1
|
Lewis J, Gallichotte EN, Randall J, Glass A, Foy BD, Ebel GD, Kading RC. Intrinsic factors driving mosquito vector competence and viral evolution: a review. Front Cell Infect Microbiol 2023; 13:1330600. [PMID: 38188633 PMCID: PMC10771300 DOI: 10.3389/fcimb.2023.1330600] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Mosquitoes are responsible for the transmission of numerous viruses of global health significance. The term "vector competence" describes the intrinsic ability of an arthropod vector to transmit an infectious agent. Prior to transmission, the mosquito itself presents a complex and hostile environment through which a virus must transit to ensure propagation and transmission to the next host. Viruses imbibed in an infectious blood meal must pass in and out of the mosquito midgut, traffic through the body cavity or hemocoel, invade the salivary glands, and be expelled with the saliva when the vector takes a subsequent blood meal. Viruses encounter physical, cellular, microbial, and immunological barriers, which are influenced by the genetic background of the mosquito vector as well as environmental conditions. Collectively, these factors place significant selective pressure on the virus that impact its evolution and transmission. Here, we provide an overview of the current state of the field in understanding the mosquito-specific factors that underpin vector competence and how each of these mechanisms may influence virus evolution.
Collapse
Affiliation(s)
- Juliette Lewis
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Emily N. Gallichotte
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Jenna Randall
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Arielle Glass
- Department of Cellular and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Brian D. Foy
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Gregory D. Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rebekah C. Kading
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
2
|
Alexander LT, Durairaj J, Kryshtafovych A, Abriata LA, Bayo Y, Bhabha G, Breyton C, Caulton SG, Chen J, Degroux S, Ekiert DC, Erlandsen BS, Freddolino PL, Gilzer D, Greening C, Grimes JM, Grinter R, Gurusaran M, Hartmann MD, Hitchman CJ, Keown JR, Kropp A, Kursula P, Lovering AL, Lemaitre B, Lia A, Liu S, Logotheti M, Lu S, Markússon S, Miller MD, Minasov G, Niemann HH, Opazo F, Phillips GN, Davies OR, Rommelaere S, Rosas‐Lemus M, Roversi P, Satchell K, Smith N, Wilson MA, Wu K, Xia X, Xiao H, Zhang W, Zhou ZH, Fidelis K, Topf M, Moult J, Schwede T. Protein target highlights in CASP15: Analysis of models by structure providers. Proteins 2023; 91:1571-1599. [PMID: 37493353 PMCID: PMC10792529 DOI: 10.1002/prot.26545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 07/27/2023]
Abstract
We present an in-depth analysis of selected CASP15 targets, focusing on their biological and functional significance. The authors of the structures identify and discuss key protein features and evaluate how effectively these aspects were captured in the submitted predictions. While the overall ability to predict three-dimensional protein structures continues to impress, reproducing uncommon features not previously observed in experimental structures is still a challenge. Furthermore, instances with conformational flexibility and large multimeric complexes highlight the need for novel scoring strategies to better emphasize biologically relevant structural regions. Looking ahead, closer integration of computational and experimental techniques will play a key role in determining the next challenges to be unraveled in the field of structural molecular biology.
Collapse
Affiliation(s)
- Leila T. Alexander
- BiozentrumUniversity of BaselBaselSwitzerland
- Computational Structural BiologySIB Swiss Institute of BioinformaticsBaselSwitzerland
| | - Janani Durairaj
- BiozentrumUniversity of BaselBaselSwitzerland
- Computational Structural BiologySIB Swiss Institute of BioinformaticsBaselSwitzerland
| | | | - Luciano A. Abriata
- School of Life SciencesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Yusupha Bayo
- Department of BiosciencesUniversity of MilanoMilanItaly
- IBBA‐CNR Unit of MilanoInstitute of Agricultural Biology and BiotechnologyMilanItaly
| | - Gira Bhabha
- Department of Cell BiologyNew York University School of MedicineNew YorkNew YorkUSA
| | | | | | - James Chen
- Department of Cell BiologyNew York University School of MedicineNew YorkNew YorkUSA
| | | | - Damian C. Ekiert
- Department of Cell BiologyNew York University School of MedicineNew YorkNew YorkUSA
- Department of MicrobiologyNew York University School of MedicineNew YorkNew YorkUSA
| | - Benedikte S. Erlandsen
- Wellcome Centre for Cell BiologyInstitute of Cell Biology, University of EdinburghEdinburghUK
| | - Peter L. Freddolino
- Department of Biological Chemistry, Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMichiganUSA
| | - Dominic Gilzer
- Department of ChemistryBielefeld UniversityBielefeldGermany
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Securing Antarctica's Environmental FutureMonash UniversityClaytonVictoriaAustralia
- Centre to Impact AMRMonash UniversityClaytonVictoriaAustralia
- ARC Research Hub for Carbon Utilisation and RecyclingMonash UniversityClaytonVictoriaAustralia
| | - Jonathan M. Grimes
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Rhys Grinter
- Department of Microbiology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Centre for Electron Microscopy of Membrane ProteinsMonash Institute of Pharmaceutical SciencesParkvilleVictoriaAustralia
| | - Manickam Gurusaran
- Wellcome Centre for Cell BiologyInstitute of Cell Biology, University of EdinburghEdinburghUK
| | - Marcus D. Hartmann
- Max Planck Institute for BiologyTübingenGermany
- Interfaculty Institute of Biochemistry, University of TübingenTübingenGermany
| | - Charlie J. Hitchman
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLeicesterUK
| | - Jeremy R. Keown
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Ashleigh Kropp
- Department of Microbiology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Petri Kursula
- Department of BiomedicineUniversity of BergenBergenNorway
- Faculty of Biochemistry and Molecular Medicine & Biocenter OuluUniversity of OuluOuluFinland
| | | | - Bruno Lemaitre
- School of Life SciencesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Andrea Lia
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLeicesterUK
- ISPA‐CNR Unit of LecceInstitute of Sciences of Food ProductionLecceItaly
| | - Shiheng Liu
- Department of Microbiology, Immunology, and Molecular GeneticsUniversity of CaliforniaLos AngelesCaliforniaUSA
- California NanoSystems InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Maria Logotheti
- Max Planck Institute for BiologyTübingenGermany
- Interfaculty Institute of Biochemistry, University of TübingenTübingenGermany
- Present address:
Institute of BiochemistryUniversity of GreifswaldGreifswaldGermany
| | - Shuze Lu
- Lanzhou University School of Life SciencesLanzhouChina
| | | | | | - George Minasov
- Department of Microbiology‐ImmunologyNorthwestern Feinberg School of MedicineChicagoIllinoisUSA
| | | | - Felipe Opazo
- NanoTag Biotechnologies GmbHGöttingenGermany
- Institute of Neuro‐ and Sensory PhysiologyUniversity of Göttingen Medical CenterGöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration (BIN)University of Göttingen Medical CenterGöttingenGermany
| | - George N. Phillips
- Department of BiosciencesRice UniversityHoustonTexasUSA
- Department of ChemistryRice UniversityHoustonTexasUSA
| | - Owen R. Davies
- Wellcome Centre for Cell BiologyInstitute of Cell Biology, University of EdinburghEdinburghUK
| | - Samuel Rommelaere
- School of Life SciencesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Monica Rosas‐Lemus
- Department of Microbiology‐ImmunologyNorthwestern Feinberg School of MedicineChicagoIllinoisUSA
- Present address:
Department of Molecular Genetics and MicrobiologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Pietro Roversi
- IBBA‐CNR Unit of MilanoInstitute of Agricultural Biology and BiotechnologyMilanItaly
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLeicesterUK
| | - Karla Satchell
- Department of Microbiology‐ImmunologyNorthwestern Feinberg School of MedicineChicagoIllinoisUSA
| | - Nathan Smith
- Department of Biochemistry and the Redox Biology CenterUniversity of NebraskaLincolnNebraskaUSA
| | - Mark A. Wilson
- Department of Biochemistry and the Redox Biology CenterUniversity of NebraskaLincolnNebraskaUSA
| | - Kuan‐Lin Wu
- Department of ChemistryRice UniversityHoustonTexasUSA
| | - Xian Xia
- Department of Microbiology, Immunology, and Molecular GeneticsUniversity of CaliforniaLos AngelesCaliforniaUSA
- California NanoSystems InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Han Xiao
- Department of BiosciencesRice UniversityHoustonTexasUSA
- Department of ChemistryRice UniversityHoustonTexasUSA
- Department of BioengineeringRice UniversityHoustonTexasUSA
| | - Wenhua Zhang
- Lanzhou University School of Life SciencesLanzhouChina
| | - Z. Hong Zhou
- Department of Microbiology, Immunology, and Molecular GeneticsUniversity of CaliforniaLos AngelesCaliforniaUSA
- California NanoSystems InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA
| | | | - Maya Topf
- University Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
- Centre for Structural Systems BiologyLeibniz‐Institut für Virologie (LIV)HamburgGermany
| | - John Moult
- Department of Cell Biology and Molecular Genetics, Institute for Bioscience and Biotechnology ResearchUniversity of MarylandRockvilleMarylandUSA
| | - Torsten Schwede
- BiozentrumUniversity of BaselBaselSwitzerland
- Computational Structural BiologySIB Swiss Institute of BioinformaticsBaselSwitzerland
| |
Collapse
|
3
|
Novelo M, Dutra HLC, Metz HC, Jones MJ, Sigle LT, Frentiu FD, Allen SL, Chenoweth SF, McGraw EA. Dengue and chikungunya virus loads in the mosquito Aedes aegypti are determined by distinct genetic architectures. PLoS Pathog 2023; 19:e1011307. [PMID: 37043515 PMCID: PMC10124881 DOI: 10.1371/journal.ppat.1011307] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/24/2023] [Accepted: 03/19/2023] [Indexed: 04/13/2023] Open
Abstract
Aedes aegypti is the primary vector of the arboviruses dengue (DENV) and chikungunya (CHIKV). These viruses exhibit key differences in their vector interactions, the latter moving more quicky through the mosquito and triggering fewer standard antiviral pathways. As the global footprint of CHIKV continues to expand, we seek to better understand the mosquito's natural response to CHIKV-both to compare it to DENV:vector coevolutionary history and to identify potential targets in the mosquito for genetic modification. We used a modified full-sibling design to estimate the contribution of mosquito genetic variation to viral loads of both DENV and CHIKV. Heritabilities were significant, but higher for DENV (40%) than CHIKV (18%). Interestingly, there was no genetic correlation between DENV and CHIKV loads between siblings. These data suggest Ae. aegypti mosquitoes respond to the two viruses using distinct genetic mechanisms. We also examined genome-wide patterns of gene expression between High and Low CHIKV families representing the phenotypic extremes of viral load. Using RNAseq, we identified only two loci that consistently differentiated High and Low families: a long non-coding RNA that has been identified in mosquito screens post-infection and a distant member of a family of Salivary Gland Specific (SGS) genes. Interestingly, the latter gene is also associated with horizontal gene transfer between mosquitoes and the endosymbiotic bacterium Wolbachia. This work is the first to link the SGS gene to a mosquito phenotype. Understanding the molecular details of how this gene contributes to viral control in mosquitoes may, therefore, also shed light on its role in Wolbachia.
Collapse
Affiliation(s)
- Mario Novelo
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Heverton LC Dutra
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Hillery C. Metz
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew J. Jones
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Leah T. Sigle
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Francesca D. Frentiu
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Herston, Queensland, Australia
| | - Scott L. Allen
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Stephen F. Chenoweth
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Elizabeth A. McGraw
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
4
|
Klug D, Gautier A, Calvo E, Marois E, Blandin SA. The salivary protein Saglin facilitates efficient midgut colonization of Anopheles mosquitoes by malaria parasites. PLoS Pathog 2023; 19:e1010538. [PMID: 36862755 PMCID: PMC10013899 DOI: 10.1371/journal.ppat.1010538] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 03/14/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Malaria is caused by the unicellular parasite Plasmodium which is transmitted to humans through the bite of infected female Anopheles mosquitoes. To initiate sexual reproduction and to infect the midgut of the mosquito, Plasmodium gametocytes are able to recognize the intestinal environment after being ingested during blood feeding. A shift in temperature, pH change and the presence of the insect-specific compound xanthurenic acid have been shown to be important stimuli perceived by gametocytes to become activated and proceed to sexual reproduction. Here we report that the salivary protein Saglin, previously proposed to be a receptor for the recognition of salivary glands by sporozoites, facilitates Plasmodium colonization of the mosquito midgut, but does not contribute to salivary gland invasion. In mosquito mutants lacking Saglin, Plasmodium infection of Anopheles females is reduced, resulting in impaired transmission of sporozoites at low infection densities. Interestingly, Saglin can be detected in high amounts in the midgut of mosquitoes after blood ingestion, possibly indicating a previously unknown host-pathogen interaction between Saglin and midgut stages of Plasmodium. Furthermore, we were able to show that saglin deletion has no fitness cost in laboratory conditions, suggesting this gene would be an interesting target for gene drive approaches.
Collapse
Affiliation(s)
- Dennis Klug
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
- * E-mail:
| | - Amandine Gautier
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Eric Marois
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Stéphanie A. Blandin
- Université de Strasbourg, CNRS UPR9022, INSERM U1257, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| |
Collapse
|
5
|
Native structure of mosquito salivary protein uncovers domains relevant to pathogen transmission. Nat Commun 2023; 14:899. [PMID: 36797290 PMCID: PMC9935623 DOI: 10.1038/s41467-023-36577-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Female mosquitoes inject saliva into vertebrate hosts during blood feeding. This process transmits mosquito-borne human pathogens that collectively cause ~1,000,000 deaths/year. Among the most abundant and conserved proteins secreted by female salivary glands is a high-molecular weight protein called salivary gland surface protein 1 (SGS1) that facilitates pathogen transmission, but its mechanism remains elusive. Here, we determine the native structure of SGS1 by the cryoID approach, showing that the 3364 amino-acid protein has a Tc toxin-like Rhs/YD shell, four receptor domains, and a set of C-terminal daisy-chained helices. These helices are partially shielded inside the Rhs/YD shell and poised to transform into predicted transmembrane helices. This transformation, and the numerous receptor domains on the surface of SGS1, are likely key in facilitating sporozoite/arbovirus invasion into the salivary glands and manipulating the host's immune response.
Collapse
|
6
|
Bajic M, Ravishankar S, Sheth M, Rowe LA, Pacheco MA, Patel DS, Batra D, Loparev V, Olsen C, Escalante AA, Vannberg F, Udhayakumar V, Barnwell JW, Talundzic E. The first complete genome of the simian malaria parasite Plasmodium brasilianum. Sci Rep 2022; 12:19802. [PMID: 36396703 PMCID: PMC9671904 DOI: 10.1038/s41598-022-20706-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
Naturally occurring human infections by zoonotic Plasmodium species have been documented for P. knowlesi, P. cynomolgi, P. simium, P. simiovale, P. inui, P. inui-like, P. coatneyi, and P. brasilianum. Accurate detection of each species is complicated by their morphological similarities with other Plasmodium species. PCR-based assays offer a solution but require prior knowledge of adequate genomic targets that can distinguish the species. While whole genomes have been published for P. knowlesi, P. cynomolgi, P. simium, and P. inui, no complete genome for P. brasilianum has been available. Previously, we reported a draft genome for P. brasilianum, and here we report the completed genome for P. brasilianum. The genome is 31.4 Mb in size and comprises 14 chromosomes, the mitochondrial genome, the apicoplast genome, and 29 unplaced contigs. The chromosomes consist of 98.4% nucleotide sites that are identical to the P. malariae genome, the closest evolutionarily related species hypothesized to be the same species as P. brasilianum, with 41,125 non-synonymous SNPs (0.0722% of genome) identified between the two genomes. Furthermore, P. brasilianum had 4864 (82.1%) genes that share 80% or higher sequence similarity with 4970 (75.5%) P. malariae genes. This was demonstrated by the nearly identical genomic organization and multiple sequence alignments for the merozoite surface proteins msp3 and msp7. We observed a distinction in the repeat lengths of the circumsporozoite protein (CSP) gene sequences between P. brasilianum and P. malariae. Our results demonstrate a 97.3% pairwise identity between the P. brasilianum and the P. malariae genomes. These findings highlight the phylogenetic proximity of these two species, suggesting that P. malariae and P. brasilianum are strains of the same species, but this could not be fully evaluated with only a single genomic sequence for each species.
Collapse
Affiliation(s)
- Marko Bajic
- grid.422961.a0000 0001 0029 6188Association of Public Health Laboratories, Silver Spring, MD USA ,grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | | | - Mili Sheth
- grid.416738.f0000 0001 2163 0069Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Lori A. Rowe
- grid.416738.f0000 0001 2163 0069Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA USA ,grid.265219.b0000 0001 2217 8588Virus Characterization Isolation Production and Sequencing Core, Tulane National Primate Research Center, Covington, LA USA
| | - M. Andreina Pacheco
- grid.264727.20000 0001 2248 3398Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA USA
| | - Dhruviben S. Patel
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Dhwani Batra
- grid.416738.f0000 0001 2163 0069Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Vladimir Loparev
- grid.416738.f0000 0001 2163 0069Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Christian Olsen
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Ananias A. Escalante
- grid.264727.20000 0001 2248 3398Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA USA
| | - Fredrik Vannberg
- grid.213917.f0000 0001 2097 4943Center for Integrative Genomics at Georgia Tech, Georgia Institute of Technology, Atlanta, GA USA
| | - Venkatachalam Udhayakumar
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - John W. Barnwell
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Eldin Talundzic
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| |
Collapse
|
7
|
Lu S, Martin-Martin I, Ribeiro JM, Calvo E. A deeper insight into the sialome of male and female Ochlerotatus triseriatus mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 147:103800. [PMID: 35787945 PMCID: PMC9494274 DOI: 10.1016/j.ibmb.2022.103800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Over the last 20 years, advancements in sequencing technologies have highlighted the unique composition of the salivary glands of blood-feeding arthropods. Further biochemical and structural data demonstrated that salivary proteins can disrupt host hemostasis, inflammation and immunity, which favors pathogen transmission. Previously, a Sanger-based sialome of adult Ochlerotatus triseriatus female salivary glands was published based on 731 expressed sequence tag (ESTs). Here, we revisited O. triseriatus salivary gland contents using an Illumina-based sequencing approach of both male and female tissues. In the current data set, we report 10,317 DNA coding sequences classified into several functional classes. The translated transcripts also served as a reference database for proteomic analysis of O. triseriatus female saliva, in which unique peptides from 101 proteins were found. Finally, comparison of male and female libraries allowed for the identification of female-enriched transcripts that are potentially related to blood acquisition and virus transmission.
Collapse
Affiliation(s)
- Stephen Lu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Jose M Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| |
Collapse
|
8
|
Kearney EA, Agius PA, Chaumeau V, Cutts JC, Simpson JA, Fowkes FJI. Anopheles salivary antigens as serological biomarkers of vector exposure and malaria transmission: A systematic review with multilevel modelling. eLife 2021; 10:e73080. [PMID: 34939933 PMCID: PMC8860437 DOI: 10.7554/elife.73080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Background Entomological surveillance for malaria is inherently resource-intensive and produces crude population-level measures of vector exposure which are insensitive in low-transmission settings. Antibodies against Anopheles salivary proteins measured at the individual level may serve as proxy biomarkers for vector exposure and malaria transmission, but their relationship is yet to be quantified. Methods A systematic review of studies measuring antibodies against Anopheles salivary antigens (PROSPERO: CRD42020185449). Multilevel modelling (to account for multiple study-specific observations [level 1], nested within study [level 2], and study nested within country [level 3]) estimated associations between seroprevalence with Anopheles human biting rate (HBR) and malaria transmission measures. Results From 3981 studies identified in literature searches, 42 studies across 16 countries were included contributing 393 study-specific observations of anti-Anopheles salivary antibodies determined in 42,764 samples. A positive association between HBR (log transformed) and seroprevalence was found; overall a twofold (100% relative) increase in HBR was associated with a 23% increase in odds of seropositivity (OR: 1.23, 95% CI: 1.10-1.37; p<0.001). The association between HBR and Anopheles salivary antibodies was strongest with concordant, rather than discordant, Anopheles species. Seroprevalence was also significantly positively associated with established epidemiological measures of malaria transmission: entomological inoculation rate, Plasmodium spp. prevalence, and malarial endemicity class. Conclusions Anopheles salivary antibody biomarkers can serve as a proxy measure for HBR and malaria transmission, and could monitor malaria receptivity of a population to sustain malaria transmission. Validation of Anopheles species-specific biomarkers is important given the global heterogeneity in the distribution of Anopheles species. Salivary biomarkers have the potential to transform surveillance by replacing impractical, inaccurate entomological investigations, especially in areas progressing towards malaria elimination. Funding Australian National Health and Medical Research Council, Wellcome Trust.
Collapse
Affiliation(s)
- Ellen A Kearney
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
| | - Paul A Agius
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
- Department of Epidemiology and Preventive Medicine, Monash UniversityMelbourneAustralia
| | - Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityMae SotThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Julia C Cutts
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Department of Medicine at the Doherty Institute, The University of MelbourneMelbourneAustralia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
| | - Freya JI Fowkes
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
- Department of Epidemiology and Preventive Medicine, Monash UniversityMelbourneAustralia
| |
Collapse
|
9
|
Chowdhury A, Modahl CM, Missé D, Kini RM, Pompon J. High resolution proteomics of Aedes aegypti salivary glands infected with either dengue, Zika or chikungunya viruses identify new virus specific and broad antiviral factors. Sci Rep 2021; 11:23696. [PMID: 34880409 PMCID: PMC8654903 DOI: 10.1038/s41598-021-03211-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022] Open
Abstract
Arboviruses such as dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) viruses infect close to half a billion people per year, and are primarily transmitted through Aedes aegypti bites. Infection-induced changes in mosquito salivary glands (SG) influence transmission by inducing antiviral immunity, which restricts virus replication in the vector, and by altering saliva composition, which influences skin infection. Here, we profiled SG proteome responses to DENV serotype 2 (DENV2), ZIKV and CHIKV infections by using high-resolution isobaric-tagged quantitative proteomics. We identified 218 proteins with putative functions in immunity, blood-feeding or related to the cellular machinery. We observed that 58, 27 and 29 proteins were regulated by DENV2, ZIKV and CHIKV infections, respectively. While the regulation patterns were mostly virus-specific, we separately depleted four uncharacterized proteins that were upregulated by all three viral infections to determine their effects on these viral infections. Our study suggests that gamma-interferon responsive lysosomal thiol-like (GILT-like) has an anti-ZIKV effect, adenosine deaminase (ADA) has an anti-CHIKV effect, salivary gland surface protein 1 (SGS1) has a pro-ZIKV effect and salivary gland broad-spectrum antiviral protein (SGBAP) has an antiviral effect against all three viruses. The comprehensive description of SG responses to three global pathogenic viruses and the identification of new restriction factors improves our understanding of the molecular mechanisms influencing transmission.
Collapse
Affiliation(s)
- Avisha Chowdhury
- grid.4280.e0000 0001 2180 6431Department of Biological Science, National University of Singapore, Singapore, Singapore ,grid.428397.30000 0004 0385 0924Present Address: Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Cassandra M. Modahl
- grid.4280.e0000 0001 2180 6431Department of Biological Science, National University of Singapore, Singapore, Singapore ,grid.48004.380000 0004 1936 9764Present Address: Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Dorothée Missé
- grid.462603.50000 0004 0382 3424MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - R. Manjunatha Kini
- grid.4280.e0000 0001 2180 6431Department of Biological Science, National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Julien Pompon
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France. .,Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore. .,MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France.
| |
Collapse
|
10
|
Kern O, Valenzuela Leon PC, Gittis AG, Bonilla B, Cruz P, Chagas AC, Ganesan S, Ribeiro JMC, Garboczi DN, Martin-Martin I, Calvo E. The structures of two salivary proteins from the West Nile vector Culex quinquefasciatus reveal a beta-trefoil fold with putative sugar binding properties. Curr Res Struct Biol 2021; 3:95-105. [PMID: 34235489 PMCID: PMC8244437 DOI: 10.1016/j.crstbi.2021.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/22/2023] Open
Abstract
Female mosquitoes require blood meals for egg development. The saliva of blood feeding arthropods contains biochemically active molecules, whose anti-hemostatic and anti-inflammatory properties facilitate blood feeding on vertebrate hosts. While transcriptomics has presented new opportunities to investigate the diversity of salivary proteins from hematophagous arthropods, many of these proteins remain functionally undescribed. Previous transcriptomic analysis of female salivary glands from Culex quinquefasciatus, an important vector of parasitic and viral infections, uncovered a 12-member family of putatively secreted proteins of unknown function, named the Cysteine and Tryptophan-Rich (CWRC) proteins. Here, we present advances in the characterization of two C. quinquefasciatus CWRC family members, CqDVP-2 and CqDVP-4, including their enrichment in female salivary glands, their specific localization within salivary gland tissues, evidence that these proteins are secreted into the saliva, and their native crystal structures, at 2.3 Å and 1.87 Å, respectively. The β-trefoil fold common to CqDVP-2 and CqDVP-4 is similar to carbohydrate-binding proteins, including the B subunit of the AB toxin, ricin, from the castor bean Ricinus communis. Further, we used a glycan array approach, which identifies carbohydrate ligands associated with inflammatory processes and signal transduction. Glycan array 300 testing identified 100 carbohydrate moieties with positive binding to CqDVP-2, and 77 glycans with positive binding to CqDVP-4. The glycan with the highest relative fluorescence intensities, which exhibited binding to both CqDVP-2 and CqDVP-4, was used for molecular docking experiments. We hypothesize that these proteins bind to carbohydrates on the surface of cells important to host immunology. Given that saliva is deposited into the skin during a mosquito bite, and acts as the vehicle for arbovirus inoculation, understanding the role of these proteins in pathogen transmission is of critical importance. This work presents the first solved crystal structures of C. quinquefasciatus salivary proteins with unknown function. These two molecules are the second and third structures reported from salivary proteins from C. quinquefasciatus, an important, yet understudied disease vector.
Collapse
Affiliation(s)
- Olivia Kern
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Paola Carolina Valenzuela Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Apostolos G Gittis
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Brian Bonilla
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Phillip Cruz
- Bioinformatics and Computational Biosciences Branch. Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrezza Campos Chagas
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Jose M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - David N Garboczi
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| |
Collapse
|
11
|
Kojin BB, Martin-Martin I, Araújo HRC, Bonilla B, Molina-Cruz A, Calvo E, Capurro ML, Adelman ZN. Aedes aegypti SGS1 is critical for Plasmodium gallinaceum infection of both the mosquito midgut and salivary glands. Malar J 2021; 20:11. [PMID: 33407511 PMCID: PMC7787129 DOI: 10.1186/s12936-020-03537-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The invasion of the mosquito salivary glands by Plasmodium sporozoites is a critical step that defines the success of malaria transmission and a detailed understanding of the molecules responsible for salivary gland invasion could be leveraged towards control of vector-borne pathogens. Antibodies directed against the mosquito salivary gland protein SGS1 have been shown to reduce Plasmodium gallinaceum sporozoite invasion of Aedes aegypti salivary glands, but the specific role of this protein in sporozoite invasion and in other stages of the Plasmodium life cycle remains unknown. METHODS RNA interference and CRISPR/Cas9 were used to evaluate the role of A. aegypti SGS1 in the P. gallinaceum life cycle. RESULTS Knockdown and knockout of SGS1 disrupted sporozoite invasion of the salivary gland. Interestingly, mosquitoes lacking SGS1 also displayed fewer oocysts. Proteomic analyses confirmed the abolishment of SGS1 in the salivary gland of SGS1 knockout mosquitoes and revealed that the C-terminus of the protein is absent in the salivary gland of control mosquitoes. In silico analyses indicated that SGS1 contains two potential internal cleavage sites and thus might generate three proteins. CONCLUSION SGS1 facilitates, but is not essential for, invasion of A. aegypti salivary glands by P. gallinaceum and has a dual role as a facilitator of parasite development in the mosquito midgut. SGS1 could, therefore, be part of a strategy to decrease malaria transmission by the mosquito vector, for example in a transgenic mosquito that blocks its interaction with the parasite.
Collapse
Affiliation(s)
- Bianca B Kojin
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX, USA
| | - Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Helena R C Araújo
- Departamento de Parasitologia, Laboratório de Mosquitos Geneticamente Modificados, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Brian Bonilla
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Margareth L Capurro
- Departamento de Parasitologia, Laboratório de Mosquitos Geneticamente Modificados, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Zach N Adelman
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
12
|
Kojin BB, Adelman ZN. The Sporozoite's Journey Through the Mosquito: A Critical Examination of Host and Parasite Factors Required for Salivary Gland Invasion. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
13
|
O'Brochta DA, Alford R, Harrell R, Aluvihare C, Eappen AG, Li T, Chakravarty S, Sim BKL, Hoffman SL, Billingsley PF. Is Saglin a mosquito salivary gland receptor for Plasmodium falciparum? Malar J 2019; 18:2. [PMID: 30602380 PMCID: PMC6317240 DOI: 10.1186/s12936-018-2634-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/20/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Saglin, a 100 kDa protein composed of two 50 kDa homodimers, is present in the salivary glands of Anopheles gambiae and has been considered an essential receptor for sporozoites (SPZ) of Plasmodium berghei and Plasmodium falciparum (Pf), allowing SPZ to recognize, bind to, and infect mosquito salivary glands. Spatial and temporal patterns of Saglin expression reported here, however, suggest that this model does not fully describe the Saglin-SPZ interaction. RESULTS Saglin protein was detected by indirect immunofluorescence microscopy only in the medial and proximal-lateral lobes, but not in the distal-lateral lobes, of the salivary glands of An. gambiae; the pattern of expression was independent of mosquito age or physiological state. These results were confirmed by steady-state Saglin transcript and protein expression using qRT-PCR and Western-blot analysis, respectively. Saglin was localized to the basal surface of the cells of the medial lobes and was undetectable elsewhere (intracellularly, on the lateral or apical membranes, the cells' secretory vacuoles, or in the salivary duct). In the cells of the proximal lateral lobes of the salivary glands, Saglin was distinctly intracellular and was not localized to any of the cell surfaces. Transgenic Anopheles stephensi were produced that expressed An. gambiae Saglin in the distal lateral lobes of the salivary gland. Additional Saglin expression did not enhance infection by PfSPZ compared to non-transgenic siblings fed on the same gametocyte-containing blood meal. CONCLUSIONS The absence of Saglin in the distal lateral lobes of the salivary glands, a primary destination for SPZ, suggests Saglin is not an essential receptor for Plasmodium SPZ. The lack of any correlation between increased Saglin expression in the distal lateral lobes of the salivary glands of transgenic An. stephensi and PfSPZ infection is also consistent with Saglin not being an essential salivary gland receptor for Plasmodium SPZ.
Collapse
Affiliation(s)
- David A O'Brochta
- Department of Entomology and The Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, 9600 Gudelsky Drive, Rockville, MD, 20850, USA.,Foundation for the National Institutes of Health, 11400 Rockville Pike, Suite 600, North Bethesda, MD, 20852, USA
| | - Robert Alford
- Department of Entomology and The Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Robert Harrell
- University of Maryland Insect Transformation Facility, The Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Channa Aluvihare
- University of Maryland Insect Transformation Facility, The Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Abraham G Eappen
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Tao Li
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Sumana Chakravarty
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - B Kim Lee Sim
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Stephen L Hoffman
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Peter F Billingsley
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA.
| |
Collapse
|
14
|
Kumar A, Srivastava P, Sirisena P, Dubey SK, Kumar R, Shrinet J, Sunil S. Mosquito Innate Immunity. INSECTS 2018; 9:insects9030095. [PMID: 30096752 PMCID: PMC6165528 DOI: 10.3390/insects9030095] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/17/2018] [Accepted: 06/18/2018] [Indexed: 12/19/2022]
Abstract
Mosquitoes live under the endless threat of infections from different kinds of pathogens such as bacteria, parasites, and viruses. The mosquito defends itself by employing both physical and physiological barriers that resist the entry of the pathogen and the subsequent establishment of the pathogen within the mosquito. However, if the pathogen does gain entry into the insect, the insect mounts a vigorous innate cellular and humoral immune response against the pathogen, thereby limiting the pathogen's propagation to nonpathogenic levels. This happens through three major mechanisms: phagocytosis, melanization, and lysis. During these processes, various signaling pathways that engage intense mosquito⁻pathogen interactions are activated. A critical overview of the mosquito immune system and latest information about the interaction between mosquitoes and pathogens are provided in this review. The conserved, innate immune pathways and specific anti-pathogenic strategies in mosquito midgut, hemolymph, salivary gland, and neural tissues for the control of pathogen propagation are discussed in detail.
Collapse
Affiliation(s)
- Ankit Kumar
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi-110067, India.
| | - Priyanshu Srivastava
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi-110067, India.
| | - Pdnn Sirisena
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi-110067, India.
| | - Sunil Kumar Dubey
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi-110067, India.
| | - Ramesh Kumar
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi-110067, India.
| | - Jatin Shrinet
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi-110067, India.
| | - Sujatha Sunil
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi-110067, India.
| |
Collapse
|
15
|
Bakhshi H, Failloux AB, Zakeri S, Raz A, Dinparast Djadid N. Mosquito-borne viral diseases and potential transmission blocking vaccine candidates. INFECTION GENETICS AND EVOLUTION 2018; 63:195-203. [PMID: 29842982 DOI: 10.1016/j.meegid.2018.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/17/2023]
Abstract
Mosquito-borne viral diseases (MBVDs) have a complex biological cycle involving vectors and vertebrate hosts. These viruses are responsible for many deadly diseases worldwide. Although MBVDs threaten mostly developing countries, there is growing evidence indicating that they are also of concern in western countries where local transmission of arboviruses such as West Nile, Zika, Chikungunya and Dengue viruses have been recently reported. The rapid rise in human infections caused by these viruses is attributed to rapid climate change and travel facilities. Usually, the only way to control these diseases relies on the control of vectors in the absence of licensed vaccines and specific treatments. However, the overuse of insecticides has led to the emergence of insecticide resistance in vector populations, posing significant challenges for their control. An alternative method for reducing MBVDs can be the use of Transmission Blocking Vaccines (TBVs) that limits viral infection at the mosquito vector stage. Some successes have been obtained confirming the potential application of TBVs against viruses; however, this approach remains at the developmental stage and still needs improvements. The present review aims to give an update on MBVDs and to discuss the application as well as usage of potential TBVs for the control of mosquito-borne viral infections.
Collapse
Affiliation(s)
- Hasan Bakhshi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran (PII), Tehran, Iran
| | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran (PII), Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran (PII), Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran (PII), Tehran, Iran.
| |
Collapse
|
16
|
Reduction of Mosquito Survival in Mice Vaccinated with Anopheles stephensi Glucose Transporter. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3428186. [PMID: 28804714 PMCID: PMC5540378 DOI: 10.1155/2017/3428186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/12/2017] [Indexed: 01/14/2023]
Abstract
Despite the fact that recent efforts to control/eradicate malaria have contributed to a significant decrease in the number of cases and deaths, the disease remains a global health challenge. Vaccines based on mosquito salivary gland antigens are a potential approach for reducing vector populations and malaria parasites. The Anopheles AGAP007752 gene encodes for a glucose transporter that is upregulated during Plasmodium infection, and its knockdown decreases the number of sporozoites in mosquito salivary glands. These results together with the fact that glucose is a vital source of energy suggested that a glucose transporter is a candidate protective antigen for the control of mosquito infestations and Plasmodium infection. To address this hypothesis, herein we investigate the effect of mice vaccination with an immunogenic peptide from mosquito glucose transporter on Anopheles stephensi fitness and Plasmodium berghei infection. We showed that vaccination with a peptide of glucose transporter reduced mosquito survival by 5% when compared to controls. However, the reduction in Plasmodium infection was not significant in mosquitoes fed on vaccinated mice. The effect of the peptide vaccination on mosquito survival is important to reduce infestation by malaria vectors. These results support further research on developing glucose transporter-based vaccines to reduce mosquito fitness.
Collapse
|
17
|
A Deep Insight into the Sialome of Male and Female Aedes aegypti Mosquitoes. PLoS One 2016; 11:e0151400. [PMID: 26999592 PMCID: PMC4801386 DOI: 10.1371/journal.pone.0151400] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/26/2016] [Indexed: 11/23/2022] Open
Abstract
Only adult female mosquitoes feed on blood, while both genders take sugar meals. Accordingly, several compounds associated with blood feeding (i.e. vasodilators, anti-clotting, anti-platelets) are found only in female glands, while enzymes associated with sugar feeding or antimicrobials (such as lysozyme) are found in the glands of both sexes. We performed de novo assembly of reads from adult Aedes aegypti female and male salivary gland libraries (285 and 90 million reads, respectively). By mapping back the reads to the assembled contigs, plus mapping the reads from a publicly available Ae. aegypti library from adult whole bodies, we identified 360 transcripts (including splice variants and alleles) overexpressed tenfold or more in the glands when compared to whole bodies. Moreover, among these, 207 were overexpressed fivefold or more in female vs. male salivary glands, 85 were near equally expressed and 68 were overexpressed in male glands. We call in particular the attention to C-type lectins, angiopoietins, female-specific Antigen 5, the 9.7 kDa, 12–14 kDa, 23.5 kDa, 62/34 kDa, 4.2 kDa, proline-rich peptide, SG8, 8.7 kDa family and SGS fragments: these polypeptides are all of unknown function, but due to their overexpression in female salivary glands and putative secretory nature they are expected to affect host physiology. We have also found many transposons (some of which novel) and several endogenous viral transcripts (probably acquired by horizontal transfer) which are overexpressed in the salivary glands and may play some role in tissue-specific gene regulation or represent a mechanism of virus interference. This work contributes to a near definitive catalog of male and female salivary gland transcripts from Ae. aegypti, which will help to direct further studies aiming at the functional characterization of the many transcripts with unknown function and the understanding of their role in vector-host interaction and pathogen transmission.
Collapse
|
18
|
Mongkol W, Arunyawat U, Surat W, Kubera A. Active Compounds Against Anopheles minimus Carboxypeptidase B for Malaria Transmission-Blocking Strategy. JOURNAL OF MEDICAL ENTOMOLOGY 2015; 52:1322-1332. [PMID: 26352934 DOI: 10.1093/jme/tjv133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/13/2015] [Indexed: 06/05/2023]
Abstract
Malaria transmission-blocking compounds have been studied to block the transmission of malaria parasites, especially the drug-resistant Plasmodium. Carboxypeptidase B (CPB) in the midgut of Anopheline mosquitoes has been demonstrated to be essential for the sexual development of Plasmodium in the mosquito. Thus, the CPB is a potential target for blocking compounds. The aim of this research was to screen compounds from the National Cancer Institute (NCI) diversity dataset and U.S. Food and Drug Administration (FDA)-approved drugs that could reduce the Anopheles CPB activity. The cDNA fragment of cpb gene from An. minimus (cpbAmi) was amplified and sequenced. The three-dimensional structure of CPB was predicted from the deduced amino acid sequence. The virtual screening of the compounds from NCI diversity set IV and FDA-approved drugs was performed against CPBAmi. The inhibition activity against CPBAmi of the top-scoring molecules was characterized in vitro. Three compounds-NSC-1014, NSC-332670, and aminopterin with IC50 at 0.99 mM, 1.55 mM, and 0.062 mM, respectively-were found to significantly reduce the CPBAmi activity.
Collapse
Affiliation(s)
- Watcharakorn Mongkol
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Uraiwan Arunyawat
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand. Centre for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok, 10900, Thailand
| | - Wunrada Surat
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand. Centre for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok, 10900, Thailand
| | - Anchanee Kubera
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand. Centre for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
19
|
Zhang G, Niu G, Franca CM, Dong Y, Wang X, Butler NS, Dimopoulos G, Li J. Anopheles Midgut FREP1 Mediates Plasmodium Invasion. J Biol Chem 2015; 290:16490-501. [PMID: 25991725 DOI: 10.1074/jbc.m114.623165] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Indexed: 01/17/2023] Open
Abstract
Malaria transmission depends on sexual stage Plasmodium parasites successfully invading Anopheline mosquito midguts following a blood meal. However, the molecular mechanisms of Plasmodium invasion of mosquito midguts have not been fully elucidated. Previously, we showed that genetic polymorphisms in the fibrinogen-related protein 1 (FREP1) gene are significantly associated with Plasmodium falciparum infection in Anopheles gambiae, and FREP1 is important for Plasmodium berghei infection of mosquitoes. Here we identify that the FREP1 protein is secreted from the mosquito midgut epithelium and integrated as tetramers into the peritrophic matrix, a chitinous matrix formed inside the midgut lumen after a blood meal feeding. Moreover, we show that the FREP1 can directly bind Plasmodia sexual stage gametocytes and ookinetes. Notably, ablating FREP1 expression or targeting FREP1 with antibodies significantly decreases P. falciparum infection in mosquito midguts. Our data support that the mosquito-expressed FREP1 mediates mosquito midgut invasion by multiple species of Plasmodium parasites via anchoring ookinetes to the peritrophic matrix and enabling parasites to penetrate the peritrophic matrix and the epithelium. Thus, targeting FREP1 can limit malaria transmission.
Collapse
Affiliation(s)
- Genwei Zhang
- From the Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| | - Guodong Niu
- From the Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| | - Caio M Franca
- From the Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| | - Yuemei Dong
- the W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, and
| | - Xiaohong Wang
- From the Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| | - Noah S Butler
- the Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - George Dimopoulos
- the W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, and
| | - Jun Li
- From the Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019,
| |
Collapse
|
20
|
Chrostek E, Teixeira L. Mutualism breakdown by amplification of Wolbachia genes. PLoS Biol 2015; 13:e1002065. [PMID: 25668031 PMCID: PMC4323108 DOI: 10.1371/journal.pbio.1002065] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/05/2015] [Indexed: 12/20/2022] Open
Abstract
Most insect species are associated with vertically transmitted endosymbionts. Because of the mode of transmission, the fitness of these symbionts is dependent on the fitness of the hosts. Therefore, these endosymbionts need to control their proliferation in order to minimize their cost for the host. The genetic bases and mechanisms of this regulation remain largely undetermined. The maternally inherited bacteria of the genus Wolbachia are the most common endosymbionts of insects, providing some of them with fitness benefits. In Drosophila melanogaster, WolbachiawMelPop is a unique virulent variant that proliferates massively in the hosts and shortens their lifespan. The genetic bases of wMelPop virulence are unknown, and their identification would allow a better understanding of how Wolbachia levels are regulated. Here we show that amplification of a region containing eight Wolbachia genes, called Octomom, is responsible for wMelPop virulence. Using Drosophila lines selected for carrying Wolbachia with different Octomom copy numbers, we demonstrate that the number of Octomom copies determines Wolbachia titers and the strength of the lethal phenotype. Octomom amplification is unstable, and reversion of copy number to one reverts all the phenotypes. Our results provide a link between genotype and phenotype in Wolbachia and identify a genomic region regulating Wolbachia proliferation. We also prove that these bacteria can evolve rapidly. Rapid evolution by changes in gene copy number may be common in endosymbionts with a high number of mobile elements and other repeated regions. Understanding wMelPop pathogenicity and variability also allows researchers to better control and predict the outcome of releasing mosquitoes transinfected with this variant to block human vector-borne diseases. Our results show that transition from a mutualist to a pathogen may occur because of a single genomic change in the endosymbiont. This implies that there must be constant selection on endosymbionts to control their densities. An elegant experimental evolution approach reveals that a strain of the symbiotic bacterium Wolbachia that over-replicates and shortens the life of its fruit fly host owes this property to the amplification of a small region of its genome. Read the accompanying Primer. Insects frequently carry intracellular bacteria that are passed from generation to generation through their eggs. These intracellular symbionts can be beneficial or parasitic, but because of their mode of transmission, they are always dependent on the reproduction of their carriers. They therefore have to control their own growth in order to minimize deleterious effects on the host. Bacteria of the genus Wolbachia are the most common maternally transmitted intracellular bacteria in insects. Most Wolbachia variants that are naturally associated with the fruit fly Drosophila melanogaster are benign to their hosts and provide them with protection against viruses. However, wMelPop is a virulent Wolbachia variant that over-replicates massively and shortens the lifespan of its fruit fly host. Here we show that amplification of a Wolbachia genomic region containing eight genes—called Octomom—is responsible for the pathogenic effects of wMelPop. Our results provide a link between genotype and phenotype in Wolbachia and show that virulence in symbionts can be simply caused by increases in gene copy number. These results also indicate that gene copy number variation may be a common mechanism underlying rapid evolution of intracellular symbionts.
Collapse
Affiliation(s)
- Ewa Chrostek
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail: (EC); (LT)
| | - Luis Teixeira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail: (EC); (LT)
| |
Collapse
|
21
|
Pimenta PFP, Orfano AS, Bahia AC, Duarte APM, Ríos-Velásquez CM, Melo FF, Pessoa FAC, Oliveira GA, Campos KMM, Villegas LM, Rodrigues NB, Nacif-Pimenta R, Simões RC, Monteiro WM, Amino R, Traub-Cseko YM, Lima JBP, Barbosa MGV, Lacerda MVG, Tadei WP, Secundino NFC. An overview of malaria transmission from the perspective of Amazon Anopheles vectors. Mem Inst Oswaldo Cruz 2015; 110:23-47. [PMID: 25742262 PMCID: PMC4371216 DOI: 10.1590/0074-02760140266] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/18/2014] [Indexed: 02/07/2023] Open
Abstract
In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Anopheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.
Collapse
Affiliation(s)
- Paulo FP Pimenta
- Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG,
Brasil
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | | | - Ana C Bahia
- Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Ana PM Duarte
- Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG,
Brasil
| | | | - Fabrício F Melo
- Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG,
Brasil
| | | | | | - Keillen MM Campos
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | | | | | | | - Rejane C Simões
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
| | - Wuelton M Monteiro
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | - Rogerio Amino
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris,
France
| | | | - José BP Lima
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
- Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Maria GV Barbosa
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | - Marcus VG Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
- Instituto Leônidas e Maria Deane-Fiocruz, Manaus, AM, Brasil
| | | | | |
Collapse
|
22
|
Marie A, Holzmuller P, Tchioffo MT, Rossignol M, Demettre E, Seveno M, Corbel V, Awono-Ambéné P, Morlais I, Remoue F, Cornelie S. Anopheles gambiae salivary protein expression modulated by wild Plasmodium falciparum infection: highlighting of new antigenic peptides as candidates of An. gambiae bites. Parasit Vectors 2014; 7:599. [PMID: 25526764 PMCID: PMC4287575 DOI: 10.1186/s13071-014-0599-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/10/2014] [Indexed: 12/24/2022] Open
Abstract
Background Malaria is the major parasitic disease worldwide caused by Plasmodium infection. The objective of integrated malaria control programs is to decrease malaria transmission, which needs specific tools to be accurately assessed. In areas where the transmission is low or has been substantially reduced, new complementary tools have to be developed to improve surveillance. A recent approach, based on the human antibody response to Anopheles salivary proteins, has been shown to be efficient in evaluating human exposure to Anopheles bites. The aim of the present study was to identify new An. gambiae salivary proteins as potential candidate biomarkers of human exposure to P. falciparum-infective bites. Methods Experimental infections of An. gambiae by wild P. falciparum were carried out in semi-field conditions. Then a proteomic approach, combining 2D-DIGE and mass spectrometry, was used to identify the overexpressed salivary proteins in infected salivary glands compared to uninfected An. gambiae controls. Subsequently, a peptide design of each potential candidate was performed in silico and their antigenicity was tested by an epitope-mapping technique using blood from individuals exposed to Anopheles bites. Results Five salivary proteins (gSG6, gSG1b, TRIO, SG5 and long form D7) were overexpressed in the infected salivary glands. Eighteen peptides were designed from these proteins and were found antigenic in children exposed to the Anopheles bites. Moreover, the results showed that the presence of wild P. falciparum in salivary glands modulates the expression of several salivary proteins and also appeared to induce post-translational modifications. Conclusions This study is, to our knowledge, the first that compares the sialome of An. gambiae both infected and not infected by wild P. falciparum, making it possible to mimic the natural conditions of infection. This is a first step toward a better understanding of the close interactions between the parasite and the salivary gland of mosquitoes. In addition, these results open the way to define biomarkers of infective bites of Anopheles, which could, in the future, improve the estimation of malaria transmission and the evaluation of malaria vector control tools. Electronic supplementary material The online version of this article (doi:10.1186/s13071-014-0599-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra Marie
- MIVEGEC (UMR IRD224 CNRS 5290 UM1-UM2), Institut de Recherche pour le développement (IRD), 911 avenue Agropolis, Montpellier cedex 5, 34394, France.
| | - Philippe Holzmuller
- CIRAD Département Systèmes Biologiques BIOS UMR 15 CMAEE "Contrôle des Maladies Exotiques et Emergentes", Campus International de Baillarguet, TA A-15/G, Montpellier cedex 5, 34398, France.
| | - Majoline T Tchioffo
- MIVEGEC (UMR IRD224 CNRS 5290 UM1-UM2), Institut de Recherche pour le développement (IRD), 911 avenue Agropolis, Montpellier cedex 5, 34394, France.
| | - Marie Rossignol
- MIVEGEC (UMR IRD224 CNRS 5290 UM1-UM2), Institut de Recherche pour le développement (IRD), 911 avenue Agropolis, Montpellier cedex 5, 34394, France.
| | - Edith Demettre
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, INSERM U661, UM1, UM2, Plate-forme de Protéomique Fonctionnelle CNRS UMS BioCampus 3426, Montpellier, 34094, France.
| | - Martial Seveno
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, INSERM U661, UM1, UM2, Plate-forme de Protéomique Fonctionnelle CNRS UMS BioCampus 3426, Montpellier, 34094, France.
| | - Vincent Corbel
- MIVEGEC (UMR IRD224 CNRS 5290 UM1-UM2), Institut de Recherche pour le développement (IRD), 911 avenue Agropolis, Montpellier cedex 5, 34394, France. .,Department of Entomology, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow Chatuchak, Bangkok, 10900, Thailand.
| | - Parfait Awono-Ambéné
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, BP 288, Cameroun.
| | - Isabelle Morlais
- MIVEGEC (UMR IRD224 CNRS 5290 UM1-UM2), Institut de Recherche pour le développement (IRD), 911 avenue Agropolis, Montpellier cedex 5, 34394, France. .,Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, BP 288, Cameroun.
| | - Franck Remoue
- MIVEGEC (UMR IRD224 CNRS 5290 UM1-UM2), Institut de Recherche pour le développement (IRD), 911 avenue Agropolis, Montpellier cedex 5, 34394, France.
| | - Sylvie Cornelie
- MIVEGEC (UMR IRD224 CNRS 5290 UM1-UM2), Institut de Recherche pour le développement (IRD), 911 avenue Agropolis, Montpellier cedex 5, 34394, France. .,MIVEGEC- IRD- CREC, Cotonou, 01 BP4414 RP, Bénin.
| |
Collapse
|
23
|
Klasson L, Kumar N, Bromley R, Sieber K, Flowers M, Ott SH, Tallon LJ, Andersson SGE, Dunning Hotopp JC. Extensive duplication of the Wolbachia DNA in chromosome four of Drosophila ananassae. BMC Genomics 2014; 15:1097. [PMID: 25496002 PMCID: PMC4299567 DOI: 10.1186/1471-2164-15-1097] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/03/2014] [Indexed: 12/03/2022] Open
Abstract
Background Lateral gene transfer (LGT) from bacterial Wolbachia endosymbionts has been detected in ~20% of arthropod and nematode genome sequencing projects. Many of these transfers are large and contain a substantial part of the Wolbachia genome. Results Here, we re-sequenced three D. ananassae genomes from Asia and the Pacific that contain large LGTs from Wolbachia. We find that multiple copies of the Wolbachia genome are transferred to the Drosophila nuclear genome in all three lines. In the D. ananassae line from Indonesia, the copies of Wolbachia DNA in the nuclear genome are nearly identical in size and sequence yielding an even coverage of mapped reads over the Wolbachia genome. In contrast, the D. ananassae lines from Hawaii and India show an uneven coverage of mapped reads over the Wolbachia genome suggesting that different parts of these LGTs are present in different copy numbers. In the Hawaii line, we find that this LGT is underrepresented in third instar larvae indicative of being heterochromatic. Fluorescence in situ hybridization of mitotic chromosomes confirms that the LGT in the Hawaii line is heterochromatic and represents ~20% of the sequence on chromosome 4 (dot chromosome, Muller element F). Conclusions This collection of related lines contain large lateral gene transfers composed of multiple Wolbachia genomes that constitute >2% of the D. ananassae genome (~5 Mbp) and partially explain the abnormally large size of chromosome 4 in D. ananassae. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1097) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Julie C Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
24
|
Gillespie JJ, Driscoll TP, Verhoeve VI, Utsuki T, Husseneder C, Chouljenko VN, Azad AF, Macaluso KR. Genomic diversification in strains of Rickettsia felis Isolated from different arthropods. Genome Biol Evol 2014; 7:35-56. [PMID: 25477419 PMCID: PMC4316617 DOI: 10.1093/gbe/evu262] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rickettsia felis (Alphaproteobacteria: Rickettsiales) is the causative agent of an emerging flea-borne rickettsiosis with worldwide occurrence. Originally described from the cat flea, Ctenocephalides felis, recent reports have identified R. felis from other flea species, as well as other insects and ticks. This diverse host range for R. felis may indicate an underlying genetic variability associated with host-specific strains. Accordingly, to determine a potential genetic basis for host specialization, we sequenced the genome of R. felis str. LSU-Lb, which is an obligate mutualist of the parthenogenic booklouse Liposcelis bostrychophila (Insecta: Psocoptera). We also sequenced the genome of R. felis str. LSU, the second genome sequence for cat flea-associated strains (cf. R. felis str. URRWXCal2), which are presumably facultative parasites of fleas. Phylogenomics analysis revealed R. felis str. LSU-Lb diverged from the flea-associated strains. Unexpectedly, R. felis str. LSU was found to be divergent from R. felis str. URRWXCal2, despite sharing similar hosts. Although all three R. felis genomes contain the pRF plasmid, R. felis str. LSU-Lb carries an additional unique plasmid, pLbaR (plasmid of L. bostrychophila associated Rickettsia), nearly half of which encodes a unique 23-gene integrative conjugative element. Remarkably, pLbaR also encodes a repeats-in-toxin-like type I secretion system and associated toxin, heretofore unknown from other Rickettsiales genomes, which likely originated from lateral gene transfer with another obligate intracellular parasite of arthropods, Cardinium (Bacteroidetes). Collectively, our study reveals unexpected genomic diversity across three R. felis strains and identifies several diversifying factors that differentiate facultative parasites of fleas from obligate mutualists of booklice.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Victoria I Verhoeve
- Department of Pathobiological Sciences, Louisiana State University, School of Veterinary Medicine
| | - Tadanobu Utsuki
- Department of Pathobiological Sciences, Louisiana State University, School of Veterinary Medicine
| | - Claudia Husseneder
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana
| | - Vladimir N Chouljenko
- Department of Pathobiological Sciences, Louisiana State University, School of Veterinary Medicine
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kevin R Macaluso
- Department of Pathobiological Sciences, Louisiana State University, School of Veterinary Medicine
| |
Collapse
|
25
|
Ioannidis P, Lu Y, Kumar N, Creasy T, Daugherty S, Chibucos MC, Orvis J, Shetty A, Ott S, Flowers M, Sengamalay N, Tallon LJ, Pick L, Dunning Hotopp JC. Rapid transcriptome sequencing of an invasive pest, the brown marmorated stink bug Halyomorpha halys. BMC Genomics 2014; 15:738. [PMID: 25168586 PMCID: PMC4174608 DOI: 10.1186/1471-2164-15-738] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/21/2014] [Indexed: 12/23/2022] Open
Abstract
Background Halyomorpha halys (Stål) (Insecta:Hemiptera;Pentatomidae), commonly known as the Brown Marmorated Stink Bug (BMSB), is an invasive pest of the mid-Atlantic region of the United States, causing economically important damage to a wide range of crops. Native to Asia, BMSB was first observed in Allentown, PA, USA, in 1996, and this pest is now well-established throughout the US mid-Atlantic region and beyond. In addition to the serious threat BMSB poses to agriculture, BMSB has become a nuisance to homeowners, invading home gardens and congregating in large numbers in human-made structures, including homes, to overwinter. Despite its significance as an agricultural pest with limited control options, only 100 bp of BMSB sequence data was available in public databases when this project began. Results Transcriptome sequencing was undertaken to provide a molecular resource to the research community to inform the development of pest control strategies and to provide molecular data for population genetics studies of BMSB. Using normalized, strand-specific libraries, we sequenced pools of all BMSB life stages on the Illumina HiSeq. Trinity was used to assemble 200,000 putative transcripts in >100,000 components. A novel bioinformatic method that analyzed the strand-specificity of the data reduced this to 53,071 putative transcripts from 18,573 components. By integrating multiple other data types, we narrowed this further to 13,211 representative transcripts. Conclusions Bacterial endosymbiont genes were identified in this dataset, some of which have a copy number consistent with being lateral gene transfers between endosymbiont genomes and Hemiptera, including ankyrin-repeat related proteins, lysozyme, and mannanase. Such genes and endosymbionts may provide novel targets for BMSB-specific biocontrol. This study demonstrates the utility of strand-specific sequencing in generating shotgun transcriptomes and that rapid sequencing shotgun transcriptomes is possible without the need for extensive inbreeding to generate homozygous lines. Such sequencing can provide a rapid response to pest invasions similar to that already described for disease epidemiology. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-738) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Julie C Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
26
|
Chrostek E, Marialva MSP, Esteves SS, Weinert LA, Martinez J, Jiggins FM, Teixeira L. Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: a phenotypic and phylogenomic analysis. PLoS Genet 2013; 9:e1003896. [PMID: 24348259 PMCID: PMC3861217 DOI: 10.1371/journal.pgen.1003896] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/06/2013] [Indexed: 12/22/2022] Open
Abstract
Wolbachia are intracellular bacterial symbionts that are able to protect various insect hosts from viral infections. This tripartite interaction was initially described in Drosophila melanogaster carrying wMel, its natural Wolbachia strain. wMel has been shown to be genetically polymorphic and there has been a recent change in variant frequencies in natural populations. We have compared the antiviral protection conferred by different wMel variants, their titres and influence on host longevity, in a genetically identical D. melanogaster host. The phenotypes cluster the variants into two groups--wMelCS-like and wMel-like. wMelCS-like variants give stronger protection against Drosophila C virus and Flock House virus, reach higher titres and often shorten the host lifespan. We have sequenced and assembled the genomes of these Wolbachia, and shown that the two phenotypic groups are two monophyletic groups. We have also analysed a virulent and over-replicating variant, wMelPop, which protects D. melanogaster even better than the closely related wMelCS. We have found that a ~21 kb region of the genome, encoding eight genes, is amplified seven times in wMelPop and may be the cause of its phenotypes. Our results indicate that the more protective wMelCS-like variants, which sometimes have a cost, were replaced by the less protective but more benign wMel-like variants. This has resulted in a recent reduction in virus resistance in D. melanogaster in natural populations worldwide. Our work helps to understand the natural variation in wMel and its evolutionary dynamics, and inform the use of Wolbachia in arthropod-borne disease control.
Collapse
Affiliation(s)
- Ewa Chrostek
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - Lucy A. Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Julien Martinez
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
27
|
Abstract
Malaria is transmitted when motile sporozoites are injected into the dermis by an infected female Anopheles mosquito. Inside the mosquito vector, sporozoites egress from midgut-associated oocysts and eventually penetrate the acinar cells of salivary glands. Parasite-encoded factors with exclusive vital roles in the insect vector can be studied by classical reverse genetics. Here, we characterized the in vivo roles of Plasmodium berghei falstatin/ICP (inhibitor of cysteine proteases). This protein was previously suggested to act as a protease inhibitor during erythrocyte invasion. We show by targeted gene disruption that loss of ICP function does not affect growth inside the mammalian host but causes a complete defect in sporozoite transmission. Sporogony occurred normally in icp(−) parasites, but hemocoel sporozoites showed a defect in continuous gliding motility and infectivity for salivary glands, which are prerequisites for sporozoite transmission to the mammalian host. Absence of ICP correlates with enhanced cleavage of circumsporozoite protein, in agreement with a role as a protease regulator. We conclude that ICP is essential for only the final stages of sporozoite maturation inside the mosquito vector. This study is the first genetic evidence that an ICP is necessary for the productive motility of a eukaryotic parasitic cell. Cysteine proteases and their inhibitors are considered ideal drug targets for the treatment of a wide range of diseases, including cancer and parasitic infections. In protozoan parasites, including Leishmania, Trypanosoma, and Plasmodium, cysteine proteases play important roles in life cycle progression. A mouse malaria model provides an unprecedented opportunity to study the roles of a parasite-encoded inhibitor of cysteine proteases (ICP) over the entire parasite life cycle. By precise gene deletion, we found no evidence that ICP influences disease progression or parasite virulence. Instead, we discovered that this factor is necessary for parasite movement and malaria transmission from mosquitoes to mammals. This finding in a fast-moving unicellular protozoan has important implications for malaria intervention strategies and the roles of ICPs in the regulation of eukaryotic cell migration.
Collapse
|
28
|
Ioannidis P, Johnston KL, Riley DR, Kumar N, White JR, Olarte KT, Ott S, Tallon LJ, Foster JM, Taylor MJ, Dunning Hotopp JC. Extensively duplicated and transcriptionally active recent lateral gene transfer from a bacterial Wolbachia endosymbiont to its host filarial nematode Brugia malayi. BMC Genomics 2013; 14:639. [PMID: 24053607 PMCID: PMC3849323 DOI: 10.1186/1471-2164-14-639] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 09/17/2013] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Lymphatic filariasis is a neglected tropical disease afflicting more than 120 million people, while another 1.3 billion people are at risk of infection. The nematode worm Brugia malayi is one of the causative agents of the disease and exists in a mutualistic symbiosis with Wolbachia bacteria. Since extensive lateral gene transfer occurs frequently between Wolbachia and its hosts, we sought to measure the extent of such LGT in B. malayi by whole genome sequencing of Wolbachia-depleted worms. RESULTS A considerable fraction (at least 115.4-kbp, or 10.6%) of the 1.08-Mbp Wolbachia wBm genome has been transferred to its nematode host and retains high levels of similarity, including 227 wBm genes and gene fragments. Complete open reading frames were transferred for 32 of these genes, meaning they have the potential to produce functional proteins. Moreover, four transfers have evidence of life stage-specific regulation of transcription at levels similar to other nematode transcripts, strengthening the possibility that they are functional. CONCLUSIONS There is extensive and ongoing transfer of Wolbachia DNA to the worm genome and some transfers are transcribed in a stage-specific manner at biologically relevant levels.
Collapse
Affiliation(s)
- Panagiotis Ioannidis
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Current address: Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | | | - David R Riley
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nikhil Kumar
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - James R White
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Karen T Olarte
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sandra Ott
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Luke J Tallon
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Mark J Taylor
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Julie C Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Wang J, Zhang Y, Zhao YO, Li MWM, Zhang L, Dragovic S, Abraham NM, Fikrig E. Anopheles gambiae circumsporozoite protein-binding protein facilitates plasmodium infection of mosquito salivary glands. J Infect Dis 2013; 208:1161-9. [PMID: 23801601 DOI: 10.1093/infdis/jit284] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Malaria, a mosquito-borne disease caused by Plasmodium species, causes substantial morbidity and mortality throughout the world. Plasmodium sporozoites mature in oocysts formed in the mosquito gut wall and then invade the salivary glands, where they remain until transmitted to the vertebrate host during a mosquito bite. The Plasmodium circumsporozoite protein (CSP) binds to salivary glands and plays a role in the invasion of this organ by sporozoites. We identified an Anopheles salivary gland protein, named CSP-binding protein (CSPBP), that interacts with CSP. Downregulation of CSPBP in mosquito salivary glands inhibited invasion by Plasmodium organisms. In vivo bioassays showed that mosquitoes that were fed blood with CSPBP antibody displayed a 25% and 90% reduction in the parasite load in infected salivary glands 14 and 18 days after the blood meal, respectively. These results suggest that CSPBP is important for the infection of the mosquito salivary gland by Plasmodium organisms and that blocking CSPBP can interfere with the Plasmodium life cycle.
Collapse
Affiliation(s)
- Jiuling Wang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8022, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Crawford JE, Rottschaefer SM, Coulibaly B, Sacko M, Niaré O, Riehle MM, Traore SF, Vernick KD, Lazzaro BP. No evidence for positive selection at two potential targets for malaria transmission-blocking vaccines in Anopheles gambiae s.s. INFECTION GENETICS AND EVOLUTION 2013; 16:87-92. [PMID: 23357581 DOI: 10.1016/j.meegid.2013.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/04/2013] [Accepted: 01/05/2013] [Indexed: 12/27/2022]
Abstract
Human malaria causes nearly a million deaths in sub-Saharan Africa each year. The evolution of drug-resistance in the parasite and insecticide resistance in the mosquito vector has complicated control measures and made the need for new control strategies more urgent. Anopheles gambiae s.s. is one of the primary vectors of human malaria in Africa, and parasite-transmission-blocking vaccines targeting Anopheles proteins have been proposed as a possible strategy to control the spread of the disease. However, the success of these hypothetical technologies would depend on the successful ability to broadly target mosquito populations that may be genetically heterogeneous. Understanding the evolutionary pressures shaping genetic variation among candidate target molecules offers a first step towards evaluating the prospects of successfully deploying such technologies. We studied the population genetics of genes encoding two candidate target proteins, the salivary gland protein saglin and the basal lamina structural protein laminin, in wild populations of the M and S molecular forms of A. gambiae in Mali. Through analysis of intraspecific genetic variation and interspecific comparisons, we found no evidence of positive natural selection at the genes encoding these proteins. On the contrary, we found evidence for particularly strong purifying selection at the laminin gene. These results provide insight into the patterns of genetic diversity of saglin and laminin, and we discuss these findings in relation to the potential development of these molecules as vaccine targets.
Collapse
|
31
|
Detection and molecular characterization of avian Plasmodium from mosquitoes in central Turkey. Vet Parasitol 2012; 188:179-84. [PMID: 22455723 DOI: 10.1016/j.vetpar.2012.02.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 11/23/2022]
Abstract
Assessing vector-parasite relationship is important in understanding the emergence of vector-borne diseases and the evolution of parasite diversity. This study investigates avian Plasmodium parasites in mosquitoes collected from Kayseri province in Central Anatolian, Turkey and determines the haemosporidian parasite lineages from these mosquito species. A total of 6153 female mosquitos from 6 species were collected from 46 sites during June-August of 2008 and 2009. Each mosquito's head-thorax and abdomen were separated, categorized with respect to species and collection area and pooled for DNA extraction. A total of 1198 genomic DNA pools (599 thorax-head, 599 abdomen) were constituted of which 128 pools (59 thorax-head, 69 abdomen) were positive for avian haemosporidian parasites (Plasmodium and Haemoproteus) by Nested-PCR analysis. Culex pipens, Aedes vexans, Culex theileri and Culiseta annulata were positive with minimum infection rates (MIRs) of 16.22 and 18.15, 4.72 and 5.98, 5.18 and 10.36, 10.64 and 10.64 in their thorax-head and abdomen parts, respectively. No avian haemosporidian DNA was detected from Culex hortensis and Anopheles maculipennis. Phylogenetic analyses of the partial cytb gene of avian haemosporidian mt-DNA from 13 positive pools revealed that 11 lineages in four phylogenic groups were Plasmodium and the other two were Haemoproteus. Our results suggest that Cx. pipiens could probably be the major vector of avian Plasmodium in Central Turkey. This is the first report of molecular detection and characterization of avian Plasmodium lineages from mosquitoes in Turkey.
Collapse
|
32
|
Li ZW, Shen YH, Xiang ZH, Zhang Z. Pathogen-origin horizontally transferred genes contribute to the evolution of Lepidopteran insects. BMC Evol Biol 2011; 11:356. [PMID: 22151541 PMCID: PMC3252269 DOI: 10.1186/1471-2148-11-356] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 12/12/2011] [Indexed: 12/31/2022] Open
Abstract
Background Horizontal gene transfer (HGT), a source of genetic variation, is generally considered to facilitate hosts' adaptability to environments. However, convincing evidence supporting the significant contribution of the transferred genes to the evolution of metazoan recipients is rare. Results In this study, based on sequence data accumulated to date, we used a unified method consisting of similarity search and phylogenetic analysis to detect horizontally transferred genes (HTGs) between prokaryotes and five insect species including Drosophila melanogaster, Anopheles gambiae, Bombyx mori, Tribolium castaneum and Apis mellifera. Unexpectedly, the candidate HTGs were not detected in D. melanogaster, An. gambiae and T. castaneum, and 79 genes in Ap. mellifera sieved by the same method were considered as contamination based on other information. Consequently, 14 types of 22 HTGs were detected only in the silkworm. Additionally, 13 types of the detected silkworm HTGs share homologous sequences in species of other Lepidopteran superfamilies, suggesting that the majority of these HTGs were derived from ancient transfer events before the radiation of Ditrysia clade. On the basis of phylogenetic topologies and BLAST search results, donor bacteria of these genes were inferred, respectively. At least half of the predicted donor organisms may be entomopathogenic bacteria. The predicted biochemical functions of these genes include four categories: glycosyl hydrolase family, oxidoreductase family, amino acid metabolism, and others. Conclusions The products of HTGs detected in this study may take part in comprehensive physiological metabolism. These genes potentially contributed to functional innovation and adaptability of Lepidopteran hosts in their ancient lineages associated with the diversification of angiosperms. Importantly, our results imply that pathogens may be advantageous to the subsistence and prosperity of hosts through effective HGT events at a large evolutionary scale.
Collapse
Affiliation(s)
- Zi-Wen Li
- The Key Sericultural Laboratory of Agricultural Ministry, Southwest University, Chongqing 400715, China
| | | | | | | |
Collapse
|
33
|
King JG, Vernick KD, Hillyer JF. Members of the salivary gland surface protein (SGS) family are major immunogenic components of mosquito saliva. J Biol Chem 2011; 286:40824-34. [PMID: 21965675 PMCID: PMC3220476 DOI: 10.1074/jbc.m111.280552] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/23/2011] [Indexed: 11/06/2022] Open
Abstract
Mosquitoes transmit Plasmodium and certain arboviruses during blood feeding, when they are injected along with saliva. Mosquito saliva interferes with the host's hemostasis and inflammation response and influences the transmission success of some pathogens. One family of mosquito salivary gland proteins, named SGS, is composed of large bacterial-type proteins that in Aedes aegypti were implicated as receptors for Plasmodium on the basal salivary gland surface. Here, we characterize the biology of two SGSs in the malaria mosquito, Anopheles gambiae, and demonstrate their involvement in blood feeding. Western blots and RT-PCR showed that Sgs4 and Sgs5 are produced exclusively in female salivary glands, that expression increases with age and after blood feeding, and that protein levels fluctuate in a circadian manner. Immunohistochemistry showed that SGSs are present in the acinar cells of the distal lateral lobes and in the salivary ducts of the proximal lobes. SDS-PAGE, Western blots, bite blots, and immunization via mosquito bites showed that SGSs are highly immunogenic and form major components of mosquito saliva. Last, Western and bioinformatic analyses suggest that SGSs are secreted via a non-classical pathway that involves cleavage into a 300-kDa soluble fragment and a smaller membrane-bound fragment. Combined, these data strongly suggest that SGSs play an important role in blood feeding. Together with their role in malaria transmission, we propose that SGSs could be used as markers of human exposure to mosquito bites and in the development of disease control strategies.
Collapse
Affiliation(s)
- Jonas G. King
- From the Department of Biological Sciences and Institute for Global Health, Vanderbilt University, Nashville, Tennessee 37235 and
| | - Kenneth D. Vernick
- the Department of Parasitology and Mycology, Institut Pasteur, Paris 75015, France
| | - Julián F. Hillyer
- From the Department of Biological Sciences and Institute for Global Health, Vanderbilt University, Nashville, Tennessee 37235 and
| |
Collapse
|
34
|
Abstract
Throughout their lifetime, mosquitoes are exposed to pathogens during feeding, through breaks in their cuticle and following pathogen-driven cuticular degradation. To resist infection, mosquitoes mount innate cellular and humoral immune responses that are elicited within minutes of exposure and can lead to pathogen death via three broadly defined mechanisms: lysis, melanization and hemocyte-mediated phagocytosis. This chapter reviews our current understanding of the mosquito immune system, with an emphasis on the physical barriers that prevent pathogens from entering the body, the organs and tissues that regulate immune responses and the mechanistic and molecular bases of immunity.
Collapse
Affiliation(s)
- Julián F Hillyer
- Department of Biological Sciences, Institute for Global Health, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
35
|
Horizontal gene transfer between bacteria and animals. Trends Genet 2011; 27:157-63. [PMID: 21334091 DOI: 10.1016/j.tig.2011.01.005] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/21/2011] [Accepted: 01/21/2011] [Indexed: 12/31/2022]
Abstract
Horizontal gene transfer is increasingly described between bacteria and animals. Such transfers that are vertically inherited have the potential to influence the evolution of animals. One classic example is the transfer of DNA from mitochondria and chloroplasts to the nucleus after the acquisition of these organelles by eukaryotes. Even today, many of the described instances of bacteria-to-animal transfer occur as part of intimate relationships such as those of endosymbionts and their invertebrate hosts, particularly insects and nematodes, while numerous transfers are also found in asexual animals. Both of these observations are consistent with modern evolutionary theory, in particular the serial endosymbiotic theory and Muller's ratchet. Although it is tempting to suggest that these particular lifestyles promote horizontal gene transfer, it is difficult to ascertain given the nonrandom sampling of animal genome sequencing projects and the lack of a systematic analysis of animal genomes for such transfers.
Collapse
|
36
|
Mueller AK, Kohlhepp F, Hammerschmidt C, Michel K. Invasion of mosquito salivary glands by malaria parasites: prerequisites and defense strategies. Int J Parasitol 2010; 40:1229-35. [PMID: 20621627 DOI: 10.1016/j.ijpara.2010.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/14/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
Abstract
The interplay between vector and pathogen is essential for vector-borne disease transmission. Dissecting the molecular basis of refractoriness of some vectors may pave the way to novel disease control mechanisms. A pathogen often needs to overcome several physical barriers, such as the peritrophic matrix, midgut epithelium and salivary glands. Additionally, the arthropod vector elicites immune responses that can severely limit transmission success. One important step in the transmission of most vector-borne diseases is the entry of the disease agent into the salivary glands of its arthropod vector. The salivary glands of blood-feeding arthropods produce a complex mixture of molecules that facilitate blood feeding by inhibition of the host haemostasis, inflammation and immune reactions. Pathogen entry into salivary glands is a receptor-mediated process, which requires molecules on the surface of the pathogen and salivary gland. In most cases, the nature of these molecules remains unknown. Recent advances in our understanding of malaria parasite entry into mosquito salivary glands strongly suggests that specific carbohydrate molecules on the salivary gland surface function as docking receptors for malaria parasites.
Collapse
Affiliation(s)
- Ann-Kristin Mueller
- Parasitology Unit, Department of Infectious Diseases, Heidelberg University School of Medicine, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
37
|
Hirai M, Mori T. Fertilization is a novel attacking site for the transmission blocking of malaria parasites. Acta Trop 2010; 114:157-61. [PMID: 19665985 DOI: 10.1016/j.actatropica.2009.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/21/2009] [Accepted: 08/04/2009] [Indexed: 01/20/2023]
Abstract
Malaria parasites perform sexual reproduction in mosquitoes where a pair of gametes fertilizes and differentiates into zygotes, and a single zygote produces several thousands of progeny infectious to next vertebrates. Although the parasite fertilization step has been considered as Achilles' heel of parasite life cycle and thus a critical target for blocking malaria transmission in the mosquito, its molecular mechanisms are largely unknown. Previously, we identified that GENERATIVE CELL SPECIFIC 1 (GCS1) is a reproduction factor in angiosperm. Subsequently, it was found that rodent malaria parasite, Plasmodium berghei and green algae, Chlamydomonas reinhardtii possess GCS1 homologues which also play essential roles in gamete interaction. Moreover, intensive database mining revealed that GCS1-like gene homologues exist in the genomes of various organisms. Thus, it appears that GCS1 is an ancient and highly conserved molecule functioning at gamete interaction. In this mini-review, we describe the mechanisms of gametogenesis and fertilization in malaria parasites, comparing with other eukaryotic reproduction, and also speculate GCS1 functions in gamete interaction. We discuss the possibility of whether malaria GCS1 is a novel type of transmission blocking vaccine, by which anti-malaria GCS1 antibody may halt parasite fertilization and subsequent developments in the mosquitoes.
Collapse
Affiliation(s)
- Makoto Hirai
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, School of Medicine, Shimotsuke City, Tochigi, Japan.
| | | |
Collapse
|
38
|
CALVO ERIC, SANCHEZ-VARGAS IRMA, KOTSYFAKIS MICHALIS, FAVREAU AMANDAJ, BARBIAN KENTD, PHAM VANM, OLSON KENNETHE, RIBEIRO JOSÉMC. The salivary gland transcriptome of the eastern tree hole mosquito, Ochlerotatus triseriatus. JOURNAL OF MEDICAL ENTOMOLOGY 2010; 47:376-86. [PMID: 20496585 PMCID: PMC3394432 DOI: 10.1603/me09226] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Saliva of blood-sucking arthropods contains a complex mixture of peptides that affect their host's hemostasis, inflammation, and immunity. These activities can also modify the site of pathogen delivery and increase disease transmission. Saliva also induces hosts to mount an antisaliva immune response that can lead to skin allergies or even anaphylaxis. Accordingly, knowledge of the salivary repertoire, or sialome, of a mosquito is useful to provide a knowledge platform to mine for novel pharmacological activities, to develop novel vaccine targets for vector-borne diseases, and to develop epidemiological markers of vector exposure and candidate desensitization vaccines. The mosquito Ochlerotatus triseriatus is a vector of La Crosse virus and produces allergy in humans. In this work, a total of 1,575 clones randomly selected from an adult female O. triseriatus salivary gland cDNA library was sequenced and used to assemble a database that yielded 731 clusters of related sequences, 560 of which were singletons. Primer extension experiments were performed in selected clones to further extend sequence coverage, allowing for the identification of 159 protein sequences, 66 of which code for putative secreted proteins. Supplemental spreadsheets containing these data are available at http://exon.niaid.nih.gov/transcriptome/Ochlerotatus_triseriatus/S1/Ot-S1.xls and http://exon.niaid. nih.gov/transcriptome/Ochlerotatus_triseriatus/S2/Ot-S2.xls.
Collapse
Affiliation(s)
- ERIC CALVO
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - IRMA SANCHEZ-VARGAS
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523
| | - MICHALIS KOTSYFAKIS
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - AMANDA J. FAVREAU
- Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, Hamilton, MT 59840
| | - KENT D. BARBIAN
- Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, Hamilton, MT 59840
| | - VAN M. PHAM
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - KENNETH E. OLSON
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523
| | - JOSÉ M. C. RIBEIRO
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| |
Collapse
|
39
|
Smith RC, Jacobs-Lorena M. Plasmodium-Mosquito Interactions: A Tale of Roadblocks and Detours. ADVANCES IN INSECT PHYSIOLOGY 2010; 39:119-149. [PMID: 23729903 PMCID: PMC3666160 DOI: 10.1016/b978-0-12-381387-9.00004-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Ryan C Smith
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | |
Collapse
|
40
|
Almeras L, Orlandi-Pradines E, Fontaine A, Villard C, Boucomont E, de Senneville LD, Baragatti M, Pascual A, Pradines B, Corre-Catelin N, Pages F, Reiter P, Rogier C, Fusai T. Sialome Individuality BetweenAedes aegyptiColonies. Vector Borne Zoonotic Dis 2009; 9:531-41. [DOI: 10.1089/vbz.2008.0056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- L. Almeras
- Unité de recherche en biologie et en épidémiologie parasitaire, Institut de Médecine Tropicale du Service de Santé des Armées (IMTSSA): Marseille-Armées, France
| | - E. Orlandi-Pradines
- Unité de recherche en biologie et en épidémiologie parasitaire, Institut de Médecine Tropicale du Service de Santé des Armées (IMTSSA): Marseille-Armées, France
| | - A. Fontaine
- Unité de recherche en biologie et en épidémiologie parasitaire, Institut de Médecine Tropicale du Service de Santé des Armées (IMTSSA): Marseille-Armées, France
| | - C. Villard
- Plateau Proteomique Timone, Université Aix-Marseille II; Marseille, France
| | - E. Boucomont
- Unité de recherche en biologie et en épidémiologie parasitaire, Institut de Médecine Tropicale du Service de Santé des Armées (IMTSSA): Marseille-Armées, France
| | - L. Denis de Senneville
- Unité de recherche en biologie et en épidémiologie parasitaire, Institut de Médecine Tropicale du Service de Santé des Armées (IMTSSA): Marseille-Armées, France
| | - M. Baragatti
- Unité de recherche en biologie et en épidémiologie parasitaire, Institut de Médecine Tropicale du Service de Santé des Armées (IMTSSA): Marseille-Armées, France
| | - A. Pascual
- Unité de recherche en biologie et en épidémiologie parasitaire, Institut de Médecine Tropicale du Service de Santé des Armées (IMTSSA): Marseille-Armées, France
| | - B. Pradines
- Unité de recherche en biologie et en épidémiologie parasitaire, Institut de Médecine Tropicale du Service de Santé des Armées (IMTSSA): Marseille-Armées, France
| | - N. Corre-Catelin
- Institut Pasteur, Insects and Infectious Diseases Unit; Paris, France
| | - F. Pages
- Unité d'Entomologie Médicale, Institut de Médecine Tropicale du Service de Santé des Armées (IMTSSA); Marseille-Armées, France
| | - P. Reiter
- Institut Pasteur, Insects and Infectious Diseases Unit; Paris, France
| | - C. Rogier
- Unité de recherche en biologie et en épidémiologie parasitaire, Institut de Médecine Tropicale du Service de Santé des Armées (IMTSSA): Marseille-Armées, France
| | - T. Fusai
- Unité de recherche en biologie et en épidémiologie parasitaire, Institut de Médecine Tropicale du Service de Santé des Armées (IMTSSA): Marseille-Armées, France
| |
Collapse
|
41
|
Ghosh AK, Jacobs-Lorena M. Plasmodium sporozoite invasion of the mosquito salivary gland. Curr Opin Microbiol 2009; 12:394-400. [PMID: 19608457 DOI: 10.1016/j.mib.2009.06.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/20/2009] [Accepted: 06/01/2009] [Indexed: 11/18/2022]
Abstract
About one to two million people die of malaria every year. Anopheline mosquitoes are the obligatory vectors of Plasmodium spp., the causative agent of malaria. For transmission to occur, the parasite has to undergo a complex developmental programme in the mosquito, culminating with sporozoite invasion of the salivary glands. Strong circumstantial evidence suggests that sporozoite invasion requires specific interactions and recognition between sporozoite and salivary gland proteins. Here we review recent progress towards the elucidation of invasion mechanisms.
Collapse
Affiliation(s)
- Anil Kumar Ghosh
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Baltimore, MD 21205, USA
| | | |
Collapse
|
42
|
Ishmael N, Hotopp JCD, Ioannidis P, Biber S, Sakamoto J, Siozios S, Nene V, Werren J, Bourtzis K, Bordenstein SR, Tettelin H. Extensive genomic diversity of closely related Wolbachia strains. MICROBIOLOGY-SGM 2009; 155:2211-2222. [PMID: 19389774 DOI: 10.1099/mic.0.027581-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using microarray-based comparative genome hybridization (mCGH), the genomic content of Wolbachia pipientis wMel from Drosophila melanogaster was compared to the closely related Wolbachia from D. innubila (wInn), D. santomea (wSan), and three strains from D. simulans (wAu, wRi, wSim). A large number of auxiliary genes are identified in these five strains, with most absent/divergent genes being unique to a given strain. Each strain caused an average of approximately 60 genes to be removed from the core genome. As such, these organisms do not appear to have the streamlined genomes expected of obligate intracellular bacteria. Prophage, hypothetical and ankyrin repeat genes are over-represented in the absent/divergent genes, with 21-87% of absent/divergent genes coming from prophage regions. The only wMel region absent/divergent in all five query strains is that containing WD_0509 to WD_0511, including a DNA mismatch repair protein MutL-2, a degenerate RNase, and a conserved hypothetical protein. A region flanked by the two portions of the WO-B prophage in wMel is found in four of the five Wolbachia strains as well as on a plasmid of a rickettsial endosymbiont of Ixodes scapularis, suggesting lateral gene transfer between these two obligate intracellular species. Overall, these insect-associated Wolbachia have highly mosaic genomes, with lateral gene transfer playing an important role in their diversity and evolution.
Collapse
Affiliation(s)
- Nadeeza Ishmael
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201, USA.,J. Craig Venter Institute, 9708 Medical Center Dr., Rockville, MD 20850, USA
| | - Julie C Dunning Hotopp
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201, USA.,J. Craig Venter Institute, 9708 Medical Center Dr., Rockville, MD 20850, USA
| | - Panagiotis Ioannidis
- Department of Environmental and Natural Resources Management, University of Ioannina, 30100 Agrinio, Greece
| | - Sarah Biber
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, The Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Joyce Sakamoto
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Stefanos Siozios
- Department of Environmental and Natural Resources Management, University of Ioannina, 30100 Agrinio, Greece
| | - Vishvanath Nene
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201, USA.,J. Craig Venter Institute, 9708 Medical Center Dr., Rockville, MD 20850, USA
| | - John Werren
- Biology Department, University of Rochester, Rochester, NY 14627, USA
| | - Kostas Bourtzis
- Department of Environmental and Natural Resources Management, University of Ioannina, 30100 Agrinio, Greece
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.,Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, The Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Hervé Tettelin
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201, USA.,J. Craig Venter Institute, 9708 Medical Center Dr., Rockville, MD 20850, USA
| |
Collapse
|
43
|
Cao-Lormeau VM. Dengue viruses binding proteins from Aedes aegypti and Aedes polynesiensis salivary glands. Virol J 2009; 6:35. [PMID: 19320997 PMCID: PMC2670272 DOI: 10.1186/1743-422x-6-35] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 03/25/2009] [Indexed: 11/14/2022] Open
Abstract
Dengue virus (DENV), the etiological agent of dengue fever, is transmitted to the human host during blood uptake by an infective mosquito. Infection of vector salivary glands and further injection of infectious saliva into the human host are key events of the DENV transmission cycle. However, the molecular mechanisms of DENV entry into the mosquito salivary glands have not been clearly identified. Otherwise, although it was demonstrated for other vector-transmitted pathogens that insect salivary components may interact with host immune agents and impact the establishment of infection, the role of mosquito saliva on DENV infection in human has been only poorly documented. To identify salivary gland molecules which might interact with DENV at these key steps of transmission cycle, we investigated the presence of proteins able to bind DENV in salivary gland extracts (SGE) from two mosquito species. Using virus overlay protein binding assay, we detected several proteins able to bind DENV in SGE from Aedes aegypti (L.) and Aedes polynesiensis (Marks). The present findings pave the way for the identification of proteins mediating DENV attachment or entry into mosquito salivary glands, and of saliva-secreted proteins those might be bound to the virus at the earliest step of human infection. The present findings might contribute to the identification of new targets for anti-dengue strategies.
Collapse
Affiliation(s)
- Van-Mai Cao-Lormeau
- Laboratoire de Recherche en Virologie Médicale, Institut Louis Malardé, Po Box 30, 98713 Papeete, Tahiti, French Polynesia.
| |
Collapse
|
44
|
Klasson L, Kambris Z, Cook PE, Walker T, Sinkins SP. Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti. BMC Genomics 2009; 10:33. [PMID: 19154594 PMCID: PMC2647948 DOI: 10.1186/1471-2164-10-33] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 01/20/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolutionary importance of horizontal gene transfer (HGT) from Wolbachia endosymbiotic bacteria to their eukaryotic hosts is a topic of considerable interest and debate. Recent transfers of genome fragments from Wolbachia into insect chromosomes have been reported, but it has been argued that these fragments may be on an evolutionary trajectory to degradation and loss. RESULTS We have discovered a case of HGT, involving two adjacent genes, between the genomes of Wolbachia and the currently Wolbachia-uninfected mosquito Aedes aegypti, an important human disease vector. The lower level of sequence identity between Wolbachia and insect, the transcription of all the genes involved, and the fact that we have identified homologs of the two genes in another Aedes species (Ae. mascarensis), suggest that these genes are being expressed after an extended evolutionary period since horizontal transfer, and therefore that the transfer has functional significance. The association of these genes with Wolbachia prophage regions also provides a mechanism for the transfer. CONCLUSION The data support the argument that HGT between Wolbachia endosymbiotic bacteria and their hosts has produced evolutionary innovation.
Collapse
Affiliation(s)
- Lisa Klasson
- Department of Zoology, University of Oxford, Oxford, UK.
| | | | | | | | | |
Collapse
|
45
|
Ghosh AK, Devenport M, Jethwaney D, Kalume DE, Pandey A, Anderson VE, Sultan AA, Kumar N, Jacobs-Lorena M. Malaria parasite invasion of the mosquito salivary gland requires interaction between the Plasmodium TRAP and the Anopheles saglin proteins. PLoS Pathog 2009; 5:e1000265. [PMID: 19148273 PMCID: PMC2613030 DOI: 10.1371/journal.ppat.1000265] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 12/14/2008] [Indexed: 11/24/2022] Open
Abstract
SM1 is a twelve-amino-acid peptide that binds tightly to the Anopheles salivary gland and inhibits its invasion by Plasmodium sporozoites. By use of UV-crosslinking experiments between the peptide and its salivary gland target protein, we have identified the Anopheles salivary protein, saglin, as the receptor for SM1. Furthermore, by use of an anti-SM1 antibody, we have determined that the peptide is a mimotope of the Plasmodium sporozoite Thrombospondin Related Anonymous Protein (TRAP). TRAP binds to saglin with high specificity. Point mutations in TRAP's binding domain A abrogate binding, and binding is competed for by the SM1 peptide. Importantly, in vivo down-regulation of saglin expression results in strong inhibition of salivary gland invasion. Together, the results suggest that saglin/TRAP interaction is crucial for salivary gland invasion by Plasmodium sporozoites. Transmission of Plasmodium, the causative agent of malaria, requires the completion of a complex life cycle in the mosquito, which includes invasion of the salivary glands. This invasion depends on the recognition of mosquito salivary gland surface components by the parasite. This work demonstrates that interaction between the salivary-gland-specific surface protein saglin and the parasite surface protein TRAP is essential for invasion to occur. A better understanding of the mechanisms used by the parasite to develop in the mosquito may lead to novel approaches to intervene with the spread of the disease.
Collapse
Affiliation(s)
- Anil K. Ghosh
- Department of Molecular Microbiology and Immunology and Malaria Research Institute, Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
| | - Martin Devenport
- Department of Molecular Microbiology and Immunology and Malaria Research Institute, Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
| | - Deepa Jethwaney
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Dario E. Kalume
- McKusick-Nathans Institute of Genetic Medicine and Departments of Biological Chemistry, Pathology, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine and Departments of Biological Chemistry, Pathology, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Vernon E. Anderson
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Ali A. Sultan
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Nirbhay Kumar
- Department of Molecular Microbiology and Immunology and Malaria Research Institute, Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
- * E-mail: (NK); (MJ-L)
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology and Malaria Research Institute, Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
- * E-mail: (NK); (MJ-L)
| |
Collapse
|
46
|
Woolfit M, Iturbe-Ormaetxe I, McGraw EA, O'Neill SL. An ancient horizontal gene transfer between mosquito and the endosymbiotic bacterium Wolbachia pipientis. Mol Biol Evol 2008; 26:367-74. [PMID: 18988686 DOI: 10.1093/molbev/msn253] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The extent and biological relevance of horizontal gene transfer (HGT) in eukaryotic evolution remain highly controversial. Recent studies have demonstrated frequent and large-scale HGT from endosymbiotic bacteria to their hosts, but the great majority of these transferred genes rapidly become nonfunctional in the recipient genome. Here, we investigate an ancient HGT between a host metazoan and an endosymbiotic bacterium, Wolbachia pipientis. The transferred gene has so far been found only in mosquitoes and Wolbachia. In mosquitoes, it is a member of a gene family encoding candidate receptors required for malaria sporozoite invasion of the mosquito salivary gland. The gene copy in Wolbachia has substantially diverged in sequence from the mosquito homolog, is evolving under purifying selection, and is expressed, suggesting that this gene is also functional in the bacterial genome. Several lines of evidence indicate that the gene may have been transferred from eukaryotic host to bacterial endosymbiont. Regardless of the direction of transfer, however, these results demonstrate that interdomain HGT may give rise to functional, persistent, and possibly evolutionarily significant new genes.
Collapse
Affiliation(s)
- Megan Woolfit
- School of Integrative Biology, University of Queensland, Brisbane, Australia
| | | | | | | |
Collapse
|
47
|
Mosquito-based transmission blocking vaccines for interrupting Plasmodium development. Microbes Infect 2008; 10:845-9. [PMID: 18656409 DOI: 10.1016/j.micinf.2008.05.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 05/09/2008] [Accepted: 05/15/2008] [Indexed: 11/23/2022]
Abstract
Reduction of transmission is critical for effective malaria control. Transmission blocking vaccines, which are intended to prevent the parasites from infecting the mosquito vectors, could target mosquito antigens that are required for the successful development of the parasite in its vector. Here we review recent advances in the identification of promising candidate antigens for a mosquito-based transmission blocking vaccine.
Collapse
|
48
|
Frevert U, Späth GF, Yee H. Exoerythrocytic development of Plasmodium gallinaceum in the White Leghorn chicken. Int J Parasitol 2008; 38:655-72. [PMID: 18005972 PMCID: PMC2430052 DOI: 10.1016/j.ijpara.2007.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 09/22/2007] [Accepted: 09/27/2007] [Indexed: 01/22/2023]
Abstract
Plasmodium gallinaceum typically causes sub-clinical disease with low mortality in its primary host, the Indian jungle fowl Gallus sonnerati. Domestic chickens of European origin, however, are highly susceptible to this avian malaria parasite. Here we describe the development of P. gallinaceum in young White Leghorn chicks with emphasis on the primary exoerythrocytic phase of the infection. Using various regimens for infection, we found that P. gallinaceum induced a transient primary exoerythrocytic infection followed by a fulminant lethal erythrocytic phase. Prerequisite for the appearance of secondary exoerythrocytic stages was the development of a certain level of parasitaemia. Once established, secondary exoerythrocytic stages could be propagated from bird to bird for several generations without causing fatalities. Infected brains contained large secondary exoerythrocytic stages in capillary endothelia, while in the liver primary and secondary erythrocytic stages developed primarily in Kupffer cells and remained smaller. At later stages, livers exhibited focal hepatocyte necrosis, Kupffer cell hyperplasia, stellate cell proliferation, inflammatory cell infiltration and granuloma formation. Because P. gallinaceum selectively infected Kupffer cells in the liver and caused a histopathology strikingly similar to mammalian species, this avian Plasmodium species represents an evolutionarily closely related model for studies on the hepatic phase of mammalian malaria.
Collapse
Affiliation(s)
- Ute Frevert
- Department of Medical Parasitology, New York University School of Medicine, New York, NY 10010, USA.
| | | | | |
Collapse
|
49
|
Okulate MA, Kalume DE, Reddy R, Kristiansen T, Bhattacharyya M, Chaerkady R, Pandey A, Kumar N. Identification and molecular characterization of a novel protein Saglin as a target of monoclonal antibodies affecting salivary gland infectivity of Plasmodium sporozoites. INSECT MOLECULAR BIOLOGY 2007; 16:711-22. [PMID: 18093000 DOI: 10.1111/j.1365-2583.2007.00765.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Molecular mechanisms underlying the interaction between malarial sporozoites and putative receptor(s) on the salivary glands of Anopheles gambiae remain largely unknown. In previous studies, a salivary gland protein of ~100 kDa was identified as a putative target based on recognition of the protein by a monoclonal antibody (mAb) 2A3 that caused a >/= 70% reduction in the average number of sporozoites per infected salivary gland when fed to mosquitoes. Using affinity purification we purified the target of this mAb from extracts of female A. gambiae salivary glands and it was found to be a novel protein by tandem mass spectrometric analysis. Biochemical and molecular characterization of the 100 kDa protein showed that this molecule, designated Saglin, exists as a disulphide-bonded homodimer of 50 kDa subunits. The ability to form homodimers was retained even in the recombinant Saglin expressed in mammalian cells (HEK293). The amino acid sequence of Saglin contains a signal peptide suggesting that Saglin is a secreted protein. If Saglin is indeed involved in the process of invasion of A. gambiae salivary glands by sporozoites of Plasmodium, it could provide a novel target for future investigations aimed at interruption of malaria transmission.
Collapse
Affiliation(s)
- M A Okulate
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Pinto SB, Kafatos FC, Michel K. The parasite invasion marker SRPN6 reduces sporozoite numbers in salivary glands of Anopheles gambiae. Cell Microbiol 2007; 10:891-8. [PMID: 18005239 DOI: 10.1111/j.1462-5822.2007.01091.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
For malaria transmission to occur, Plasmodium sporozoites must infect the salivary glands of their mosquito vectors. This study reports that Anopheles gambiae SRPN6 participates in a local salivary gland epithelial response against the rodent malaria parasite, Plasmodium berghei. We showed previously that SRPN6, an immune inducible midgut invasion marker, influences ookinete development. Here we report that SRPN6 is also specifically induced in salivary glands with the onset of sporozoite invasion. The protein is located in the basal region of epithelial cells in proximity to invading sporozoites. Knockdown of SRPN6 during the late phase of sporogony by RNAi has no effect on oocyst rupture but significantly increases the number of sporozoites present in salivary glands. Despite several differences between the passage of Plasmodium through the midgut and the salivary glands, this study identifies a striking overlap in the molecular responses of these two epithelia to parasite invasion.
Collapse
Affiliation(s)
- Sofia B Pinto
- Imperial College London, Faculty of Natural Sciences, Division of Cell and Molecular Biology, Sir Alexander Fleming Building, South Kensington Campus, London, SW7 2AZ, UK
| | | | | |
Collapse
|