1
|
Bracken MES, Bernatchez G, Badten AJ, Chatfield RA. Unraveling the multiple facilitative effects of consumers on marine primary producers. Ecology 2024; 105:e4439. [PMID: 39358884 DOI: 10.1002/ecy.4439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/25/2024] [Indexed: 10/04/2024]
Abstract
The loss of consumers threatens the integrity of ecological systems, but the mechanisms underlying the effects on communities and ecosystems remain difficult to predict. This is, in part, due to the complex roles that consumers play in those systems. Here, we highlight this complexity by quantifying two mechanisms by which molluscan grazers-typically thought of as consumers of their algal resources-facilitate algae on rocky shores. Initial observations in high-zone tide pools revealed that both water-column ammonium concentrations and photosynthetic biomass were higher in pools containing higher densities of grazers, suggesting that local-scale nutrient recycling by the grazers could be enhancing algal biomass. We assessed this possibility by experimentally manipulating grazer abundances at the level of whole tide pools but controlling access of those grazers to experimental plots within each pool. Contrary to predictions that algal biomass inside grazer exclusions would increase as grazer abundances in the pools increased, we found that algal biomass inside grazer-exclusion fences was unaffected by grazer abundances. Instead, the consumptive effects of grazers that were evident at low grazer abundances transitioned to facilitative effects as experimentally manipulated grazer abundances increased. This finding suggested that these positive interactions were associated with the physical presence of grazers and not just grazers' effects on nutrient availability. Subsequent experiments highlighted the potential role of "slime"-the pedal mucous trails left behind as the mollusks crawl on the substratum-in promoting the recruitment of algae and thereby mediating a spatial subsidy of new organic matter into the system. Furthermore, different grazer groups contributed disproportionately to ammonium excretion (i.e., turban snails) versus slime production (i.e., littorine snails), suggesting a potential role for grazer diversity. Our work highlights the complex ways in which consumers affect their resources, including multiple, complementary mechanisms by which these grazers facilitate the algae they consume.
Collapse
Affiliation(s)
- Matthew E S Bracken
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Genevieve Bernatchez
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Alexander J Badten
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Rachel A Chatfield
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| |
Collapse
|
2
|
Karp AT, Koerner SE, Hempson GP, Abraham JO, Anderson TM, Bond WJ, Burkepile DE, Fillion EN, Goheen JR, Guyton JA, Kartzinel TR, Kimuyu DM, Mohanbabu N, Palmer TM, Porensky LM, Pringle RM, Ritchie ME, Smith MD, Thompson DI, Young TP, Staver AC. Grazing herbivores reduce herbaceous biomass and fire activity across African savannas. Ecol Lett 2024; 27:e14450. [PMID: 38857323 DOI: 10.1111/ele.14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 06/12/2024]
Abstract
Fire and herbivory interact to alter ecosystems and carbon cycling. In savannas, herbivores can reduce fire activity by removing grass biomass, but the size of these effects and what regulates them remain uncertain. To examine grazing effects on fuels and fire regimes across African savannas, we combined data from herbivore exclosure experiments with remotely sensed data on fire activity and herbivore density. We show that, broadly across African savannas, grazing herbivores substantially reduce both herbaceous biomass and fire activity. The size of these effects was strongly associated with grazing herbivore densities, and surprisingly, was mostly consistent across different environments. A one-zebra increase in herbivore biomass density (~100 kg/km2 of metabolic biomass) resulted in a ~53 kg/ha reduction in standing herbaceous biomass and a ~0.43 percentage point reduction in burned area. Our results indicate that fire models can be improved by incorporating grazing effects on grass biomass.
Collapse
Affiliation(s)
- Allison Tyler Karp
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island, USA
| | - Sally E Koerner
- Department of Biology, University of North Carolina Greensboro, Greensboro, North Carolina, USA
| | - Gareth P Hempson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- Centre for African Ecology, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Joel O Abraham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - T Michael Anderson
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, USA
| | - William J Bond
- Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Deron E Burkepile
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
- South African Environmental Observation Network, Ndlovu Node, Scientific Services, Kruger National Park, Phalaborwa, South Africa
| | - Elizabeth N Fillion
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Jacob R Goheen
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
- Mpala Research Centre, Nanyuki, Kenya
| | - Jennifer A Guyton
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Tyler R Kartzinel
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Duncan M Kimuyu
- Mpala Research Centre, Nanyuki, Kenya
- Department of Natural Resources, Karatina University, Karatina, Kenya
| | - Neha Mohanbabu
- Department of Biology, Syracuse University, Syracuse, New York, USA
- University of Minnesota, Twin Cities, Minnesota, USA
| | - Todd M Palmer
- Biological Sciences, University of Cape Town, Cape Town, South Africa
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Lauren M Porensky
- Rangeland Resources and Systems Research Unit, USDA Agricultural Research Service, Fort Collins, Colorado, USA
| | - Robert M Pringle
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Mark E Ritchie
- Department of Wildland Resources, Utah State University, Logan, Utah, USA
| | - Melinda D Smith
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Dave I Thompson
- Centre for African Ecology, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
- South African Environmental Observation Network, Ndlovu Node, Scientific Services, Kruger National Park, Phalaborwa, South Africa
| | - Truman P Young
- Mpala Research Centre, Nanyuki, Kenya
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - A Carla Staver
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Yale Institute for Biospheric Studies, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Pichon B, Thébault E, Lacroix G, Gounand I. Quality matters: Stoichiometry of resources modulates spatial feedbacks in aquatic-terrestrial meta-ecosystems. Ecol Lett 2023; 26:1700-1713. [PMID: 37458203 DOI: 10.1111/ele.14284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
Species dispersal and resource spatial flows greatly affect the dynamics of connected ecosystems. So far, research on meta-ecosystems has mainly focused on the quantitative effect of subsidy flows. Yet, resource exchanges at heterotrophic-autotrophic (e.g. aquatic-terrestrial) ecotones display a stoichiometric asymmetry that likely matters for functioning. Here, we joined ecological stoichiometry and the meta-ecosystem framework to understand how subsidy stoichiometry mediates the response of the meta-ecosystem to subsidy flows. Our model results demonstrate that resource flows between ecosystems can induce a positive spatial feedback loop, leading to higher production at the meta-ecosystem scale by relaxing local ecosystem limitations ('spatial complementarity'). Furthermore, we show that spatial flows can also have an unexpected negative impact on production when accentuating the stoichiometric mismatch between local resources and basal species needs. This study paves the way for studies on the interdependency of ecosystems at the landscape extent.
Collapse
Affiliation(s)
- Benoît Pichon
- Institut d'écologie et des sciences de l'environnement (iEES Paris), Sorbonne Université, CNRS, UPEC, CNRS, IRD, INRA, Paris, France
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Elisa Thébault
- Institut d'écologie et des sciences de l'environnement (iEES Paris), Sorbonne Université, CNRS, UPEC, CNRS, IRD, INRA, Paris, France
| | - Gérard Lacroix
- Institut d'écologie et des sciences de l'environnement (iEES Paris), Sorbonne Université, CNRS, UPEC, CNRS, IRD, INRA, Paris, France
- CNRS, UAR 3194 (ENS, CNRS), CEREEP-Ecotron IleDeFrance, Ecole Normale Supérieure, Paris, France
| | - Isabelle Gounand
- Institut d'écologie et des sciences de l'environnement (iEES Paris), Sorbonne Université, CNRS, UPEC, CNRS, IRD, INRA, Paris, France
| |
Collapse
|
4
|
Xirocostas ZA, Ollerton J, Tamme R, Peco B, Lesieur V, Slavich E, Junker RR, Pärtel M, Raghu S, Uesugi A, Bonser SP, Chiarenza GM, Hovenden MJ, Moles AT. The great escape: patterns of enemy release are not explained by time, space or climate. Proc Biol Sci 2023; 290:20231022. [PMID: 37583319 PMCID: PMC10427826 DOI: 10.1098/rspb.2023.1022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023] Open
Abstract
When a plant is introduced to a new ecosystem it may escape from some of its coevolved herbivores. Reduced herbivore damage, and the ability of introduced plants to allocate resources from defence to growth and reproduction can increase the success of introduced species. This mechanism is known as enemy release and is known to occur in some species and situations, but not in others. Understanding the conditions under which enemy release is most likely to occur is important, as this will help us to identify which species and habitats may be most at risk of invasion. We compared in situ measurements of herbivory on 16 plant species at 12 locations within their native European and introduced Australian ranges to quantify their level of enemy release and understand the relationship between enemy release and time, space and climate. Overall, plants experienced approximately seven times more herbivore damage in their native range than in their introduced range. We found no evidence that enemy release was related to time since introduction, introduced range size, temperature, precipitation, humidity or elevation. From here, we can explore whether traits, such as leaf defences or phylogenetic relatedness to neighbouring plants, are stronger indicators of enemy release across species.
Collapse
Affiliation(s)
- Zoe A. Xirocostas
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, New South Wales 2052, Australia
| | - Jeff Ollerton
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
- Faculty of Arts, Science and Technology, University of Northampton, Northampton, UK
| | - Riin Tamme
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - Begoña Peco
- Terrestrial Ecology Group (TEG), Department of Ecology, Institute for Biodiversity and Global Change, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Vincent Lesieur
- CSIRO European Laboratory, 830 Avenue du Campus Agropolis, 34980 Montferrier sur Lez, France
| | - Eve Slavich
- Stats Central, Mark Wainwright Analytical Centre, UNSW Sydney, New South Wales 2052, Australia
| | - Robert R. Junker
- Evolutionary Ecology of Plants, Department of Biology, University of Marburg, 35043 Marburg, Germany
- Department of Environment and Biodiversity, University of Salzburg, 5020 Salzburg, Austria
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - S. Raghu
- CSIRO Health & Biosecurity, Brisbane, Queensland, Australia
| | - Akane Uesugi
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
- Biosciences and Food Technology Division, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Stephen P. Bonser
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, New South Wales 2052, Australia
| | - Giancarlo M. Chiarenza
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, New South Wales 2052, Australia
| | - Mark J. Hovenden
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Angela T. Moles
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, New South Wales 2052, Australia
| |
Collapse
|
5
|
Beck M, Billoir E, Floury M, Usseglio-Polatera P, Danger M. A 34-year survey under phosphorus decline and warming: Consequences on stoichiometry and functional trait composition of freshwater macroinvertebrate communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159786. [PMID: 36377090 DOI: 10.1016/j.scitotenv.2022.159786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Worldwide, freshwater systems are subjected to increasing temperatures and nutrient changes. Under phosphorus and nitrogen enrichment consumer communities are often thought to shift towards fast-growing and P-rich taxa, supporting the well-known link between growth rate and body stoichiometry. While these traits are also favoured under warming, the temperature effect on stoichiometry is less clear. As recently shown, there is a general link between functional traits and body stoichiometry, which makes the integration of stoichiometric traits a promising tool to help understanding the mechanisms behind taxonomic and functional community responses to nutrient changes and/or warming. Yet, such approaches have been scarcely developed at community level and on a long-term perspective. In this study, we investigated long-term responses in stoichiometry and functional trait composition of macroinvertebrate communities to nutrient changes (decreasing water P; increasing water N:P) and warming over a 34-year period in the Middle Loire River (France), testing the potentially opposing responses to these drivers. Both drivers should cause shifts in species composition, which will alter the overall community stoichiometry and functional composition following assumptions from ecological stoichiometry theory. We found that the macroinvertebrate community shifted towards P-poor taxa, causing significant trends in overall community stoichiometry which indicates long-term changes in the nutrient pool provided by these consumers (i.e. decrease in %N and %P, increase in N:P). Further, while the former high-P conditions favoured traits associated to detritus feeding and fast development (i.e. small maximum body size, short life duration), recent conditions favoured predators and slow-developing taxa. These results suggest nutrients to be a more important driver than temperature over this period. By providing a pivotal link between environmental changes and functional trait composition of communities, approaches based on stoichiometric traits offer sound perspectives to investigate ecological relationships between multiple drivers operating at various scales and ecosystem functioning.
Collapse
Affiliation(s)
| | | | - Mathieu Floury
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F- 69622, Villeurbanne, France
| | | | - Michael Danger
- LIEC, Université de Lorraine, France; Institut Universitaire de France, Paris, France
| |
Collapse
|
6
|
Kauppi L, Villnäs A. Marine heatwaves of differing intensities lead to distinct patterns in seafloor functioning. Proc Biol Sci 2022; 289:20221159. [DOI: 10.1098/rspb.2022.1159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Marine heatwaves (MHWs) are increasing in frequency and intensity due to climate change. Several well-documented effects of heatwaves on community structure exist, but examples of their effect on functioning of species, communities or ecosystems remain scarce. We tested the effects of short-term, moderate and strong MHWs on macrofauna bioturbation and associated solute fluxes as examples of ecosystem functioning. We also measured macrofaunal excretion rates to assess effects of temperature on macrofauna metabolism. For this experiment, we used unmanipulated sediment cores with natural animal communities collected from a muddy location at 32 m depth in the northern Baltic Sea. Despite the mechanistic effect of bioturbation remaining unchanged between the treatments, there were significant differences in oxygen consumption, solute fluxes and excretion. Biogeochemical and biological processes were boosted by the moderate heatwave, whereas biogeochemical cycling seemed to decrease under a strong heatwave. A prolonged, moderate heatwave could possibly lead to resource depletion if primary production cannot meet the demands of benthic consumption. By contrast, decreased degradation activities under strong heatwaves could lead to a build-up of organic material and potentially hypoxia. The strong variability and the complexity of the response highlight the context dependency of these processes complicating future predictions.
Collapse
Affiliation(s)
- Laura Kauppi
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900 Hanko, Finland
| | - Anna Villnäs
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900 Hanko, Finland
- Baltic Sea Centre, Stockholm University, Stockholm 114 19, Sweden
| |
Collapse
|
7
|
Wilcots ME, Schroeder KM, DeLancey LC, Kjaer SJ, Hobbie SE, Seabloom EW, Borer ET. Realistic rates of nitrogen addition increase carbon flux rates but do not change soil carbon stocks in a temperate grassland. GLOBAL CHANGE BIOLOGY 2022; 28:4819-4831. [PMID: 35593000 PMCID: PMC9545222 DOI: 10.1111/gcb.16272] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 05/22/2023]
Abstract
Changes in the biosphere carbon (C) sink are of utmost importance given rising atmospheric CO2 levels. Concurrent global changes, such as increasing nitrogen (N) deposition, are affecting how much C can be stored in terrestrial ecosystems. Understanding the extent of these impacts will help in predicting the fate of the biosphere C sink. However, most N addition experiments add N in rates that greatly exceed ambient rates of N deposition, making inference from current knowledge difficult. Here, we leveraged data from a 13-year N addition gradient experiment with addition rates spanning realistic rates of N deposition (0, 1, 5, and 10 g N m-2 year-1 ) to assess the rates of N addition at which C uptake and storage were stimulated in a temperate grassland. Very low rates of N addition stimulated gross primary productivity and plant biomass, but also stimulated ecosystem respiration such that there was no net change in C uptake or storage. Furthermore, we found consistent, nonlinear relationships between N addition rate and plant responses such that intermediate rates of N addition induced the greatest ecosystem responses. Soil pH and microbial biomass and respiration all declined with increasing N addition indicating that negative consequences of N addition have direct effects on belowground processes, which could then affect whole ecosystem C uptake and storage. Our work demonstrates that experiments that add large amounts of N may be underestimating the effect of low to intermediate rates of N deposition on grassland C cycling. Furthermore, we show that plant biomass does not reliably indicate rates of C uptake or soil C storage, and that measuring rates of C loss (i.e., ecosystem and soil respiration) in conjunction with rates of C uptake and C pools are crucial for accurately understanding grassland C storage.
Collapse
Affiliation(s)
- Megan E. Wilcots
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Katie M. Schroeder
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
- Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Lang C. DeLancey
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Savannah J. Kjaer
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Sarah E. Hobbie
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Eric W. Seabloom
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Elizabeth T. Borer
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
8
|
Réveillon T, Rota T, Chauvet É, Lecerf A, Sentis A. Energetic mismatch induced by warming decreases leaf litter decomposition by aquatic detritivores. J Anim Ecol 2022; 91:1975-1987. [PMID: 35471565 DOI: 10.1111/1365-2656.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/31/2022] [Indexed: 11/26/2022]
Abstract
1. The balance of energetic losses and gains is of paramount importance for understanding and predicting the persistence of populations and ecosystem processes in a rapidly changing world. Previous studies suggested that metabolic rate often increases faster with warming than resource ingestion rate, leading to an energetic mismatch at high temperature. However, little is known about the ecological consequences of this energetic mismatch for population demography and ecosystem functions. 2. Here, we combined laboratory experiments and modeling to investigate the energetic balance of a stream detritivore (Gammarus fossarum) along a temperature gradient and the consequences for detritivore populations and organic matter decomposition. 3. We experimentally measured the energetic losses (metabolic rate) and supplies (ingestion rate) of Gammarus and we modeled the impact of rising temperatures and changes in Gammarus body size induced by warming on population dynamics and benthic organic matter dynamics in freshwater systems. 4. Our experimental results indicated an energetic mismatch in a Gammarus population where losses via metabolic rate increase faster than supplies via food ingestion with warming, which translated in a decrease of energetic efficiency with temperature rising from 5 to 20 °C. Moreover, our consumer-resource model predicts a decrease in the biomass of Gammarus population with warming, associated with lower maximum abundances and steeper abundance decreases after biomass annual peaks. These changes resulted in a decrease of leaf litter decomposition rate and thus longer persistence of leaf litter standing stock over years in the simulations. In addition, Gammarus body size reductions led to shorter persistence for both leaf litter and Gammarus biomasses at low temperature and the opposite trend at high temperature, revealing that body size reduction was weakening the effect of temperature on resource and consumer persistence. 5. Our model contributes to identifying the mechanisms that explain how thermal effects at the level of individuals may cascade through trophic interactions and influence important ecosystem processes. Considering the balance of physiological processes is crucial to improve our ability to predict the impact of climate change on carbon stocks and ecosystem functions.
Collapse
Affiliation(s)
- Tom Réveillon
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Thibaut Rota
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Éric Chauvet
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Antoine Lecerf
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Arnaud Sentis
- INRAE, Aix Marseille Université, UMR RECOVER, 3275 route Cézanne, FR-13182, Aix-en-Provence, France
| |
Collapse
|
9
|
Disease‐mediated nutrient dynamics: Coupling host‐pathogen interactions with ecosystem elements and energy. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Balluffi-Fry J, Leroux SJ, Wiersma YF, Richmond IC, Heckford TR, Rizzuto M, Kennah JL, Vander Wal E. Integrating plant stoichiometry and feeding experiments: state-dependent forage choice and its implications on body mass. Oecologia 2021; 198:579-591. [PMID: 34743229 DOI: 10.1007/s00442-021-05069-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022]
Abstract
Intraspecific feeding choices comprise a large portion of herbivore foraging decisions. Plant resource quality is heterogeneously distributed, affected by nutrient availability and growing conditions. Herbivores navigate landscapes, foraging not only according to food qualities, but also energetic and nutritional demands. We test three non-exclusive foraging hypotheses using the snowshoe hare (Lepus americanus): (1) herbivore feeding choices and body conditions respond to intraspecific plant quality variation; (2) high energetic demands mitigate feeding responses; and (3) feeding responses are inflated when nutritional demands are high. We measured black spruce (Picea mariana) nitrogen, phosphorus and terpene compositions, as indicators of quality, within a snowshoe hare trapping grid and found plant growing conditions to explain spruce quality variation (R2 < 0.36). We then offered two qualities of spruce (H1) from the trapping grid to hares in cafeteria-style experiments and measured their feeding and body condition responses (n = 75). We proxied energetic demands (H2) with ambient temperature and coat insulation (% white coat) and nutritional demands (H3) with the spruce quality (nitrogen and phosphorus content) in home ranges. Hares with the strongest preference for high-quality spruce lost on average 2.2% less weight than hares who ate the least high-quality spruce relative to low-quality spruce. The results supported our energetic predictions as follows: hares in colder temperatures and with less-insulative coats (lower % white) consumed more spruce and were less selective towards high-quality spruce. Collectively, we found variation in plant growing conditions within herbivore home ranges substantial enough to affect herbivore body conditions, but energetic stats mediate plant-herbivore interactions.
Collapse
Affiliation(s)
- Juliana Balluffi-Fry
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada. .,Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada.
| | - Shawn J Leroux
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Yolanda F Wiersma
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Isabella C Richmond
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Travis R Heckford
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Matteo Rizzuto
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Joanie L Kennah
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Eric Vander Wal
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
11
|
Jochum M, Barnes AD, Brose U, Gauzens B, Sünnemann M, Amyntas A, Eisenhauer N. For flux's sake: General considerations for energy-flux calculations in ecological communities. Ecol Evol 2021; 11:12948-12969. [PMID: 34646445 PMCID: PMC8495806 DOI: 10.1002/ece3.8060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
Global change alters ecological communities with consequences for ecosystem processes. Such processes and functions are a central aspect of ecological research and vital to understanding and mitigating the consequences of global change, but also those of other drivers of change in organism communities. In this context, the concept of energy flux through trophic networks integrates food-web theory and biodiversity-ecosystem functioning theory and connects biodiversity to multitrophic ecosystem functioning. As such, the energy-flux approach is a strikingly effective tool to answer central questions in ecology and global-change research. This might seem straight forward, given that the theoretical background and software to efficiently calculate energy flux are readily available. However, the implementation of such calculations is not always straight forward, especially for those who are new to the topic and not familiar with concepts central to this line of research, such as food-web theory or metabolic theory. To facilitate wider use of energy flux in ecological research, we thus provide a guide to adopting energy-flux calculations for people new to the method, struggling with its implementation, or simply looking for background reading, important resources, and standard solutions to the problems everyone faces when starting to quantify energy fluxes for their community data. First, we introduce energy flux and its use in community and ecosystem ecology. Then, we provide a comprehensive explanation of the single steps towards calculating energy flux for community data. Finally, we discuss remaining challenges and exciting research frontiers for future energy-flux research.
Collapse
Affiliation(s)
- Malte Jochum
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | | | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiodiversityUniversity of JenaJenaGermany
| | - Benoit Gauzens
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiodiversityUniversity of JenaJenaGermany
| | - Marie Sünnemann
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Angelos Amyntas
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiodiversityUniversity of JenaJenaGermany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| |
Collapse
|
12
|
Ruiz T, Koussoroplis AM, Danger M, Aguer JP, Morel-Desrosiers N, Bec A. Quantifying the energetic cost of food quality constraints on resting metabolism to integrate nutritional and metabolic ecology. Ecol Lett 2021; 24:2339-2349. [PMID: 34337842 DOI: 10.1111/ele.13855] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/03/2021] [Accepted: 07/14/2021] [Indexed: 12/25/2022]
Abstract
Consumer metabolism controls the energy uptake from the environment and its allocation to biomass production. In natural ecosystems, available energy in food often fails to predict biomass production which is also (co)limited by the relative availability of various dietary compounds. To date, the link between energy metabolism and the effects of food chemical composition on biomass production remains elusive. Here, we measured the resting metabolic rate (RMR) of Daphnia magna along ontogeny when undergoing various (non-energetic) nutritional constraints. All types of dietary (co)limitations (Fatty acids, Sterols, Phosphorus) induced an increase in mass-specific RMR up to 128% between highest and lowest quality diets. We highlight a strong negative correlation between RMR and growth rate indicating RMR as a promising predictor of consumer growth rate. We argue that quantifying the energetic cost imposed by food quality on individual RMR may constitute a common currency enabling the integration of nutritional and metabolic ecology.
Collapse
Affiliation(s)
- Thomas Ruiz
- Université Clermont Auvergne, CNRS, LMGE, Clermont-Ferrand, France
| | | | | | | | | | - Alexandre Bec
- Université Clermont Auvergne, CNRS, LMGE, Clermont-Ferrand, France
| |
Collapse
|
13
|
Fernandez AR, Sáez A, Quintero C, Gleiser G, Aizen MA. Intentional and unintentional selection during plant domestication: herbivore damage, plant defensive traits and nutritional quality of fruit and seed crops. THE NEW PHYTOLOGIST 2021; 231:1586-1598. [PMID: 33977519 DOI: 10.1111/nph.17452] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/23/2021] [Indexed: 05/19/2023]
Abstract
Greater susceptibility to herbivory can arise as an effect of crop domestication. One proposed explanation is that defenses decreased intentionally or unintentionally during the domestication process, but evidence for this remains elusive. An alternative but nonexclusive explanation is presumed selection for higher nutritional quality. We used a metaanalytical approach to examine susceptibility to herbivores in fruit and seed crops and their wild relatives. Our analyses provide novel insights into the mechanisms of increased susceptibility by evaluating whether it can be attributed to either a reduction in herbivore defensive traits, including direct/indirect and constitutive/inducible defenses, or an increase in the nutritional content of crops. The results confirm higher herbivory and lower levels of all types of defenses in crops compared to wild relatives, although indirect defenses were more affected than direct ones. Contrary to expectations, nutritional quality was lower in crops than in wild relatives, which may enhance biomass loss to herbivores if they increase consumption to meet nutritional requirements. Our findings represent an important advance in our understanding of how changes in defensive and nutritional traits following domestication could influence, in combination or individually, crop susceptibility to herbivore attacks.
Collapse
Affiliation(s)
- Anahí R Fernandez
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
- IRNAD, CONICET, Universidad Nacional de Río Negro, Mitre 630, Bariloche, 8400, Argentina
| | - Agustín Sáez
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
| | - Carolina Quintero
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
| | - Gabriela Gleiser
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
| | - Marcelo A Aizen
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
- Wissenschaftskolleg zu Berlin, Berlin, 14193, Germany
| |
Collapse
|
14
|
The Variation in the Stoichiometric Characteristics of the Leaves and Roots of Karst Shrubs. FORESTS 2021. [DOI: 10.3390/f12070852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Currently, vegetation restoration is being implemented in the ecologically fragile karst areas in southwest China; however, the stoichiometry of the dominant shrubs and their relationship with the environmental factors in the degraded habitats is still unclear. In this study, we investigated the stoichiometry of C, N, and P, their internal correlations, and influencing factors in 23 shrub species in the Huanjiang County in northwest Guangxi Province, China. We found that the mean contents of C, N and P in leaves were higher than those in roots. In addition, the N:P ratio in the leaves was significantly higher than that in the roots, but the opposite was observed for the C:N and C:P ratios. Except for Leaf C and Root C, significant positive or negative correlations were observed across the stoichiometry of the shrub leaves and roots. A factor analysis of variance demonstrated that the differences across species had higher explanatory power than the topography and soil nutrients in terms of the shrub leaf and root stoichiometry. Hence, our results can improve the understanding of the distribution patterns of these vital elements, as well as of the interactions and influencing factors in the different organs of the karst shrubs.
Collapse
|
15
|
Nguyen HM, Ralph PJ, Marín-Guirao L, Pernice M, Procaccini G. Seagrasses in an era of ocean warming: a review. Biol Rev Camb Philos Soc 2021; 96:2009-2030. [PMID: 34014018 DOI: 10.1111/brv.12736] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022]
Abstract
Seagrasses are valuable sources of food and habitat for marine life and are one of Earth's most efficient carbon sinks. However, they are facing a global decline due to ocean warming and eutrophication. In the last decade, with the advent of new technology and molecular advances, there has been a dramatic increase in the number of studies focusing on the effects of ocean warming on seagrasses. Here, we provide a comprehensive review of the future of seagrasses in an era of ocean warming. We have gathered information from published studies to identify potential commonalities in the effects of warming and the responses of seagrasses across four distinct levels: molecular, biochemical/physiological, morphological/population, and ecosystem/planetary. To date, we know that although warming strongly affects seagrasses at all four levels, seagrass responses diverge amongst species, populations, and over depths. Furthermore, warming alters seagrass distribution causing massive die-offs in some seagrass populations, whilst also causing tropicalization and migration of temperate species. In this review, we evaluate the combined effects of ocean warming with other environmental stressors and emphasize the need for multiple-stressor studies to provide a deeper understanding of seagrass resilience. We conclude by discussing the most significant knowledge gaps and future directions for seagrass research.
Collapse
Affiliation(s)
- Hung Manh Nguyen
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, 80121, Italy
| | - Peter J Ralph
- Faculty of Science, Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Lázaro Marín-Guirao
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, 80121, Italy.,Seagrass Ecology Group, Oceanographic Centre of Murcia, Spanish Institute of Oceanography, C/Varadero, San Pedro del Pinatar, Murcia, 30740, Spain
| | - Mathieu Pernice
- Faculty of Science, Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, 2007, Australia
| | | |
Collapse
|
16
|
Frenken T, Paseka R, González AL, Asik L, Seabloom EW, White LA, Borer ET, Strauss AT, Peace A, Van de Waal DB. Changing elemental cycles, stoichiometric mismatches, and consequences for pathogens of primary producers. OIKOS 2021. [DOI: 10.1111/oik.08253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Thijs Frenken
- Dept of Aquatic Ecology, Netherlands Inst. of Ecology (NIOO‐KNAW) Wageningen the Netherlands
- Great Lakes Inst. for Environmental Research (GLIER), Univ. of Windsor Windsor ON Canada
| | - Rachel Paseka
- Dept of Ecology, Evolution and Behavior, Univ. of Minnesota St. Paul MN USA
| | | | - Lale Asik
- Dept of Biology and Center for Computational and Integrative Biology, Rutgers Univ. Camden NJ USA
| | - Eric W. Seabloom
- Great Lakes Inst. for Environmental Research (GLIER), Univ. of Windsor Windsor ON Canada
| | - Lauren A. White
- National Socio‐Environmental Synthesis Center (SESYNC), Univ. of Maryland Annapolis MD USA
| | - Elizabeth T. Borer
- Great Lakes Inst. for Environmental Research (GLIER), Univ. of Windsor Windsor ON Canada
| | - Alex T. Strauss
- Great Lakes Inst. for Environmental Research (GLIER), Univ. of Windsor Windsor ON Canada
- Dept of Ecology, Evolution and Behavior, Univ. of Minnesota St. Paul MN USA
| | - Angela Peace
- Dept of Mathematics and Statistics, Texas Tech Univ. Lubbock TX USA
| | - Dedmer B. Van de Waal
- Dept of Aquatic Ecology, Netherlands Inst. of Ecology (NIOO‐KNAW) Wageningen the Netherlands
| |
Collapse
|
17
|
Abstract
Human activities are transforming grassland biomass via changing climate, elemental nutrients, and herbivory. Theory predicts that food-limited herbivores will consume any additional biomass stimulated by nutrient inputs (‘consumer-controlled’). Alternatively, nutrient supply is predicted to increase biomass where herbivores alter community composition or are limited by factors other than food (‘resource-controlled’). Using an experiment replicated in 58 grasslands spanning six continents, we show that nutrient addition and vertebrate herbivore exclusion each caused sustained increases in aboveground live biomass over a decade, but consumer control was weak. However, at sites with high vertebrate grazing intensity or domestic livestock, herbivores consumed the additional fertilization-induced biomass, supporting the consumer-controlled prediction. Herbivores most effectively reduced the additional live biomass at sites with low precipitation or high ambient soil nitrogen. Overall, these experimental results suggest that grassland biomass will outstrip wild herbivore control as human activities increase elemental nutrient supply, with widespread consequences for grazing and fire risk. It is unclear whether terrestrial herbivores are able to consume the extra plant biomass produced under nutrient enrichment. Here the authors test this in grasslands using a globally distributed network of coordinated field experiments, finding that wild herbivore control on grassland production declines under eutrophication.
Collapse
|
18
|
Schmitz OJ, Leroux SJ. Food Webs and Ecosystems: Linking Species Interactions to the Carbon Cycle. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-104730] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All species within ecosystems contribute to regulating carbon cycling because of their functional integration into food webs. Yet carbon modeling and accounting still assumes that only plants, microbes, and invertebrate decomposer species are relevant to the carbon cycle. Our multifaceted review develops a case for considering a wider range of species, especially herbivorous and carnivorous wild animals. Animal control over carbon cycling is shaped by the animals’ stoichiometric needs and functional traits in relation to the stoichiometry and functional traits of their resources. Quantitative synthesis reveals that failing to consider these mechanisms can lead to serious inaccuracies in the carbon budget. Newer carbon-cycle models that consider food-web structure based on organismal functional traits and stoichiometry can offer mechanistically informed predictions about the magnitudes of animal effects that will help guide new empirical research aimed at developing a coherent understanding of the interactions and importance of all species within food webs.
Collapse
Affiliation(s)
- Oswald J. Schmitz
- School of the Environment, Yale University, New Haven, Connecticut 06511, USA
| | - Shawn J. Leroux
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X9, Canada
| |
Collapse
|
19
|
Ruiz T, Koussoroplis A, Danger M, Aguer J, Morel‐Desrosiers N, Bec A. U‐shaped response Unifies views on temperature dependency of stoichiometric requirements. Ecol Lett 2020; 23:860-869. [PMID: 32212238 DOI: 10.1111/ele.13493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/13/2020] [Accepted: 02/22/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Thomas Ruiz
- Université Clermont Auvergne CNRS LMGE Clermont‐Ferrand F‐63000 France
| | | | | | - Jean‐Pierre Aguer
- Université Clermont Auvergne CNRS LMGE Clermont‐Ferrand F‐63000 France
| | | | - Alexandre Bec
- Université Clermont Auvergne CNRS LMGE Clermont‐Ferrand F‐63000 France
| |
Collapse
|
20
|
Ng CA, Micheli F. Size-dependent vulnerability to herbivory in a coastal foundation species. Oecologia 2020; 193:199-209. [PMID: 32306116 DOI: 10.1007/s00442-020-04655-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
Abstract
Ecologists have long wondered how plants and algae persist under constant herbivory, and studies have shown that factors like chemical defense and morphology can protect these species from consumption. However, grazers are also highly diverse and exert varying top-down control over primary producers depending on traits such as body size. Moreover, susceptibility of plants and algae to herbivory may vary across life stages and size classes, with juveniles potentially the most vulnerable. Here, we focus on diverse grazing communities within giant kelp forests and compared consumption on two size classes of juvenile giant kelp (Macrocystis pyrifera) across four herbivore species ranging in size. We also integrated field and literature densities to estimate impacts on populations of juvenile kelp. We found that purple sea urchins, a species known for exerting strong control over adult M. pyrifera, had weak per capita impact on microscopic kelp, on par with a much smaller crustacean species. While urchin consumption increased with macroscopic juvenile kelp, it never surpassed the smaller brown turban snail, suggesting that feeding morphology, in addition to herbivore body size, is a predictor of consumption at these small size classes. The smaller herbivores also occurred in high densities in the field, increasing their predicted population-level impacts on juvenile kelp compared to urchins and perhaps other larger, but less abundant, herbivores. This study highlights the variation in species' roles within an herbivore guild and the importance of age-related changes in grazing vulnerability to better understand herbivore control on plant and algae population dynamics.
Collapse
Affiliation(s)
- Crystal A Ng
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA.
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA.
| | - Fiorenza Micheli
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
- Stanford Center for Ocean Solutions, Pacific Grove, CA, USA
| |
Collapse
|
21
|
Land-use history impacts functional diversity across multiple trophic groups. Proc Natl Acad Sci U S A 2020; 117:1573-1579. [PMID: 31907310 DOI: 10.1073/pnas.1910023117] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Land-use change is a major driver of biodiversity loss worldwide. Although biodiversity often shows a delayed response to land-use change, previous studies have typically focused on a narrow range of current landscape factors and have largely ignored the role of land-use history in shaping plant and animal communities and their functional characteristics. Here, we used a unique database of 220,000 land-use records to investigate how 20-y of land-use changes have affected functional diversity across multiple trophic groups (primary producers, mutualists, herbivores, invertebrate predators, and vertebrate predators) in 75 grassland fields with a broad range of land-use histories. The effects of land-use history on multitrophic trait diversity were as strong as other drivers known to impact biodiversity, e.g., grassland management and current landscape composition. The diversity of animal mobility and resource-acquisition traits was lower in landscapes where much of the land had been historically converted from grassland to crop. In contrast, functional biodiversity was higher in landscapes containing old permanent grasslands, most likely because they offer a stable and high-quality habitat refuge for species with low mobility and specialized feeding niches. Our study shows that grassland-to-crop conversion has long-lasting impacts on the functional biodiversity of agricultural ecosystems. Accordingly, land-use legacy effects must be considered in conservation programs aiming to protect agricultural biodiversity. In particular, the retention of permanent grassland sanctuaries within intensive landscapes may offset ecological debts.
Collapse
|
22
|
Burian A, Nielsen JM, Winder M. Food quantity–quality interactions and their impact on consumer behavior and trophic transfer. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Alfred Burian
- Department of Ecology, Environment and Plant Sciences Stockholm University 10691 Stockholm Sweden
- Environmental Sustainability Research Centre University of Derby Derby DE22 1GB United Kingdom
| | - Jens M. Nielsen
- Department of Ecology, Environment and Plant Sciences Stockholm University 10691 Stockholm Sweden
| | - Monika Winder
- Department of Ecology, Environment and Plant Sciences Stockholm University 10691 Stockholm Sweden
| |
Collapse
|
23
|
Pringle EG, Santos TFD, Gonçalves MS, Hawes JE, Peres CA, Baccaro FB. Arboreal ant abundance tracks primary productivity in an Amazonian whitewater river system. Ecosphere 2019. [DOI: 10.1002/ecs2.2902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Elizabeth G. Pringle
- Department of Biology Program in Ecology, Evolution and Conservation Biology University of Nevada, Reno Reno Nevada USA
| | | | | | - Joseph E. Hawes
- Applied Ecology Research Group School of Life Sciences Anglia Ruskin University Cambridge UK
| | - Carlos A. Peres
- School of Environmental Sciences University of East Anglia Norwich UK
- Departamento de Sistemática e Ecologia Universidade Federal da Paraíba João Pessoa Brazil
| | | |
Collapse
|
24
|
Hodapp D, Hillebrand H, Striebel M. “Unifying” the Concept of Resource Use Efficiency in Ecology. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2018.00233] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Mandal S, Abbott Wilkins R, Shurin JB. Compensatory grazing by
Daphnia
generates a trade‐off between top‐down and bottom‐up effects across phytoplankton taxa. Ecosphere 2018. [DOI: 10.1002/ecs2.2537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Shovon Mandal
- Section of Ecology, Behavior and Evolution University of California–San Diego 9500 Gilman Dr., #0116 La Jolla California 92093 USA
- Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA
| | - Rachel Abbott Wilkins
- Section of Ecology, Behavior and Evolution University of California–San Diego 9500 Gilman Dr., #0116 La Jolla California 92093 USA
- Department of Ecology and Evolutionary Biology Cornell University 215 Tower Rd., A406B Corson Hall Ithaca New York 14853 USA
| | - Jonathan B. Shurin
- Section of Ecology, Behavior and Evolution University of California–San Diego 9500 Gilman Dr., #0116 La Jolla California 92093 USA
| |
Collapse
|
26
|
Reyserhove L, Samaey G, Muylaert K, Coppé V, Van Colen W, Decaestecker E. A historical perspective of nutrient change impact on an infectious disease in Daphnia. Ecology 2018; 98:2784-2798. [PMID: 28845593 DOI: 10.1002/ecy.1994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/18/2017] [Accepted: 07/10/2017] [Indexed: 01/01/2023]
Abstract
Changes in food quality can play a substantial role in the vulnerability of hosts to infectious diseases. In this study, we focused on the genetic differentiation of the water flea Daphnia magna towards food of different quality (by manipulating C:N:P ratios) and its impact on the interaction with a virulent infectious disease, "White Fat Cell Disease (WFCD)". Via a resurrection ecology approach, we isolated two Daphnia subpopulations from different depths in a sediment core, which were exposed to parasites and a nutrient ratio gradient in a common garden experiment. Our results showed a genetic basis for sensitivity towards food deprivation. Both fecundity and host survival was differently affected when fed with low-quality food. This strongly impacted the way both subpopulations interacted with this parasite. A historical reconstruction of nutrient changes in a sediment core reflected an increase in organic material and phosphorus concentration (more eutrophic conditions) over time in the studied pond. These results enable us to relate patterns of genetic differentiation in sensitivity towards food deprivation to an increasing level of eutrophication of the subpopulations, which ultimately impacts parasite virulence effects. This finding was confirmed via a dynamic energy budgets (DEB), in which energy was partitioned for the host and the parasite. The model was tailored to our study by integrating (1) increased growth and a fecundity shift in the host upon parasitism and (2) differences of food assimilation in the subpopulations showing that a reduced nutrient assimilation resulted in increased parasite virulence. The combination of our experiment with the DEB model shows that it is important to consider genetic diversity when studying the impact of nutritional stress on species interactions, especially in the context of changing environments and emerging infectious diseases.
Collapse
Affiliation(s)
- Lien Reyserhove
- KU Leuven, Interdisciplinary Research Facility Life Sciences, KULAK, Campus Kortrijk, Etienne Sabbelaan 53, Kortrijk, B-8500, Belgium
| | - Giovanni Samaey
- Department of Computer Science, KU Leuven, Celestijnenlaan 200A, Leuven, B-3001, Belgium
| | - Koenraad Muylaert
- KU Leuven, Interdisciplinary Research Facility Life Sciences, KULAK, Campus Kortrijk, Etienne Sabbelaan 53, Kortrijk, B-8500, Belgium
| | - Vincent Coppé
- Department of Computer Science, KU Leuven, Celestijnenlaan 200A, Leuven, B-3001, Belgium
| | - Willem Van Colen
- KU Leuven, Interdisciplinary Research Facility Life Sciences, KULAK, Campus Kortrijk, Etienne Sabbelaan 53, Kortrijk, B-8500, Belgium
| | - Ellen Decaestecker
- KU Leuven, Interdisciplinary Research Facility Life Sciences, KULAK, Campus Kortrijk, Etienne Sabbelaan 53, Kortrijk, B-8500, Belgium
| |
Collapse
|
27
|
Review: Using physiologically based models to predict population responses to phytochemicals by wild vertebrate herbivores. Animal 2018; 12:s383-s398. [PMID: 30251623 DOI: 10.1017/s1751731118002264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To understand how foraging decisions impact individual fitness of herbivores, nutritional ecologists must consider the complex in vivo dynamics of nutrient-nutrient interactions and nutrient-toxin interactions associated with foraging. Mathematical modeling has long been used to make foraging predictions (e.g. optimal foraging theory) but has largely been restricted to a single currency (e.g. energy) or using simple indices of nutrition (e.g. fecal nitrogen) without full consideration of physiologically based interactions among numerous co-ingested phytochemicals. Here, we describe a physiologically based model (PBM) that provides a mechanistic link between foraging decisions and demographic consequences. Including physiological mechanisms of absorption, digestion and metabolism of phytochemicals in PBMs allows us to estimate concentrations of ingested and interacting phytochemicals in the body. Estimated phytochemical concentrations more accurately link intake of phytochemicals to changes in individual fitness than measures of intake alone. Further, we illustrate how estimated physiological parameters can be integrated with the geometric framework of nutrition and into integral projection models and agent-based models to predict fitness and population responses of vertebrate herbivores to ingested phytochemicals. The PBMs will improve our ability to understand the foraging decisions of vertebrate herbivores and consequences of those decisions and may help identify key physiological mechanisms that underlie diet-based ecological adaptations.
Collapse
|
28
|
Ruiz T, Bec A, Danger M, Koussoroplis AM, Aguer JP, Morel JP, Morel-Desrosiers N. A microcalorimetric approach for investigating stoichiometric constraints on the standard metabolic rate of a small invertebrate. Ecol Lett 2018; 21:1714-1722. [DOI: 10.1111/ele.13137] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/07/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Thomas Ruiz
- Université Clermont Auvergne; CNRS; LMGE; Clermont-Ferrand F-63000 France
| | - Alexandre Bec
- Université Clermont Auvergne; CNRS; LMGE; Clermont-Ferrand F-63000 France
| | | | | | - Jean-Pierre Aguer
- Université Clermont Auvergne; CNRS; LMGE; Clermont-Ferrand F-63000 France
| | - Jean-Pierre Morel
- Université Clermont Auvergne; CNRS; LMGE; Clermont-Ferrand F-63000 France
| | | |
Collapse
|
29
|
Zhang Y, Peng C, Wang Z, Zhang J, Li L, Huang S, Li D. The Species-Specific Responses of Freshwater Diatoms to Elevated Temperatures Are Affected by Interspecific Interactions. Microorganisms 2018; 6:microorganisms6030082. [PMID: 30087310 PMCID: PMC6163879 DOI: 10.3390/microorganisms6030082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/30/2018] [Accepted: 08/03/2018] [Indexed: 11/29/2022] Open
Abstract
Numerous experimental simulations with different warming scenarios have been conducted to predict how algae will respond to warming, but their conclusions are sometimes contradictory to each other. This might be due to a failure to consider interspecific interactions. In this study, the dominant diatom species in a seasonal succession were isolated and verified to adapt to different temperature ranges by constant temperature experiment. Both unialgal and mixed cultures were exposed to two fluctuant temperature treatments that simulated the temperature variations from early spring to summer, with one treatment 4 °C higher (warming scenario) than the other. We found that the specific response of diatoms to warming was affected by interspecific interactions. Spring warming had no significant effect on eurythermal species and had a positive effect on the abundance of warm-adapted diatom species, but interspecific interactions reduced this promotional effect. Cold-adapted species had a negative response to spring warming in the presence of other diatom species but had a positive response to early spring warming in the absence of interspecific interactions. In addition, warming resulted in the growth of all diatom species peaking earlier in unialgal cultures, but this effect could be weakened or amplified by interspecies interactions in mixed cultures. Our results suggest that the specific diatom species with different optimal growth temperature ranges responding to warming were expected if there were no interspecific interactions. However, in natural environments, the inevitable and complex interspecific interactions will influence the responses of diatoms to warming. This important factor should not be ignored in the prediction of organism responses to climate warming.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chengrong Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Zhicong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jinli Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lijie Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shun Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
30
|
Mathews L, Faithfull CL, Lenz PH, Nelson CE. The effects of food stoichiometry and temperature on copepods are mediated by ontogeny. Oecologia 2018; 188:75-84. [PMID: 29948318 PMCID: PMC6096765 DOI: 10.1007/s00442-018-4183-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 06/02/2018] [Indexed: 12/02/2022]
Abstract
Climate change is warming the oceans, increasing carbon dioxide partial pressure and reducing nutrient recycling from deep layers. This will affect carbon (C) and phosphorus (P) availability in the oceans, thus, altering the balance between the nutrient content of consumers and their food resource. The combined effects of food quality and temperature have been investigated for adult copepods; however, nauplii, the early developmental stages of copepods, often far outnumber adults, grow more rapidly and have a higher phosphorus body content and demand than later life stages. Consequently, ontogeny may affect how copepods respond to the combined stressors of increasing temperature and altered food stoichiometry. We conducted temperature-controlled experiments (24, 28 and 32 °C) where Parvocalanus crassirostris was fed either a P-replete or a P-limited phytoplankton food source. Reduced survival of nauplii and copepodites at the highest temperature was ameliorated when fed P-replete food. At higher temperatures, copepodite growth remained stable, but internal C:P stoichiometry diverged in the direction of phytoplankton C:P, suggesting that increased temperature affected copepodite stoichiometric homeostasis. In contrast, naupliar P content increased with temperature and naupliar growth was P limited, suggesting nauplii required additional phosphorus at higher temperatures. We conclude that resource stoichiometry plays a key role in how copepod survival and growth are impacted by temperature, and that ontogeny mediates these responses. Our results suggest that as the extent of warming oceans and phytoplankton nutrient limitation increase, copepod survival and the growth of early life stages may decline.
Collapse
Affiliation(s)
- Lauren Mathews
- Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, USA
| | - Carolyn L Faithfull
- Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, USA.
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden.
- Gävleborg County Administrative Board, Gävle, Sweden.
| | - Petra H Lenz
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, USA
| | - Craig E Nelson
- Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, USA
| |
Collapse
|
31
|
Anderson TM, Griffith DM, Grace JB, Lind EM, Adler PB, Biederman LA, Blumenthal DM, Daleo P, Firn J, Hagenah N, Harpole WS, MacDougall AS, McCulley RL, Prober SM, Risch AC, Sankaran M, Schütz M, Seabloom EW, Stevens CJ, Sullivan LL, Wragg PD, Borer ET. Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient. Ecology 2018; 99:822-831. [DOI: 10.1002/ecy.2175] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/02/2017] [Accepted: 12/20/2017] [Indexed: 11/09/2022]
Affiliation(s)
- T. Michael Anderson
- Department of Biology Wake Forest University Winston‐Salem North Carolina 27109 USA
| | - Daniel M. Griffith
- Department of Forest Ecosystems and Society Oregon State University Corvallis Oregon 97333 USA
| | - James B. Grace
- US Geological Survey Wetland and Aquatic Research Center 700 Cajundome Blvd Lafayette Louisiana 70506 USA
| | - Eric M. Lind
- Department of Ecology, Evolution, and Behavior University of MN St. Paul Minnesota 55108 USA
| | - Peter B. Adler
- Department of Wildland Resources and the Ecology Center Utah State University Logan Utah 84322 USA
| | - Lori A. Biederman
- Department of Ecology, Evolution, and Organismal Biology Iowa State University Ames Iowa 50011 USA
| | - Dana M. Blumenthal
- USDA‐ARS Rangeland Resources & Systems Research Unit Fort Collins Colorado 80526 USA
| | - Pedro Daleo
- Instituto de Investigaciónes Marinas y Costeras (IIMyC), UNMdP, CONICET Mar del Plata Argentina
| | - Jennifer Firn
- School of Earth, Environment and Biological Sciences Queensland University of Technology (QUT) Brisbane Queensland 4001 Australia
| | - Nicole Hagenah
- School of Life Sciences University of KwaZulu‐Natal Scottsville South Africa
| | - W. Stanley Harpole
- Helmholtz Center for Environmental Research – UFZ Department of Physiological Diversity Permoserstrasse 15 04318 Leipzig Germany
- German Centre for Integrative Biodiversity Research (iDiv) Deutscher Platz 5e Leipzig 04103 Germany
- Martin Luther University Halle‐Wittenberg am Kirchtor 1 Halle (Saale) 06108 Germany
| | - Andrew S. MacDougall
- Department of Integrative Biology University of Guelph Guelph Ontario N1G 2W1 Canada
| | - Rebecca L. McCulley
- Department of Plant and Soil Sciences University of Kentucky Lexington Kentucky 40546 USA
| | - Suzanne M. Prober
- CSIRO Land and Water Private Bag 5 Wembley Western Australia 6913 Australia
| | - Anita C. Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research, Community Ecology Birmensdorf 8903 Switzerland
| | - Mahesh Sankaran
- Centre for Biological Sciences TIFR Bangalore 560065 India
- School of Biology University of Leeds Leeds LS2 9JT UK
| | - Martin Schütz
- Swiss Federal Institute for Forest, Snow and Landscape Research, Community Ecology Birmensdorf 8903 Switzerland
| | - Eric W. Seabloom
- Department of Ecology, Evolution, and Behavior University of MN St. Paul Minnesota 55108 USA
| | - Carly J. Stevens
- Lancaster Environment Centre Lancaster University Lancaster LA1 4YQ UK
| | - Lauren L. Sullivan
- Department of Ecology, Evolution, and Behavior University of MN St. Paul Minnesota 55108 USA
| | - Peter D. Wragg
- Department of Ecology, Evolution, and Behavior University of MN St. Paul Minnesota 55108 USA
| | - Elizabeth T. Borer
- Department of Ecology, Evolution, and Behavior University of MN St. Paul Minnesota 55108 USA
| |
Collapse
|
32
|
Welshofer KB, Zarnetske PL, Lany NK, Read QD. Short-term responses to warming vary between native vs. exotic species and with latitude in an early successional plant community. Oecologia 2018; 187:333-342. [PMID: 29550949 DOI: 10.1007/s00442-018-4111-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 03/13/2018] [Indexed: 11/30/2022]
Abstract
Climate change is expected to favor exotic plant species over native species, because exotics tend to have wider climatic tolerances and greater phenological plasticity, and also because climate change may intensify enemy release. Here, we examine direct effects of warming (+ 1.8 °C above ambient) on plant abundance and phenology, as well as indirect effects of warming propagated through herbivores, in two heavily invaded plant communities in Michigan, USA, separated by approximately three degrees latitude. At the northern site, warming increased exotic plant abundance by 19% but decreased native plant abundance by 31%, indicating that exotic species may be favored in a warmer world. Warming also resulted in earlier spring green-up (1.65 ± 0.77 days), earlier flowering (2.18 ± 0.92 days), and greater damage by herbivores (twofold increase), affecting exotic and native species equally. Contrary to expectations, native and exotic plants experienced similar amounts of herbivory. Warming did not have strong ecological effects at the southern site, only resulting in a delay of flowering time by 2.42 ± 0.83 days for both native and exotic species. Consistent with the enemy release hypothesis, exotic plants experienced less herbivory than native plants at the southern site. Herbivory was lower under warming for both exotic and native species at the southern site. Thus, climate warming may favor exotic over native plant species, but the response is likely to depend on additional environmental and individual species' traits.
Collapse
Affiliation(s)
- Kileigh B Welshofer
- Department of Forestry, Michigan State University, East Lansing, MI, USA. .,Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, USA.
| | - Phoebe L Zarnetske
- Department of Forestry, Michigan State University, East Lansing, MI, USA.,Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, USA.,Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Nina K Lany
- Department of Forestry, Michigan State University, East Lansing, MI, USA.,Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Quentin D Read
- Department of Forestry, Michigan State University, East Lansing, MI, USA.,Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
33
|
Burian A, Grosse J, Winder M, Boschker HTS. Nutrient deficiencies and the restriction of compensatory mechanisms in copepods. Funct Ecol 2017. [DOI: 10.1111/1365-2435.13016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alfred Burian
- Department of Ecology, Environment and Plant SciencesStockholm University Stockholm Sweden
- Environmental Sustainability Research CentreUniversity of Derby Derby UK
| | - Julia Grosse
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea ResearchUtrecht University Den Burg The Netherlands
| | - Monika Winder
- Department of Ecology, Environment and Plant SciencesStockholm University Stockholm Sweden
| | - Henricus T. S. Boschker
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea ResearchUtrecht University Den Burg The Netherlands
| |
Collapse
|
34
|
Lind EM, La Pierre KJ, Seabloom EW, Alberti J, Iribarne O, Firn J, Gruner DS, Kay AD, Pascal J, Wright JP, Yang L, Borer ET. Increased grassland arthropod production with mammalian herbivory and eutrophication: a test of mediation pathways. Ecology 2017; 98:3022-3033. [PMID: 28940315 DOI: 10.1002/ecy.2029] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 11/07/2022]
Abstract
Increases in nutrient availability and alterations to mammalian herbivore communities are a hallmark of the Anthropocene, with consequences for the primary producer communities in many ecosystems. While progress has advanced understanding of plant community responses to these perturbations, the consequences for energy flow to higher trophic levels in the form of secondary production are less well understood. We quantified arthropod biomass after manipulating soil nutrient availability and wild mammalian herbivory, using identical methods across 13 temperate grasslands. Of experimental increases in nitrogen, phosphorus, and potassium, only treatments including nitrogen resulted in significantly increased arthropod biomass. Wild mammalian herbivore removal had a marginal, negative effect on arthropod biomass, with no interaction with nutrient availability. Path analysis including all sites implicated nutrient content of the primary producers as a driver of increased arthropod mean size, which we confirmed using 10 sites for which we had foliar nutrient data. Plant biomass and physical structure mediated the increase in arthropod abundance, while the nitrogen treatments accounted for additional variation not explained by our measured plant variables. The mean size of arthropod individuals was 2.5 times more influential on the plot-level total arthropod biomass than was the number of individuals. The eutrophication of grasslands through human activity, especially nitrogen deposition, thus may contribute to higher production of arthropod consumers through increases in nutrient availability across trophic levels.
Collapse
Affiliation(s)
- Eric M Lind
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Kimberly J La Pierre
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Juan Alberti
- Instituto de Investigaciones Marinas y Costeras (UNMDP-CONICET), B7602GSD Mar del Plata, Buenos Aires, Argentina
| | - Oscar Iribarne
- Instituto de Investigaciones Marinas y Costeras (UNMDP-CONICET), B7602GSD Mar del Plata, Buenos Aires, Argentina
| | - Jennifer Firn
- Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| | | | - Adam D Kay
- University of St. Thomas, St Paul, Minnesota, 55105, USA
| | - Jesus Pascal
- Instituto de Investigaciones Marinas y Costeras (UNMDP-CONICET), B7602GSD Mar del Plata, Buenos Aires, Argentina
| | | | - Louie Yang
- University of California, Davis, Davis, California, 95616, USA
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| |
Collapse
|
35
|
Brose U, Hillebrand H. Biodiversity and ecosystem functioning in dynamic landscapes. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0267. [PMID: 27114570 DOI: 10.1098/rstb.2015.0267] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2016] [Indexed: 12/31/2022] Open
Abstract
The relationship between biodiversity and ecosystem functioning (BEF) and its consequence for ecosystem services has predominantly been studied by controlled, short-term and small-scale experiments under standardized environmental conditions and constant community compositions. However, changes in biodiversity occur in real-world ecosystems with varying environments and a dynamic community composition. In this theme issue, we present novel research on BEF in such dynamic communities. The contributions are organized in three sections on BEF relationships in (i) multi-trophic diversity, (ii) non-equilibrium biodiversity under disturbance and varying environmental conditions, and (iii) large spatial and long temporal scales. The first section shows that multi-trophic BEF relationships often appear idiosyncratic, while accounting for species traits enables a predictive understanding. Future BEF research on complex communities needs to include ecological theory that is based on first principles of species-averaged body masses, stoichiometry and effects of environmental conditions such as temperature. The second section illustrates that disturbance and varying environments have direct as well as indirect (via changes in species richness, community composition and species' traits) effects on BEF relationships. Fluctuations in biodiversity (species richness, community composition and also trait dominance within species) can severely modify BEF relationships. The third section demonstrates that BEF at larger spatial scales is driven by different variables. While species richness per se and community biomass are most important, species identity effects and community composition are less important than at small scales. Across long temporal scales, mass extinctions represent severe changes in biodiversity with mixed effects on ecosystem functions. Together, the contributions of this theme issue identify new research frontiers and answer some open questions on BEF relationships in dynamic communities of real-world landscapes.
Collapse
Affiliation(s)
- Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany Institute of Ecology, Friedrich Schiller University Jena, Dornburger Strasse 159, 07743 Jena, Germany
| | - Helmut Hillebrand
- Institute for Chemistry and Biology of Marine Environments (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany
| |
Collapse
|
36
|
Moorthi SD, Schmitt JA, Ryabov A, Tsakalakis I, Blasius B, Prelle L, Tiedemann M, Hodapp D. Unifying ecological stoichiometry and metabolic theory to predict production and trophic transfer in a marine planktonic food web. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0270. [PMID: 27114573 DOI: 10.1098/rstb.2015.0270] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2016] [Indexed: 11/12/2022] Open
Abstract
Two ecological frameworks have been used to explain multitrophic interactions, but rarely in combination: (i) ecological stoichiometry (ES), explaining consumption rates in response to consumers' demand and prey's nutrient content; and (ii) metabolic theory of ecology (MTE), proposing that temperature and body mass affect metabolic rates, growth and consumption rates. Here we combined both, ES and MTE to investigate interactive effects of phytoplankton prey stoichiometry, temperature and zooplankton consumer body mass on consumer grazing rates and production in a microcosm experiment. A simple model integrating parameters from both frameworks was used to predict interactive effects of temperature and nutrient conditions on consumer performance. Overall, model predictions reflected experimental patterns well: consumer grazing rates and production increased with temperature, as could be expected based on MTE. With decreasing algal food quality, grazing rates increased due to compensatory feeding, while consumer growth rates and final biovolume decreased. Nutrient effects on consumer biovolume increased with increasing temperature, while nutrient effects on grazing rates decreased. Highly interactive effects of temperature and nutrient supply indicate that combining the frameworks of ES and MTE is highly important to enhance our ability to predict ecosystem functioning in the context of global change.
Collapse
Affiliation(s)
- Stefanie D Moorthi
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany
| | - Jennifer A Schmitt
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany
| | - Alexey Ryabov
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany
| | - Ioannis Tsakalakis
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany
| | - Bernd Blasius
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany
| | - Lara Prelle
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany
| | - Marc Tiedemann
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany
| | - Dorothee Hodapp
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany
| |
Collapse
|
37
|
Bracken MES. Stoichiometric Mismatch between Consumers and Resources Mediates the Growth of Rocky Intertidal Suspension Feeders. Front Microbiol 2017; 8:1297. [PMID: 28747903 PMCID: PMC5506223 DOI: 10.3389/fmicb.2017.01297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/27/2017] [Indexed: 11/13/2022] Open
Abstract
The concept of ecological stoichiometry-the balancing of elemental ratios in ecological interactions-has transformed our thinking about processes in natural systems. Here, this perspective is applied to rocky shore ecosystems to explore the consequences of variation in internal nutrient ratios across two trophic levels. Specifically, I measured the internal concentrations of carbon (C) and nitrogen (N) in mussels (Mytilus spp.) and particulate organic matter (POM) to evaluate the effects of stoichiometric mismatch-the difference in the carbon-to-nitrogen ratio (C:N) between a consumer and its resources-on mussel growth at sites on the coasts of Oregon, USA, and the South Island of New Zealand. As POM quality (i.e., Chl a, a proxy for phytoplankton availability in the POM) increased, C:N of the POM declined, but C:N of mussels increased. This resulted in a greater mismatch in C:N between mussels and their food source at low Chl a. Mussel growth across sites was positively associated with Chl a, particulate organic carbon (POC), and particulate organic nitrogen (PON) but negatively associated with stoichiometric mismatch. Overall, as the elemental ratios of consumers became more different from those of their resources, growth declined, likely due to the energetic cost associated with processing lower quality food. Furthermore, the effect of food quantity on growth depended on stoichiometric mismatch. In New Zealand, where mismatch was high-i.e., consumer C:N differed substantially from resource C:N-consumer growth was strongly affected by resource quantity (Chl a or POC). However, in Oregon, where mismatch was low, the relationship between resource quantity and growth was considerably weaker. This interaction between resource quantity and mismatch was not apparent for PON, which is consistent with variation in PON underlying variation in POM C:N and highlights the role of N in limiting growth. Previous research has neglected the importance of ecological stoichiometry as a mediator of consumer-resource interactions in rocky intertidal communities. I show that resource quality and quantity interact to determine consumer growth, highlighting the utility of ecological stoichiometry in understanding spatial subsidies in benthic marine systems.
Collapse
Affiliation(s)
- Matthew E. S. Bracken
- Department of Ecology and Evolutionary Biology, University of California, IrvineIrvine, CA, United States
| |
Collapse
|
38
|
Jochum M, Barnes AD, Ott D, Lang B, Klarner B, Farajallah A, Scheu S, Brose U. Decreasing Stoichiometric Resource Quality Drives Compensatory Feeding across Trophic Levels in Tropical Litter Invertebrate Communities. Am Nat 2017; 190:131-143. [DOI: 10.1086/691790] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
Kawakami T, Makoto K. Does an earthworm species acclimatize and/or adapt to soil calcium conditions? The consequences of soil nitrogen mineralization in forest soil. Ecol Res 2017. [DOI: 10.1007/s11284-017-1473-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Kooyers NJ, Blackman BK, Holeski LM. Optimal defense theory explains deviations from latitudinal herbivory defense hypothesis. Ecology 2017; 98:1036-1048. [DOI: 10.1002/ecy.1731] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Nicholas J. Kooyers
- Department of Biology University of Virginia Charlottesville Virginia 22904 USA
- Department of Integrative Biology University of South Florida Tampa Florida 33620 USA
- Department of Plant and Microbial Biology University of California Berkeley California 94720 USA
| | - Benjamin K. Blackman
- Department of Biology University of Virginia Charlottesville Virginia 22904 USA
- Department of Integrative Biology University of South Florida Tampa Florida 33620 USA
| | - Liza M. Holeski
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona 86011 USA
| |
Collapse
|
41
|
Le Provost G, Gross N, Börger L, Deraison H, Roncoroni M, Badenhausser I. Trait‐matching and mass effect determine the functional response of herbivore communities to land‐use intensification. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12849] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gaëtane Le Provost
- Station d'Ecologie de Chizé – La Rochelle UMR 7372 CNRS – Université de La Rochelle F‐79360 Villiers en Bois France
- INRA USC 1339 (Station d'Ecologie de Chizé – La Rochelle – CNRS) F‐79360 Villiers en Bois France
- LTER Zone Atelier Plaine & Val de Sèvre CNRS F‐79360 Villiers en Bois France
| | - Nicolas Gross
- Station d'Ecologie de Chizé – La Rochelle UMR 7372 CNRS – Université de La Rochelle F‐79360 Villiers en Bois France
- INRA USC 1339 (Station d'Ecologie de Chizé – La Rochelle – CNRS) F‐79360 Villiers en Bois France
- LTER Zone Atelier Plaine & Val de Sèvre CNRS F‐79360 Villiers en Bois France
- Área de Biodiversidad y Conservación Departamento de Ciencias Escuela Superior de Ciencias Experimentales y Tecnología Universidad Rey Juan Carlos C/ Tulipán s/n 28933 Móstoles Spain
| | - Luca Börger
- Department of Biosciences College of Science Swansea University Singleton Park SwanseaSA2 8PP UK
| | - Hélène Deraison
- Station d'Ecologie de Chizé – La Rochelle UMR 7372 CNRS – Université de La Rochelle F‐79360 Villiers en Bois France
- INRA USC 1339 (Station d'Ecologie de Chizé – La Rochelle – CNRS) F‐79360 Villiers en Bois France
- LTER Zone Atelier Plaine & Val de Sèvre CNRS F‐79360 Villiers en Bois France
| | - Marilyn Roncoroni
- Station d'Ecologie de Chizé – La Rochelle UMR 7372 CNRS – Université de La Rochelle F‐79360 Villiers en Bois France
- INRA USC 1339 (Station d'Ecologie de Chizé – La Rochelle – CNRS) F‐79360 Villiers en Bois France
- LTER Zone Atelier Plaine & Val de Sèvre CNRS F‐79360 Villiers en Bois France
| | - Isabelle Badenhausser
- Station d'Ecologie de Chizé – La Rochelle UMR 7372 CNRS – Université de La Rochelle F‐79360 Villiers en Bois France
- INRA USC 1339 (Station d'Ecologie de Chizé – La Rochelle – CNRS) F‐79360 Villiers en Bois France
- LTER Zone Atelier Plaine & Val de Sèvre CNRS F‐79360 Villiers en Bois France
| |
Collapse
|
42
|
Abstract
Plant-herbivore interactions shape community dynamics across marine, freshwater, and terrestrial habitats. From amphipods to elephants and from algae to trees, plant-herbivore relationships are the crucial link generating animal biomass (and human societies) from mere sunlight. These interactions are, thus, pivotal to understanding the ecology and evolution of virtually any ecosystem. Here, we briefly highlight recent advances in four areas of plant-herbivore interactions: (1) plant defense theory, (2) herbivore diversity and ecosystem function, (3) predation risk aversion and herbivory, and (4) how a changing climate impacts plant-herbivore interactions. Recent advances in plant defense theory, for example, highlight how plant life history and defense traits affect and are affected by multiple drivers, including enemy pressure, resource availability, and the local plant neighborhood, resulting in trait-mediated feedback loops linking trophic interactions with ecosystem nutrient dynamics. Similarly, although the positive effect of consumer diversity on ecosystem function has long been recognized, recent advances using DNA barcoding to elucidate diet, and Global Positioning System/remote sensing to determine habitat selection and impact, have shown that herbivore communities are probably even more functionally diverse than currently realized. Moreover, although most diversity-function studies continue to emphasize plant diversity, herbivore diversity may have even stronger impacts on ecosystem multifunctionality. Recent studies also highlight the role of risk in plant-herbivore interactions, and risk-driven trophic cascades have emerged as landscape-scale patterns in a variety of ecosystems. Perhaps not surprisingly, many plant-herbivore interactions are currently being altered by climate change, which affects plant growth rates and resource allocation, expression of chemical defenses, plant phenology, and herbivore metabolism and behavior. Finally, we conclude by noting that although the field is advancing rapidly, the world is changing even more rapidly, challenging our ability to manage these pivotal links in the food chain.
Collapse
Affiliation(s)
- Deron E. Burkepile
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - John D. Parker
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| |
Collapse
|
43
|
Striebel M, Schabhüttl S, Hodapp D, Hingsamer P, Hillebrand H. Phytoplankton responses to temperature increases are constrained by abiotic conditions and community composition. Oecologia 2016; 182:815-27. [PMID: 27488200 PMCID: PMC5042995 DOI: 10.1007/s00442-016-3693-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/03/2016] [Indexed: 11/24/2022]
Abstract
Effects of temperature changes on phytoplankton communities seem to be highly context-specific, but few studies have analyzed whether this context specificity depends on differences in the abiotic conditions or in species composition between studies. We present an experiment that allows disentangling the contribution of abiotic and biotic differences in shaping the response to two aspects of temperature change: permanent increase of mean temperature versus pulse disturbance in form of a heat wave. We used natural communities from six different sites of a floodplain system as well as artificially mixed communities from laboratory cultures and grew both, artificial and natural communities, in water from the six different floodplain lakes (sites). All 12 contexts (2 communities × 6 sites) were first exposed to three different temperature levels (12, 18, 24 °C, respectively) and afterward to temperature pulses (4 °C increase for 7 h day(-1)). Temperature-dependent changes in biomass and community composition depended on the initial composition of phytoplankton communities. Abiotic conditions had a major effect on biomass of phytoplankton communities exposed to different temperature conditions, however, the effect of biotic and abiotic conditions together was even more pronounced. Additionally, phytoplankton community responses to pulse temperature effects depended on the warming history. By disentangling abiotic and biotic effects, our study shows that temperature-dependent effects on phytoplankton communities depend on both, biotic and abiotic constraints.
Collapse
Affiliation(s)
- Maren Striebel
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Schleusenstrasse 1, 26382, Wilhelmshaven, Germany. .,Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Max Emanuel-Strasse 17, 1180, Vienna, Austria.
| | - Stefanie Schabhüttl
- WasserCluster Lunz, Dr. Carl Kupelwieser Promenade 5, 3293, Lunz am See, Austria
| | - Dorothee Hodapp
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Schleusenstrasse 1, 26382, Wilhelmshaven, Germany
| | - Peter Hingsamer
- Department of Organismic Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | - Helmut Hillebrand
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Schleusenstrasse 1, 26382, Wilhelmshaven, Germany
| |
Collapse
|
44
|
Kaspari M, Powers JS. Biogeochemistry and Geographical Ecology: Embracing All Twenty-Five Elements Required to Build Organisms. Am Nat 2016; 188 Suppl 1:S62-73. [PMID: 27513911 DOI: 10.1086/687576] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Biogeochemistry is a key but relatively neglected part of the abiotic template that underlies ecology. The template has a geography, one that is increasingly being rearranged in this era of global change. Justus von Liebig's law of the minimum has played a useful role in focusing attention on biogeochemical regulation of populations, but given that ∼25+ elements are required to build organisms and that these organisms use and deplete nutrients in aggregates of communities and ecosystems, we make the case that it is time to move on. We review available models that suggest the many different mechanisms that give rise to multiple elements, or colimitation. We then review recent empirical data that show that rates of decomposition and primary productivity may be limited by multiple elements. In that light, given the tropics' high species diversity and generally more weathered soils, we predict that colimitation at community and ecosystem scales is more prevalent closer to the equator. We conclude with suggestions for how to move forward with experimental studies of colimitation.
Collapse
|
45
|
Plum C, Hüsener M, Hillebrand H. Multiple vs. single phytoplankton species alter stoichiometry of trophic interaction with zooplankton. Ecology 2016; 96:3075-89. [PMID: 27070025 DOI: 10.1890/15-0393.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Despite the progress made in explaining trophic interactions through the stoichiometric interplay between consumers and resources, it remains unclear how the number of species in a trophic group influences the effects of elemental imbalances in food webs. Therefore, we conducted a laboratory experiment to test the hypothesis that multispecies producer assemblages alter the nutrient dynamics in a pelagic community. Four algal species were reared in mono- and polycultures under a 2 x 2 factorial combination of light and nutrient supply, thereby contrasting the stoichiometry of trophic interactions involving single vs. multiple producer species. After 9 d, these cultures were fed to the calanoid copepod Acartia tonsa, and we monitored biomass, resource use, and C:N:P stoichiometry in both phyto- and zooplankton. According to our expectations, light and N supply resulted in gradients of phytoplankton biomass and nutrient composition (C:N:P). Significant net diversity effects for algal biomass and C:N:P ratios reflected the greater responsiveness of the phytoplankton polyculture to altered resource supply compared to monocultures. These alterations of elemental ratios were common, and were partly triggered by changes in species frequency in the mixtures and partly by diversity-related changes in resource use. Copepod individual biomass increased under high light (HL) and N-reduced (-N) conditions, when food was high in C:N but low in C:P and N:P, whereas copepod growth was obviously P limited, and copepod stoichiometry was not affected by phytoplankton elemental composition. Correspondingly, copepod individual biomass reflected significant net diversity effects: compared to expectations- derived from monocultures, copepod individuals feeding on algal polycultures remained smaller than predicted under HL and N-sufficient (+N) conditions but grew larger than predicted under HL, -N and low light +N conditions. In conclusion, multiple producer species altered the stoichiometry of trophic interactions between phyto- and zooplankton, with divergent effects under high and low resource supply.
Collapse
|
46
|
Stevenson CF, Demes KW, Salomon AK. Accounting for size-specific predation improves our ability to predict the strength of a trophic cascade. Ecol Evol 2016; 6:1041-53. [PMID: 26941943 PMCID: PMC4761761 DOI: 10.1002/ece3.1870] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/01/2015] [Accepted: 11/06/2015] [Indexed: 11/10/2022] Open
Abstract
Predation can influence the magnitude of herbivory that grazers exert on primary producers by altering both grazer abundance and their per capita consumption rates via changes in behavior, density-dependent effects, and size. Therefore, models based solely on changes in abundance may miss key components of grazing pressure. We estimated shifts in grazing pressure associated with changes in the abundance and per capita consumption rates of sea urchins triggered by size-selective predation by sea otters (Enhydra lutris). Field surveys suggest that sea otters dramatically decreased the abundance and median size of sea urchins. Furthermore, laboratory experiments revealed that kelp consumption by sea urchins varied nonlinearly as a function of urchin size such that consumption rates increased to the 0.56 and 0.68 power of biomass for red and green urchins, respectively. This reveals that shifts in urchin size structure due to size-selective predation by sea otters alter sea urchin per capita grazing rates. Comparison of two quantitative models estimating total consumptive capacity revealed that a model incorporating shifts in urchin abundance while neglecting urchin size structure overestimated grazing pressure compared to a model that incorporated size. Consequently, incorporating shifts in urchin size better predicted field estimates of kelp abundance compared to equivalent models based on urchin abundance alone. We provide strong evidence that incorporating size-specific parameters increases our ability to describe and predict trophic interactions.
Collapse
Affiliation(s)
- Christine F Stevenson
- School of Resource and Environmental Management Simon Fraser University 8888 University Drive Burnaby British Columbia Canada V5A 1S6; Hakai Institute British Columbia Canada
| | - Kyle W Demes
- School of Resource and Environmental Management Simon Fraser University 8888 University Drive Burnaby British Columbia Canada V5A 1S6; Hakai Institute British Columbia Canada
| | - Anne K Salomon
- School of Resource and Environmental Management Simon Fraser University 8888 University Drive Burnaby British Columbia Canada V5A 1S6; Hakai Institute British Columbia Canada
| |
Collapse
|
47
|
Werner FJ, Graiff A, Matthiessen B. Temperature effects on seaweed-sustaining top-down control vary with season. Oecologia 2016; 180:889-901. [PMID: 26566809 DOI: 10.1007/s00442-015-3489-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/18/2015] [Indexed: 10/22/2022]
Abstract
Rising seawater temperature and CO2 concentrations (ocean acidification) represent two of the most influential factors impacting marine ecosystems in the face of global climate change. In ecological climate change research, full-factorial experiments performed across seasons in multispecies, cross-trophic-level settings are essential as they permit a more realistic estimation of direct and indirect effects as well as the relative importance of the effects of both major environmental stressors on ecosystems. In benthic mesocosm experiments, we tested the responses of coastal Baltic Sea Fucus vesiculosus communities to elevated seawater temperature and CO2 concentrations across four seasons of one year. While increasing [CO2] levels had only minor effects, warming had strong and persistent effects on grazers, and the resulting effects on the Fucus community were found to be season dependent. In late summer, a temperature-driven collapse of grazers caused a cascading effect from the consumers to the foundation species, resulting in overgrowth of Fucus thalli by epiphytes. In fall/winter (outside the growing season of epiphytes), intensified grazing under warming resulted in a significant reduction in Fucus biomass. Thus, we were able to confirm the prediction that future increases in water temperatures will influence marine food-web processes by altering top-down control, but we were also able to show that specific consequences for food-web structure depend on the season. Since F. vesiculosus is the dominant habitat-forming brown algal system in the Baltic Sea, its potential decline under global warming implies a loss of key functions and services such as provision of nutrient storage, substrate, food, shelter, and nursery grounds for a diverse community of marine invertebrates and fish in Baltic Sea coastal waters.
Collapse
Affiliation(s)
- Franziska J Werner
- Experimental Ecology and Food Webs, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany.
| | - Angelika Graiff
- Institute of Biosciences, Applied Ecology and Phycology, Universität Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - Birte Matthiessen
- Experimental Ecology and Food Webs, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| |
Collapse
|
48
|
Deraison H, Badenhausser I, Loeuille N, Scherber C, Gross N. Functional trait diversity across trophic levels determines herbivore impact on plant community biomass. Ecol Lett 2015; 18:1346-55. [PMID: 26439435 DOI: 10.1111/ele.12529] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/23/2015] [Accepted: 09/02/2015] [Indexed: 11/29/2022]
Abstract
Understanding the consequences of trophic interactions for ecosystem functioning is challenging, as contrasting effects of species and functional diversity can be expected across trophic levels. We experimentally manipulated functional identity and diversity of grassland insect herbivores and tested their impact on plant community biomass. Herbivore resource acquisition traits, i.e. mandible strength and the diversity of mandibular traits, had more important effects on plant biomass than body size. Higher herbivore functional diversity increased overall impact on plant biomass due to feeding niche complementarity. Higher plant functional diversity limited biomass pre-emption by herbivores. The functional diversity within and across trophic levels therefore regulates the impact of functionally contrasting consumers on primary producers. By experimentally manipulating the functional diversity across trophic levels, our study illustrates how trait-based approaches constitute a promising way to tackle existing links between trophic interactions and ecosystem functioning.
Collapse
Affiliation(s)
- Hélène Deraison
- UMR7372, Centre d'Etudes Biologiques de Chizé, CNRS-Université de La Rochelle, Villiers en Bois, 79360, Beauvoir sur Niort, France.,USC1339, Centre d'Etudes Biologiques de Chizé, INRA, Villiers en Bois, 79360, Beauvoir sur Niort, France.,LTER, ZA Plaine & Val de Sèvre, CNRS, 79360, Villiers en Bois, France
| | - Isabelle Badenhausser
- UMR7372, Centre d'Etudes Biologiques de Chizé, CNRS-Université de La Rochelle, Villiers en Bois, 79360, Beauvoir sur Niort, France.,USC1339, Centre d'Etudes Biologiques de Chizé, INRA, Villiers en Bois, 79360, Beauvoir sur Niort, France.,LTER, ZA Plaine & Val de Sèvre, CNRS, 79360, Villiers en Bois, France
| | - Nicolas Loeuille
- Institute of Ecology and Environmental Sciences-Paris (UPMC-CNRS-IRD-INRA-UPEC-Paris Diderot), Université Pierre et Marie Curie, UMR 7618, 7 quai St Bernard, 75005, Paris, France
| | - Christoph Scherber
- DNPW, Agroecology, Georg-August University, Göttingen, Germany.,Institute of Landscape Ecology, University of Münster, Münster, Germany
| | - Nicolas Gross
- UMR7372, Centre d'Etudes Biologiques de Chizé, CNRS-Université de La Rochelle, Villiers en Bois, 79360, Beauvoir sur Niort, France.,USC1339, Centre d'Etudes Biologiques de Chizé, INRA, Villiers en Bois, 79360, Beauvoir sur Niort, France.,LTER, ZA Plaine & Val de Sèvre, CNRS, 79360, Villiers en Bois, France
| |
Collapse
|
49
|
Guiz J, Hillebrand H, Borer ET, Abbas M, Ebeling A, Weigelt A, Oelmann Y, Fornara D, Wilcke W, Temperton VM, Weisser WW. Long-term effects of plant diversity and composition on plant stoichiometry. OIKOS 2015. [DOI: 10.1111/oik.02504] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Jordan Guiz
- Inst. for Chemistry and Biology of the Marine Environment (ICBM), Univ. Oldenburg; Schleusenstrasse 1 DE-26382 Wilhemshaven Germany
| | - Helmut Hillebrand
- Inst. for Chemistry and Biology of the Marine Environment (ICBM), Univ. Oldenburg; Schleusenstrasse 1 DE-26382 Wilhemshaven Germany
| | - Elizabeth T. Borer
- Dept of Ecology, Evolution and Behavior; Univ. of Minnesota; St. Paul MN USA
| | - Maike Abbas
- Inst. for Chemistry and Biology of the Marine Environment (ICBM), Univ. Oldenburg; Schleusenstrasse 1 DE-26382 Wilhemshaven Germany
| | - Anne Ebeling
- Inst. of Ecology, FSU Jena; Dornburger str. 159 DE-07743 Jena Germany
| | - Alexandra Weigelt
- Inst. of Biology I, Univ. of Leipzig; Johannisalle 21-23 DE-04103 Leipzig Germany
| | - Yvonne Oelmann
- Geoecology, Univ. of Tübingen; Rümelinstrasse 19-23 DE-72070 Tübingen Germany
| | - Dario Fornara
- Agri-Food and Biosciences Institute (AFBI); Newforge Lane, Belfast UK
| | - Wolfgang Wilcke
- Inst. of Geography and Geoecology, Karlsruhe Inst. of Technology (KIT); Reinhard-Baumeister-Platz 1 DE-76131 Karlsruhe Germany
| | - Vicky M. Temperton
- Inst. of Bio- and Geosciences (IBG-2 Plant Sciences); Jülich Forschungszentrum DE-52428 Jülich Germany
| | - Wolfgang W. Weisser
- Dept of Ecology and Ecosystem management; Technische Univ. München; Hans-Carl-von-Carlowitz-Platz 2 DE- 85350 Freising-Weihenstephan Germany
| |
Collapse
|
50
|
Scharler UM, Ulanowicz RE, Fogel ML, Wooller MJ, Jacobson-Meyers ME, Lovelock CE, Feller IC, Frischer M, Lee R, McKee K, Romero IC, Schmit JP, Shearer C. Variable nutrient stoichiometry (carbon:nitrogen:phosphorus) across trophic levels determines community and ecosystem properties in an oligotrophic mangrove system. Oecologia 2015; 179:863-76. [DOI: 10.1007/s00442-015-3379-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 06/16/2015] [Indexed: 11/24/2022]
|