilitation of exotic but not native plant species. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
45
|
Santamaría J, Golo R, Verdura J, Tomas F, Ballesteros E, Alcoverro T, Arthur R, Cebrian E. Learning takes time: Biotic resistance by native herbivores increases through the invasion process. Ecol Lett 2022; 25:2525-2539. [PMID: 36209457 PMCID: PMC9828756 DOI: 10.1111/ele.14115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/08/2022] [Accepted: 09/08/2022] [Indexed: 01/12/2023]
Abstract
As invasive species spread, the ability of local communities to resist invasion depends on the strength of biotic interactions. Evolutionarily unused to the invader, native predators or herbivores may be initially wary of consuming newcomers, allowing them to proliferate. However, these relationships may be highly dynamic, and novel consumer-resource interactions could form as familiarity grows. Here, we explore the development of effective biotic resistance towards a highly invasive alga using multiple space-for-time approaches. We show that the principal native Mediterranean herbivore learns to consume the invader within less than a decade. At recently invaded sites, the herbivore actively avoided the alga, shifting to distinct preference and high consumptions at older sites. This rapid strengthening of the interaction contributed to the eventual collapse of the alga after an initial dominance. Therefore, our results stress the importance of conserving key native populations to allow communities to develop effective resistance mechanisms against invaders.
Collapse
Affiliation(s)
- Jorge Santamaría
- Centre d'Estudis Avançats de Blanes, Consejo Superior de Investigaciones Científicas (CEAB‐CSIC)BlanesSpain,GRMAR, Institut d'Ecologia Aquàtica, Universitat de GironaGironaSpain
| | - Raül Golo
- GRMAR, Institut d'Ecologia Aquàtica, Universitat de GironaGironaSpain
| | - Jana Verdura
- Centre d'Estudis Avançats de Blanes, Consejo Superior de Investigaciones Científicas (CEAB‐CSIC)BlanesSpain,Université Côte d'Azur, CNRSECOSEASNiceFrance
| | - Fiona Tomas
- Marine Ecosystems Dynamics Group—Instituto Mediterráneo de Estudios Avanzados (IMEDEA), Universitat de les Illes Balears (UIB) – Consejo Superior de Investigaciones Científicas (CSIC)EsporlesBalearic IslandsSpain
| | - Enric Ballesteros
- Centre d'Estudis Avançats de Blanes, Consejo Superior de Investigaciones Científicas (CEAB‐CSIC)BlanesSpain
| | - Teresa Alcoverro
- Centre d'Estudis Avançats de Blanes, Consejo Superior de Investigaciones Científicas (CEAB‐CSIC)BlanesSpain
| | - Rohan Arthur
- Centre d'Estudis Avançats de Blanes, Consejo Superior de Investigaciones Científicas (CEAB‐CSIC)BlanesSpain,Nature Conservation FoundationMysoreIndia
| | - Emma Cebrian
- Centre d'Estudis Avançats de Blanes, Consejo Superior de Investigaciones Científicas (CEAB‐CSIC)BlanesSpain,GRMAR, Institut d'Ecologia Aquàtica, Universitat de GironaGironaSpain
| |
Collapse
|
46
|
Yin D, Meiners SJ, Ni M, Ye Q, He F, Cadotte MW. Positive interactions of native species melt invasional meltdown over
long‐term
plant succession. Ecol Lett 2022; 25:2584-2596. [DOI: 10.1111/ele.14127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Deyi Yin
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden Chinese Academy of Sciences Guangzhou China
- South China National Botanical Garden Guangzhou China
| | - Scott J. Meiners
- Department of Biological Sciences Eastern Illinois University Charleston Illinois USA
| | - Ming Ni
- Département de Biologie Université de Sherbrooke Sherbrooke Quebec Canada
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden Chinese Academy of Sciences Guangzhou China
- South China National Botanical Garden Guangzhou China
| | - Fangliang He
- Department of Renewable Resources University of Alberta Edmonton Alberta Canada
- ECNU‐Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences East China Normal University Shanghai China
| | - Marc W. Cadotte
- Department of Biological Sciences University of Toronto‐Scarborough Toronto Ontario Canada
- Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
| |
Collapse
|
47
|
Wiggering H, Diekötter T, Donath TW. Regulation of Jacobaea vulgaris by varied cutting and restoration measures. PLoS One 2022; 17:e0248094. [PMID: 36201549 PMCID: PMC9536583 DOI: 10.1371/journal.pone.0248094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/09/2022] [Indexed: 11/07/2022] Open
Abstract
The growth of the noxious grassland weed Jacobaea vulgaris Gaertn. in pastures is a threat to grazing animals. This is especially true when it dominates vegetation cover, which often occurs on non-intensively used pastures that are managed for nature-conservation, to maintain and promote biodiversity. Thus, we wanted to find management techniques to reduce J. vulgaris without harming the floral biodiversity on the pastures. We tested six different mechanical and cultural methods to reduce the presence and spread of J. vulgaris. Seven study sites in Northern Germany (Schleswig-Holstein) were treated with tilling and seeding (1), tilling and hay transfer (2), mowing twice within bloom (3), mowing before seed set and combinations of mowing and seeding with a slit drill (5) or by hand (6). Our results show that cutting within the bloom of the plant at the end of June and again four weeks later, when the plant is in its second bloom was the only treatment leading to a significant reduction in population growth rate without reducing surrounding plant species richness. The study reveals that management of J. vulgaris in non-intensively used pastures is possible, while preserving species-rich grasslands.
Collapse
Affiliation(s)
- Henrike Wiggering
- Department of Landscape Ecology, Institute for Natural Resource Conservation, Kiel University, Kiel, Germany
| | - Tim Diekötter
- Department of Landscape Ecology, Institute for Natural Resource Conservation, Kiel University, Kiel, Germany
| | - Tobias W Donath
- Department of Landscape Ecology, Institute for Natural Resource Conservation, Kiel University, Kiel, Germany
| |
Collapse
|
48
|
Biotic resistance or invasional meltdown? Diversity reduces invasibility but not exotic dominance in southern California epibenthic communities. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02932-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractHigh community diversity may either prevent or promote the establishment of exotic species. The biotic resistance hypothesis holds that species-rich communities are more resistant to invasion than species-poor communities due to mechanisms including greater interspecific competition. Conversely, the invasional meltdown hypothesis proposes that greater exotic diversity increases invasibility via facilitative interactions between exotic species. To evaluate the degree to which biotic resistance or invasional meltdown influences marine community structure during the assembly period, we studied the development of marine epibenthic “fouling” communities at two southern California harbors. With a focus on sessile epibenthic species, we found that fewer exotic species established as total and exotic richness increased during community assembly and that this effect remained after accounting for space availability. We also found that changes in exotic abundance decreased over time. Throughout the assembly period, gains in exotic abundance were greatest when space was abundant and richness was low. Altogether, we found greater support for biotic resistance than invasional meltdown, suggesting that both native and exotic species contribute to biotic resistance during early development of these communities. However, our results indicate that biotic resistance may not always reduce the eventual dominance of exotic species.
Collapse
|
49
|
Ren G, Du Y, Yang B, Wang J, Cui M, Dai Z, Adomako MO, Rutherford S, Du D. Influence of precipitation dynamics on plant invasions: response of alligator weed (Alternanthera philoxeroides) and co-occurring native species to varying water availability across plant communities. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02931-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
50
|
Liu Y, Zheng Y, Jahn LV, Burns JH. Invaders responded more positively to soil biota than native or noninvasive introduced species, consistent with enemy escape. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02919-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|