1
|
Rieseberg TP, Holzhausen A, Bierenbroodspot MJ, Zhang W, Abreu IN, de Vries J. Conserved carotenoid pigmentation in reproductive organs of Charophyceae. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230372. [PMID: 39343025 PMCID: PMC11449214 DOI: 10.1098/rstb.2023.0372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 06/19/2024] [Indexed: 10/01/2024] Open
Abstract
Sexual reproduction in Charophyceae abounds in complex traits. Their gametangia develop as intricate structures, with oogonia spirally surrounded by envelope cells and richly pigmented antheridia. The red-probably protectant-pigmentation of antheridia is conserved across Charophyceae. Chara tomentosa is, however, unique in exhibiting this pigmentation and also in vegetative tissue. Here, we investigated the two sympatric species, C. tomentosa and Chara baltica, and compared their molecular chassis for pigmentation. Using reversed phase C30 high performance liquid chromatography (RP-C30-HPLC), we uncover that the major pigments are β-carotene, δ-carotene and γ-carotene; using headspace solid-phase microextraction coupled to gas chromatography equipped with a mass spectrometer (HS-SPME-GC-MS), we pinpoint that the unusually large carotenoid pool in C. tomentosa gives rise to diverse volatile apocarotenoids, including abundant 6-methyl-5-hepten-2-one. Based on transcriptome analyses, we uncover signatures of the unique biology of Charophycaee and genes for pigment production, including monocyclized carotenoids. The rich carotenoid pool probably serves as a substrate for diverse carotenoid-derived metabolites, signified not only by (i) the volatile apocarotenoids we detected but (ii) the high expression of a gene coding for a cytochrome P450 enzyme related to land plant proteins involved in the biosynthesis of carotenoid-derived hormones. Overall, our data shed light on a key protection strategy of sexual reproduction in the widespread group of macroalgae. The genetic underpinnings of this are shared across hundreds of millions of years of plant and algal evolution. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Tim P Rieseberg
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, Goldschmidtstr. 1, University of Goettingen , Goettingen 37077, Germany
| | - Anja Holzhausen
- Department of Crop Physiology, Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Betty Heimann-Str. 5 , Halle (Saale) 06120, Germany
| | - Maaike J Bierenbroodspot
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, Goldschmidtstr. 1, University of Goettingen , Goettingen 37077, Germany
| | - Wanchen Zhang
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, Goldschmidtstr. 1, University of Goettingen , Goettingen 37077, Germany
| | - Ilka N Abreu
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, Goldschmidtstr. 1, University of Goettingen , Goettingen 37077, Germany
- Department of Plant Biochemistry, Albrecht Haller Institute of Plant Science, Justus-von-Liebig-Weg, University of Goettingen , Goettingen 37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Goettingen Metabolomics and Lipidomics Laboratory, Justus-von-Liebig Weg 11, University of Goettingen , Goettingen 37077, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, Goldschmidtstr. 1, University of Goettingen , Goettingen 37077, Germany
- Department of Applied Bioinformatics, Goettingen Center for Molecular Biosciences (GZMB), Goldschmidtstr. 1, University of Goettingen , Goettingen 37077, Germany
- Department of Applied Bioinformatics, Campus Institute Data Science, University of Goettingen , Goettingen 37077, Germany
| |
Collapse
|
2
|
Thosteman HE, Eisen K, Petrén H, Boutsi S, Pace L, Halley JM, De Moraes CM, Mescher MC, Buckley J, Friberg M. Integration of attractive and defensive phytochemicals is unlikely to constrain chemical diversification in a perennial herb. THE NEW PHYTOLOGIST 2024; 244:249-264. [PMID: 39081013 DOI: 10.1111/nph.20006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/08/2024] [Indexed: 09/17/2024]
Abstract
Diversification of plant chemical phenotypes is typically associated with spatially and temporally variable plant-insect interactions. Floral scent is often assumed to be the target of pollinator-mediated selection, whereas foliar compounds are considered targets of antagonist-mediated selection. However, floral and vegetative phytochemicals can be biosynthetically linked and may thus evolve as integrated phenotypes. Utilizing a common garden of 28 populations of the perennial herb Arabis alpina (Brassicaceae), we investigated integration within and among floral scent compounds and foliar defense compounds (both volatile compounds and tissue-bound glucosinolates). Within floral scent volatiles, foliar volatile compounds, and glucosinolates, phytochemicals were often positively correlated, and correlations were stronger within these groups than between them. Thus, we found no evidence of integration between compound groups indicating that these are free to evolve independently. Relative to self-compatible populations, self-incompatible populations experienced stronger correlations between floral scent compounds, and a trend toward lower integration between floral scent and foliar volatiles. Our study serves as a rare test of integration of multiple, physiologically related plant traits that each are potential targets of insect-mediated selection. Our results suggest that independent evolutionary forces are likely to diversify different axes of plant chemistry without major constraints.
Collapse
Affiliation(s)
| | - Katherine Eisen
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
- Department of Biology, Loyola Marymount University, Los Angeles, CA, 90045, USA
| | - Hampus Petrén
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
| | - Sotiria Boutsi
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
- Department of Agriculture and Environment, Harper Adams University, Newport, TF10 8NB, UK
| | - Loretta Pace
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| | - John M Halley
- Department of Biological Applications and Technology, University of Ioannina, Thessaloniki, 45110, Greece
| | - Consuelo M De Moraes
- Biocommunication Group, Institute of Agricultural Sciences, ETH Zürich, Zürich, 8092, Switzerland
| | - Mark C Mescher
- Plant Ecology Group, Institute of Integrative Biology, ETH Zürich, Zürich, 8092, Switzerland
| | - James Buckley
- Biocommunication Group, Institute of Agricultural Sciences, ETH Zürich, Zürich, 8092, Switzerland
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Magne Friberg
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
| |
Collapse
|
3
|
Jiang D, Han Q, Su Y, Cao X, Wu B, Wei C, Chen K, Li X, Zhang B. Glycoside hydrolase PpGH28BG1 modulates benzaldehyde metabolism and enhances fruit aroma and immune responses in peach. PLANT PHYSIOLOGY 2024; 196:1444-1459. [PMID: 39140299 DOI: 10.1093/plphys/kiae423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024]
Abstract
Benzaldehyde (BAld) is one of the most widely distributed volatiles that contributes to flavor and defense in plants. Plants regulate BAld levels through various pathways, including biosynthesis from trans-cinnamic acid (free BAld), release from hydrolysis of glycoside precursors (BAld-H) via multiple enzymatic action steps, and conversion into downstream chemicals. Here, we show that BAld-H content in peach (Prunus persica) fruit is up to 100-fold higher than that of free BAld. By integrating transcriptome, metabolomic, and biochemical approaches, we identified glycoside hydrolase PpGH28BG1 as being involved in the production of BAld-H through the hydrolysis of glycoside precursors. Overexpressing and silencing of PpGH28BG1 significantly altered BAld-H content in peach fruit. Transgenic tomatoes heterologously expressing PpGH28BG1 exhibited a decrease in BAld-H content and an increase in SA accumulation, while maintaining fruit weight, pigmentation, and ethylene production. These transgenic tomato fruits displayed enhanced immunity against Botrytis cinerea compared to wild type (WT). Induced expression of PpGH28BG1 and increased SA content were also observed in peach fruit when exposed to Monilinia fructicola infection. Additionally, elevated expression of PpGH28BG1 promoted fruit softening in transgenic tomatoes, resulting in a significantly increased emission of BAld compared to WT. Most untrained taste panelists preferred the transgenic tomatoes over WT fruit. Our study suggests that it is feasible to enhance aroma and immunity in fruit through metabolic engineering of PpGH28BG1 without causing visible changes in the fruit ripening process.
Collapse
Affiliation(s)
- Dan Jiang
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Qingyuan Han
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yike Su
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xiangmei Cao
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Boping Wu
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Chunyan Wei
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Desheng Middle Road No. 298, Hangzhou, Zhejiang Province 310021, China
| | - Kunsong Chen
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xian Li
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Bo Zhang
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya, Hainan 572000, China
| |
Collapse
|
4
|
Losch F, Weigend M. Diurnal patterns of floral volatile emissions in three species of Narcissus. AMERICAN JOURNAL OF BOTANY 2024; 111:e16408. [PMID: 39305022 DOI: 10.1002/ajb2.16408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 10/25/2024]
Abstract
PREMISE Plants generate a wide array of signals such as olfactory cues to attract and manipulate the response of pollinators. The present study addresses the temporal patterns of scent emission as an additional dimension to the scent composition. The expectation is that divergent floral function is reflected in divergent qualitative and temporal emission patterns. METHODS We used GC-ion mobility spectrometry with an integrated pre-concentration for automated acquisition of the temporal trends in floral volatile emissions for N. viridiflorus, N. papyraceus, and N. cantabricus subsp. foliosus. RESULTS We found a considerable increase in scent emissions and changes in scent composition for N. viridiflorus at night. This increase was particularly pronounced for aromatic substances such as benzyl acetate and p-cresol. We found no diurnal patterns in N. papyraceus, despite a similar qualitative composition of floral volatiles. Narcissus cantabricus subsp. foliosus showed no diurnal patterns either and differed considerably in floral scent composition. CONCLUSIONS Scent composition, circadian emission patterns, and floral morphology indicate divergent, but partially overlapping pollinator communities. However, the limited pollinator data from the field only permits a tentative correlation between emission patterns and flower visitors. Narcissus papyraceus and N. cantabricus show no clear diurnal patterns and thus no adjustment to the activity patterns of their diurnal pollinators. In N. viridiflorus, timing of scent emission indicates an adaptation to nocturnal flower visitors, contradicting Macroglossum as the only reported pollinator. We propose that the legitimate pollinators of N. viridiflorus are nocturnal and are still unidentified.
Collapse
Affiliation(s)
- Florian Losch
- Bonner Institut für Organismische Biologie (BIOB) Dept. Biodiversity of Plants, Mathematisch-Naturwissenschaftliche Fakultät, Rheinische Friedrich-Wilhelmsuniversität Bonn, Bonn, 53115, Germany
| | - Maximilian Weigend
- Bonner Institut für Organismische Biologie (BIOB) Dept. Biodiversity of Plants, Mathematisch-Naturwissenschaftliche Fakultät, Rheinische Friedrich-Wilhelmsuniversität Bonn, Bonn, 53115, Germany
| |
Collapse
|
5
|
Borges DJV, Souza RAC, de Oliveira A, de Sousa RMF, Venâncio H, Demetrio GR, Ambrogi BG, Santos JC. Green Lacewing Chrysoperla externa Is Attracted to Volatile Organic Compounds and Essential Oils Extracted from Eucalyptus urograndis Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 13:2192. [PMID: 39204628 PMCID: PMC11360061 DOI: 10.3390/plants13162192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Plant herbivore interactions have long been recognized as a complex interplay influenced by various factors, including plant volatile emissions. Understanding the role of these volatiles in mediating plant predator interactions is crucial for developing sustainable pest management strategies. This study investigated the olfactory preferences of Chrysoperla externa larvae for volatiles emitted by Eucalyptus urograndis leaves, focusing on both seedlings and essential oils (EOs). We used Y-tube olfactometry to compare larval preferences between the clean air and various plant treatments, including undamaged and herbivore-damaged leaves. Chemical analysis of EOs revealed higher concentrations of oxygenated monoterpenes and sesquiterpenes in young and damaged leaves, particularly linalool, which has been implicated in insect attraction. Our results showed a significant preference for volatiles emitted by young damaged leaves over clean air for both seedlings (χ2 = 11.03, p = 0.001) and EOs (χ2 = 9.76, p = 0.002). Chrysoperla externa larvae are significantly attracted to specific volatiles from damaged E. urograndis leaves, suggesting these compounds could serve as cues for natural enemy foraging. Our findings enhance the understanding of plant-predator dynamics and suggest potential applications of eucalyptus plantations to sustain C. externa populations for biocontrol purposes.
Collapse
Affiliation(s)
- David Jackson Vieira Borges
- Pos-Graduate Program in Ecology, Conservation and Biodiversity, Federal University of Uberlandia, Uberlandia 38405-240, Minas Gerais, Brazil;
| | - Rafael Aparecido Carvalho Souza
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38408-100, Minas Gerais, Brazil; (R.A.C.S.); (A.d.O.); (R.M.F.d.S.)
| | - Alberto de Oliveira
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38408-100, Minas Gerais, Brazil; (R.A.C.S.); (A.d.O.); (R.M.F.d.S.)
| | - Raquel Maria Ferreira de Sousa
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38408-100, Minas Gerais, Brazil; (R.A.C.S.); (A.d.O.); (R.M.F.d.S.)
| | - Henrique Venâncio
- Pos-Graduate Program in Ecology and Conservation, Federal University of Sergipe, São Cristóvão 49107-230, Sergipe, Brazil;
| | - Guilherme Ramos Demetrio
- Laboratory of Plant Ecology, U. E. Penedo, Campus Arapiraca, Federal University of Alagoas, Penedo 57200-000, Alagoas, Brazil;
| | - Bianca Giuliano Ambrogi
- Department of Ecology, Federal University of Sergipe, São Cristóvão 49107-230, Sergipe, Brazil;
| | - Jean Carlos Santos
- Department of Ecology, Federal University of Sergipe, São Cristóvão 49107-230, Sergipe, Brazil;
| |
Collapse
|
6
|
Antony B, Montagné N, Comte A, Mfarrej S, Jakše J, Capoduro R, Shelke R, Cali K, AlSaleh MA, Persaud K, Pain A, Jacquin-Joly E. Deorphanizing an odorant receptor tuned to palm tree volatile esters in the Asian palm weevil sheds light on the mechanisms of palm tree selection. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 169:104129. [PMID: 38704126 DOI: 10.1016/j.ibmb.2024.104129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/06/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
The Asian palm weevil, Rhynchophorus ferrugineus, is a tremendously important agricultural pest primarily adapted to palm trees and causes severe destruction, threatening sustainable palm cultivation worldwide. The host plant selection of this weevil is mainly attributed to the functional specialization of odorant receptors (ORs) that detect palm-derived volatiles. Yet, ligands are known for only two ORs of R. ferrugineus, and we still lack information on the mechanisms of palm tree detection. This study identified a highly expressed antennal R. ferrugineus OR, RferOR2, thanks to newly generated transcriptomic data. The phylogenetic analysis revealed that RferOR2 belongs to the major coleopteran OR group 2A and is closely related to a sister clade containing an R. ferrugineus OR (RferOR41) tuned to the non-host plant volatile and antagonist, α-pinene. Functional characterization of RferOR2 via heterologous expression in Drosophila olfactory neurons revealed that this receptor is tuned to several ecologically relevant palm-emitted odors, most notably ethyl and methyl ester compounds, but not to any of the pheromone compounds tested, including the R. ferrugineus aggregation pheromone. We did not evidence any differential expression of RferOR2 in the antennae of both sexes, suggesting males and females detect these compounds equally. Next, we used the newly identified RferOR2 ligands to demonstrate that including synthetic palm ester volatiles as single compounds and in combinations in pheromone-based mass trapping has a synergistic attractiveness effect to R. ferrugineus aggregation pheromone, resulting in significantly increased weevil catches. Our study identified a key OR from a palm weevil species tuned to several ecologically relevant palm volatiles and represents a significant step forward in understanding the chemosensory mechanisms of host detection in palm weevils. Our study also defines RferOR2 as an essential model for exploring the molecular basis of host detection in other palm weevil species. Finally, our work showed that insect OR deorphanization could aid in identifying novel behaviorally active volatiles that can interfere with weevil host-searching behavior in sustainable pest management applications.
Collapse
Affiliation(s)
- Binu Antony
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Arthur Comte
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Sara Mfarrej
- King Abdullah University of Science and Technology (KAUST), Bioscience Programme, BESE Division, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Jernej Jakše
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, SI-1000, Ljubljana, Slovenia
| | - Rémi Capoduro
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Rajan Shelke
- Don Bosco College of Agriculture, Agricultural Entomology Department, Sulcorna, Goa, 403705, India
| | - Khasim Cali
- The University of Manchester, Department of Chemical Engineering, Manchester, M13 9PL, UK
| | - Mohammed Ali AlSaleh
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia
| | - Krishna Persaud
- The University of Manchester, Department of Chemical Engineering, Manchester, M13 9PL, UK
| | - Arnab Pain
- King Abdullah University of Science and Technology (KAUST), Bioscience Programme, BESE Division, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| |
Collapse
|
7
|
Gao Y, Lei Z, Huang J, Sun Y, Liu S, Yao L, Liu J, Liu W, Liu Y, Chen Y. Characterization of Key Odorants in Lushan Yunwu Tea in Response to Intercropping with Flowering Cherry. Foods 2024; 13:1252. [PMID: 38672924 PMCID: PMC11049266 DOI: 10.3390/foods13081252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Lushan Yunwu tea (LSYWT) is a famous green tea in China. However, the effects of intercropping tea with flowering cherry on the overall aroma of tea have not been well understood. In this study, headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was used for analysis. A total of 54 volatile compounds from eight chemical classes were identified in tea samples from both the intercropping and pure-tea-plantation groups. Principal component analysis (PCA), orthogonal partial least-squares discriminant analysis (OPLS-DA), and odor activity value (OAV) methods combined with sensory evaluation identified cis-jasmone, nonanal, and linalool as the key aroma compounds in the intercropping group. Benzaldehyde, α-farnesene, and methyl benzene were identified as the main volatile compounds in the flowering cherry using headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS). These findings will enrich the research on tea aroma chemistry and offer new insights into the product development and quality improvement of LSYWT.
Collapse
Affiliation(s)
- Yinxiang Gao
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang 332005, China; (Y.G.)
| | - Zhiyong Lei
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang 332005, China; (Y.G.)
| | - Jigang Huang
- Jiujiang Agricultural Technology Extension Center, Jiujiang 332000, China
| | - Yongming Sun
- Jiangxi Institute of Red Soil and Germplasm Resources, Nanchang 330046, China
| | - Shuang Liu
- Jiujiang Agricultural Technology Extension Center, Jiujiang 332000, China
| | - Liping Yao
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang 332005, China; (Y.G.)
| | - Jiaxin Liu
- Jiujiang Agricultural Technology Extension Center, Jiujiang 332000, China
| | - Wenxin Liu
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang 332005, China; (Y.G.)
| | - Yanan Liu
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang 332005, China; (Y.G.)
| | - Yan Chen
- Jiujiang Agricultural Technology Extension Center, Jiujiang 332000, China
| |
Collapse
|
8
|
Zhao H, Masood HA, Muhammad S. Unveiling the aesthetic secrets: exploring connections between genetic makeup, chemical, and environmental factors for enhancing/improving the color and fragrance/aroma of Chimonanthus praecox. PeerJ 2024; 12:e17238. [PMID: 38650650 PMCID: PMC11034496 DOI: 10.7717/peerj.17238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Floral color and scent profiles vary across species, geographical locations, and developmental stages. The exclusive floral color and fragrance of Chimonanthus praecox is contributed by a range of endogenous chemicals that distinguish it from other flowers and present amazing ornamental value. This comprehensive review explores the intricate interplay of environmental factors, chemicals and genes shaping the flower color and fragrance of Chimonanthus praecox. Genetic and physiological factors control morpho-anatomical attributes as well as pigment synthesis, while environmental factors such as temperature, light intensity, and soil composition influence flower characteristics. Specific genes control pigment synthesis, and environmental factors such as temperature, light intensity, and soil composition influence flower characteristics. Physiological processes including plant hormone contribute to flower color and fragrance. Hormones, notably ethylene, exert a profound influence on varioustraits. Pigment investigations have spotlighted specific flavonoids, including kaempferol 3-O-rutinoside, quercetin, and rutin. Red tepals exhibit unique composition with cyanidin-3-O-rutinoside and cyanidin-3-O-glucoside being distinctive components. Elucidating the molecular basis of tepal color variation, particularly in red and yellow varieties, involves the identification of crucial regulatory genes. In conclusion, this review unravels the mysteries of Chimonanthus praecox, providing a holistic understanding of its flower color and fragrance for landscape applications. This comprehensive review uniquely explores the genetic intricacies, chemical and environmental influences that govern the mesmerizing flower color and fragrance of Chimonanthus praecox, providing valuable insights for its landscape applications. This review article is designed for a diverse audience, including plant geneticists, horticulturists, environmental scientists, urban planners, and students, offering understandings into the genetic intricacies, ecological significance, and practical applications of Chimonanthus praecox across various disciplines. Its appeal extends to professionals and enthusiasts interested in plant biology, conservation, and industries dependent on unique floral characteristics.
Collapse
Affiliation(s)
- Haoyu Zhao
- MEU Research Unit, Middle East University, Amman, Jordan
- Faculty of Social and Cultural Communications, Belarusian State University, Minsk, Belarus
| | | | - Sher Muhammad
- Department of Biotechnology, University of Okara, Okara, Punjab, Pakistan
| |
Collapse
|
9
|
Touhami D, Mofikoya AO, Girling RD, Langford B, Misztal PK, Pfrang C. Atmospheric Degradation of Ecologically Important Biogenic Volatiles: Investigating the Ozonolysis of (E)-β-Ocimene, Isomers of α and β-Farnesene, α-Terpinene and 6-Methyl-5-Hepten-2-One, and Their Gas-Phase Products. J Chem Ecol 2024; 50:129-142. [PMID: 38195852 PMCID: PMC11043181 DOI: 10.1007/s10886-023-01467-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/18/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
Biogenic volatile organic compounds (bVOCs), synthesised by plants, are important mediators of ecological interactions that can also undergo a series of reactions in the atmosphere. Ground-level ozone is a secondary pollutant generated through sunlight-driven reactions between nitrogen oxides (NOx) and VOCs. Its levels have increased since the industrial revolution and reactions involving ozone drive many chemical processes in the troposphere. While ozone precursors often originate in urban areas, winds may carry these hundreds of kilometres, causing ozone formation to also occur in less populated rural regions. Under elevated ozone conditions, ozonolysis of bVOCs can result in quantitative and qualitative changes in the gas phase, reducing the concentrations of certain bVOCs and resulting in the formation of other compounds. Such changes can result in disruption of bVOC-mediated behavioural or ecological interactions. Through a series of gas-phase experiments using Gas Chromatography Mass Spectrometry (GC-MS) and Proton Transfer Reaction Mass Spectrometry (PTR-MS), we investigated the products and their yields from the ozonolysis of a range of ubiquitous bVOCs, which were selected because of their importance in mediating ecological interactions such as pollinator and natural enemy attraction and plant-to-plant communication, namely: (E)-β-ocimene, isomers of α and β-farnesene, α-terpinene and 6-methyl-5-hepten-2-one. New products from the ozonolysis of these compounds were identified, and the formation of these compounds is consistent with terpene-ozone oxidation mechanisms. We present the degradation mechanism of our model bVOCs and identify their reaction products. We discuss the potential ecological implications of the degradation of each bVOC and of the formation of reaction products.
Collapse
Affiliation(s)
- Dalila Touhami
- Department of Chemistry, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, Reading, RG6 6DX, UK
| | - Adedayo O Mofikoya
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Earley Gate, Reading, RG6 6EU, UK
| | - Robbie D Girling
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Earley Gate, Reading, RG6 6EU, UK.
- Centre for Sustainable Agricultural Systems, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, 4350, Australia.
| | - Ben Langford
- UK Centre for Ecology & Hydrology, Penicuik, Midlothian, EH26 0QB, UK
| | - Pawel K Misztal
- UK Centre for Ecology & Hydrology, Penicuik, Midlothian, EH26 0QB, UK
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX, USA
| | - Christian Pfrang
- Department of Chemistry, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, Reading, RG6 6DX, UK.
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
10
|
Jia H, Geng X, Fan L, Li X, Wang J, Hao R. Spatial and Temporal Disparity Analyses of Glycosylated Benzaldehyde and Identification and Expression Pattern Analyses of Uridine Diphosphate Glycosyltransferase Genes in Prunus mume. PLANTS (BASEL, SWITZERLAND) 2024; 13:703. [PMID: 38475550 DOI: 10.3390/plants13050703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Abstract
The species Prunus mume consists of uniquely aromatic woody perennials with large amounts of free aromatic substances in the flower cells. Uridine diphosphate glycosyltransferase (UGT) modifies these free aromatic substances into water-soluble glycoside-bound volatiles (GBVs) which play an important role in regulating the use of volatiles by plants for information exchange, defense, and stress tolerance. To investigate the changes in the glycosidic state of aromatic substances during the flowering period of P. mume and discern the location and expression of glycoside synthesis genes, we extracted and enzymatically hydrolyzed GBVs of P. mume and then utilized gas chromatography-mass spectrometry (GC-MS) to characterize and analyze the types and contents of GBV glycosides. Further, we identified and classified the members of the UGT gene family of P. mume using the bioinformatic method and analyzed the correlation between the expression of the UGT family genes in P. mume and the changes in glycosidic content. The results showed that the benzenoids were the main aromatic substance that was glycosylated during flowering in P. mume and that glycosidic benzaldehyde was the most prevalent compound in different flower parts and at different flowering stages. The titer of glycoside benzaldehyde gradually increased during the bud stage and reached the highest level at the big bud stage (999.6 μg·g-1). Significantly, titers of glycoside benzaldehyde significantly decreased and stabilized after flowering while the level of free benzaldehyde, in contrast, significantly increased and then reached a plateau after the flowering process was completed. A total of 155 UGT family genes were identified in the P. mume genome, which were divided into 13 subfamilies (A-E, G-N); according to the classification of Arabidopsis thaliana UGT gene subfamilies, the L subfamily contains 17 genes. The transcriptome analysis showed that PmUGTL9 and PmUGTL13 were highly expressed in the bud stage and were strongly correlated with the content of the glycosidic form of benzaldehyde at all stages of flowering. This study provides a theoretical basis to elucidate the function of UGT family genes in P. mume during flower development, to explore the mechanism of the storage and transportation of aromatic compounds in flower tissues, and to exploit industrial applications of aromatic products from P. mume.
Collapse
Affiliation(s)
- Haotian Jia
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030600, China
| | - Xiaoyun Geng
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030600, China
| | - Lina Fan
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030600, China
| | - Xin Li
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030600, China
| | - Jiao Wang
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030600, China
| | - Ruijie Hao
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030600, China
| |
Collapse
|
11
|
Wu M, Ma Y, Yin J, Wang J, Rao S, He J, Zhang R, Xiong Y. Selenium content, chemical composition and volatile components of essential oil and hydrosol from flowers of Cardamine violifolia. Chem Biodivers 2024; 21:e202301428. [PMID: 38116867 DOI: 10.1002/cbdv.202301428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Cardamine violifolia is a unique selenium hyperaccumulating vegetable in China, but its flowers are commonly wasted in large-scale cultivation. To better utilize this resource, this study explored the selenium content, chemical composition, and volatile organic compounds (VOCs) of hydro-distilling essential oil (EO) and hydrosol from C. violifolia flowers. ICP-MS results indicated that the EO and hydrosol contained selenium reaching 13.66±2.82 mg/kg and 0.0084±0.0013 mg/kg, respectively. GC-MS analysis revealed that organic acids, hydrocarbons, and amines were the main components of EO. Additionally, benzyl nitrile, benzaldehyde, benzyl isothiocyanate, benzyl alcohol, megastigmatrienone, and 2-methoxy-4-vinylphenol also existed in considerable amounts. The hydrosol extract had fewer components, mainly amines. HS-SPME-GC-MS corresponded to the composition analysis and aromatic compounds were the prevalent VOCs, while HS-GC-IMS primarily identified C2-C10 molecular alcohols, aldehydes, ethers, and sulfur-containing compounds. This study first described the chemical composition and VOC profiles of EO and hydrosol from selenium hyperaccumulating plant.
Collapse
Affiliation(s)
- Muci Wu
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Institute of Quality Standard & Testing Technology for Agro-products, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei Province, P.R. China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei Province, P.R. China
| | - Yan Ma
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei Province, P.R. China
| | - Jinjing Yin
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei Province, P.R. China
| | - Jingyi Wang
- School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei Province, P.R. China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei Province, P.R. China
| | - Jingren He
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei Province, P.R. China
| | - Rui Zhang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei Province, P.R. China
| | - Yin Xiong
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei Province, P.R. China
| |
Collapse
|
12
|
Boutoub O, Jadhav S, Zheng X, El Ghadraoui L, Al Babili S, Fernie AR, Figueiredo AC, Miguel MG, Borghi M. Biochemical characterization of Euphorbia resinifera floral cyathia. JOURNAL OF PLANT PHYSIOLOGY 2024; 293:154184. [PMID: 38295538 DOI: 10.1016/j.jplph.2024.154184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Euphorbia resinifera O. Berg is a plant endemic to the Northern and Central regions of Morocco known since the ancient Roman and Greek times for secreting a poisonous latex containing resiniferatoxin. However, E. resinifera pseudo-inflorescences called cyathia are devoid of laticifers and, therefore, do not secrete latex. Instead, they exudate nectar that local honey bees collect and craft into honey. Honey and cyathium water extracts find a broad range of applications in the traditional medicine of Northern Africa as ointments and water decoctions. Moreover, E. resinifera monofloral honey has received the Protected Geographic Indication certification for its outstanding qualities. Given the relevance of E. resinifera cyathia for bee nutrition, honey production, and the health benefit of cyathium-derived products, this study aimed to screen metabolites synthesized and accumulated in its pseudo-inflorescences. Our analyses revealed that E. resinifera cyathia accumulate primary metabolites in considerable abundance, including hexoses, amino acids and vitamins that honey bees may collect from nectar and craft into honey. Cyathia also synthesize volatile organic compounds of the class of benzenoids and terpenes, which are emitted by flowers pollinated by honey bees and bumblebees. Many specialized metabolites, including carotenoids, flavonoids, and polyamines, were also detected, which, while protecting the reproductive organs against abiotic stresses, also confer antioxidant properties to water decoctions. In conclusion, our analyses revealed that E. resinifera cyathia are a great source of antioxidant molecules and a good food source for the local foraging honeybees, revealing the central role of the flowers from this species in mediating interactions with local pollinators and the conferral of medicinal properties to plant extracts.
Collapse
Affiliation(s)
- Oumaima Boutoub
- Department of Biology, Utah State University, Logan, UT, 84321-5305, USA; Faculty of Science and Technology, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal; Laboratory of Functional Ecology and Environment, Faculty of Science and Technology, BP 2202, University Sidi Mohamed Ben Abdallah, Fez, 20000, Morocco
| | - Sagar Jadhav
- Department of Biology, Utah State University, Logan, UT, 84321-5305, USA
| | - Xiongjie Zheng
- The Bioactives Lab, Biological and Environmental Sciences and Engineering Division, King Abdullahuniversity of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Lahsen El Ghadraoui
- Laboratory of Functional Ecology and Environment, Faculty of Science and Technology, BP 2202, University Sidi Mohamed Ben Abdallah, Fez, 20000, Morocco
| | - Salim Al Babili
- The Bioactives Lab, Biological and Environmental Sciences and Engineering Division, King Abdullahuniversity of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Ana Cristina Figueiredo
- Centro de Estudos do Ambiente e do Mar Lisboa (CESAM Ciências), Faculdade de Ciências da Universidade de Lisboa, Biotecnologia Vegetal (BV), DBV, C2, Campo Grande, 1749-016, Lisboa, Portugal
| | - Maria Graça Miguel
- Faculty of Science and Technology, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal; Mediterranean Institute for Agriculture, Environment and Development, Campus de Gambelas, University of Algarve, 8005-139, Faro, Portugal
| | - Monica Borghi
- Department of Biology, Utah State University, Logan, UT, 84321-5305, USA.
| |
Collapse
|
13
|
Goffinet AJ, Darragh K, Saleh N, Ostwald MM, Buchmann SL, Ramirez SR. Individual Variation in Male Pheromone Production in Xylocopa sonorina Correlates with size and Gland Color. J Chem Ecol 2024; 50:1-10. [PMID: 38110848 DOI: 10.1007/s10886-023-01466-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/20/2023]
Abstract
Sex pheromones are species-specific chemical signals that facilitate the location, identification, and selection of mating partners. These pheromones can vary between individuals, and act as signals of mate quality. Here, we investigate the variation of male pheromones in the mesosomal glands of the large carpenter bee Xylocopa sonorina, within a Northern California population. We tested the hypothesis that morphological traits are correlated with the observed variation in chemical blend composition of these bees. We also conducted behavioral assays to test whether these male pheromones act as long-range attractants to conspecifics. We found that larger males with darker mesosomal glands have a higher pheromone amount in their glands. Our analysis also suggests that this pheromone blend functions as a long-range attractant to both males and females. We show that both male body size and sexual maturation are important factors influencing pheromone abundance, and that this pheromone blend acts as a long-range attractant. We hypothesize that this recorded variation in male pheromone could be important for female choice.
Collapse
Affiliation(s)
- Andrew J Goffinet
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| | - Kathy Darragh
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| | - Nicholas Saleh
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
- School of Natural Sciences, Fresno Pacific University, Fresno, CA, 93702, USA
| | - Madeleine M Ostwald
- Cheadle Center for Biodiversity & Ecological Restoration, University of California, Santa Barbara, CA, 93106, USA
| | - Stephen L Buchmann
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Santiago R Ramirez
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
14
|
Lev-Yadun S. Visual-, Olfactory-, and Nectar-Taste-Based Flower Aposematism. PLANTS (BASEL, SWITZERLAND) 2024; 13:391. [PMID: 38337924 PMCID: PMC10857241 DOI: 10.3390/plants13030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Florivory, i.e., flower herbivory, of various types is common and can strongly reduce plant fitness. Flowers suffer two very different types of herbivory: (1) the classic herbivory of consuming tissues and (2) nectar theft. Unlike the non-reversibility of consumed tissues, nectar theft, while potentially reducing a plant's fitness by lowering its attraction to pollinators, can, in various cases, be fixed quickly by the production of additional nectar. Therefore, various mechanisms to avoid or reduce florivory have evolved. Here, I focus on one of the flowers' defensive mechanisms, aposematism, i.e., warning signaling to avoid or at least reduce herbivory via the repelling of herbivores. While plant aposematism of various types was almost ignored until the year 2000, it is a common anti-herbivory defense mechanism in many plant taxa, operating visually, olfactorily, and, in the case of nectar, via a bitter taste. Flower aposematism has received only very little focused attention as such, and many of the relevant publications that actually demonstrated herbivore repellence and avoidance learning following flower signaling did not refer to repellence as aposematism. Here, I review what is known concerning visual-, olfactory-, and nectar-taste-based flower aposematism, including some relevant cases of mimicry, and suggest some lines for future research.
Collapse
Affiliation(s)
- Simcha Lev-Yadun
- Department of Biology & Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon 36006, Israel
| |
Collapse
|
15
|
Jarrett BJM, Miller CW. Host Plant Effects on Sexual Selection Dynamics in Phytophagous Insects. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:41-57. [PMID: 37562047 DOI: 10.1146/annurev-ento-022823-020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Natural selection is notoriously dynamic in nature, and so, too, is sexual selection. The interactions between phytophagous insects and their host plants have provided valuable insights into the many ways in which ecological factors can influence sexual selection. In this review, we highlight recent discoveries and provide guidance for future work in this area. Importantly, host plants can affect both the agents of sexual selection (e.g., mate choice and male-male competition) and the traits under selection (e.g., ornaments and weapons). Furthermore, in our rapidly changing world, insects now routinely encounter new potential host plants. The process of adaptation to a new host may be hindered or accelerated by sexual selection, and the unexplored evolutionary trajectories that emerge from these dynamics are relevant to pest management and insect conservation strategies. Examining the effects of host plants on sexual selection has the potential to advance our fundamental understanding of sexual conflict, host range evolution, and speciation, with relevance across taxa.
Collapse
Affiliation(s)
- Benjamin J M Jarrett
- School of Natural Sciences, Bangor University, Bangor, United Kingdom;
- Department of Biology, Lund University, Lund, Sweden
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA;
| | - Christine W Miller
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
16
|
Qian Q, Cui J, Miao Y, Xu X, Gao H, Xu H, Lu Z, Zhu P. The Plant Volatile-Sensing Mechanism of Insects and Its Utilization. PLANTS (BASEL, SWITZERLAND) 2024; 13:185. [PMID: 38256738 PMCID: PMC10819770 DOI: 10.3390/plants13020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/07/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024]
Abstract
Plants and insects are engaged in a tight relationship, with phytophagous insects often utilizing volatile organic substances released by host plants to find food and egg-laying sites. Using plant volatiles as attractants for integrated pest management is vital due to its high efficacy and low environmental toxicity. Using naturally occurring plant volatiles combined with insect olfactory mechanisms to select volatile molecules for screening has proved an effective method for developing plant volatile-based attractant technologies. However, the widespread adoption of this technique is still limited by the lack of a complete understanding of molecular insect olfactory pathways. This paper first describes the nature of plant volatiles and the mechanisms of plant volatile perception by insects. Then, the attraction mechanism of plant volatiles to insects is introduced with the example of Cnaphalocrocis medinalis. Next, the progress of the development and utilization of plant volatiles to manage pests is presented. Finally, the functions played by the olfactory system of insects in recognizing plant volatiles and the application prospects of utilizing volatiles for green pest control are discussed. Understanding the sensing mechanism of insects to plant volatiles and its utilization will be critical for pest management in agriculture.
Collapse
Affiliation(s)
- Qi Qian
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (J.C.); (Y.M.); (H.G.); (Z.L.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Jiarong Cui
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (J.C.); (Y.M.); (H.G.); (Z.L.)
| | - Yuanyuan Miao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (J.C.); (Y.M.); (H.G.); (Z.L.)
| | - Xiaofang Xu
- Jinhua Agricultural Technology Extension and Seed Administration Center, Jinhua 321017, China;
| | - Huiying Gao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (J.C.); (Y.M.); (H.G.); (Z.L.)
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Zhongxian Lu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (J.C.); (Y.M.); (H.G.); (Z.L.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Pingyang Zhu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Q.Q.); (J.C.); (Y.M.); (H.G.); (Z.L.)
| |
Collapse
|
17
|
Lu Z, Wang X, Lin X, Mostafa S, Bao H, Ren S, Cui J, Jin B. Genome-Wide Identification and Characterization of Long Non-Coding RNAs Associated with Floral Scent Formation in Jasmine ( Jasminum sambac). Biomolecules 2023; 14:45. [PMID: 38254645 PMCID: PMC10812929 DOI: 10.3390/biom14010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as curial regulators of diverse biological processes in plants. Jasmine (Jasminum sambac) is a world-renowned ornamental plant for its attractive and exceptional flower fragrance. However, to date, no systematic screening of lncRNAs and their regulatory roles in the production of the floral fragrance of jasmine flowers has been reported. In this study, we identified a total of 31,079 novel lncRNAs based on an analysis of strand-specific RNA-Seq data from J. sambac flowers at different stages. The lncRNAs identified in jasmine flowers exhibited distinct characteristics compared with protein-coding genes (PCGs), including lower expression levels, shorter transcript lengths, and fewer exons. Certain jasmine lncRNAs possess detectable sequence conservation with other species. Expression analysis identified 2752 differentially expressed lncRNAs (DE_lncRNAs) and 8002 DE_PCGs in flowers at the full-blooming stage. DE_lncRNAs could potentially cis- and trans-regulate PCGs, among which DE_lincRNAs and their targets showed significant opposite expression patterns. The flowers at the full-blooming stage are specifically enriched with abundant phenylpropanoids and terpenoids potentially contributed by DE_lncRNA cis-regulated PCGs. Notably, we found that many cis-regulated DE_lncRNAs may be involved in terpenoid and phenylpropanoid/benzenoid biosynthesis pathways, which potentially contribute to the production of jasmine floral scents. Our study reports numerous jasmine lncRNAs and identifies floral-scent-biosynthesis-related lncRNAs, which highlights their potential functions in regulating the floral scent formation of jasmine and lays the foundations for future molecular breeding.
Collapse
Affiliation(s)
- Zhaogeng Lu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.L.)
| | - Xinwen Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.L.)
| | - Xinyi Lin
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.L.)
| | - Salma Mostafa
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.L.)
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Hongyan Bao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.L.)
| | - Shixiong Ren
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.L.)
| | - Jiawen Cui
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.L.)
| | - Biao Jin
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.L.)
| |
Collapse
|
18
|
Yi C, Teng D, Xie J, Tang H, Zhao D, Liu X, Liu T, Ding W, Khashaveh A, Zhang Y. Volatiles from cotton aphid ( Aphis gossypii) infested plants attract the natural enemy Hippodamia variegata. FRONTIERS IN PLANT SCIENCE 2023; 14:1326630. [PMID: 38173929 PMCID: PMC10761428 DOI: 10.3389/fpls.2023.1326630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
The Aphis gossypii is a major threat of cotton worldwide due to its short life cycle and rapid reproduction. Chemical control is the primary method used to manage the cotton aphid, which has significant environmental impacts. Therefore, prioritizing eco-friendly alternatives is essential for managing the cotton aphid. The ladybird, Hippodamia variegata, is a predominant predator of the cotton aphid. Its performance in cotton plantation is directly linked to chemical communication, where volatile compounds emitted from aphid-infested plants play important roles in successful predation. Here, we comprehensively studied the chemical interaction between the pest, natural enemy and host plants by analyzing the volatile profiles of aphid-infested cotton plants using gas chromatography-mass spectrometry (GC-MS). We then utilized the identified volatile compounds in electrophysiological recording (EAG) and behavioral assays. Through behavioral tests, we initially demonstrated the clear preference of both larvae and adults of H. variegata for aphid-infested plants. Subsequently, 13 compounds, namely α-pinene, cis-3-hexenyl acetate, 4-ethyl-1-octyn-3-ol, β-ocimene, dodecane, E-β-farnesene, decanal, methyl salicylate, β-caryophyllene, α-humulene, farnesol, DMNT, and TMTT were identified from aphid-infested plants. All these compounds were electrophysiologically active and induced detectable EAG responses in larvae and adults. Y-tube olfactometer assays indicated that, with few exceptions for larvae, all identified chemicals were attractive to H. variegata, particularly at the highest tested concentration (100 mg/ml). The outcomes of this study establish a practical foundation for developing attractants for H. variegata and open avenues for potential advancements in aphid management strategies by understanding the details of chemical communication at a tritrophic level.
Collapse
Affiliation(s)
- Chaoqun Yi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Dong Teng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jiaoxin Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Haoyu Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Danyang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaoxu Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Tinghui Liu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Wei Ding
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
Cheng J, Gui J, Yao X, Zhao H, Zhou Y, Du Y. Functional Identification of Olfactory Receptors of Cnaphalocrocis medinalis (Lepidoptera: Crambidae) for Plant Odor. INSECTS 2023; 14:930. [PMID: 38132603 PMCID: PMC10744336 DOI: 10.3390/insects14120930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Cnaphalocrocis medinalis (Lepidoptera: Crambidae) is a migratory insect pest on rice crops. The migratory C. medinalis population in a particular location may be immigrants, local populations, emigrants, or a mix of these. Immigrants are strongly attracted to plant odor. We conducted research to identify the olfactory receptors in a floral scent mixture that is strongly attractive to C. medinalis. Through gene cloning, 12 olfactory receptor (OR) genes were amplified and expressed in Xenopus oocytes in vitro, and three of them were found to be responsive to plant foliar and floral volatiles. These were CmedOR31, a specific receptor for geraniol; CmedOR32, a broad-spectrum OR gene that responded to both foliar and floral odors; and CmedOR1, which strongly responded to 10-4 M phenylacetaldehyde. The electrophysiological response to phenylacetaldehyde was extremely high, with a current of 3200 ± 86 nA and an extremely high sensitivity. We compared the phylogenetic tree and sequence similarity of CmedOR genes and found that CmedOR1 belonged to a uniquely conserved OR pedigree in the evolution of Glossata species, and the ORs of this pedigree strongly responded to phenylacetaldehyde. The expression of OR1 was significantly higher in the females than in the males. Localization of CmedOR1 in the antennae of C. medinalis by fluorescence in situ hybridization showed that CmedOR1 was expressed in both males and females. CmedOR1 may be an odor receptor used by females to locate food sources. The function of these ORs and their role in pest monitoring were discussed.
Collapse
Affiliation(s)
- Jianjun Cheng
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China (J.G.)
| | - Jiawei Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China (J.G.)
| | - Xiaoming Yao
- Zhejiang Plant Protection, Quarantine and Pesticide Management Station, Hangzhou 310029, China;
| | - Hong Zhao
- Agricultural Technology Extension Center of Shengzhou, Shengzhou 312400, China
| | - Yujie Zhou
- Agricultural Technology Extension Center of Zhuji, Zhuji 311800, China;
| | - Yongjun Du
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China (J.G.)
| |
Collapse
|
20
|
Wayman KA, Reilly MJ, Petlewski AR. Taxonomic insights from floral scents of western North American sessile-flowered Trillium. AMERICAN JOURNAL OF BOTANY 2023; 110:e16255. [PMID: 37938811 DOI: 10.1002/ajb2.16255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
PREMISE Chemical composition of floral volatiles can be an important complement to morphological characters in describing and identifying species. Four of the five species of western sessile-flowered Trillium are challenging to distinguish morphologically due to wide intraspecific variation and overlapping characters among taxa. Characterizing their floral volatile compositions could aid future taxonomic, ecological, and evolutionary studies of Trillium and related taxa. We addressed two major questions: How do western sessile Trillium taxa vary in floral chemistry? Can floral scent be used to distinguish species? METHODS We collected petals from 600 individuals at 42 wild populations of four sessile Trillium species across California, Oregon, and Washington. Volatile organic compounds from the petals were extracted using solid-phase microextraction, and the volatiles were identified and quantified by gas chromatography-mass spectrometry. The utility of floral scent composition in distinguishing species was tested using nonmetric multidimensional scaling and random forest analysis. RESULTS Floral volatiles of the white-petaled T. albidum were dominated by oxygenated monoterpenes and showed considerable geographic variation that paralleled morphological variation. The maroon-petaled T. angustipetalum and T. kurabayashii produced floral scents characterized by aliphatic esters, but each had a distinct chemical composition. Petal color of Trillium chloropetalum is highly variable, as were its scent compositions, which were blends of volatiles from both white-petaled and maroon-petaled congeneric taxa. CONCLUSIONS Differences in floral scent compositions are consistent with current taxonomy of the western sessile Trillium group. In cases where species delimitations are difficult based on morphology, floral scent composition provides taxonomic insight and suggests a potential hybrid origin for T. chloropetalum.
Collapse
Affiliation(s)
- Kjirsten A Wayman
- Department of Chemistry, California State Polytechnic University, Humboldt, Arcata, CA, 95521, USA
| | - Matthew J Reilly
- USDA Forest Service, Western Wildland Environmental Threat Assessment Center, Pacific Northwest Research Station, Corvallis, OR, 97331, USA
| | - Alaina R Petlewski
- Department of Chemistry, California State Polytechnic University, Humboldt, Arcata, CA, 95521, USA
| |
Collapse
|
21
|
Sasidharan R, Brokate L, Eilers EJ, Müller C. Chemodiversity in flowers of Tanacetum vulgare has consequences on a florivorous beetle. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1071-1082. [PMID: 37703504 DOI: 10.1111/plb.13576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
The chemical composition of plant individuals can vary, leading to high intraspecific chemodiversity. Diversity of floral chemistry may impact the responses of flower-feeding insects. Tanacetum vulgare plants vary significantly in their leaf terpenoid composition, forming distinct chemotypes. We investigated the composition of terpenoids and nutrients of flower heads and pollen in plants belonging to three chemotypes - dominated either by β-thujone (BThu), artemisia ketone (Keto) or a mixture of (Z)-myroxide, santolina triene, and artemisyl acetate (Myrox) - using different analytical platforms. We tested the effects of these differences on preferences, weight gain and performance of adults of the shining flower beetle, Olibrus aeneus. The terpenoid composition and diversity of flower heads and pollen significantly differed among individuals belonging to the above chemotypes, while total concentrations of pollen terpenoids, sugars, amino acids, and lipids did not differ. Beetles preferred BThu over the Myrox chemotype in both olfactory and contact choice assays, while the Keto chemotype was marginally repellent according to olfactory assays. The beetles gained the least weight within 48 h and their initial mortality was highest when feeding exclusively on floral tissues of the Myrox chemotype. Short-term weight gain and long-term performance were highest when feeding on the BThu chemotype. In conclusion, the beetles showed chemotype-specific responses towards different T. vulgare chemotypes, which may be attributed to the terpenoid composition in flower heads and pollen rather than to differences in nutrient profiles. Both richness and overall diversity are important factors when determining chemodiversity of individual plants and their consequences on interacting insects.
Collapse
Affiliation(s)
- R Sasidharan
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - L Brokate
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - E J Eilers
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
- CTL GmbH Bielefeld, Bielefeld, Germany
| | - C Müller
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
22
|
Larbi S, Aylanc V, Rodríguez-Flores MS, Calhelha RC, Barros L, Rezouga F, Seijo MC, Falcão SI, Vilas-Boas M. Differentiating between Monofloral Portuguese Bee Pollens Using Phenolic and Volatile Profiles and Their Impact on Bioactive Properties. Molecules 2023; 28:7601. [PMID: 38005324 PMCID: PMC10673211 DOI: 10.3390/molecules28227601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Nowadays, bee products are commended by consumers for their medicinal and dietary properties. This study aimed to differentiate between monofloral bee pollens originating from Portugal using phenolic and volatile profiles and investigate their antioxidant and cytotoxic activity. Total phenolic and flavonoid compounds were recorded between 2.9-35.8 mg GAE/g and 0.7-4.8 mg QE/g, respectively. The LC/DAD/ESI-MSn analytical results allowed us to identify and quantify a total of 72 compounds, including phenolic and phenylamide compounds, whereas GC-MS results revealed the presence of 49 different compounds, mostly ketones, aldehydes, esters, hydrocarbons, and terpenes. The highest DPPH• radical scavenging activity, EC50: 0.07 mg/mL, was recorded in the sample dominated by Castanae sp. pollen, whereas the Rubus sp. (1.59 mM Trolox/mg) and Cistaceae sp. (0.09 mg GAE/g) pollen species exhibited the highest antioxidant activity in ABTS•+ and reducing power assays, respectively. Regarding the anti-carcinogenic activity, only Carduus sp. showed remarkable cytotoxic potential against MCF-7.
Collapse
Affiliation(s)
- Samar Larbi
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.L.); (V.A.); (R.C.C.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Département de Génies Biologique et Agroalimentaire, Université Libre de Tunis, 30 Avenue Kheireddine Pacha, Tunis 1002, Tunisia;
| | - Volkan Aylanc
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.L.); (V.A.); (R.C.C.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | | | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.L.); (V.A.); (R.C.C.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.L.); (V.A.); (R.C.C.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Feriel Rezouga
- Département de Génies Biologique et Agroalimentaire, Université Libre de Tunis, 30 Avenue Kheireddine Pacha, Tunis 1002, Tunisia;
| | - Maria Carmen Seijo
- Facultad de Ciencias, Universidad de Vigo, Campus As Lagoas, 36310 Vigo, Spain; (M.S.R.-F.); (M.C.S.)
| | - Soraia I. Falcão
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.L.); (V.A.); (R.C.C.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Miguel Vilas-Boas
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.L.); (V.A.); (R.C.C.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
23
|
Byers KJRP. Reducing eggs on eggplant: a common naturally emitted plant volatile could replace insecticides in the 'king of vegetables'. THE NEW PHYTOLOGIST 2023; 240:915-917. [PMID: 37551037 DOI: 10.1111/nph.19172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
This article is a Commentary on Ghosh et al. (2023), 240: 1259–1274.
Collapse
Affiliation(s)
- Kelsey J R P Byers
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
24
|
Zhang C, Bai P, Kang J, Dong T, Zheng H, Zhang X. Deciphering the Chemical Fingerprint of Astragalus membranaceus: Volatile Components Attractive to Bruchophagus huonchili Wasps. INSECTS 2023; 14:809. [PMID: 37887821 PMCID: PMC10607655 DOI: 10.3390/insects14100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
Bruchophagus huonchili is a pest that poses a serious threat to the yield and quality of Astragalus membranaceus seeds. In this study, we employed solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) to identify volatile organic compounds (VOCs) in A. membranaceus pods during the pod-filled period. Additionally, we utilized a Y-tube olfactometer to measure the behavioral response of B. huonchili to different individual VOCs and specific VOC-based formulations. The most effective formulations were further evaluated for their effectiveness in attracting wasps in the field. Our findings revealed that A. membranaceus pods emit 25 VOCs, including green leaf volatiles (GLVs) and terpenoid and aromatic compounds. Among these compounds, five were found to be most attractive to B. huonchili at the following concentrations: 10 µg/µL cis-β-ocimene, 500 µg/µL hexyl acetate, 100 µg/µL hexanal, 1 µg/µL decanal, and 10 µg/µL β-caryophyllene, with respective response rates of 67.65%, 67.74%, 65.12%, 67.57%, and 66.67%. In addition, we evaluated 26 mixed VOC formulations, and three of them were effective at attracting B. huonchili. Furthermore, field experiments showed that one of the formulations was significantly more effective than the others, which could be used for monitoring B. huonchili populations.
Collapse
Affiliation(s)
- Chaoran Zhang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (C.Z.); (J.K.); (T.D.); (H.Z.)
| | - Penghua Bai
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China;
| | - Jie Kang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (C.Z.); (J.K.); (T.D.); (H.Z.)
| | - Tian Dong
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (C.Z.); (J.K.); (T.D.); (H.Z.)
| | - Haixia Zheng
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (C.Z.); (J.K.); (T.D.); (H.Z.)
| | - Xianhong Zhang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (C.Z.); (J.K.); (T.D.); (H.Z.)
| |
Collapse
|
25
|
Sasidharan R, Junker RR, Eilers EJ, Müller C. Floral volatiles evoke partially similar responses in both florivores and pollinators and are correlated with non-volatile reward chemicals. ANNALS OF BOTANY 2023; 132:1-14. [PMID: 37220889 PMCID: PMC10550281 DOI: 10.1093/aob/mcad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Plants often use floral displays to attract mutualists and prevent antagonist attacks. Chemical displays detectable from a distance include attractive or repellent floral volatile organic compounds (FVOCs). Locally, visitors perceive contact chemicals including nutrients but also deterrent or toxic constituents of pollen and nectar. The FVOC and pollen chemical composition can vary intra- and interspecifically. For certain pollinator and florivore species, responses to these compounds are studied in specific plant systems, yet we lack a synthesis of general patterns comparing these two groups and insights into potential correlations between FVOC and pollen chemodiversity. SCOPE We reviewed how FVOCs and non-volatile floral chemical displays, i.e. pollen nutrients and toxins, vary in composition and affect the detection by and behaviour of insect visitors. Moreover, we used meta-analyses to evaluate the detection of and responses to FVOCs by pollinators vs. florivores within the same plant genera. We also tested whether the chemodiversity of FVOCs, pollen nutrients and toxins is correlated, hence mutually informative. KEY RESULTS According to available data, florivores could detect more FVOCs than pollinators. Frequently tested FVOCs were often reported as pollinator-attractive and florivore-repellent. Among FVOCs tested on both visitor groups, there was a higher number of attractive than repellent compounds. FVOC and pollen toxin richness were negatively correlated, indicating trade-offs, whereas a marginal positive correlation between the amount of pollen protein and toxin richness was observed. CONCLUSIONS Plants face critical trade-offs, because floral chemicals mediate similar information to both mutualists and antagonists, particularly through attractive FVOCs, with fewer repellent FVOCs. Furthermore, florivores might detect more FVOCs, whose richness is correlated with the chemical richness of rewards. Chemodiversity of FVOCs is potentially informative of reward traits. To gain a better understanding of the ecological processes shaping floral chemical displays, more research is needed on floral antagonists of diverse plant species and on the role of floral chemodiversity in visitor responses.
Collapse
Affiliation(s)
- Rohit Sasidharan
- Department of Chemical Ecology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Robert R Junker
- Department of Biology, Evolutionary Ecology of Plants, University of Marburg, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
- Department of Environment and Biodiversity, University of Salzburg, Kapitalgasse 4-6, 5020 Salzburg, Austria
| | - Elisabeth J Eilers
- Department of Chemical Ecology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
- CTL GmbH Bielefeld, Krackser Straße 12, 33659 Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
26
|
Lin C, Duan Y, Li R, Wang P, Sun Y, Ding X, Zhang J, Yan H, Zhang W, Peng B, Zhao L, Zhang C. Flavonoid Biosynthesis Pathway May Indirectly Affect Outcrossing Rate of Cytoplasmic Male-Sterile Lines of Soybean. PLANTS (BASEL, SWITZERLAND) 2023; 12:3461. [PMID: 37836201 PMCID: PMC10575370 DOI: 10.3390/plants12193461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
(1) Background: Cytoplasmic male sterility (CMS) is important for exploiting heterosis. Soybean (Glycine max L.) has a low outcrossing rate that is detrimental for breeding sterile lines and producing hybrid seeds. Therefore, the molecular mechanism controlling the outcrossing rate should be elucidated to increase the outcrossing rate of soybean CMS lines; (2) Methods: The male-sterile soybean lines JLCMS313A (with a high outcrossing rate; HL) and JLCMS226A (with a low outcrossing rate; LL) were used for a combined analysis of the transcriptome (RNA-seq) and the targeted phenol metabolome; (3) Results: The comparison between HL and LL detected 5946 differentially expressed genes (DEGs) and 81 phenolic metabolites. The analysis of the DEGs and differentially abundant phenolic metabolites identified only one common KEGG pathway related to flavonoid biosynthesis. The qRT-PCR expression for eight DEGs was almost consistent with the transcriptome data. The comparison of the cloned coding sequence (CDS) regions of the SUS, FLS, UGT, and F3H genes between HL and LL revealed seven single nucleotide polymorphisms (SNPs) only in the F3H CDS. Moreover, five significant differentially abundant phenolic metabolites between HL and LL were associated with flavonoid metabolic pathways. Finally, on the basis of the SNPs in the F3H CDS, one derived cleaved amplified polymorphic sequence (dCAPS) marker was developed to distinguish between HL and LL soybean lines; (4) Conclusions: The flavonoid biosynthesis pathway may indirectly affect the outcrossing rate of CMS sterile lines in soybean.
Collapse
Affiliation(s)
- Chunjing Lin
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (C.L.); (Y.D.); (R.L.); (P.W.); (Y.S.); (X.D.); (J.Z.); (H.Y.); (W.Z.)
- Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural Affairs, Changchun 130033, China
| | - Yuetong Duan
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (C.L.); (Y.D.); (R.L.); (P.W.); (Y.S.); (X.D.); (J.Z.); (H.Y.); (W.Z.)
- Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural Affairs, Changchun 130033, China
| | - Rong Li
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (C.L.); (Y.D.); (R.L.); (P.W.); (Y.S.); (X.D.); (J.Z.); (H.Y.); (W.Z.)
| | - Pengnian Wang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (C.L.); (Y.D.); (R.L.); (P.W.); (Y.S.); (X.D.); (J.Z.); (H.Y.); (W.Z.)
- Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural Affairs, Changchun 130033, China
| | - Yanyan Sun
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (C.L.); (Y.D.); (R.L.); (P.W.); (Y.S.); (X.D.); (J.Z.); (H.Y.); (W.Z.)
- Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural Affairs, Changchun 130033, China
| | - Xiaoyang Ding
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (C.L.); (Y.D.); (R.L.); (P.W.); (Y.S.); (X.D.); (J.Z.); (H.Y.); (W.Z.)
- Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural Affairs, Changchun 130033, China
| | - Jingyong Zhang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (C.L.); (Y.D.); (R.L.); (P.W.); (Y.S.); (X.D.); (J.Z.); (H.Y.); (W.Z.)
- Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural Affairs, Changchun 130033, China
| | - Hao Yan
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (C.L.); (Y.D.); (R.L.); (P.W.); (Y.S.); (X.D.); (J.Z.); (H.Y.); (W.Z.)
- Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural Affairs, Changchun 130033, China
| | - Wei Zhang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (C.L.); (Y.D.); (R.L.); (P.W.); (Y.S.); (X.D.); (J.Z.); (H.Y.); (W.Z.)
- Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural Affairs, Changchun 130033, China
| | - Bao Peng
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (C.L.); (Y.D.); (R.L.); (P.W.); (Y.S.); (X.D.); (J.Z.); (H.Y.); (W.Z.)
- Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural Affairs, Changchun 130033, China
| | - Limei Zhao
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (C.L.); (Y.D.); (R.L.); (P.W.); (Y.S.); (X.D.); (J.Z.); (H.Y.); (W.Z.)
- Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural Affairs, Changchun 130033, China
| | - Chunbao Zhang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (C.L.); (Y.D.); (R.L.); (P.W.); (Y.S.); (X.D.); (J.Z.); (H.Y.); (W.Z.)
- Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural Affairs, Changchun 130033, China
| |
Collapse
|
27
|
Liu X, Shi L, Khashaveh A, Shan S, Lv B, Gu S, Zhang Y. Loss of Binding Capabilities in an Ecologically Important Odorant Receptor of the Fall Armyworm, Spodoptera frugiperda, by a Single Point Mutation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13003-13013. [PMID: 37625381 DOI: 10.1021/acs.jafc.3c04247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Olfaction plays a crucial role in locating food sources, mates, and spawning sites in the fall armyworm (FAW), Spodoptera frugiperda (Lepidoptera: Noctuidae). In the current study, SfruOR14, a highly conserved odorant receptor (OR) in lepidopteran species, was newly uncovered in S. frugiperda. In two-electrode voltage clamp recordings, the SfruOR14/Orco complex was narrowly tuned to six volatile compounds including phenylacetaldehyde (PAA), benzaldehyde, heptaldehyde, (E)-2-hexen-1-al, cinnamaldehyde, and 2-phenylethanol, among which PAA showed the strongest binding affinity. Subsequent homology modeling and molecular docking revealed that Phe79, His83, Tyr149, Pro176, Gln177, Leu202, and Thr348 in SfruOR14 were the key binding residues against the six ligands. Finally, as a result of site-directed mutagenesis, the SfruOR14His83Ala mutant completely lost its binding capabilities toward all ligands. Taken together, our findings provide valuable insights into understanding the interaction between SfruOR14 and the chemical ligands including PAA, which can help to design novel olfactory modulators for pest control.
Collapse
Affiliation(s)
- Xiaohe Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Longfei Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Beibei Lv
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Cotton Research, Shanxi Agricultural University, YunCheng 044000, China
| | - Shaohua Gu
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
28
|
Jin J, Zhao M, Jing T, Zhang M, Lu M, Yu G, Wang J, Guo D, Pan Y, Hoffmann TD, Schwab W, Song C. Volatile compound-mediated plant-plant interactions under stress with the tea plant as a model. HORTICULTURE RESEARCH 2023; 10:uhad143. [PMID: 37691961 PMCID: PMC10483893 DOI: 10.1093/hr/uhad143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/15/2023] [Indexed: 09/12/2023]
Abstract
Plants respond to environmental stimuli via the release of volatile organic compounds (VOCs), and neighboring plants constantly monitor and respond to these VOCs with great sensitivity and discrimination. This sensing can trigger increased plant fitness and reduce future plant damage through the priming of their own defenses. The defense mechanism in neighboring plants can either be induced by activation of the regulatory or transcriptional machinery, or it can be delayed by the absorption and storage of VOCs for the generation of an appropriate response later. Despite much research, many key questions remain on the role of VOCs in interplant communication and plant fitness. Here we review recent research on the VOCs induced by biotic (i.e. insects and pathogens) and abiotic (i.e. cold, drought, and salt) stresses, and elucidate the biosynthesis of stress-induced VOCs in tea plants. Our focus is on the role of stress-induced VOCs in complex ecological environments. Particularly, the roles of VOCs under abiotic stress are highlighted. Finally, we discuss pertinent questions and future research directions for advancing our understanding of plant interactions via VOCs.
Collapse
Affiliation(s)
- Jieyang Jin
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Mingyue Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Mengting Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Mengqian Lu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Guomeng Yu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Jingming Wang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Danyang Guo
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Yuting Pan
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Timothy D Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| |
Collapse
|
29
|
van der Kooi CJ, Reuvers L, Spaethe J. Honesty, reliability, and information content of floral signals. iScience 2023; 26:107093. [PMID: 37426347 PMCID: PMC10329176 DOI: 10.1016/j.isci.2023.107093] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
Plants advertise their presence by displaying attractive flowers, which pollinators use to locate a floral reward. Understanding how floral traits scale with reward status lies at the heart of pollination biology, because it connects the different interests of plants and pollinators. Studies on plant phenotype-reward associations often use different terms and concepts, which limits developing a broader synthesis. Here, we present a framework with definitions of the key aspects of plant phenotype-reward associations and provide measures to quantify them across different species and studies. We first distinguish between cues and signals, which are often used interchangeably, but have different meanings and are subject to different selective pressures. We then define honesty, reliability, and information content of floral cues/signals and provide ways to quantify them. Finally, we discuss the ecological and evolutionary factors that determine flower phenotype-reward associations, how context-dependent and temporally variable they are, and highlight promising research directions.
Collapse
Affiliation(s)
- Casper J. van der Kooi
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
- Department of Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | - Lora Reuvers
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Johannes Spaethe
- Department of Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
30
|
Chen X, Nowicki M, Wadl PA, Zhang C, Köllner TG, Payá‐Milans M, Huff ML, Staton ME, Chen F, Trigiano RN. Chemical profile and analysis of biosynthetic pathways and genes of volatile terpenes in Pityopsis ruthii, a rare and endangered flowering plant. PLoS One 2023; 18:e0287524. [PMID: 37352235 PMCID: PMC10289357 DOI: 10.1371/journal.pone.0287524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023] Open
Abstract
It is critical to gather biological information about rare and endangered plants to incorporate into conservation efforts. The secondary metabolism of Pityopsis ruthii, an endangered flowering plant that only occurs along limited sections of two rivers (Ocoee and Hiwassee) in Tennessee, USA was studied. Our long-term goal is to understand the mechanisms behind P. ruthii's adaptation to restricted areas in Tennessee. Here, we profiled the secondary metabolites, specifically in flowers, with a focus on terpenes, aiming to uncover the genomic and molecular basis of terpene biosynthesis in P. ruthii flowers using transcriptomic and biochemical approaches. By comparative profiling of the nonpolar portion of metabolites from various tissues, P. ruthii flowers were rich in terpenes, which included 4 monoterpenes and 10 sesquiterpenes. These terpenes were emitted from flowers as volatiles with monoterpenes and sesquiterpenes accounting for almost 68% and 32% of total emission of terpenes, respectively. These findings suggested that floral terpenes play important roles for the biology and adaptation of P. ruthii to its limited range. To investigate the biosynthesis of floral terpenes, transcriptome data for flowers were produced and analyzed. Genes involved in the terpene biosynthetic pathway were identified and their relative expressions determined. Using this approach, 67 putative terpene synthase (TPS) contigs were detected. TPSs in general are critical for terpene biosynthesis. Seven full-length TPS genes encoding putative monoterpene and sesquiterpene synthases were cloned and functionally characterized. Three catalyzed the biosynthesis of sesquiterpenes and four catalyzed the biosynthesis of monoterpenes. In conclusion, P. ruthii plants employ multiple TPS genes for the biosynthesis of a mixture of floral monoterpenes and sesquiterpenes, which probably play roles in chemical defense and attracting insect pollinators alike.
Collapse
Affiliation(s)
- Xinlu Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States of America
| | - Marcin Nowicki
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States of America
| | - Phillip A. Wadl
- United States Department of Agriculture, Agricultural Research Service, U. S. Vegetable Laboratory, Charleston, SC, United States of America
| | - Chi Zhang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States of America
| | - Tobias G. Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Miriam Payá‐Milans
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States of America
| | - Matthew L. Huff
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States of America
| | - Margaret E. Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States of America
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States of America
| | - Robert N. Trigiano
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
31
|
Eckert S, Eilers EJ, Jakobs R, Anaia RA, Aragam KS, Bloss T, Popp M, Sasidharan R, Schnitzler JP, Stein F, Steppuhn A, Unsicker SB, van Dam NM, Yepes S, Ziaja D, Müller C. Inter-laboratory comparison of plant volatile analyses in the light of intra-specific chemodiversity. Metabolomics 2023; 19:62. [PMID: 37351733 DOI: 10.1007/s11306-023-02026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
INTRODUCTION Assessing intraspecific variation in plant volatile organic compounds (VOCs) involves pitfalls that may bias biological interpretation, particularly when several laboratories collaborate on joint projects. Comparative, inter-laboratory ring trials can inform on the reproducibility of such analyses. OBJECTIVES In a ring trial involving five laboratories, we investigated the reproducibility of VOC collections with polydimethylsiloxane (PDMS) and analyses by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). As model plant we used Tanacetum vulgare, which shows a remarkable diversity in terpenoids, forming so-called chemotypes. We performed our ring-trial with two chemotypes to examine the sources of technical variation in plant VOC measurements during pre-analytical, analytical, and post-analytical steps. METHODS Monoclonal root cuttings were generated in one laboratory and distributed to five laboratories, in which plants were grown under laboratory-specific conditions. VOCs were collected on PDMS tubes from all plants before and after a jasmonic acid (JA) treatment. Thereafter, each laboratory (donors) sent a subset of tubes to four of the other laboratories (recipients), which performed TD-GC-MS with their own established procedures. RESULTS Chemotype-specific differences in VOC profiles were detected but with an overall high variation both across donor and recipient laboratories. JA-induced changes in VOC profiles were not reproducible. Laboratory-specific growth conditions led to phenotypic variation that affected the resulting VOC profiles. CONCLUSION Our ring trial shows that despite large efforts to standardise each VOC measurement step, the outcomes differed both qualitatively and quantitatively. Our results reveal sources of variation in plant VOC research and may help to avoid systematic errors in similar experiments.
Collapse
Affiliation(s)
- Silvia Eckert
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Elisabeth J Eilers
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Ruth Jakobs
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Redouan Adam Anaia
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | | - Tanja Bloss
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Moritz Popp
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Munich, Germany
| | - Rohit Sasidharan
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | | | - Florian Stein
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Anke Steppuhn
- Department of Molecular Botany, Hohenheim University, Stuttgart, Germany
| | - Sybille B Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Nicole M van Dam
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Sol Yepes
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Dominik Ziaja
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
32
|
Yang T, Yin X, Kang H, Yang D, Yang X, Yang Y, Yang Y. Chromosome-level genome assembly of Murraya paniculata sheds light on biosynthesis of floral volatiles. BMC Biol 2023; 21:142. [PMID: 37340448 PMCID: PMC10283294 DOI: 10.1186/s12915-023-01639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/31/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Murraya paniculata (L.) Jack, commonly called orange jessamine in the family Rutaceae, is an important ornamental plant in tropical and subtropical regions which is famous for its strong fragrance. Although genome assemblies have been reported for many Rutaceae species, mainly in the genus Citrus, full genomic information has not been reported for M. paniculata, which is a prerequisite for in-depth genetic studies on Murraya and manipulation using genetic engineering techniques. Here, we report a high-quality chromosome-level genome assembly of M. paniculata and aim to provide insights on the molecular mechanisms of flower volatile biosynthesis. RESULTS The genome assembly with a contig N50 of 18.25 Mb consists of 9 pseudomolecules and has a total length of 216.86 Mb. Phylogenetic analysis revealed that M. paniculata diverged from the common ancestor approximately 25 million years ago and has not undergone any species-specific whole genome duplication events. Genome structural annotation and comparative genomics analysis revealed that there are obvious differences in transposon contents among the genomes of M. paniculata and Citrus species, especially in the upstream regions of genes. Research on the flower volatiles of M. paniculata and C. maxima at three flowering stages revealed significant differences in volatile composition with the flowers of C. maxima lacking benzaldehyde and phenylacetaldehyde. Notably, there are transposons inserted in the upstream region of the phenylacetaldehyde synthase (PAAS) genes Cg1g029630 and Cg1g029640 in C. maxima, but not in the upstream region of three PAAS genes Me2G_2379, Me2G_2381, and Me2G_2382 in M. paniculata. Our results indicated that compared to the low expression levels of PAAS genes in C. maxima, the higher expression levels of the three PAAS genes in M. paniculata are the main factor affecting the phenylacetaldehyde biosynthesis and causing the content difference of phenylacetaldehyde. The phenylacetaldehyde synthetic activities of the enzymes encoded by M. paniculata PAAS genes were validated by in vitro analyses. CONCLUSIONS Our study provides useful genomic resources of M. paniculata for further research on Rutaceae plants, identifies new PAAS genes, and provides insights into how transposons contribute to variations in flower volatiles among Murraya and Citrus plants.
Collapse
Affiliation(s)
- Tianyu Yang
- School of Life Science, Yunnan University, Kunming, 650500, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Yin
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haotong Kang
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biological Resources and Environmental Sciences, Jishou University, Jishou, 416000, China
| | - Danni Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingyu Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunqiang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China.
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Yongping Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China.
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
33
|
da Cunha NL, Aizen MA. Pollen production per flower increases with floral display size across animal-pollinated flowering plants. AMERICAN JOURNAL OF BOTANY 2023:e16180. [PMID: 37243835 DOI: 10.1002/ajb2.16180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 05/29/2023]
Abstract
PREMISE The number of open flowers on a plant (i.e., floral display size) can influence plant fitness by increasing pollinator attraction. However, diminishing marginal fitness returns with increasing floral display are expected as pollinators tend to visit more flowers per plant consecutively. An extended flower visitation sequence increases the fraction of ovules disabled by self-pollination (ovule discounting) and reduces the fraction of a plant's own pollen that is exported to sire seeds in other plants (pollen discounting). Hermaphroditic species with a genetic system that prevents self-fertilization (self-incompatibility) would avoid ovule discounting and its fitness cost, whereas species without such a genetically based barrier would not. Contrarily, pollen discounting would be an unavoidable consequence of a large floral display irrespective of selfing barriers. Nevertheless, the increasing fitness costs of ovule and pollen discounting could be offset by respectively increasing ovule and pollen production per flower. METHODS We compiled data on floral display size and pollen and ovule production per flower for 1241 animal-pollinated, hermaphroditic angiosperm species, including data on the compatibility system for 779 species. We used phylogenetic general linear mixed models to assess the relations of pollen and ovule production to floral display size. RESULTS Our findings provide evidence of increasing pollen production, but not of ovule production, with increasing display size irrespective of compatibility system and even after accounting for potentially confounding effects like flower size and growth form. CONCLUSIONS Our comparative study supports the pollen-discount expectation of an adaptive link between per-flower pollen production and floral display across animal-pollinated angiosperms.
Collapse
Affiliation(s)
- Nicolay Leme da Cunha
- Grupo de Ecología de la Polinización, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue-CONICET, 8400, San Carlos de Bariloche, Argentina
| | - Marcelo Adrián Aizen
- Grupo de Ecología de la Polinización, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue-CONICET, 8400, San Carlos de Bariloche, Argentina
| |
Collapse
|
34
|
Li J, Ma T, Bao S, Yin D, Ge Q, Li C, Fang Y, Sun X. Suitable crop loading: An effective method to improve "Shine Muscat" grape quality. Food Chem 2023; 424:136451. [PMID: 37267652 DOI: 10.1016/j.foodchem.2023.136451] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/03/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
Berry thinning was applied to control crop load of "Shine Muscat" grape variety. Primary and secondary metabolites released during berries development were monitored, and the correlation between physicochemical parameters and core aroma compounds was analyzed. Results revealed a significant increase in single-berry weight and sugar-acid ratio of berries under low crop load conditions. Furthermore, phenolic content and antioxidant activity under low crop load were significantly higher than those of the other groups. Grapes with low crop loads also exhibited better aroma characteristics and higher sensory scores than those of the other groups, chiefly due to significantly increased terpene and C13-norisoprenoid contents and substantially decreased C6 compound and aldehyde contents. Moreover, correlation analysis revealed total soluble solid accumulation was positively correlated to terpene accumulation, while hexanal, 2-hexanal, (E)-2-hexanal, and (E)-2-octenal were positively correlated with titratable acidity content. Thus, better grape quality could be achieved by precisely controlling berry crop load.
Collapse
Affiliation(s)
- Jianing Li
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Eastern Foot of Helan Mountain Wine Station, Northwest A&F University, Yangling 712100, China
| | - Tingting Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Shihan Bao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Dingze Yin
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Eastern Foot of Helan Mountain Wine Station, Northwest A&F University, Yangling 712100, China
| | - Qian Ge
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Eastern Foot of Helan Mountain Wine Station, Northwest A&F University, Yangling 712100, China; Quality Standards and Testing Institute of Agricultural Technology, Ningxia Academy of Agricultural Sciences, Yinchuan 750002, China
| | - Caihong Li
- Quality Standards and Testing Institute of Agricultural Technology, Ningxia Academy of Agricultural Sciences, Yinchuan 750002, China
| | - Yulin Fang
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Eastern Foot of Helan Mountain Wine Station, Northwest A&F University, Yangling 712100, China.
| | - Xiangyu Sun
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Eastern Foot of Helan Mountain Wine Station, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
35
|
Gomez Ramirez WC, Thomas NK, Muktar IJ, Riabinina O. The neuroecology of olfaction in bees. CURRENT OPINION IN INSECT SCIENCE 2023; 56:101018. [PMID: 36842606 DOI: 10.1016/j.cois.2023.101018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/30/2022] [Accepted: 02/20/2023] [Indexed: 05/03/2023]
Abstract
The focus of bee neuroscience has for a long time been on only a handful of social honeybee and bumblebee species, out of thousands of bees species that have been described. On the other hand, information about the chemical ecology of bees is much more abundant. Here we attempted to compile the scarce information about olfactory systems of bees across species. We also review the major categories of intra- and inter-specific olfactory behaviors of bees, with specific focus on recent literature. We finish by discussing the most promising avenues for bee olfactory research in the near future.
Collapse
|
36
|
Petrén H, Köllner TG, Junker RR. Quantifying chemodiversity considering biochemical and structural properties of compounds with the R package chemodiv. THE NEW PHYTOLOGIST 2023; 237:2478-2492. [PMID: 36527232 DOI: 10.1111/nph.18685] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Plants produce large numbers of phytochemical compounds affecting plant physiology and interactions with their biotic and abiotic environment. Recently, chemodiversity has attracted considerable attention as an ecologically and evolutionary meaningful way to characterize the phenotype of a mixture of phytochemical compounds. Currently used measures of phytochemical diversity, and related measures of phytochemical dissimilarity, generally do not take structural or biosynthetic properties of compounds into account. Such properties can be indicative of the compounds' function and inform about their biosynthetic (in)dependence, and should therefore be included in calculations of these measures. We introduce the R package chemodiv, which retrieves biochemical and structural properties of compounds from databases and provides functions for calculating and visualizing chemical diversity and dissimilarity for phytochemicals and other types of compounds. Our package enables calculations of diversity that takes the richness, relative abundance and - most importantly - structural and/or biosynthetic dissimilarity of compounds into account. We illustrate the use of the package with examples on simulated and real datasets. By providing the R package chemodiv for quantifying multiple aspects of chemodiversity, we hope to facilitate investigations of how chemodiversity varies across levels of biological organization, and its importance for the ecology and evolution of plants and other organisms.
Collapse
Affiliation(s)
- Hampus Petrén
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, 35043, Marburg, Germany
| | - Tobias G Köllner
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Robert R Junker
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, 35043, Marburg, Germany
- Department of Environment and Biodiversity, University of Salzburg, 5020, Salzburg, Austria
| |
Collapse
|
37
|
Barragán‐Fonseca KY, Rusman Q, Mertens D, Weldegergis BT, Peller J, Polder G, van Loon JJA, Dicke M. Insect exuviae as soil amendment affect flower reflectance and increase flower production and plant volatile emission. PLANT, CELL & ENVIRONMENT 2023; 46:931-945. [PMID: 36514238 PMCID: PMC10107842 DOI: 10.1111/pce.14516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Soil composition and herbivory are two environmental factors that can affect plant traits including flower traits, thus potentially affecting plant-pollinator interactions. Importantly, soil composition and herbivory may interact in these effects, with consequences for plant fitness. We assessed the main effects of aboveground insect herbivory and soil amendment with exuviae of three different insect species on visual and olfactory traits of Brassica nigra plants, including interactive effects. We combined various methodological approaches including gas chromatography/mass spectrometry, spectroscopy and machine learning to evaluate changes in flower morphology, colour and the emission of volatile organic compounds (VOCs). Soil amended with insect exuviae increased the total number of flowers per plant and VOC emission, whereas herbivory reduced petal area and VOC emission. Soil amendment and herbivory interacted in their effect on the floral reflectance spectrum of the base part of petals and the emission of 10 VOCs. These findings demonstrate the effects of insect exuviae as soil amendment on plant traits involved in reproduction, with a potential for enhanced reproductive success by increasing the strength of signals attracting pollinators and by mitigating the negative effects of herbivory.
Collapse
Affiliation(s)
- Katherine Y. Barragán‐Fonseca
- Laboratory of EntomologyWageningen University & ResearchWageningenThe Netherlands
- Grupo en Conservación y Manejo de Vida Silvestre, Instituto de Ciencias NaturalesUniversidad Nacional de ColombiaBogotáColombia
| | - Quint Rusman
- Laboratory of EntomologyWageningen University & ResearchWageningenThe Netherlands
| | - Daan Mertens
- Department of Entomology and NematologyUniversity of CaliforniaDavisCaliforniaUSA
| | | | - Joseph Peller
- Greenhouse HorticultureWageningen University & ResearchWageningenThe Netherlands
| | - Gerrit Polder
- Greenhouse HorticultureWageningen University & ResearchWageningenThe Netherlands
| | - Joop J. A. van Loon
- Laboratory of EntomologyWageningen University & ResearchWageningenThe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
38
|
Zhou L, Hou F, Wang L, Zhang L, Wang Y, Yin Y, Pei J, Peng C, Qin X, Gao J. The genome of Magnolia hypoleuca provides a new insight into cold tolerance and the evolutionary position of magnoliids. FRONTIERS IN PLANT SCIENCE 2023; 14:1108701. [PMID: 36844093 PMCID: PMC9950645 DOI: 10.3389/fpls.2023.1108701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Magnolia hypoleuca Sieb. & Zucc, a member of the Magnoliaceae of magnoliids, is one of the most economically valuable, phylogenetic and ornamental tree species in Eastern China. Here, the 1.64 Gb chromosome-level assembly covers 96.64% of the genome which is anchored to 19 chromosomes, with a contig N50 value of 1.71 Mb and 33,873 protein-coding genes was predicted. Phylogenetic analyses between M. hypoleuca and other 10 representative angiosperms suggested that magnoliids were placed as a sister group to the eudicots, rather than sister to monocots or both monocots and eudicots. In addition, the relative timing of the whole-genome duplication (WGD) events about 115.32 Mya for magnoliid plants. M. hypoleuca was found to have a common ancestor with M. officinalis approximately 23.4 MYA, and the climate change of OMT (Oligocene-Miocene transition) is the main reason for the divergence of M. hypoleuca and M. officinalis, which was along with the division of Japanese islands. Moreover, the TPS gene expansion observed in M. hypoleuca might contribute to the enhancement of flower fragrance. Tandem and proximal duplicates of younger age that have been preserved have experienced more rapid sequence divergence and a more clustered distribution on chromosomes contributing to fragrance accumulation, especially phenylpropanoid, monoterpenes and sesquiterpenes and cold tolerance. The stronger selective pressure drived the evolution of tandem and proximal duplicates toward plant self-defense and adaptation. The reference M. hypoleuca genome will provide insights into the evolutionary process of M. hypoleuca and the relationships between the magnoliids with monocots and eudicots, and enable us to delve into the fragrance and cold tolerance produced by M. hypoleuca and provide more robust and deep insight of how the Magnoliales evolved and diversified.
Collapse
Affiliation(s)
- Luojing Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feixia Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wang
- Sichuan Academy of Forestry Sciences, Chengdu, China
| | - Lingyu Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yalan Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanpeng Yin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Qin
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Jihai Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
39
|
Wang Y, Xia J, Wang Z, Ying Z, Xiong Z, Wang C, Shi R. Combined analysis of multi-omics reveals the potential mechanism of flower color and aroma formation in Macadamia integrifolia. FRONTIERS IN PLANT SCIENCE 2023; 13:1095644. [PMID: 36816481 PMCID: PMC9931397 DOI: 10.3389/fpls.2022.1095644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Macadamia integrifolia Maiden & Betche is a domesticated high-value nut crop. The development of nut flower affects the fruit setting rate, yield and quality of nuts. Therefore, in this experiment, two varieties with different flower color, flowering time, flowering quantity and nut yield (single fruit weight) were selected as the research objects. METHODS Transcriptome (RNA-Seq) and metabolome (LC-MS/MS, GC-MS) analyses were performed to study the regulatory mechanisms of nut flower development, color and aroma. RESULTS The results indicated that plant hormone signal transduction, starch sucrose metabolism, phenylpropanoid metabolism, flavonoid biosynthesis, and anthocyanin biosynthesis pathways were related to nut flower development and flower color formation. In the early stage of flowering, most of the differentially expressed genes (DEGs) are involved in the IAA signal transduction pathway, while in the later stage, the brassinolide signal pathway is mainly involved. In starch and sugar metabolism, DEGs are mainly involved in regulating and hydrolyzing stored starch into small molecular sugars in flower tissues. In the phenylpropanoid biosynthesis pathway, DEGs are mainly related to the color and aroma (volatile organic compounds, VOCs) formation of nut flowers. Four color formation metabolites (anthocyanins) in nut flowers were found by LC-MS/MS detection. In addition, the VOCs showed no significant difference between red nut flowers (R) and white nut flowers (W), which was mainly reflected in the aroma formation stage (flowering time). And 12 common differentially accumulation metabolites (DAMs) were detected by GC-MS and LC-MS/MS. At the same time, the DEGs, AAT, LOX and PAL genes, were also identified to regulate key metabolite synthesis during nut flower development. These genes were further verified by qRT-PCR. CONCLUSION Our results provide insights to clarify the molecular mechanism of color and aroma formation during M. integrifolia flower development that pave the way for nut quality and yield breeding.
Collapse
Affiliation(s)
- Yonggui Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming, China
| | - Jing Xia
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming, China
| | - Zile Wang
- Yunnan Agricultural University College of Plant Protection, Kunming, China
| | - Zhiping Ying
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming, China
| | - Zhi Xiong
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming, China
| | - Changming Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming, China
| | - Rui Shi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming, China
| |
Collapse
|
40
|
Floral scent divergence across an elevational hybrid zone with varying pollinators. Oecologia 2023; 201:45-57. [PMID: 36374316 DOI: 10.1007/s00442-022-05289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Divergence in floral traits attractive to different pollinators can promote reproductive isolation in related species. When isolation is incomplete, hybridization may occur, which offers the opportunity to explore mechanisms underlying reproductive isolation. Recent work suggests that divergence in floral scent may frequently contribute to reproductive barriers, although such divergence has seldom been examined in species with generalized pollination. Here, we used two closely related Penstemon species, P. newberryi and P. davidsonii, and their natural hybrids from an elevational gradient with pollinator communities that are predicted to vary in their reliance on floral scent (i.e., primarily hummingbirds at low elevation vs. bees at high elevation). The species vary in a suite of floral traits, but scent is uncharacterized. To address whether scent varies along elevation and potentially contributes to reproductive isolation, we genetically characterized individuals collected at field and identified whether they were parental species or hybrids. We then characterized scent amount and composition. Although the parental species had similar total emissions, some scent characteristics (i.e., scent composition, aromatic emission) diverged between them and may contribute to their isolation. However, the species emitted similar compound sets which could explain hybridization in the contact area. Hybrids were similar to the parents for most scent traits, suggesting that their floral scent would not provide a strong barrier to backcrossing. Our study suggests floral scent may be a trait contributing to species boundaries even in plants with generalized pollination, and reinforces the idea that evolutionary pollinator transitions may involve changes in multiple floral traits.
Collapse
|
41
|
Kantsa A, Garcia JE, Raguso RA, Dyer AG, Steen R, Tscheulin T, Petanidou T. Intrafloral patterns of color and scent in Capparis spinosa L. and the ghosts of its selection past. AMERICAN JOURNAL OF BOTANY 2023; 110:e16098. [PMID: 36371789 PMCID: PMC10108209 DOI: 10.1002/ajb2.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Capparis spinosa is a widespread charismatic plant, in which the nocturnal floral habit contrasts with the high visitation by diurnal bees and the pronounced scarcity of hawkmoths. To resolve this discrepancy and elucidate floral evolution of C. spinosa, we analyzed the intrafloral patterns of visual and olfactory cues in relation to the known sensory biases of the different visitor guilds (bees, butterflies, and hawkmoths). METHODS We measured the intrafloral variation of scent, reflectance spectra, and colorimetric properties according to three guilds of known visitors of C. spinosa. Additionally, we sampled visitation rates using a motion-activated camera. RESULTS Carpenter bees visited the flowers eight times more frequently than nocturnal hawkmoths, at dusk and in the following morning. Yet, the floral headspace of C. spinosa contained a typical sphingophilous scent with high emission rates of certain monoterpenes and amino-acid derived compounds. Visual cues included a special case of multisensory nectar guide and color patterns conspicuous to the visual systems of both hawkmoths and bees. CONCLUSIONS The intrafloral patterns of sensory stimuli suggest that hawkmoths have exerted strong historical selection on C. spinosa. Our study revealed two interesting paradoxes: (a) the flowers phenotypically biased towards the more inconsistent pollinator; and (b) floral display demands an abundance of resources that seems maladaptive in the habitats of C. spinosa. The transition to a binary pollination system accommodating large bees has not required phenotypic changes, owing to specific eco-physiological adaptations, unrelated to pollination, which make this plant an unusual case in pollination ecology.
Collapse
Affiliation(s)
- Aphrodite Kantsa
- Department of GeographyUniversity of the AegeanMytileneGreece
- Present address:
Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Jair E. Garcia
- Bio‐Inspired Digital Sensing Laboratory, School of Media and CommunicationRMIT UniversityMelbourneAustralia
| | - Robert A. Raguso
- Department of Neurobiology and BehaviorCornell University, IthacaNew YorkUSA
| | - Adrian G. Dyer
- Bio‐Inspired Digital Sensing Laboratory, School of Media and CommunicationRMIT UniversityMelbourneAustralia
- Department of PhysiologyMonash UniversityClaytonAustralia
- Present address:
Department of Developmental Biology and NeurobiologyJohannes Gutenberg UniversityMainzGermany
| | - Ronny Steen
- Department of Ecology and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
| | | | | |
Collapse
|
42
|
Losch F, Liedtke S, Vautz W, Weigend M. Evaluation of floral volatile patterns in the genus Narcissus using gas chromatography-coupled ion mobility spectrometry. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11506. [PMID: 36818782 PMCID: PMC9934524 DOI: 10.1002/aps3.11506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/18/2023]
Abstract
Premise Daffodils (Narcissus, Amaryllidaceae) are iconic ornamentals with a complex floral biology and many fragrant species; however, little is known about floral plant volatile organic compounds (pVOCs) across the genus and additional sampling is desirable. The present study investigates whether the floral scent of 20 species of Narcissus can be characterized using gas chromatography-coupled ion mobility spectrometry (GC-IMS), with the aim of building a comparative pVOC data set for ecological and evolutionary studies. Methods We used a commercial GC-IMS equipped with an integrated in-line enrichment system for a fast, sensitive, and automated pVOC analysis. This facilitates qualitative and (semi)-quantitative measurements without sample preparation. Results The GC-IMS provided detailed data on floral pVOCs in Narcissus with very short sampling times and without floral enclosure. A wide range of compounds was recorded and partially identified. The retrieved pVOC patterns showed a good agreement with published data, and five "chemotypes" were characterized as characteristic combinations of floral volatiles. Discussion The GC-IMS setup can be applied to rapidly generate large amounts of pVOC data with high sensitivity and selectivity. The preliminary data on Narcissus obtained here indicate both considerable pVOC variability and a good correspondence of the pVOC patterns with infrageneric classification, supporting the hypothesis that floral scent could represent a considerable phylogenetic signal.
Collapse
Affiliation(s)
- Florian Losch
- Nees‐Institut für Biodiversität der Pflanzen, Mathematisch‐Naturwissenschaftliche FakultätRheinische Friedrich‐Wilhelmsuniversität Bonn53115BonnGermany
| | - Sascha Liedtke
- ION‐GAS GmbHKonrad‐Adenauer‐Allee 1144263DortmundGermany
| | - Wolfgang Vautz
- ION‐GAS GmbHKonrad‐Adenauer‐Allee 1144263DortmundGermany
- Leibniz‐Institut für Analytische Wissenschaften – ISAS – e.V.Bunsen‐Kirchhoff‐Straße 1144139DortmundGermany
| | - Maximilian Weigend
- Nees‐Institut für Biodiversität der Pflanzen, Mathematisch‐Naturwissenschaftliche FakultätRheinische Friedrich‐Wilhelmsuniversität Bonn53115BonnGermany
| |
Collapse
|
43
|
Chen G, Mostafa S, Lu Z, Du R, Cui J, Wang Y, Liao Q, Lu J, Mao X, Chang B, Gan Q, Wang L, Jia Z, Yang X, Zhu Y, Yan J, Jin B. The Jasmine (Jasminum sambac) Genome Provides Insight into the Biosynthesis of Flower Fragrances and Jasmonates. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022:S1672-0229(22)00171-1. [PMID: 36587654 PMCID: PMC10372924 DOI: 10.1016/j.gpb.2022.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 11/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Jasminum sambac (jasmine flower), a world-renowned plant appreciated for its exceptional flower fragrance, is of cultural and economic importance. However, the genetic basis of its fragrance is largely unknown. Here, we present the first de novo genome of J. sambac with 550.12 Mb (scaffold N50 = 40.10 Mb) assembled into 13 pseudochromosomes. Terpene synthase genes associated with flower fragrance are significantly amplified in the form of gene clusters through tandem duplications in the genome. Gene clusters within the salicylic acid/benzoic acid/theobromine (SABATH) and BAHD superfamilies were identified as related to the biosynthesis of phenylpropanoid/benzenoid compounds. Several key genes involved in jasmonate biosynthesis were duplicated, causing increased copy numbers. In addition, multi-omics analyses identified various aromatic compounds and many genes involved in fragrance biosynthesis pathways. Furthermore, the roles of JsTPS3 in β-ocimene biosynthesis, as well as JsAOC1 and JsAOS in jasmonic acid biosynthesis, were functionally validated. The genome assembled in this study for J. sambac offers a basic genetic resource for studying floral scent and jasmonate biosynthesis and provides a foundation for functional genomic research and variety improvements in Jasminum.
Collapse
Affiliation(s)
- Gang Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Salma Mostafa
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; Department of Floriculture, Faculty of Agriculture, Alexandria University, Alexandria 21526, Egypt
| | - Zhaogeng Lu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Ran Du
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jiawen Cui
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Qinggang Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jinkai Lu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xinyu Mao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Bang Chang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Quan Gan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhichao Jia
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiulian Yang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
| | - Yingfang Zhu
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
44
|
The Functional Characterization of Carboxylesterases Involved in the Degradation of Volatile Esters Produced in Strawberry Fruits. Int J Mol Sci 2022; 24:ijms24010383. [PMID: 36613824 PMCID: PMC9820763 DOI: 10.3390/ijms24010383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
Volatile ester compounds are important contributors to the flavor of strawberry, which affect consumer preference. Here, the GC-MS results showed that volatile esters are the basic aroma components of strawberry, banana, apple, pear, and peach, and the volatile esters were significantly accumulated with the maturation of strawberry fruits. The main purpose of this study is to discuss the relationship between carboxylesterases (CXEs) and the accumulation of volatile ester components in strawberries. FaCXE2 and FaCXE3 were found to have the activity of hydrolyzing hexyl acetate, Z-3-hexenyl acetate, and E-2-hexenyl acetate to the corresponding alcohols. The enzyme kinetics results showed that FaCXE3 had the higher affinity for hexyl acetate, E-2-hexenyl acetate, and Z-3-hexenyl acetate compared with FaCXE2. The volatile esters were mainly accumulated at the maturity stages in strawberry fruits, less at the early stages, and the least during the following maturation stages. The expression of FaCXE2 gradually increased with fruit ripening and the expression level of FaCXE3 showed a decreasing trend, which suggested the complexity of the true function of CXEs. The transient expression of FaCXE2 and FaCXE3 genes in strawberry fruits resulted in a significantly decreased content of volatile esters, such as Z-3-hexenyl acetate, methyl hexanoate, methyl butyrate, and other volatile esters. Taken together, FaCXE2 and FaCXE3 are indeed involved in the regulation of the synthesis and degradation of strawberry volatile esters.
Collapse
|
45
|
Whyle RL, Trowbridge AM, Jamieson MA. Genotype, mycorrhizae, and herbivory interact to shape strawberry plant functional traits. FRONTIERS IN PLANT SCIENCE 2022; 13:964941. [PMID: 36388560 PMCID: PMC9644214 DOI: 10.3389/fpls.2022.964941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) and herbivores are ubiquitous biotic agents affecting plant fitness. While individual effects of pairwise interactions have been well-studied, less is known about how species interactions above and belowground interact to influence phenotypic plasticity in plant functional traits, especially phytochemicals. We hypothesized that mycorrhizae would mitigate negative herbivore effects by enhancing plant physiology and reproductive traits. Furthermore, we expected genotypic variation would influence functional trait responses to these biotic agents. To test these hypotheses, we conducted a manipulative field-based experiment with three strawberry (Fragaria x ananassa) genotypes to evaluate plant phenotypic plasticity in multiple functional traits. We used a fully-crossed factorial design in which plants from each genotype were exposed to mycorrhizal inoculation, herbivory, and the combined factors to examine effects on plant growth, reproduction, and floral volatile organic compounds (VOCs). Genotype and herbivory were key determinants of phenotypic variation, especially for plant physiology, biomass allocation, and floral volatiles. Mycorrhizal inoculation increased total leaf area, but only in plants that received no herbivory, and also enhanced flower and fruit numbers across genotypes and herbivory treatments. Total fruit biomass increased for one genotype, with up to 30-40% higher overall yield depending on herbivory. Herbivory altered floral volatile profiles and increased total terpenoid emissions. The effects of biotic treatments, however, were less important than the overall influence of genotype on floral volatile composition and emissions. This study demonstrates how genotypic variation affects plant phenotypic plasticity to herbivory and mycorrhizae, playing a key role in shaping physiological and phytochemical traits that directly and indirectly influence productivity.
Collapse
Affiliation(s)
- Robert L. Whyle
- Department of Biological Sciences, Oakland University, Rochester, MI, United States
| | - Amy M. Trowbridge
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Mary A. Jamieson
- Department of Biological Sciences, Oakland University, Rochester, MI, United States
| |
Collapse
|
46
|
Zhang J, Liu J, Gao F, Chen M, Jiang Y, Zhao H, Ma W. Electrophysiological and Behavioral Responses of Apis mellifera and Bombusterrestris to Melon Flower Volatiles. INSECTS 2022; 13:insects13110973. [PMID: 36354797 PMCID: PMC9695175 DOI: 10.3390/insects13110973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 06/01/2023]
Abstract
As important pollinators, honeybees and bumblebees present a pollination behavior that is influenced by flower volatiles through the olfactory system. In this study, volatile compounds from melon flowers were isolated and identified by headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS), and their effects on Apis mellifera and Bombus terrestris were investigated by electroantennogram (EAG) and behavior tests (Y-tube olfactometer). The results showed that 77 volatile compounds were detected in melon flowers, among which the relative content of aldehydes was the highest (61.34%; 82.09%). A. mellifera showed a strong EAG response to e-2-hexenal, e-2-octenal, and 1-nonanal. B. terrestris showed a strong EAG response to e-2-hexenal, e-2-octenal, 2,5-dimethyl-benzaldehyde, benzaldehyde and benzenepropanal. In behavior tests, the volatiles with the highest attractive rate to A. mellifera were e-2-hexenal (200 μg/μL, 33.33%) and e-2-octenal (300 μg/μL, 33.33%), and those to B. terrestris were e-2-hexenal (10 μg/μL, 53.33%) and 2,5-dimethyl-benzaldehyde (100 μg/μL, 43.33%). E-2-hexenal and e-2-octenal were more attractive to A. mellifera than B. terrestris, respectively (10 μg/μL, 10 μg/μL, 200 μg/μL). In conclusion, the volatiles of melon flowers in facilities have certain effects on the electrophysiology and behavior of bees, which is expected to provide theoretical and technical support for the pollination of A. mellifera and B. terrestris in facilities.
Collapse
Affiliation(s)
- Jiangchao Zhang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Jinjia Liu
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Fei Gao
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Min Chen
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Yusuo Jiang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Huiting Zhao
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Weihua Ma
- College of Horticulture, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
47
|
Huang L, Liu Y, Dou L, Pan S, Li Z, Zhang J, Li J. Mutualist- and antagonist-mediated selection contribute to trait diversification of flowers. PeerJ 2022; 10:e14107. [PMID: 36196403 PMCID: PMC9527018 DOI: 10.7717/peerj.14107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/01/2022] [Indexed: 01/21/2023] Open
Abstract
Flowers are generally short-lived, and they all face a multidimensional challenge because they have to attract mutualists, compel them to vector pollen with minimal investment in rewards, and repel floral enemies during this short time window. Their displays are under complex selection, either consistent or conflicting, to maximize reproductive fitness under heterogeneous environments. The phenological or morphological mismatches between flowers and visitors will influence interspecific competition, resource access, mating success and, ultimately, population and community dynamics. To better understand the effects of the plant visitors on floral traits, it is necessary to determine the functional significance of specific floral traits for the visitors; how plants respond to both mutualists and antagonists through adaptive changes; and to evaluate the net fitness effects of biological mutualisms and antagonism on plants. In this review, we bring together insights from fields as diverse as floral biology, insect behavioral responses, and evolutionary biology to explain the processes and patterns of floral diversity evolution. Then, we discuss the ecological significance of plant responses to mutualists and antagonists from a community perspective, and propose a set of research questions that can guide the research field to integrate studies of plant defense and reproduction.
Collapse
Affiliation(s)
- Luyao Huang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liwen Dou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shaobin Pan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | | | - Jin Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jia Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
48
|
Huber FK, Schiestl FP. Scent releasing silicone septa: A versatile method for bioassays with volatiles. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.958982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Volatile organic compounds are of great importance for communication within biological systems. For the experimental investigation of the functions of volatiles, methods for experimental manipulation are needed. Based on scent-release methods from pheromone research, we describe a simple and cheap method for scent manipulation using silicone rubber (i.e. a silicone septum). Volatile compounds are applied to the septum by soaking the septa for 1 h in a solvent/volatile solution. After removal of the septum from the solution and a drying period of 1 h to allow for evaporation of the solvent, the silicone emits the volatiles at a continuously decreasing rate for a minimum of 24 h. In this study, we measure the variability of the emission and quantify the emission of 22 common floral scent compounds at four different time points and in four different soaking concentrations. Our results show that for the same compound and soaking concentration, variability of volatile emission was low, showing the method leads to repeatable emission rates and can be fine-tuned to the desired emission rate. We provide a calculation tool based on linear regression to allow an experimenter to calculate soaking concentration for each of the 22 compounds to achieve a desirable emission from the septa, as well as to estimate the emission rate of a volatile from the septa after a given time.
Collapse
|
49
|
Poda SB, Buatois B, Lapeyre B, Dormont L, Diabaté A, Gnankiné O, Dabiré RK, Roux O. No evidence for long-range male sex pheromones in two malaria mosquitoes. Nat Ecol Evol 2022; 6:1676-1686. [DOI: 10.1038/s41559-022-01869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022]
|
50
|
Pacheco TL, Bohacz C, Ballerio A, Schoolmeesters P, Ahrens D. Revisiting trends in morphology of antennal sensilla in scarabaeoid beetles. ZOOMORPHOLOGY 2022. [DOI: 10.1007/s00435-022-00565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractPhytophagous scarab beetles associated with angiosperms have characteristically enlarged lamellate antennae and exhibit a striking morphological variation of sensilla. In this study, we compared the morphology of antennal surface of 62 species Scarabaeoidea using SEM microscopy, particularly also in light of their evolution in association with angiosperms. We investigated the correlation of antennal sensilla morphology, i.e., their structure and distribution, with species diversity and lineage diversification rates. A high diversity of sensilla was observed but also multiple transitional forms, even on the same antennomere. We interpreted this as evidence for a high evolutionary plasticity. We recognized clear patterns of convergence and repeated evolution of certain types of placoid sensilla. One main tendency found in the phytophagous Pleurostict chafers was a shift from sensilla trichodea to placoid-like sensilla, apparently also enhanced by the increase of the lamellate antennal surface, either by size or number of the lamellae. This trend occurred not only in the Pleurosticts, but also in Glaphyridae, a second angiosperm-associated lineage of Scarabaeoidea. However, our results suggest no direct relation between species diversity or the rate of diversification and general sensilla morphology, i.e., the origin of placoid sensilla. This could be explained not only by species-poor lineages also possessing placoid sensilla but also by otherwise successful and species rich groups having sensilla trichodea (e.g., dung beetles). Results further reveal the need to refine current phylogenetic hypotheses by more comprehensive taxon sampling and to expand the molecular characterization of pheromones and odor binding proteins to better understand the role of chemical communication in scarab diversification.
Collapse
|