1
|
Lebedin M, de la Rosa K. Diversification of Antibodies: From V(D)J Recombination to Somatic Exon Shuffling. Annu Rev Cell Dev Biol 2024; 40:265-281. [PMID: 39356809 DOI: 10.1146/annurev-cellbio-112122-030835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Antibodies that gain specificity by a large insert encoding for an extra domain were described for the first time in 2016. In malaria-exposed individuals, an exon deriving from the leukocyte-associated immunoglobulin-like 1 (LAIR1) gene integrated via a copy-and-paste insertion into the immunoglobulin heavy chain encoding region. A few years later, a second example was identified, namely a dual exon integration from the leukocyte immunoglobulin-like receptor B1 (LILRB1) gene that is located in close proximity to LAIR1. A dedicated high-throughput characterization of chimeric immunoglobulin heavy chain transcripts unraveled, that insertions from distant genomic regions (including mitochondrial DNA) can contribute to human antibody diversity. This review describes the modalities of insert-containing antibodies. The role of known DNA mobility aspects, such as genomic translocation, gene conversion, and DNA fragility, is discussed in the context of insert-antibody generation. Finally, the review covers why insert antibodies were omitted from the past repertoire analyses and how insert antibodies can contribute to protective immunity or an autoreactive response.
Collapse
Affiliation(s)
- Mikhail Lebedin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany;
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Kathrin de la Rosa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany;
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
2
|
Recuero E, Etzler FE, Caterino MS. Most soil and litter arthropods are unidentifiable based on current DNA barcode reference libraries. Curr Zool 2024; 70:637-646. [PMID: 39463700 PMCID: PMC11502157 DOI: 10.1093/cz/zoad051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/15/2023] [Indexed: 10/29/2024] Open
Abstract
We are far from knowing all species living on the planet. Understanding biodiversity is demanding and requires time and expertise. Most groups are understudied given problems of identifying and delimiting species. DNA barcoding emerged to overcome some of the difficulties in identifying species. Its limitations derive from incomplete taxonomic knowledge and the lack of comprehensive DNA barcode libraries for so many taxonomic groups. Here, we evaluate how useful barcoding is for identifying arthropods from highly diverse leaf litter communities in the southern Appalachian Mountains (USA). We used 3 reference databases and several automated classification methods on a data set including several arthropod groups. Acari, Araneae, Collembola, Coleoptera, Diptera, and Hymenoptera were well represented, showing different performances across methods and databases. Spiders performed the best, with correct identification rates to species and genus levels of ~50% across databases. Springtails performed poorly, no barcodes were identified to species or genus. Other groups showed poor to mediocre performance, from around 3% (mites) to 20% (beetles) correctly identified barcodes to species, but also with some false identifications. In general, BOLD-based identification offered the best identification results but, in all cases except spiders, performance is poor, with less than a fifth of specimens correctly identified to genus or species. Our results indicate that the soil arthropod fauna is still insufficiently documented, with many species unrepresented in DNA barcode libraries. More effort toward integrative taxonomic characterization is needed to complete our reference libraries before we can rely on DNA barcoding as a universally applicable identification method.
Collapse
Affiliation(s)
- Ernesto Recuero
- Department of Plant and Environmental Sciences, Clemson University, 277 Poole Agricultural Center, Clemson, SC 29634, USA
| | - Frank E Etzler
- Department of Plant and Environmental Sciences, Clemson University, 277 Poole Agricultural Center, Clemson, SC 29634, USA
- Natural Resource Section, Montana Department of Agriculture, 302 N Roberts St, Helena, MT 59601, USA
| | - Michael S Caterino
- Department of Plant and Environmental Sciences, Clemson University, 277 Poole Agricultural Center, Clemson, SC 29634, USA
| |
Collapse
|
3
|
Wang D, Trimbos KB, Gomes SIF, Jacquemyn H, Merckx VSFT. Metabarcoding read abundances of orchid mycorrhizal fungi are correlated to copy numbers estimated using ddPCR. THE NEW PHYTOLOGIST 2024; 242:1825-1834. [PMID: 37929750 DOI: 10.1111/nph.19385] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Quantifying the abundances of fungi is key to understanding natural variation in mycorrhizal communities in relation to plant ecophysiology and environmental heterogeneity. High-throughput metabarcoding approaches have transformed our ability to characterize and compare complex mycorrhizal communities. However, it remains unclear how well metabarcoding read counts correlate with actual read abundances in the sample, potentially limiting their use as a proxy for species abundances. Here, we use droplet digital PCR (ddPCR) to evaluate the reliability of ITS2 metabarcoding data for quantitative assessments of mycorrhizal communities in the orchid species Neottia ovata sampled at multiple sites. We performed specific ddPCR assays for eight families of orchid mycorrhizal fungi and compared the results with read counts obtained from metabarcoding. Our results demonstrate a significant correlation between DNA copy numbers measured by ddPCR assays and metabarcoding read counts of major mycorrhizal partners of N. ovata, highlighting the usefulness of metabarcoding for quantifying the abundance of orchid mycorrhizal fungi. Yet, the levels of correlation between the two methods and the numbers of false zero values varied across fungal families, which warrants cautious evaluation of the reliability of low-abundance families. This study underscores the potential of metabarcoding data for more quantitative analyses of mycorrhizal communities and presents practical workflows for metabarcoding and ddPCR to achieve a more comprehensive understanding of orchid mycorrhizal communities.
Collapse
Affiliation(s)
- Deyi Wang
- Naturalis Biodiversity Center, 2332 AA, Leiden, the Netherlands
- Institute of Biology, Leiden University, 2333 BE, Leiden, the Netherlands
| | - Krijn B Trimbos
- Department of Environmental Biology, Institute of Environmental Sciences, 2333 CC, Leiden University, Leiden, the Netherlands
| | - Sofia I F Gomes
- Institute of Biology, Leiden University, 2333 BE, Leiden, the Netherlands
| | - Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, Kasteelpark Arenberg 31, Heverlee, 3001, Leuven, Belgium
| | - Vincent S F T Merckx
- Naturalis Biodiversity Center, 2332 AA, Leiden, the Netherlands
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Conti A, Casagrande Pierantoni D, Robert V, Corte L, Cardinali G. MinION Sequencing of Yeast Mock Communities To Assess the Effect of Databases and ITS-LSU Markers on the Reliability of Metabarcoding Analysis. Microbiol Spectr 2023; 11:e0105222. [PMID: 36519933 PMCID: PMC9927109 DOI: 10.1128/spectrum.01052-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Microbial communities play key roles both for humans and the environment. They are involved in ecosystem functions, maintaining their stability, and provide important services, such as carbon cycle and nitrogen cycle. Acting both as symbionts and as pathogens, description of the structure and composition of these communities is important. Metabarcoding uses ribosomal DNA (rDNA) (eukaryotic) or rRNA gene (prokaryotic) sequences for identification of species present in a site and measuring their abundance. This procedure requires several technical steps that could be source of bias producing a distorted view of the real community composition. In this work, we took advantage of an innovative "long-read" next-generation sequencing (NGS) technology (MinION) amplifying the DNA spanning from the internal transcribed spacer (ITS) to large subunit (LSU) that can be read simultaneously in this platform, providing more information than "short-read" systems. The experimental system consisted of six fungal mock communities composed of species present at various relative amounts to mimic natural situations characterized by predominant and low-frequency species. The influence of the sequencing platform (MinION and Illumina MiSeq) and the effect of different reference databases and marker sequences on metagenomic identification of species were evaluated. The results showed that the ITS-based database provided more accurate species identification than LSU. Furthermore, a procedure based on a preliminary identification with standard reference databases followed by the production of custom databases, including only the best outputs of the first step, is proposed. This additional step improved the estimate of species proportion of the mock communities and reduced the number of ghost species not really present in the simulated communities. IMPORTANCE Metagenomic analyses are fundamental in many research areas; therefore, improvement of methods and protocols for the description of microbial communities becomes more and more necessary. Long-read sequencing could be used for reducing biases due to the multicopy nature of rDNA sequences and short-read limitations. However, these novel technologies need to be assessed and standardized with controlled experiments, such as mock communities. The interest behind this work was to evaluate how long reads performed identification and quantification of species mixed in precise proportions and how the choice of database affects such analyses. Development of a pipeline that mitigates the effect of the barcoding sequences and the impact of the reference database on metagenomic analyses can help microbiome studies go one step further.
Collapse
Affiliation(s)
- Angela Conti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Vincent Robert
- Westerdjik Institute for Biodiversity, Utrecht, Netherlands
| | - Laura Corte
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
- CEMIN Excellence Research Centre, Perugia, Italy
| | - Gianluigi Cardinali
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
- CEMIN Excellence Research Centre, Perugia, Italy
| |
Collapse
|
5
|
Quantifying Trade-Offs in the Choice of Ribosomal Barcoding Markers for Fungal Amplicon Sequencing: a Case Study on the Grapevine Trunk Mycobiome. Microbiol Spectr 2022; 10:e0251322. [PMID: 36409146 PMCID: PMC9769941 DOI: 10.1128/spectrum.02513-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The evolution of sequencing technology and multiplexing has rapidly expanded our ability to characterize fungal diversity in the environment. However, obtaining an unbiased assessment of the fungal community using ribosomal markers remains challenging. Longer amplicons were shown to improve taxonomic resolution and resolve ambiguities by reducing the risk of spurious operational taxonomic units. We examined the implications of barcoding strategies by amplifying and sequencing two ribosomal DNA fragments. We analyzed the performance of the full internal transcribed spacer (ITS) and a longer fragment including also a part of the 28S ribosomal subunit replicated on 60 grapevine trunk core samples. Grapevine trunks harbor highly diverse fungal communities with implications for disease development. Using identical handling, amplification, and sequencing procedures, we obtained higher sequencing depths for the shorter ITS amplicon. Despite the more limited access to polymorphism, the overall diversity in amplified sequence variants was higher for the shorter ITS amplicon. We detected no meaningful bias in the phylogenetic composition due to the amplicon choice across analyzed samples. Despite the increased resolution of the longer ITS-28S amplicon, the higher and more consistent yields of the shorter amplicons produced a clearer resolution of the fungal community of grapevine stem samples. Our study highlights that the choice of ribosomal amplicons should be carefully evaluated and adjusted according to specific goals. IMPORTANCE Surveying fungal communities is key to our understanding of ecological functions of diverse habitats. Fungal communities can inform about the resilience of agricultural ecosystems, risks to human health, and impacts of pathogens. Community compositions are typically analyzed using ribosomal DNA sequences. Due to technical limitations, most fungal community surveys were based on amplifying a short but highly variable fragment. Advances in sequencing technology enabled the use of longer fragments that can address some limitations of species identification. In this study, we examined the implications of choosing either a short or long ribosomal sequence fragment by replicating the analyses on 60 grapevine wood core samples. Using highly accurate long-read sequencing, we found that the shorter fragment produced substantially higher yields. The shorter fragment also revealed more sequence and species diversity. Our study highlights that the choice of ribosomal amplicons should be carefully evaluated and adjusted according to specific goals.
Collapse
|
6
|
Shi Z, Kong Q, Li X, Xu W, Mao C, Wang Y, Song W, Huang J. The Effects of DNA Extraction Kits and Primers on Prokaryotic and Eukaryotic Microbial Community in Freshwater Sediments. Microorganisms 2022; 10:1213. [PMID: 35744736 PMCID: PMC9230960 DOI: 10.3390/microorganisms10061213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
DNA based sequencing technology has revolutionized the field of microbial ecology and environmental studies. However, biases can be introduced at all experimental steps and, thus, affect the interpretation of microbial community. So far, previous studies on the biases introduced from the key steps of DNA extraction and primer sets mainly focused on the bacterial communities in soil or sediment samples, while little is known about the effect on the eukaryotic microbial communities. Here, we studied the effects of three different DNA extraction kits on both prokaryotic and micro-eukaryotic communities by 16S and 18S rRNA gene amplicon sequencing, and further disentangled the influence of primer choice on the micro-eukaryotic communities. Our results showed that the FastDNA SPIN Kit for Soil and DNeasy PowerSoil Kit produced much higher DNA yield with good reproducibility, and observed more eukaryotic OTUs compared to the MinkaGene DNA extraction kit, but all three kits exhibited comparable ability in recovering bacterial alpha diversity. Of the two primer sets, both targeting the V4 region of the 18S rRNA gene, the TAR primer set detected higher number of unique OTUs than the EK primer set, while the EK primer set resulted in longer amplicons and better reproducibility between replicates. Based on our findings, we recommend using the DNeasy PowerSoil Kit with the EK primer set to capture the abundant micro-eukaryotic taxa from freshwater sediment samples. If a more complete picture of the eukaryotic microbial community is desired, the TAR primer set in combination with the FastDNA SPIN Kit is more efficient in this study.
Collapse
Affiliation(s)
- Zihan Shi
- Institute of Evolution & Marine Biodiversity, College of Fisheries, Ocean University of China, Qingdao 266003, China; (Z.S.); (Y.W.); (W.S.)
- Donghu Experimental Station of Lake Ecosystems, Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.K.); (W.X.); (C.M.)
| | - Qiaoyi Kong
- Donghu Experimental Station of Lake Ecosystems, Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.K.); (W.X.); (C.M.)
| | - Xinghao Li
- Key Laboratory of Regional Development and Environmental Response, Hubei Engineering Research Center for Rural Drinking Water Security, Hubei University, Wuhan 430062, China;
| | - Wenxin Xu
- Donghu Experimental Station of Lake Ecosystems, Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.K.); (W.X.); (C.M.)
| | - Chengzhi Mao
- Donghu Experimental Station of Lake Ecosystems, Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.K.); (W.X.); (C.M.)
| | - Yunfeng Wang
- Institute of Evolution & Marine Biodiversity, College of Fisheries, Ocean University of China, Qingdao 266003, China; (Z.S.); (Y.W.); (W.S.)
- Donghu Experimental Station of Lake Ecosystems, Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.K.); (W.X.); (C.M.)
| | - Weibo Song
- Institute of Evolution & Marine Biodiversity, College of Fisheries, Ocean University of China, Qingdao 266003, China; (Z.S.); (Y.W.); (W.S.)
| | - Jie Huang
- Donghu Experimental Station of Lake Ecosystems, Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.K.); (W.X.); (C.M.)
| |
Collapse
|
7
|
PCR enhancers: Types, mechanisms, and applications in long-range PCR. Biochimie 2022; 197:130-143. [DOI: 10.1016/j.biochi.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/06/2022] [Accepted: 02/24/2022] [Indexed: 12/21/2022]
|
8
|
Zuberi Z, Sillo AJ. Antibiotic Resistance Conferred by Class 1 Integron in Vibrio Cholerae Strains: A Meta-analysis. East Afr Health Res J 2022; 6:119-126. [PMID: 36751685 PMCID: PMC9887504 DOI: 10.24248/eahrj.v6i2.690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 11/25/2022] [Indexed: 01/02/2023] Open
Abstract
Background Class 1 integron is the most ubiquitous platform among antibiotic resistance bacterial populations, including Vibrio cholerae strains. This meta-analysis aimed to determine the antibiotic resistance conferred by class 1 integron conserved segments (CS); 3'-qacEΔ1 and sul1, and 5'-int1 in V. cholerae strains. Methods An intensive literature search of electronic databases for relevant studies from their starting dates up to April 2019 was conducted by two independent investigators. The electronic databases included; PubMed, Ovid Medline and Google Scholar databases. Only studies that determined antibiotic resistance conferred by class 1 integron in V. cholerae strains isolated from clinical and/or environmental samples using Polymerase Chain Reaction (PCR) assay were included in this study. Results The random-effects model was selected and performed for all the studies included in this meta-analysis. Fourteen studies consisting of both qacEΔ1 and sul1, and int1 in the class 1 integron of V. cholerae strains were included. The proportions of class 1 integron 3'-CS and 5'-CS were 70.4 % (95%CI: 37.5-94.4) and 52 % (95% CI: 6.3-95.7) respectively. Conclusions The proportions of class 1 integron in V. cholerae strains significantly contributed to the antibiotic resistances, which are comparable to other gram-negative bacteria clinical isolates. Moreover, the 3'-CS qacEΔ1 and sul1 are highly involved in the antibiotic resistance in comparison to 5'-CS int1. Generally, the study findings provide a general view on antibiotic resistance conferred by class 1 integron in Vibrio cholerae strains.
Collapse
Affiliation(s)
- Zavuga Zuberi
- Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, Dar es Salaam, Tanzania,Correspondence to Zavuga Zuberi ()
| | - Albert Joseph Sillo
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
9
|
Mejbel HS, Dodsworth W, Baud A, Gregory-Eaves I, Pick FR. Comparing Quantitative Methods for Analyzing Sediment DNA Records of Cyanobacteria in Experimental and Reference Lakes. Front Microbiol 2021; 12:669910. [PMID: 34220754 PMCID: PMC8250803 DOI: 10.3389/fmicb.2021.669910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/19/2021] [Indexed: 11/25/2022] Open
Abstract
Sediment DNA (sedDNA) analyses are rapidly emerging as powerful tools for the reconstruction of environmental and evolutionary change. While there are an increasing number of studies using molecular genetic approaches to track changes over time, few studies have compared the coherence between quantitative polymerase chain reaction (PCR) methods and metabarcoding techniques. Primer specificity, bioinformatic analyses, and PCR inhibitors in sediments could affect the quantitative data obtained from these approaches. We compared the performance of droplet digital polymerase chain reaction (ddPCR) and high-throughput sequencing (HTS) for the quantification of target genes of cyanobacteria in lake sediments and tested whether the two techniques similarly reveal expected patterns through time. Absolute concentrations of cyanobacterial 16S rRNA genes were compared between ddPCR and HTS using dated sediment cores collected from two experimental (Lake 227, fertilized since 1969 and Lake 223, acidified from 1976 to 1983) and two reference lakes (Lakes 224 and 442) in the Experimental Lakes Area (ELA), Canada. Relative abundances of Microcystis 16S rRNA (MICR) genes were also compared between the two methods. Moderate to strong positive correlations were found between the molecular approaches among all four cores but results from ddPCR were more consistent with the known history of lake manipulations. A 100-fold increase in ddPCR estimates of cyanobacterial gene abundance beginning in ~1968 occurred in Lake 227, in keeping with experimental addition of nutrients and increase in planktonic cyanobacteria. In contrast, no significant rise in cyanobacterial abundance associated with lake fertilization was observed with HTS. Relative abundances of Microcystis between the two techniques showed moderate to strong levels of coherence in top intervals of the sediment cores. Both ddPCR and HTS approaches are suitable for sedDNA analysis, but studies aiming to quantify absolute abundances from complex environments should consider using ddPCR due to its high tolerance to PCR inhibitors.
Collapse
Affiliation(s)
- Hebah S Mejbel
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - William Dodsworth
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Alexandre Baud
- Department of Biology, McGill University, Montréal, QC, Canada.,Groupe de Recherche Interuniversitaire en Limnologie, Montréal, QC, Canada
| | - Irene Gregory-Eaves
- Department of Biology, McGill University, Montréal, QC, Canada.,Groupe de Recherche Interuniversitaire en Limnologie, Montréal, QC, Canada
| | - Frances R Pick
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
10
|
Hemprich-Bennett DR, Oliveira HFM, Le Comber SC, Rossiter SJ, Clare EL. Assessing the impact of taxon resolution on network structure. Ecology 2020; 102:e03256. [PMID: 33226629 DOI: 10.1002/ecy.3256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/01/2020] [Accepted: 09/18/2020] [Indexed: 01/04/2023]
Abstract
Constructing ecological networks has become an indispensable approach in understanding how different taxa interact. However, the methods used to generate data in network research vary widely among studies, potentially limiting our ability to compare results meaningfully. In particular, methods of classifying nodes vary in their precision, likely altering the architecture of the network studied. For example, rather than being classified as Linnaean species, taxa are regularly assigned to morphospecies in observational studies, or to molecular operational taxonomic units (MOTUs) in molecular studies, with the latter defined based on an arbitrary threshold of sequence similarity. Although the use of MOTUs in ecological networks holds great potential, especially for allowing rapid construction of large data sets of interactions, it is unclear how the choice of clustering threshold can influence the conclusions obtained. To test the impact of taxonomic precision on network architecture, we obtained and analyzed 16 data sets of ecological interactions, inferred from metabarcoding and observations. Our comparisons of networks constructed under a range of sequence thresholds for assigning taxa demonstrate that even small changes in node resolution can cause wide variation in almost all key metric values. Moreover, relative values of commonly used metrics such as robustness were seen to fluctuate continuously with node resolution, thereby potentially causing error in conclusions drawn when comparing multiple networks. In observational networks, we found that changing node resolution could, in some cases, lead to substantial changes to measurements of network topology. Overall, our findings highlight the importance of classifying nodes to the greatest precision possible, and demonstrate the need for caution when comparing networks that differ with respect to node resolution, even where taxonomic groups and interaction types are similar. In such cases, we recommend that comparisons of networks should focus on relative differences rather than absolute values between the networks studied.
Collapse
Affiliation(s)
- David R Hemprich-Bennett
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.,Department of Zoology, Zoology Research and Administration Building, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Hernani F M Oliveira
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Steven C Le Comber
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Elizabeth L Clare
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
11
|
Li S, Deng Y, Wang Z, Zhang Z, Kong X, Zhou W, Yi Y, Qu Y. Exploring the accuracy of amplicon-based internal transcribed spacer markers for a fungal community. Mol Ecol Resour 2019; 20:170-184. [PMID: 31599091 DOI: 10.1111/1755-0998.13097] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 08/25/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022]
Abstract
With the continual improvement in high-throughput sequencing technology and constant updates to fungal reference databases, the use of amplicon-based DNA markers as a tool to reveal fungal diversity and composition in various ecosystems has become feasible. However, both primer selection and the experimental procedure require meticulous verification. Here, we computationally and experimentally evaluated the accuracy and specificity of three widely used or newly designed internal transcribed spacer (ITS) primer sets (ITS1F/ITS2, gITS7/ITS4 and 5.8S-Fun/ITS4-Fun). In silico evaluation revealed that primer coverage varied at different taxonomic levels due to differences in degeneracy and the location of primer sets. Using even and staggered mock community standards, we identified different proportions of chimeric and mismatch reads generated by different primer sets, as well as great variation in species abundances, suggesting that primer selection would affect the results of amplicon-based metabarcoding studies. Choosing proofreading and high-fidelity polymerase (KAPA HiFi) could significantly reduce the percentage of chimeric and mismatch sequences, further reducing inflation of operational taxonomic units. Moreover, for two types of environmental fungal communities, plant endophytic and soil fungi, it was demonstrated that the three primer sets could not reach a consensus on fungal community composition or diversity, and that primer selection, not experimental treatment, determines observed soil fungal community diversity and composition. Future DNA marker surveys should pay greater attention to potential primer effects and improve the experimental scheme to increase credibility and accuracy.
Collapse
Affiliation(s)
- Shuzhen Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China.,CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhujun Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhaojing Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China.,CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xiao Kong
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Wenjun Zhou
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, China.,Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Xishuangbanna, China
| | - Yanyun Yi
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, China.,Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Xishuangbanna, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| |
Collapse
|
12
|
Asadzadeh M, Alanazi AF, Ahmad S, Al-Sweih N, Khan Z. Lack of detection of Candida nivariensis and Candida bracarensis among 440 clinical Candida glabrata sensu lato isolates in Kuwait. PLoS One 2019; 14:e0223920. [PMID: 31618264 PMCID: PMC6795469 DOI: 10.1371/journal.pone.0223920] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Occurrence of Candida nivariensis and Candida bracarensis, two species phenotypically similar to Candida glabrata sensu stricto, in human clinical samples from different geographical settings remains unknown. This study developed a low-cost multiplex PCR (mPCR) and three species-specific singleplex PCR assays. Reference strains of common Candida species were used during development and the performance of mPCR and singleplex PCR assays was evaluated with 440 clinical C. glabrata sensu lato isolates. The internal transcribed spacer (ITS) region of rDNA was also sequenced from 85 selected isolates and rDNA sequence variations were used for determining genetic relatedness among the isolates by using MEGA X software. Species-specific amplicons for C. glabrata (~360 bp), C. nivariensis (~250 bp) and C. bracarensis (~180 bp) were obtained in mPCR while no amplicon was obtained from other Candida species. The three singleplex PCR assays also yielded expected results with reference strains of Candida species. The mPCR amplified ~360 bp amplicon from all 440 C. glabrata sensu lato isolates thus identifying all clinical isolates in Kuwait as C. glabrata sensu stricto. The results of mPCR were confirmed for all 440 isolates as they yielded an amplicon only in C. glabrata sensu stricto-specific singleplex PCR assay. The rDNA sequence data identified 28 ITS haplotypes among 85 isolates with 18 isolates belonging to unique haplotypes and 67 isolates belonging to 10 cluster haplotypes. In conclusion, we have developed a simple, low-cost mPCR assay for rapid differentiation of C. glabrata sensu stricto from C. nivariensis and C. bracarensis. Our data obtained from a large collection of clinical C. glabrata sensu lato isolates show that C. nivariensis and C. bracarensis are rare pathogens in Kuwait. Considerable genetic diversity among C. glabrata sensu stricto isolates was also indicated by rDNA sequence analyses.
Collapse
Affiliation(s)
- Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Ahlam F. Alanazi
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
- * E-mail: ,
| | - Noura Al-Sweih
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Ziauddin Khan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
13
|
Li F, Li C, Chen Y, Liu J, Zhang C, Irving B, Fitzsimmons C, Plastow G, Guan LL. Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle. MICROBIOME 2019; 7:92. [PMID: 31196178 PMCID: PMC6567441 DOI: 10.1186/s40168-019-0699-1] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 05/19/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND The symbiotic rumen microbiota is essential for the digestion of plant fibers and contributes to the variation of production and health traits in ruminants. However, to date, the heritability of rumen microbial features and host genetic components associated with the rumen microbiota, as well as whether such genetic components are animal performance relevant, are largely unknown. RESULTS In the present study, we assessed rumen microbiota from a cohort of 709 beef cattle and showed that multiple factors including breed, sex, and diet drove the variation of rumen microbiota among animals. The diversity indices, the relative abundance of ~ 34% of microbial taxa (59 out of 174), and the copy number of total bacteria had a heritability estimate (h2) ≥ 0.15, suggesting that they are heritable elements affected by host additive genetics. These moderately heritable rumen microbial features were also found to be associated with host feed efficiency traits and rumen metabolic measures (volatile fatty acids). Moreover, 19 single nucleotide polymorphisms (SNPs) located on 12 bovine chromosomes were found to be associated with 14 (12 of them had h2 ≥ 0.15) rumen microbial taxa, and five of these SNPs were known quantitative trait loci for feed efficiency in cattle. CONCLUSIONS These findings suggest that some rumen microbial features are heritable and could be influenced by host genetics, highlighting a potential to manipulate and obtain a desirable and efficient rumen microbiota using genetic selection and breeding. It could be a useful strategy to further improve feed efficiency and optimize rumen fermentation through targeting both cattle and their rumen microbiota.
Collapse
Affiliation(s)
- Fuyong Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Changxi Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, T4L 1W1, Canada
| | - Yanhong Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Junhong Liu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Chunyan Zhang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Barry Irving
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Carolyn Fitzsimmons
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, T4L 1W1, Canada
| | - Graham Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada.
| |
Collapse
|
14
|
Abraham JS, Sripoorna S, Maurya S, Makhija S, Gupta R, Toteja R. Techniques and tools for species identification in ciliates: a review. Int J Syst Evol Microbiol 2019; 69:877-894. [DOI: 10.1099/ijsem.0.003176] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ciliates are highly divergent unicellular eukaryotic organisms with nuclear dualism and a highly specialized ciliary pattern. They inhabit all biotopes and play crucial roles in regulating microbial food webs as they prey on bacteria, protists and even on microscopic animals. Nevertheless, subtle morphological differences and tiny sizes hinder proper species identification for many ciliates. In the present review, an attempt has been made to elaborate the various approaches used by modern day ciliate taxonomists for species identification. The different approaches involved in taxonomic characterization of ciliates such as classical (using live-cell observations, staining techniques, etc.), molecular (involving various marker genes) and statistical (delimitation of cryptic species) methods have been reviewed. Ecological and behavioural aspects in species identification have also been discussed. In present-day taxonomy, it is important to use a ‘total evidence’ approach in identifying ciliates, relying on both classical and molecular information whenever possible. This integrative approach will help in the mergence of classical methods with modern-day tools for comprehensive species description in future.
Collapse
Affiliation(s)
- Jeeva Susan Abraham
- Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
| | - S. Sripoorna
- Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
| | - Swati Maurya
- Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
| | - Seema Makhija
- Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
| | - Renu Gupta
- Maitreyi College, University of Delhi, Bapu dham, Chanakyapuri, New Delhi 110021, India
| | - Ravi Toteja
- Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
| |
Collapse
|
15
|
Vignola M, Werner D, Hammes F, King LC, Davenport RJ. Flow-cytometric quantification of microbial cells on sand from water biofilters. WATER RESEARCH 2018; 143:66-76. [PMID: 29940363 DOI: 10.1016/j.watres.2018.05.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/02/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Rapid quantification of absolute microbial cell abundances is important for a comprehensive interpretation of microbiome surveys and crucial to support theoretical modelling and the design of engineered systems. In this paper, we propose a protocol specifically optimised for the quantification of microbial abundances in water biofilters using flow cytometry (FCM). We optimised cell detachment from sand biofilter particles for FCM quantification through the evaluation of five chemical dispersants (NaCl, Triton-X100, CaCl2, sodium pyrophosphate (PP), Tween 80 combined with PP), different mechanical pre-treatments (low and high energy sonication and shaking) and two fixation methods (glutaraldehyde and ethanol). The developed protocol was cross-compared using other established and commonly employed methods for biomass quantification in water filter samples (adenosine triphosphate (ATP) quantification, real-time quantitative PCR (qPCR) and volatile solids (VS)). The highest microbial count was obtained by detaching the biofilm from biofilter grains and dispersing clusters into singles cells using Tween 80 and sodium pyrophosphate combined with four steps of high energy sonication (27W, for 80 s each step); glutaraldehyde was shown to be the best fixative solution. The developed protocol was reliable and highly reproducible and produced results that are comparable to data from alternative quantification methods. Indeed, high correlations were found with trends obtained through ATP and qPCR (ρ = 0.98 and ρ = 0.91) measurements. The VS content was confirmed as an inaccurate method to express biomass in sand samples since it correlated poorly with all the other three methods (ρ = 0.005 with FCM, 0.002 with ATP and 0.177 with qPCR). FCM and ATP showed the strongest agreement between absolute counts with a slope of the correlation equal to 0.7, while qPCR seemed to overestimate cell counts by a factor of ten. The rapidity and reproducibility of the method developed make its application ideal for routine quantification of microbial cell abundances on sand from water biofilters and thus useful in revealing the ecological patterns and quantifying the metabolic kinetics involved in such systems.
Collapse
Affiliation(s)
- Marta Vignola
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom; Infrastructure and Environment, School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom.
| | - David Werner
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Frederik Hammes
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstr. 133, CH-8600 Dübendorf, Switzerland
| | - Lianna C King
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Russell J Davenport
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
16
|
Zhong W, Tan Z, Wang B, Yan H. Next-generation sequencing analysis of Pardosa pseudoannulata's diet composition in different habitats. Saudi J Biol Sci 2018; 26:165-172. [PMID: 30622422 PMCID: PMC6319085 DOI: 10.1016/j.sjbs.2018.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 11/24/2022] Open
Abstract
Spiders are the most common and predominant predators in terrestrial ecosystems. The predatory behavior of spiders affects the energy flow across the food web within an ecosystem. Traditiaonal methods for analyzing spider diets such as field observation, anatomy and faeces analysis are not suitable for spider experiments due to spiders’ special dietary behavior. The molecular method based on the specific primers of prey DNA seems to be inefficient either in spite of its wide application in diet analysis. As the next-generation sequencing (NGS) technology becomes prevalent in many different areas, several cases of the NGS-based analysis of mammal diets have been published. This study analyzed the diet differences of Pardosa pseudoannulata (Araneae: Lycosidae) in four habitats (a wetland, a tea plantation, an alpine meadow and a paddy field) by using the NGS technology, combined with the DNA barcode method. The results suggested that the Pardosa pseudoannulata feed on a broad range of prey, and 7 orders and 24 families of insects were detected in the four investigated habitats. Moreover, it is found that the diet diversity of Pardosa pseudoannulata is greatly influenced by their living environments and seasons. In a nutshell, this study established an NGS-based methodology for spider diets analysis, and the results provided some basic materials to inform the protection and utilization of the Pardosa pseudoannulata as a potential eco-friendly predator against pests.
Collapse
Affiliation(s)
- Wentao Zhong
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
- Testing Institute of Product and Commodity Supervision, Changsha 410007, Hunan, China
| | - Zhaojun Tan
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
- Dongkou No.1 Middle School, Dongkou 422300, Hunan, China
| | - Bo Wang
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
- College of Engineering and Technology, Beijing Normal University, Zhuhai Campus, Zhuhai 519087, Guangdong, China
| | - Hengmei Yan
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
- College of Engineering and Technology, Beijing Normal University, Zhuhai Campus, Zhuhai 519087, Guangdong, China
- Corresponding author at: College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
17
|
Klier J, Dellwig O, Leipe T, Jürgens K, Herlemann DPR. Benthic Bacterial Community Composition in the Oligohaline-Marine Transition of Surface Sediments in the Baltic Sea Based on rRNA Analysis. Front Microbiol 2018; 9:236. [PMID: 29520255 PMCID: PMC5827536 DOI: 10.3389/fmicb.2018.00236] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/31/2018] [Indexed: 12/16/2022] Open
Abstract
Salinity has a strong impact on bacterial community composition such that freshwater bacterial communities are very different from those in seawater. By contrast, little is known about the composition and diversity of the bacterial community in the sediments (bacteriobenthos) at the freshwater-seawater transition (mesohaline conditions). In this study, partial 16S-rRNA sequences were used to investigate the bacterial community at five stations, representing almost freshwater (oligohaline) to marine conditions, in the Baltic Sea. Samples were obtained from the silty, top-layer (0-2.5 cm) sediments with mostly oxygenated conditions. The long water residence time characteristic of the Baltic Sea, was predicted to enable the development of autochthonous bacteriobenthos at mesohaline conditions. Our results showed that, similar to the water column, salinity is a major factor in structuring the bacteriobenthos and that there is no loss of bacterial richness at intermediate salinities. The bacterial communities of marine, mesohaline, and oligohaline sediments differed in terms of the relative rRNA abundances of the major bacterial phyla/classes. At mesohaline conditions typical marine and oligohaline operational taxonomic units (OTUs) were abundant. Putative unique OTUs in mesohaline sediments were present only at low abundances, suggesting that the mesohaline environment consists mainly of marine and oligohaline bacteria with a broad salinity tolerance. Our study provides a first overview of the diversity patterns and composition of bacteria in the sediments along the Baltic Sea salinity gradient as well as new insights into the bacteriobenthos at mesohaline conditions.
Collapse
Affiliation(s)
- Julia Klier
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Rostock, Germany
| | - Olaf Dellwig
- Department of Marine Geology, Leibniz Institute for Baltic Sea Research, Rostock, Germany
| | - Thomas Leipe
- Department of Marine Geology, Leibniz Institute for Baltic Sea Research, Rostock, Germany
| | - Klaus Jürgens
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Rostock, Germany
| | - Daniel P. R. Herlemann
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Rostock, Germany
| |
Collapse
|
18
|
Vignola M, Werner D, Wade MJ, Meynet P, Davenport RJ. Medium shapes the microbial community of water filters with implications for effluent quality. WATER RESEARCH 2018; 129:499-508. [PMID: 29195186 DOI: 10.1016/j.watres.2017.09.042] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/06/2017] [Accepted: 09/22/2017] [Indexed: 05/15/2023]
Abstract
Little is known about the forces that determine the assembly of diverse bacterial communities inhabiting drinking water treatment filters and how this affects drinking water quality. Two contrasting ecological theories can help to understand how natural microbial communities assemble; niche theory and neutral theory, where environmental deterministic factors or stochastic factors predominate respectively. This study investigates the development of the microbial community on two common contrasting filter materials (quartz sand and granular activated carbon-GAC), to elucidate the main factors governing their assembly, through the evaluation of environmental (i.e. filter medium type) and stochastic forces (random deaths, births and immigration). Laboratory-scale filter columns were used to mimic a rapid gravity filter; the microbiome of the filter materials, and of the filter influent and effluent, was characterised using next generation 16S rRNA gene amplicon sequencing and flow-cytometry. Chemical parameters (i.e. dissolved organic carbon, trihalomethanes formation) were also monitored to assess the final effluent quality. The filter communities seemed to be strongly assembled by selection rather than neutral processes, with only 28% of those OTUs shared with the source water detected on the filter medium following predictions using a neutral community model. GAC hosted a phylogenetically more diverse community than sand. The two filter media communities seeded the effluent water, triggering differences in both water quality and community composition of the effluents. Overall, GAC proved to be better than sand in controlling microbial growth, by promoting higher bacterial decay rates and hosting less bacterial cells, and showed better performance for putative pathogen control by leaking less Legionella cells into the effluent water.
Collapse
Affiliation(s)
- Marta Vignola
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom; College of Science and Engineering, Division of Infrastructure and Environment, School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - David Werner
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Matthew J Wade
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Paola Meynet
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstr. 133, Dübendorf, CH-8600, Switzerland
| | - Russell J Davenport
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| |
Collapse
|
19
|
Boenigk J, Wodniok S, Bock C, Beisser D, Hempel C, Grossmann L, Lange A, Jensen M. Geographic distance and mountain ranges structure freshwater protist communities on a European scalе. METABARCODING AND METAGENOMICS 2018. [DOI: 10.3897/mbmg.2.21519] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
20
|
Li F, Neves ALA, Ghoshal B, Guan LL. Symposium review: Mining metagenomic and metatranscriptomic data for clues about microbial metabolic functions in ruminants. J Dairy Sci 2017; 101:5605-5618. [PMID: 29274958 DOI: 10.3168/jds.2017-13356] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/27/2017] [Indexed: 12/22/2022]
Abstract
Metagenomics and metatranscriptomics can capture the whole genome and transcriptome repertoire of microorganisms through sequencing total DNA/RNA from various environmental samples, providing both taxonomic and functional information with high resolution. The unique and complex rumen microbial ecosystem is receiving great research attention because the rumen microbiota coevolves with the host and equips ruminants with the ability to convert cellulosic plant materials to high-protein products for human consumption. To date, hundreds to thousands of microbial phylotypes have been identified in the rumen using culture-independent molecular-based approaches, and genomic information of rumen microorganisms is rapidly accumulating through the single genome sequencing. However, functional characteristics of the rumen microbiome have not been well described because there are numerous uncultivable microorganisms in the rumen. The advent of metagenomics and metatranscriptomics along with advanced bioinformatics methods can help us better understand mechanisms of the rumen fermentation, which is vital for improving nutrient utilization and animal productivity. Therefore, in this review, we summarize a general workflow to conduct rumen metagenomics and metatranscriptomics and discuss how the data can be interpreted to be useful information. Moreover, we review recent literatures studying associations between the rumen microbiome and host phenotypes (e.g., feed efficiency and methane emissions) using these approaches, aiming to provide a useful guide to include studying the rumen microbiome as one of the research objectives using these 2 approaches.
Collapse
Affiliation(s)
- Fuyong Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Andre L A Neves
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Bibaswan Ghoshal
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| |
Collapse
|
21
|
Pedro PM, Piper R, Bazilli Neto P, Cullen L, Dropa M, Lorencao R, Matté MH, Rech TC, Rufato MO, Silva M, Turati DT. Metabarcoding Analyses Enable Differentiation of Both Interspecific Assemblages and Intraspecific Divergence in Habitats With Differing Management Practices. ENVIRONMENTAL ENTOMOLOGY 2017; 46:1381-1389. [PMID: 29069398 DOI: 10.1093/ee/nvx166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Spatial and temporal collections provide important data on the distribution and dispersal of species. Regional-scale monitoring invariably involves hundreds of thousands of samples, the identification of which is costly in both time and money. In this respect, metabarcoding is increasingly seen as a viable alternative to traditional morphological identification, as it eliminates the taxonomic bottleneck previously impeding such work. Here, we assess whether terrestrial arthropods collected from 12 pitfall traps in two farms of a coffee (Coffea arabica L.) growing region of Sao Paulo State, Brazil could differentiate the two locations. We sequenced a portion of the cytochrome oxidase 1 region from minimally processed pools of samples and assessed inter- and intraspecific parameters across the two locations. Our sequencing was sufficient to circumscribe the overall diversity, which was characterized by few dominant taxa, principally small Coleoptera species and Collembola. Thirty-four operational taxonomic units were detected and of these, eight were present in significantly different quantities between the two farms. Analysis of community-wide Beta diversity grouped collections based on farm provenance. Moreover, haplotype-based analyses for a species of Xyleborus beetle showed that there is significant population genetic structuring between the two farms, suggesting limited dispersal. We conclude that metabarcoding can provide important management input and, considering the rapidly declining cost of sequencing, suggest that large-scale monitoring is now feasible and can identify both the taxa present as well as contribute information about genetic diversity of focal species.
Collapse
Affiliation(s)
| | - Ross Piper
- The Faculty of Biological Sciences, University of Leeds, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Huseyin CE, O'Toole PW, Cotter PD, Scanlan PD. Forgotten fungi-the gut mycobiome in human health and disease. FEMS Microbiol Rev 2017; 41:479-511. [PMID: 28430946 DOI: 10.1093/femsre/fuw047] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
The human body is home to a complex and diverse microbial ecosystem that plays a central role in host health. This includes a diversity of fungal species that is collectively referred to as our 'mycobiome'. Although research into the mycobiome is still in its infancy, its potential role in human disease is increasingly recognised. Here we review the existing literature available on the human mycobiota with an emphasis on the gut mycobiome, including how fungi interact with the human host and other microbes. In doing so, we provide a comprehensive critique of the methodologies available to research the human mycobiota as well as highlighting the latest research findings from mycological surveys of different groups of interest including infants, obese and inflammatory bowel disease cohorts. This in turn provides new insights and directions for future studies in this burgeoning research area.
Collapse
Affiliation(s)
- Chloe E Huseyin
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland.,APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland.,School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Paul W O'Toole
- APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland.,School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland.,APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland
| | - Pauline D Scanlan
- APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland
| |
Collapse
|
23
|
Marden CL, McDonald R, Schreier HJ, Watts JEM. Investigation into the fungal diversity within different regions of the gastrointestinal tract of Panaque nigrolineatus, a wood-eating fish. AIMS Microbiol 2017; 3:749-761. [PMID: 29152603 PMCID: PMC5687512 DOI: 10.3934/microbiol.2017.4.749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Amazonian catfish, Panaque nigrolineatus have several physiological adaptions enabling the scraping and consumption of wood (xylivory), facilitating a detritivorous dietary strategy. Composed of lignocellulose, wood is a difficult substrate to degrade and as yet, it is unclear whether the fish obtains any direct nutritional benefits from wood ingestion and degradation. However, there are numerous systems that rely on microbial symbioses to provide energy and other nutritional benefits for host organisms via lignocellulose decomposition. While previous studies on the microbial community of P. nigrolineatus have focused upon the bacterial population, the role of fungi in lignocellulose degradation in the fish has not yet been examined. This study describes the detection of fungi within the fish gastrointestinal tract. Using next generation sequencing, the effects of diet on enteric fungal populations were examined in each gastrointestinal tract region. Fungal species were found to vary in different regions of the gastrointestinal tract as a function of diet. This study is the first to examine the fungal community in a xylivorous fish and results support the hypothesis that diet influences fungal distribution and diversity within the gastrointestinal tract of P. nigrolineatus.
Collapse
Affiliation(s)
- Caroline L Marden
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, UK
| | - Ryan McDonald
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Harold J Schreier
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, USA.,Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Joy E M Watts
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, UK
| |
Collapse
|
24
|
Maritz JM, Rogers KH, Rock TM, Liu N, Joseph S, Land KM, Carlton JM. An 18S rRNA Workflow for Characterizing Protists in Sewage, with a Focus on Zoonotic Trichomonads. MICROBIAL ECOLOGY 2017; 74:923-936. [PMID: 28540488 PMCID: PMC5653731 DOI: 10.1007/s00248-017-0996-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/12/2017] [Indexed: 05/07/2023]
Abstract
Microbial eukaryotes (protists) are important components of terrestrial and aquatic environments, as well as animal and human microbiomes. Their relationships with metazoa range from mutualistic to parasitic and zoonotic (i.e., transmissible between humans and animals). Despite their ecological importance, our knowledge of protists in urban environments lags behind that of bacteria, largely due to a lack of experimentally validated high-throughput protocols that produce accurate estimates of protist diversity while minimizing non-protist DNA representation. We optimized protocols for detecting zoonotic protists in raw sewage samples, with a focus on trichomonad taxa. First, we investigated the utility of two commonly used variable regions of the 18S rRNA marker gene, V4 and V9, by amplifying and Sanger sequencing 23 different eukaryotic species, including 16 protist species such as Cryptosporidium parvum, Giardia intestinalis, Toxoplasma gondii, and species of trichomonad. Next, we optimized wet-lab methods for sample processing and Illumina sequencing of both regions from raw sewage collected from a private apartment building in New York City. Our results show that both regions are effective at identifying several zoonotic protists that may be present in sewage. A combination of small extractions (1 mL volumes) performed on the same day as sample collection, and the incorporation of a vertebrate blocking primer, is ideal to detect protist taxa of interest and combat the effects of metazoan DNA. We expect that the robust, standardized methods presented in our workflow will be applicable to investigations of protists in other environmental samples, and will help facilitate large-scale investigations of protistan diversity.
Collapse
Affiliation(s)
- Julia M Maritz
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Krysta H Rogers
- Wildlife Investigations Laboratory, California Department of Fish and Wildlife, Rancho Cordova, CA, 95670, USA
| | - Tara M Rock
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Nicole Liu
- Department of Biological Sciences, University of the Pacific, Stockton, CA, 95211, USA
| | - Susan Joseph
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Kirkwood M Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA, 95211, USA
| | - Jane M Carlton
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.
| |
Collapse
|
25
|
Integrative taxonomy of ciliates: Assessment of molecular phylogenetic content and morphological homology testing. Eur J Protistol 2017; 61:388-398. [DOI: 10.1016/j.ejop.2017.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/06/2017] [Indexed: 11/18/2022]
|
26
|
Berruti A, Desirò A, Visentin S, Zecca O, Bonfante P. ITS fungal barcoding primers versus 18S AMF-specific primers reveal similar AMF-based diversity patterns in roots and soils of three mountain vineyards. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:658-667. [PMID: 28799720 DOI: 10.1111/1758-2229.12574] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 05/17/2017] [Accepted: 08/03/2017] [Indexed: 05/26/2023]
Abstract
ITS primers commonly used to describe soil fungi are flawed for AMF although it is unknown the extent to which they distort the interpretation of community patterns. Here, we focus on how the use of a specific ITS2 fungal barcoding primer pair biased for AMF changes the interpretation of AMF community patterns from three mountain vineyards compared to a novel AMF-specific approach on the 18S. We found that although discrepancies were present in the taxonomic composition of the two resulting datasets, the estimation of diversity patterns among AMF communities was similar and resulted in both primer systems being able to correctly assess the community-structuring effect of location, compartment (root vs. soil) and environment. Both methodologies made it possible to detect the same alpha-diversity trend among the locations under study but not between root and soil transects. We show that the ITS2 primer system for fungal barcoding provides a good estimate of both AMF community structure and relation to environmental variables. However, this primer system does not fit in with cross-compartment surveys (roots vs. soil) as it can underestimate AMF diversity in soil samples. When specifically focusing on AMF, the 18S primer system resulted in wide coverage and marginal non-target amplification.
Collapse
Affiliation(s)
- Andrea Berruti
- Department of Life Sciences and System Biology, University of Torino, viale Mattioli 25, Torino 10125, Italy
- Institute for Sustainable Plant Protection, UOS Torino - National Research Council, viale Mattioli 25, Torino 10125, Italy
| | - Alessandro Desirò
- Department of Life Sciences and System Biology, University of Torino, viale Mattioli 25, Torino 10125, Italy
| | - Stefano Visentin
- Department of Life Sciences and System Biology, University of Torino, viale Mattioli 25, Torino 10125, Italy
| | - Odoardo Zecca
- Institut Agricole Re´gional, strada la Rochere 1, Aosta 11100, Italy
| | - Paola Bonfante
- Department of Life Sciences and System Biology, University of Torino, viale Mattioli 25, Torino 10125, Italy
| |
Collapse
|
27
|
Kinoti WM, Constable FE, Nancarrow N, Plummer KM, Rodoni B. Generic Amplicon Deep Sequencing to Determine Ilarvirus Species Diversity in Australian Prunus. Front Microbiol 2017; 8:1219. [PMID: 28713347 PMCID: PMC5491605 DOI: 10.3389/fmicb.2017.01219] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/16/2017] [Indexed: 01/01/2023] Open
Abstract
The distribution of Ilarvirus species populations amongst 61 Australian Prunus trees was determined by next generation sequencing (NGS) of amplicons generated using a genus-based generic RT-PCR targeting a conserved region of the Ilarvirus RNA2 component that encodes the RNA dependent RNA polymerase (RdRp) gene. Presence of Ilarvirus sequences in each positive sample was further validated by Sanger sequencing of cloned amplicons of regions of each of RNA1, RNA2 and/or RNA3 that were generated by species specific PCRs and by metagenomic NGS. Prunus necrotic ringspot virus (PNRSV) was the most frequently detected Ilarvirus, occurring in 48 of the 61 Ilarvirus-positive trees and Prune dwarf virus (PDV) and Apple mosaic virus (ApMV) were detected in three trees and one tree, respectively. American plum line pattern virus (APLPV) was detected in three trees and represents the first report of APLPV detection in Australia. Two novel and distinct groups of Ilarvirus-like RNA2 amplicon sequences were also identified in several trees by the generic amplicon NGS approach. The high read depth from the amplicon NGS of the generic PCR products allowed the detection of distinct RNA2 RdRp sequence variant populations of PNRSV, PDV, ApMV, APLPV and the two novel Ilarvirus-like sequences. Mixed infections of ilarviruses were also detected in seven Prunus trees. Sanger sequencing of specific RNA1, RNA2, and/or RNA3 genome segments of each virus and total nucleic acid metagenomics NGS confirmed the presence of PNRSV, PDV, ApMV and APLPV detected by RNA2 generic amplicon NGS. However, the two novel groups of Ilarvirus-like RNA2 amplicon sequences detected by the generic amplicon NGS could not be associated to the presence of sequence from RNA1 or RNA3 genome segments or full Ilarvirus genomes, and their origin is unclear. This work highlights the sensitivity of genus-specific amplicon NGS in detection of virus sequences and their distinct populations in multiple samples, and the need for a standardized approach to accurately determine what constitutes an active, viable virus infection after detection by molecular based methods.
Collapse
Affiliation(s)
- Wycliff M. Kinoti
- Biosciences Research Division, AgriBio, La Trobe UniversityMelbourne, VIC, Australia
- AgriBio, School of Applied Systems Biology, La Trobe UniversityMelbourne, VIC, Australia
| | - Fiona E. Constable
- Biosciences Research Division, AgriBio, La Trobe UniversityMelbourne, VIC, Australia
| | - Narelle Nancarrow
- Biosciences Research Division, AgriBio, La Trobe UniversityMelbourne, VIC, Australia
| | - Kim M. Plummer
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe UniversityMelbourne, VIC, Australia
| | - Brendan Rodoni
- Biosciences Research Division, AgriBio, La Trobe UniversityMelbourne, VIC, Australia
- AgriBio, School of Applied Systems Biology, La Trobe UniversityMelbourne, VIC, Australia
| |
Collapse
|
28
|
Lee ZMP, Poret-Peterson AT, Siefert JL, Kaul D, Moustafa A, Allen AE, Dupont CL, Eguiarte LE, Souza V, Elser JJ. Nutrient Stoichiometry Shapes Microbial Community Structure in an Evaporitic Shallow Pond. Front Microbiol 2017; 8:949. [PMID: 28611750 PMCID: PMC5447685 DOI: 10.3389/fmicb.2017.00949] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/11/2017] [Indexed: 11/20/2022] Open
Abstract
Nutrient availability and ratios can play an important role in shaping microbial communities of freshwater ecosystems. The Cuatro Ciénegas Basin (CCB) in Mexico is a desert oasis where, perhaps paradoxically, high microbial diversity coincides with extreme oligotrophy. To better understand the effects of nutrients on microbial communities in CCB, a mesocosm experiment was implemented in a stoichiometrically imbalanced pond, Lagunita, which has an average TN:TP ratio of 122 (atomic). The experiment had four treatments, each with five spatial replicates – unamended controls and three fertilization treatments with different nitrogen:phosphorus (N:P) regimes (P only, N:P = 16 and N:P = 75 by atoms). In the water column, quantitative PCR of the 16S rRNA gene indicated that P enrichment alone favored proliferation of bacterial taxa with high rRNA gene copy number, consistent with a previously hypothesized but untested connection between rRNA gene copy number and P requirement. Bacterial and microbial eukaryotic community structure was investigated by pyrosequencing of 16S and 18S rRNA genes from the planktonic and surficial sediment samples. Nutrient enrichment shifted the composition of the planktonic community in a treatment-specific manner and promoted the growth of previously rare bacterial taxa at the expense of the more abundant, potentially endemic, taxa. The eukaryotic community was highly enriched with phototrophic populations in the fertilized treatment. The sediment microbial community exhibited high beta diversity among replicates within treatments, which obscured any changes due to fertilization. Overall, these results showed that nutrient stoichiometry can be an important factor in shaping microbial community structure.
Collapse
Affiliation(s)
- Zarraz M-P Lee
- School of Life Sciences, Arizona State University, TempeAZ, United States
| | | | - Janet L Siefert
- Department of Statistics, Rice University, HoustonTX, United States
| | - Drishti Kaul
- J. Craig Venter Institute, La JollaCA, United States
| | - Ahmed Moustafa
- Department of Biology and Biotechnology Graduate Program, American University in CairoNew Cairo, Egypt
| | - Andrew E Allen
- J. Craig Venter Institute, La JollaCA, United States.,Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La JollaCA, United States
| | | | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de MéxicoCiudad de México, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de MéxicoCiudad de México, Mexico
| | - James J Elser
- School of Life Sciences, Arizona State University, TempeAZ, United States.,Flathead Lake Biological Station, University of Montana, PolsonMT, United States
| |
Collapse
|
29
|
Orihara T, Lebel T, Ge ZW, Smith M, Maekawa N. Evolutionary history of the sequestrate genus Rossbeevera ( Boletaceae) reveals a new genus Turmalinea and highlights the utility of ITS minisatellite-like insertions for molecular identification. PERSOONIA 2016; 37:173-198. [PMID: 28232764 PMCID: PMC5315287 DOI: 10.3767/003158516x691212] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 12/02/2015] [Indexed: 11/25/2022]
Abstract
The sequestrate (truffle-like) basidiomycete genera Rossbeevera, Chamonixia, and Octaviania are closely related to the epigeous mushroom genera Leccinum and Leccinellum. In order to elucidate the properties and placement of several undescribed sequestrate taxa in the group and to reveal the evolutionary history of Rossbeevera and its allies, we conducted phylogenetic analyses based on three nuclear (ITS, nLSU, EF-1α) and two mitochondrial DNA loci (ATP6 and mtSSU) as well as precise morphological observations. Phylogenetic analyses of three nuclear loci suggest a complex evolutionary history with sequestrate fruiting bodies present in several clades, including a previously unrecognized sister clade to Rossbeevera. Here we propose a new sequestrate genus, Turmalinea, with four new species and one new subspecies as well as two new species of Rossbeevera. The three-locus nuclear phylogeny resolves species-level divergence within the Rossbeevera-Turmalinea lineage, whereas a separate phylogeny based on two mitochondrial genes corresponds to geographic distance within each species-level lineage and suggests incomplete lineage sorting (ILS) and gene introgression within several intraspecific lineages of Rossbeevera. Furthermore, topological incongruence among the three nuclear single-locus phylogenies suggests that ancient speciation within Rossbeevera probably involved considerable ILS. We also found an unusually long, minisatellite-like insertion within the ITS2 in all Rossbeevera and Turmalinea species. A barcode gap analysis demonstrates that the insertion is more informative for discrimination at various taxonomic levels than the rest of the ITS region and could therefore serve as a unique molecular barcode for these genera.
Collapse
Affiliation(s)
- T. Orihara
- Kanagawa Prefectural Museum of Natural History, 499 Iryuda, Odawara-shi, Kanagawa 250-0031, Japan
| | - T. Lebel
- National Herbarium of Victoria, Royal Botanic Gardens Melbourne, Private Bag 2000, Birdwood Ave, South Yarra, Vic., 3141, Australia
| | - Z.-W. Ge
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - M.E. Smith
- Department of Plant Pathology, University of Florida, Gainesville FL 32611-0680, USA
| | - N. Maekawa
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| |
Collapse
|
30
|
Lehmann K, Bell T, Bowes MJ, Amos GCA, Gaze WH, Wellington EMH, Singer AC. Trace levels of sewage effluent are sufficient to increase class 1 integron prevalence in freshwater biofilms without changing the core community. WATER RESEARCH 2016; 106:163-170. [PMID: 27710799 DOI: 10.1016/j.watres.2016.09.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
Most river systems are impacted by sewage effluent. It remains unclear if there is a lower threshold to the concentration of sewage effluent that can significantly change the structure of the microbial community and its mobile genetic elements in a natural river biofilm. We used novel in situ mesocosms to conduct replicated experiments to study how the addition of low-level concentrations of sewage effluent (nominally 2.5 ppm) affects river biofilms in two contrasting Chalk river systems, the Rivers Kennet and Lambourn (high/low sewage impact, respectively). 16S sequencing and qPCR showed that community composition was not significantly changed by the sewage effluent addition, but class 1 integron prevalence (Lambourn control 0.07% (SE ± 0.01), Lambourn sewage effluent 0.11% (SE ± 0.006), Kennet control 0.56% (SE ± 0.01), Kennet sewage effluent 1.28% (SE ± 0.16)) was significantly greater in the communities exposed to sewage effluent than in the control flumes (ANOVA, F = 5.11, p = 0.045) in both rivers. Furthermore, the difference in integron prevalence between the Kennet control (no sewage effluent addition) and Kennet sewage-treated samples was proportionally greater than the difference in prevalence between the Lambourn control and sewage-treated samples (ANOVA (interaction between treatment and river), F = 6.42, p = 0.028). Mechanisms that lead to such differences could include macronutrient/biofilm or phage/bacteria interactions. Our findings highlight the role that low-level exposure to complex polluting mixtures such as sewage effluent can play in the spread of antibiotic resistance genes. The results also highlight that certain conditions, such as macronutrient load, might accelerate spread of antibiotic resistance genes.
Collapse
Affiliation(s)
- Katja Lehmann
- NERC Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK.
| | - Thomas Bell
- Imperial College London, Department of Life Sciences, Silwood Park Campus, SL5 7PY, UK
| | - Michael J Bowes
- NERC Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | | | - Will H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, UK
| | | | - Andrew C Singer
- NERC Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| |
Collapse
|
31
|
|
32
|
Li F, Henderson G, Sun X, Cox F, Janssen PH, Guan LL. Taxonomic Assessment of Rumen Microbiota Using Total RNA and Targeted Amplicon Sequencing Approaches. Front Microbiol 2016; 7:987. [PMID: 27446027 PMCID: PMC4916217 DOI: 10.3389/fmicb.2016.00987] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/08/2016] [Indexed: 12/20/2022] Open
Abstract
Taxonomic characterization of active gastrointestinal microbiota is essential to detect shifts in microbial communities and functions under various conditions. This study aimed to identify and quantify potentially active rumen microbiota using total RNA sequencing and to compare the outcomes of this approach with the widely used targeted RNA/DNA amplicon sequencing technique. Total RNA isolated from rumen digesta samples from five beef steers was subjected to Illumina paired-end sequencing (RNA-seq), and bacterial and archaeal amplicons of partial 16S rRNA/rDNA were subjected to 454 pyrosequencing (RNA/DNA Amplicon-seq). Taxonomic assessments of the RNA-seq, RNA Amplicon-seq, and DNA Amplicon-seq datasets were performed using a pipeline developed in house. The detected major microbial phylotypes were common among the three datasets, with seven bacterial phyla, fifteen bacterial families, and five archaeal taxa commonly identified across all datasets. There were also unique microbial taxa detected in each dataset. Elusimicrobia and Verrucomicrobia phyla; Desulfovibrionaceae, Elusimicrobiaceae, and Sphaerochaetaceae families; and Methanobrevibacter woesei were only detected in the RNA-Seq and RNA Amplicon-seq datasets, whereas Streptococcaceae was only detected in the DNA Amplicon-seq dataset. In addition, the relative abundances of four bacterial phyla, eight bacterial families and one archaeal taxon were different among the three datasets. This is the first study to compare the outcomes of rumen microbiota profiling between RNA-seq and RNA/DNA Amplicon-seq datasets. Our results illustrate the differences between these methods in characterizing microbiota both qualitatively and quantitatively for the same sample, and so caution must be exercised when comparing data.
Collapse
Affiliation(s)
- Fuyong Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta Edmonton, AB, Canada
| | - Gemma Henderson
- AgResearch Ltd., Grasslands Research Centre Palmerston North, New Zealand
| | - Xu Sun
- Department of Agricultural, Food and Nutritional Science, University of Alberta Edmonton, AB, Canada
| | - Faith Cox
- AgResearch Ltd., Grasslands Research Centre Palmerston North, New Zealand
| | - Peter H Janssen
- AgResearch Ltd., Grasslands Research Centre Palmerston North, New Zealand
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta Edmonton, AB, Canada
| |
Collapse
|
33
|
Lehmann K, Singer A, Bowes MJ, Ings NL, Field D, Bell T. 16S rRNA assessment of the influence of shading on early-successional biofilms in experimental streams. FEMS Microbiol Ecol 2015; 91:fiv129. [PMID: 26499485 PMCID: PMC4657191 DOI: 10.1093/femsec/fiv129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 11/30/2022] Open
Abstract
Elevated nutrient levels can lead to excessive biofilm growth, but reducing nutrient pollution is often challenging. There is therefore interest in developing control measures for biofilm growth in nutrient-rich rivers that could act as complement to direct reductions in nutrient load. Shading of rivers is one option that can mitigate blooms, but few studies have experimentally examined the differences in biofilm communities grown under shaded and unshaded conditions. We investigated the assembly and diversity of biofilm communities using in situ mesocosms within the River Thames (UK). Biofilm composition was surveyed by 454 sequencing of 16S amplicons (∼400 bp length covering regions V6/V7). The results confirm the importance of sunlight for biofilm community assembly; a resource that was utilized by a relatively small number of dominant taxa, leading to significantly less diversity than in shaded communities. These differences between unshaded and shaded treatments were either because of differences in resource utilization or loss of diatom-structures as habitats for bacteria. We observed more co-occurrence patterns and network interactions in the shaded communities. This lends further support to the proposal that increased river shading can help mitigate the effects from macronutrient pollution in rivers. Riparian shading as a mitigation of harmful algal blooms leads to significant structural changes to both bacterial and algal communities in river biofilms.
Collapse
Affiliation(s)
- Katja Lehmann
- NERC Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - Andrew Singer
- NERC Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - Michael J Bowes
- NERC Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | | | - Dawn Field
- NERC Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - Thomas Bell
- Imperial College London, Department of Life Sciences, Silwood Park Campus, SL5 7PY, UK
| |
Collapse
|
34
|
Ras R, Huynh K, Desoky E, Badawy A, Widmer G. Perturbation of the intestinal microbiota of mice infected with Cryptosporidium parvum. Int J Parasitol 2015; 45:567-73. [PMID: 25913477 DOI: 10.1016/j.ijpara.2015.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 01/29/2023]
Abstract
Understanding the interaction between the intestinal microbiota (microbiome) and enteric pathogens is of interest in the development of alternative treatments that do not rely on chemotherapy and do not lead to drug resistance. We undertook research in a rodent model of cryptosporidiosis to assess whether the bacterial gut microbiota is impacted by infection with the protozoan pathogen Cryptosporidium parvum. The profile of the faecal bacterial microbiota in infected and uninfected animals was compared using 16S amplicon sequencing. In four independent experiments, the intestinal microbiota of infected mice differed from that of uninfected animals, regardless of the C. parvum isolate used to infect mice. The use of replicated treatment groups demonstrated that microbiota divergence between treatments was driven by the infection and did not result from spontaneous changes in the intestinal ecosystem unrelated to the infection. Microbiota perturbation induced by C. parvum appeared to be reversible, as we observed a tendency for the phylogenetic distance between infected and uninfected mice to diminish after mice cleared the infection. As mice infected with C. parvum do not develop diarrhoea, these observations indicate that microbiota perturbation results from other mechanisms than an accelerated movement of gut content.
Collapse
Affiliation(s)
- Refaat Ras
- Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA; Parasitology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Kevin Huynh
- Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Enas Desoky
- Parasitology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Badawy
- Parasitology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Giovanni Widmer
- Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA.
| |
Collapse
|
35
|
Nevalainen A, Täubel M, Hyvärinen A. Indoor fungi: companions and contaminants. INDOOR AIR 2015; 25:125-56. [PMID: 25601374 DOI: 10.1111/ina.12182] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 12/20/2014] [Indexed: 05/21/2023]
Abstract
This review discusses the role of fungi and fungal products in indoor environments, especially as agents of human exposure. Fungi are present everywhere, and knowledge for indoor environments is extensive on their occurrence and ecology, concentrations, and determinants. Problems of dampness and mold have dominated the discussion on indoor fungi. However, the role of fungi in human health is still not well understood. In this review, we take a look back to integrate what cultivation-based research has taught us alongside more recent work with cultivation-independent techniques. We attempt to summarize what is known today and to point out where more data is needed for risk assessment associated with indoor fungal exposures. New data have demonstrated qualitative and quantitative richness of fungal material inside and outside buildings. Research on mycotoxins shows that just as microbes are everywhere in our indoor environments, so too are their metabolic products. Assessment of fungal exposures is notoriously challenging due to the numerous factors that contribute to the variation of fungal concentrations in indoor environments. We also may have to acknowledge and incorporate into our understanding the complexity of interactions between multiple biological agents in assessing their effects on human health and well-being.
Collapse
Affiliation(s)
- A Nevalainen
- Institute for Health and Welfare, Kuopio, Finland
| | | | | |
Collapse
|
36
|
Brooks JP, Edwards DJ, Harwich MD, Rivera MC, Fettweis JM, Serrano MG, Reris RA, Sheth NU, Huang B, Girerd P, Strauss JF, Jefferson KK, Buck GA. The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies. BMC Microbiol 2015; 15:66. [PMID: 25880246 PMCID: PMC4433096 DOI: 10.1186/s12866-015-0351-6] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Characterizing microbial communities via next-generation sequencing is subject to a number of pitfalls involving sample processing. The observed community composition can be a severe distortion of the quantities of bacteria actually present in the microbiome, hampering analysis and threatening the validity of conclusions from metagenomic studies. We introduce an experimental protocol using mock communities for quantifying and characterizing bias introduced in the sample processing pipeline. We used 80 bacterial mock communities comprised of prescribed proportions of cells from seven vaginally-relevant bacterial strains to assess the bias introduced in the sample processing pipeline. We created two additional sets of 80 mock communities by mixing prescribed quantities of DNA and PCR product to quantify the relative contribution to bias of (1) DNA extraction, (2) PCR amplification, and (3) sequencing and taxonomic classification for particular choices of protocols for each step. We developed models to predict the "true" composition of environmental samples based on the observed proportions, and applied them to a set of clinical vaginal samples from a single subject during four visits. RESULTS We observed that using different DNA extraction kits can produce dramatically different results but bias is introduced regardless of the choice of kit. We observed error rates from bias of over 85% in some samples, while technical variation was very low at less than 5% for most bacteria. The effects of DNA extraction and PCR amplification for our protocols were much larger than those due to sequencing and classification. The processing steps affected different bacteria in different ways, resulting in amplified and suppressed observed proportions of a community. When predictive models were applied to clinical samples from a subject, the predicted microbiome profiles were better reflections of the physiology and diagnosis of the subject at the visits than the observed community compositions. CONCLUSIONS Bias in 16S studies due to DNA extraction and PCR amplification will continue to require attention despite further advances in sequencing technology. Analysis of mock communities can help assess bias and facilitate the interpretation of results from environmental samples.
Collapse
Affiliation(s)
- J Paul Brooks
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, 23284-3083, Richmond, VA, USA. .,Center for the Study of Biological Complexity, Virginia Commonwealth University, 23284, Richmond, VA, USA.
| | - David J Edwards
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, 23284-3083, Richmond, VA, USA.
| | - Michael D Harwich
- Department of Microbiology and Immunology, Virginia Commonwealth University, 23284, Richmond, VA, USA.
| | - Maria C Rivera
- Department of Biology, Virginia Commonwealth University, 23284, Richmond, VA, USA.
| | - Jennifer M Fettweis
- Department of Microbiology and Immunology, Virginia Commonwealth University, 23284, Richmond, VA, USA.
| | - Myrna G Serrano
- Center for the Study of Biological Complexity, Virginia Commonwealth University, 23284, Richmond, VA, USA. .,Department of Microbiology and Immunology, Virginia Commonwealth University, 23284, Richmond, VA, USA.
| | - Robert A Reris
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, 23284-3083, Richmond, VA, USA.
| | - Nihar U Sheth
- Center for the Study of Biological Complexity, Virginia Commonwealth University, 23284, Richmond, VA, USA.
| | - Bernice Huang
- Department of Microbiology and Immunology, Virginia Commonwealth University, 23284, Richmond, VA, USA.
| | - Philippe Girerd
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, 23284, Richmond, VA, USA.
| | | | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, 23284, Richmond, VA, USA.
| | - Kimberly K Jefferson
- Center for the Study of Biological Complexity, Virginia Commonwealth University, 23284, Richmond, VA, USA. .,Department of Microbiology and Immunology, Virginia Commonwealth University, 23284, Richmond, VA, USA.
| | - Gregory A Buck
- Center for the Study of Biological Complexity, Virginia Commonwealth University, 23284, Richmond, VA, USA. .,Department of Microbiology and Immunology, Virginia Commonwealth University, 23284, Richmond, VA, USA.
| |
Collapse
|
37
|
Callac N, Rouxel O, Lesongeur F, Liorzou C, Bollinger C, Pignet P, Chéron S, Fouquet Y, Rommevaux-Jestin C, Godfroy A. Biogeochemical insights into microbe-mineral-fluid interactions in hydrothermal chimneys using enrichment culture. Extremophiles 2015; 19:597-617. [PMID: 25778451 DOI: 10.1007/s00792-015-0742-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/01/2015] [Indexed: 10/23/2022]
Abstract
Active hydrothermal chimneys host diverse microbial communities exhibiting various metabolisms including those involved in various biogeochemical cycles. To investigate microbe-mineral-fluid interactions in hydrothermal chimney and the driver of microbial diversity, a cultural approach using a gas-lift bioreactor was chosen. An enrichment culture was performed using crushed active chimney sample as inoculum and diluted hydrothermal fluid from the same vent as culture medium. Daily sampling provided time-series access to active microbial diversity and medium composition. Active archaeal and bacterial communities consisted mainly of sulfur, sulfate and iron reducers and hydrogen oxidizers with the detection of Thermococcus, Archaeoglobus, Geoglobus, Sulfurimonas and Thermotoga sequences. The simultaneous presence of active Geoglobus sp. and Archaeoglobus sp. argues against competition for available carbon sources and electron donors between sulfate and iron reducers at high temperature. This approach allowed the cultivation of microbial populations that were under-represented in the initial environmental sample. The microbial communities are heterogeneously distributed within the gas-lift bioreactor; it is unlikely that bulk mineralogy or fluid chemistry is the drivers of microbial community structure. Instead, we propose that micro-environmental niche characteristics, created by the interaction between the mineral grains and the fluid chemistry, are the main drivers of microbial diversity in natural systems.
Collapse
Affiliation(s)
- Nolwenn Callac
- Laboratoire de Microbiologie des Environnements Extrêmes, Université de Bretagne Occidentale, UEB, IUEM, UMR 6197, Place Nicolas Copernic, 29280, Plouzané, France,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The genomic proliferation of transposable elements in colonizing populations: Schistosoma mansoni in the new world. Genetica 2015; 143:287-98. [PMID: 25681233 DOI: 10.1007/s10709-015-9825-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
Abstract
Transposable elements (TEs) are mobile genes with an inherent ability to move within and among genomes. Theory predicts that TEs proliferate extensively during physiological stress due to the breakdown of TE repression systems. We tested this hypothesis in Schistosoma mansoni, a widespread trematode parasite that causes the human disease schistosomiasis. According to phylogenetic analysis, S. mansoni invaded the new world during the last 500 years. We hypothesized that new world strains of S. mansoni would have more copies of TEs than old world strains due to the physiological stress associated with invasion of the new world. We quantified the copy number of six TEs (Saci-1, Saci-2 and Saci-3, Perere-1, Merlin-sm1, and SmTRC1) in the genome and the transcriptome of old world and new world strains of S. mansoni, using qPCR relative quantification. As predicted, the genomes of new world parasites contain significantly more copies of class I and class II TEs in both laboratory and field strains. However, such differences are not observed in the transcriptome suggesting that either TE silencing mechanisms have reactivated to control the expression of these elements or the presence of inactive truncated copies of TEs.
Collapse
|
39
|
Mahé F, Mayor J, Bunge J, Chi J, Siemensmeyer T, Stoeck T, Wahl B, Paprotka T, Filker S, Dunthorn M. Comparing High-throughput Platforms for Sequencing the V4 Region of SSU-rDNA in Environmental Microbial Eukaryotic Diversity Surveys. J Eukaryot Microbiol 2014; 62:338-45. [PMID: 25312509 DOI: 10.1111/jeu.12187] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/11/2014] [Accepted: 09/19/2014] [Indexed: 01/25/2023]
Abstract
High-throughput sequencing platforms are continuing to increase resulting read lengths, which is allowing for a deeper and more accurate depiction of environmental microbial diversity. With the nascent Reagent Kit v3, Illumina MiSeq now has the ability to sequence the eukaryotic hyper-variable V4 region of the SSU-rDNA locus with paired-end reads. Using DNA collected from soils with analyses of strictly- and nearly identical amplicons, here we ask how the new Illumina MiSeq data compares with what we can obtain with Roche/454 GS FLX with regard to quantity and quality, presence and absence, and abundance perspectives. We show that there is an easy qualitative transition from the Roche/454 to the Illumina MiSeq platforms. The ease of this transition is more nuanced quantitatively for low-abundant amplicons, although estimates of abundances are known to also vary within platforms.
Collapse
Affiliation(s)
- Frédéric Mahé
- Department of Ecology, University of Kaiserslautern, D-67663, Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rare biosphere exploration using high-throughput sequencing: research progress and perspectives. CONSERV GENET 2014. [DOI: 10.1007/s10592-014-0678-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Wang Z, Cui Z, Li Y, Hou T, Liu X, Xi Y, Liu Y, Li H, He Q. High prevalence of erythromycin-resistant Bordetella pertussis in Xi'an, China. Clin Microbiol Infect 2014; 20:O825-30. [DOI: 10.1111/1469-0691.12671] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 05/04/2014] [Accepted: 05/04/2014] [Indexed: 11/29/2022]
|
42
|
Pawlowski J, Lejzerowicz F, Esling P. Next-generation environmental diversity surveys of foraminifera: preparing the future. THE BIOLOGICAL BULLETIN 2014; 227:93-106. [PMID: 25411369 DOI: 10.1086/bblv227n2p93] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Foraminifera are commonly defined as marine testate protists, and their diversity is mainly assessed on the basis of the morphology of their agglutinated or mineralized tests. Diversity surveys based on environmental DNA (eDNA) have dramatically changed this view by revealing an unexpected diversity of naked and organic-walled lineages as well as detecting foraminiferal lineages in soil and freshwater environments. Moreover, single-cell analyses have allowed discrimination among genetically distinctive types within almost every described morphospecies. In view of these studies, the foraminiferal diversity appeared to be largely underestimated, but its accurate estimation was impeded by the low speed and coverage of a cloning-based eDNA approach. With the advent of high-throughput sequencing (HTS) technologies, these limitations disappeared in favor of exhaustive descriptions of foraminiferal diversity in numerous samples. Yet, the biases and errors identified in early HTS studies raised some questions about the accuracy of HTS data and their biological interpretation. Among the most controversial issues affecting the reliability of HTS diversity estimates are (1) the impact of technical and biological biases, (2) the sensitivity and specificity of taxonomic sequence assignment, (3) the ability to distinguish rare species, and (4) the quantitative interpretation of HTS data. Here, we document the lessons learned from previous HTS surveys and present the current advances and applications focusing on foraminiferal eDNA. We discuss the problems associated with HTS approaches and predict the future trends and avenues that hold promises for surveying foraminiferal diversity accurately and efficiently.
Collapse
Affiliation(s)
- J Pawlowski
- Department of Genetics and Evolution, University of Geneva, Switzerland; and
| | - F Lejzerowicz
- Department of Genetics and Evolution, University of Geneva, Switzerland; and
| | - P Esling
- IRCAM, UMR 9912, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
43
|
Micallef L, Rodgers P. eulerAPE: drawing area-proportional 3-Venn diagrams using ellipses. PLoS One 2014; 9:e101717. [PMID: 25032825 PMCID: PMC4102485 DOI: 10.1371/journal.pone.0101717] [Citation(s) in RCA: 349] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 06/10/2014] [Indexed: 12/22/2022] Open
Abstract
Venn diagrams with three curves are used extensively in various medical and scientific disciplines to visualize relationships between data sets and facilitate data analysis. The area of the regions formed by the overlapping curves is often directly proportional to the cardinality of the depicted set relation or any other related quantitative data. Drawing these diagrams manually is difficult and current automatic drawing methods do not always produce appropriate diagrams. Most methods depict the data sets as circles, as they perceptually pop out as complete distinct objects due to their smoothness and regularity. However, circles cannot draw accurate diagrams for most 3-set data and so the generated diagrams often have misleading region areas. Other methods use polygons to draw accurate diagrams. However, polygons are non-smooth and non-symmetric, so the curves are not easily distinguishable and the diagrams are difficult to comprehend. Ellipses are more flexible than circles and are similarly smooth, but none of the current automatic drawing methods use ellipses. We present eulerAPE as the first method and software that uses ellipses for automatically drawing accurate area-proportional Venn diagrams for 3-set data. We describe the drawing method adopted by eulerAPE and we discuss our evaluation of the effectiveness of eulerAPE and ellipses for drawing random 3-set data. We compare eulerAPE and various other methods that are currently available and we discuss differences between their generated diagrams in terms of accuracy and ease of understanding for real world data.
Collapse
Affiliation(s)
- Luana Micallef
- School of Computing, University of Kent, Canterbury, Kent, United Kingdom
- * E-mail:
| | - Peter Rodgers
- School of Computing, University of Kent, Canterbury, Kent, United Kingdom
| |
Collapse
|
44
|
Investigating microbial eukaryotic diversity from a global census: insights from a comparison of pyrotag and full-length sequences of 18S rRNA genes. Appl Environ Microbiol 2014; 80:4363-73. [PMID: 24814788 DOI: 10.1128/aem.00057-14] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Next-generation DNA sequencing (NGS) approaches are rapidly surpassing Sanger sequencing for characterizing the diversity of natural microbial communities. Despite this rapid transition, few comparisons exist between Sanger sequences and the generally much shorter reads of NGS. Operational taxonomic units (OTUs) derived from full-length (Sanger sequencing) and pyrotag (454 sequencing of the V9 hypervariable region) sequences of 18S rRNA genes from 10 global samples were analyzed in order to compare the resulting protistan community structures and species richness. Pyrotag OTUs called at 98% sequence similarity yielded numbers of OTUs that were similar overall to those for full-length sequences when the latter were called at 97% similarity. Singleton OTUs strongly influenced estimates of species richness but not the higher-level taxonomic composition of the community. The pyrotag and full-length sequence data sets had slightly different taxonomic compositions of rhizarians, stramenopiles, cryptophytes, and haptophytes, but the two data sets had similarly high compositions of alveolates. Pyrotag-based OTUs were often derived from sequences that mapped to multiple full-length OTUs at 100% similarity. Thus, pyrotags sequenced from a single hypervariable region might not be appropriate for establishing protistan species-level OTUs. However, nonmetric multidimensional scaling plots constructed with the two data sets yielded similar clusters, indicating that beta diversity analysis results were similar for the Sanger and NGS sequences. Short pyrotag sequences can provide holistic assessments of protistan communities, although care must be taken in interpreting the results. The longer reads (>500 bp) that are now becoming available through NGS should provide powerful tools for assessing the diversity of microbial eukaryotic assemblages.
Collapse
|
45
|
Zhan A, Bailey SA, Heath DD, Macisaac HJ. Performance comparison of genetic markers for high-throughput sequencing-based biodiversity assessment in complex communities. Mol Ecol Resour 2014; 14:1049-59. [PMID: 24655333 DOI: 10.1111/1755-0998.12254] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/27/2014] [Accepted: 03/10/2014] [Indexed: 11/29/2022]
Abstract
Metabarcode surveys of DNA extracted from environmental samples are increasingly popular for biodiversity assessment in natural communities. Such surveys rely heavily on robust genetic markers. Therefore, analysis of PCR efficiency and subsequent biodiversity estimation for different types of genetic markers and their corresponding primers is important. Here, we test the PCR efficiency and biodiversity recovery potential of three commonly used genetic markers - nuclear small subunit ribosomal DNA (18S), mitochondrial cytochrome c oxidase subunit I (COI) and 16S ribosomal RNA (mt16S) - using 454 pyrosequencing of a zooplankton community collected from Hamilton Harbour, Ontario. We found that biodiversity detection power and PCR efficiency varied widely among these markers. All tested primers for COI failed to provide high-quality PCR products for pyrosequencing, but newly designed primers for 18S and 16S passed all tests. Furthermore, multiple analyses based on large-scale pyrosequencing (i.e. 1/2 PicoTiter plate for each marker) showed that primers for 18S recover more (38 orders) groups than 16S (10 orders) across all taxa, and four vs. two orders and nine vs. six families for Crustacea. Our results showed that 18S, using newly designed primers, is an efficient and powerful tool for profiling biodiversity in largely unexplored communities, especially when amplification difficulties exist for mitochondrial markers such as COI. Universal primers for higher resolution markers such as COI are still needed to address the possible low resolution of 18S for species-level identification.
Collapse
Affiliation(s)
- Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, Canada, N9B 3P4
| | | | | | | |
Collapse
|
46
|
Dunthorn M, Otto J, Berger SA, Stamatakis A, Mahé F, Romac S, de Vargas C, Audic S, Stock A, Kauff F, Stoeck T. Placing environmental next-generation sequencing amplicons from microbial eukaryotes into a phylogenetic context. Mol Biol Evol 2014; 31:993-1009. [PMID: 24473288 DOI: 10.1093/molbev/msu055] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nucleotide positions in the hypervariable V4 and V9 regions of the small subunit (SSU)-rDNA locus are normally difficult to align and are usually removed before standard phylogenetic analyses. Yet, with next-generation sequencing data, amplicons of these regions are all that are available to answer ecological and evolutionary questions that rely on phylogenetic inferences. With ciliates, we asked how inclusion of the V4 or V9 regions, regardless of alignment quality, affects tree topologies using distinct phylogenetic methods (including PairDist that is introduced here). Results show that the best approach is to place V4 amplicons into an alignment of full-length Sanger SSU-rDNA sequences and to infer the phylogenetic tree with RAxML. A sliding window algorithm as implemented in RAxML shows, though, that not all nucleotide positions in the V4 region are better than V9 at inferring the ciliate tree. With this approach and an ancestral-state reconstruction, we use V4 amplicons from European nearshore sampling sites to infer that rather than being primarily terrestrial and freshwater, colpodean ciliates may have repeatedly transitioned from terrestrial/freshwater to marine environments.
Collapse
Affiliation(s)
- Micah Dunthorn
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gobet A, Boetius A, Ramette A. Ecological coherence of diversity patterns derived from classical fingerprinting and Next Generation Sequencing techniques. Environ Microbiol 2013; 16:2672-81. [PMID: 24147993 PMCID: PMC4262003 DOI: 10.1111/1462-2920.12308] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/13/2013] [Indexed: 11/28/2022]
Abstract
Changes in richness and bacterial community structure obtained via 454 Massively Parallel Tag Sequencing (MPTS) and Automated Ribosomal Intergenic Analysis (ARISA) were systematically compared to determine whether and how the ecological knowledge obtained from both molecular techniques could be combined. We evaluated community changes over time and depth in marine coastal sands at different levels of taxonomic resolutions, sequence corrections and sequence abundances. Although richness over depth layers or sampling dates greatly varied [∼ 30% and 70–80% new operational taxonomic units (OTU) between two samples with ARISA and MPTS respectively], overall patterns of community variations were similar with both approaches. Alpha-diversity estimated by ARISA-derived OTU was most similar to that obtained from MPTS-derived OTU defined at the order level. Similar patterns of OTU replacement were also found with MPTS at the family level and with 20–25% rare types removed. Using ARISA or MPTS datasets with lower resolution, such as those containing only resident OTU, yielded a similar set of significant contextual variables explaining bacterial community changes. Hence, ARISA as a rapid and low-cost fingerprinting technique represents a valid starting point for more in-depth exploration of community composition when complemented by the detailed taxonomic description offered by MPTS.
Collapse
Affiliation(s)
- Angélique Gobet
- HGF-MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, Bremen, Germany; Jacobs University Bremen GmbH, Bremen, Germany.
| | | | | |
Collapse
|
48
|
Star B, Haverkamp THA, Jentoft S, Jakobsen KS. Next generation sequencing shows high variation of the intestinal microbial species composition in Atlantic cod caught at a single location. BMC Microbiol 2013; 13:248. [PMID: 24206635 PMCID: PMC3840566 DOI: 10.1186/1471-2180-13-248] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 11/07/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The observation that specific members of the microbial intestinal community can be shared among vertebrate hosts has promoted the concept of a core microbiota whose composition is determined by host-specific selection. Most studies investigating this concept in individual hosts have focused on mammals, yet the diversity of fish lineages provides unique comparative opportunities from an evolutionary, immunological and environmental perspective. Here we describe microbial intestinal communities of eleven individual Atlantic cod (Gadus morhua) caught at a single location based on an extensively 454 sequenced 16S rRNA library of the V3 region. RESULTS We obtained a total of 280447 sequences and identify 573 Operational Taxonomic Units (OTUs) at 97% sequence similarity level, ranging from 40 to 228 OTUs per individual. We find that ten OTUs are shared, though the number of reads of these OTUs is highly variable. This variation is further illustrated by community diversity estimates that fluctuate several orders of magnitude among specimens. The shared OTUs belong to the orders of Vibrionales, which quantitatively dominate the Atlantic cod intestinal microbiota, followed by variable numbers of Bacteroidales, Erysipelotrichales, Clostridiales, Alteromonadales and Deferribacterales. CONCLUSIONS The microbial intestinal community composition varies significantly in individual Atlantic cod specimens caught at a single location. This high variation among specimens suggests that a complex combination of factors influence the species distribution of these intestinal communities.
Collapse
Affiliation(s)
- Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066, Blindern, N-0316 Oslo, Norway.
| | | | | | | |
Collapse
|
49
|
Wegner KM, Volkenborn N, Peter H, Eiler A. Disturbance induced decoupling between host genetics and composition of the associated microbiome. BMC Microbiol 2013; 13:252. [PMID: 24206899 PMCID: PMC3840651 DOI: 10.1186/1471-2180-13-252] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 11/01/2013] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Studies of oyster microbiomes have revealed that a limited number of microbes, including pathogens, can dominate microbial communities in host tissues such as gills and gut. Much of the bacterial diversity however remains underexplored and unexplained, although environmental conditions and host genetics have been implicated. We used 454 next generation 16S rRNA amplicon sequencing of individually tagged PCR reactions to explore the diversity of bacterial communities in gill tissue of the invasive Pacific oyster Crassostrea gigas stemming from genetically differentiated beds under ambient outdoor conditions and after a multifaceted disturbance treatment imposing stress on the host. RESULTS While the gill associated microbial communities in oysters were dominated by few abundant taxa (i.e. Sphingomonas, Mycoplasma) the distribution of rare bacterial groups correlated to relatedness between the hosts under ambient conditions. Exposing the host to disturbance broke apart this relationship by removing rare phylotypes thereby reducing overall microbial diversity. Shifts in the microbiome composition in response to stress did not result in a net increase in genera known to contain potentially pathogenic strains. CONCLUSION The decrease in microbial diversity and the disassociation between population genetic structure of the hosts and their associated microbiome suggest that disturbance (i.e. stress) may play a significant role for the assembly of the natural microbiome. Such community shifts may in turn also feed back on the course of disease and the occurrence of mass mortality events in oyster populations.
Collapse
Affiliation(s)
- Karl Mathias Wegner
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Coastal Ecology, Wadden Sea Station Sylt, Hafenstrasse 43, 25992, List/Sylt, Germany.
| | | | | | | |
Collapse
|
50
|
Ross E, Moate P, Marett L, Cocks B, Hayes B. Investigating the effect of two methane-mitigating diets on the rumen microbiome using massively parallel sequencing. J Dairy Sci 2013; 96:6030-46. [DOI: 10.3168/jds.2013-6766] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/17/2013] [Indexed: 11/19/2022]
|