1
|
Lu J, Gullett JM, Kanneganti TD. Filoviruses: Innate Immunity, Inflammatory Cell Death, and Cytokines. Pathogens 2022; 11:1400. [PMID: 36558734 PMCID: PMC9785368 DOI: 10.3390/pathogens11121400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Filoviruses are a group of single-stranded negative sense RNA viruses. The most well-known filoviruses that affect humans are ebolaviruses and marburgviruses. During infection, they can cause life-threatening symptoms such as inflammation, tissue damage, and hemorrhagic fever, with case fatality rates as high as 90%. The innate immune system is the first line of defense against pathogenic insults such as filoviruses. Pattern recognition receptors (PRRs), including toll-like receptors, retinoic acid-inducible gene-I-like receptors, C-type lectin receptors, AIM2-like receptors, and NOD-like receptors, detect pathogens and activate downstream signaling to induce the production of proinflammatory cytokines and interferons, alert the surrounding cells to the threat, and clear infected and damaged cells through innate immune cell death. However, filoviruses can modulate the host inflammatory response and innate immune cell death, causing an aberrant immune reaction. Here, we discuss how the innate immune system senses invading filoviruses and how these deadly pathogens interfere with the immune response. Furthermore, we highlight the experimental difficulties of studying filoviruses as well as the current state of filovirus-targeting therapeutics.
Collapse
|
2
|
Le H, Spearman P, Waggoner SN, Singh K. Ebola virus protein VP40 stimulates IL-12- and IL-18-dependent activation of human natural killer cells. JCI Insight 2022; 7:158902. [PMID: 35862204 PMCID: PMC9462474 DOI: 10.1172/jci.insight.158902] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Accumulation of activated natural killer (NK) cells in tissues during Ebola virus infection contributes to Ebola virus disease (EVD) pathogenesis. Yet, immunization with Ebola virus-like particles (VLPs) comprising glycoprotein and matrix protein VP40 provides rapid, NK cell–mediated protection against Ebola challenge. We used Ebola VLPs as the viral surrogates to elucidate the molecular mechanism by which Ebola virus triggers heightened NK cell activity. Incubation of human peripheral blood mononuclear cells with Ebola VLPs or VP40 protein led to increased expression of IFN-γ, TNF-α, granzyme B, and perforin by CD3–CD56+ NK cells, along with increases in degranulation and cytotoxic activity of these cells. Optimal activation required accessory cells like CD14+ myeloid and CD14– cells and triggered increased secretion of numerous inflammatory cytokines. VP40-induced IFN-γ and TNF-α secretion by NK cells was dependent on IL-12 and IL-18 and suppressed by IL-10. In contrast, their increased degranulation was dependent on IL-12 with little influence of IL-18 or IL-10. These results demonstrate that Ebola VP40 stimulates NK cell functions in an IL-12– and IL-18–dependent manner that involves CD14+ and CD14– accessory cells. These potentially novel findings may help in designing improved intervention strategies required to control viral transmission during Ebola outbreaks.
Collapse
Affiliation(s)
- Hung Le
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States of America
| | - Paul Spearman
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States of America
| | - Stephen N Waggoner
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States of America
| | - Karnail Singh
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States of America
| |
Collapse
|
3
|
Pinski AN, Messaoudi I. Therapeutic vaccination strategies against EBOV by rVSV-EBOV-GP: the role of innate immunity. Curr Opin Virol 2021; 51:179-189. [PMID: 34749265 DOI: 10.1016/j.coviro.2021.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022]
Abstract
Zaire Ebola virus (EBOV) is a member of the Filoviridae family. Infection with EBOV causes Ebola virus disease (EVD) characterized by excessive inflammation, lymphocyte death, coagulopathy, and multi-organ failure. In 2019, the FDA-approved the first anti-EBOV vaccine, rVSV-EBOV-GP (Ervebo® by Merck). This live-recombinant vaccine confers both prophylactic and therapeutic protection to nonhuman primates and humans. While mechanisms conferring prophylactic protection are well-investigated, those underlying protection conferred shortly before and after exposure to EBOV remain poorly understood. In this review, we review data from in vitro and in vivo studies analyzing early immune responses to rVSV-EBOV-GP and discuss the role of innate immune activation in therapeutic protection.
Collapse
Affiliation(s)
- Amanda N Pinski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA; Center for Virus Research, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
4
|
Jarahian M, Marstaller K, Banna N, Ahani R, Etemadzadeh MH, Boller LK, Azadmanesh K, Cid-Arregui A, Khezri A, Berger MR, Momburg F, Watzl C. Activating Natural Killer Cell Receptors, Selectins, and Inhibitory Siglecs Recognize Ebolavirus Glycoprotein. J Innate Immun 2021; 14:135-147. [PMID: 34425576 DOI: 10.1159/000517628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/28/2021] [Indexed: 11/19/2022] Open
Abstract
Expression of the extensively glycosylated Ebolavirus glycoprotein (EBOV-GP) induces physical alterations of surface molecules and plays a crucial role in viral pathogenicity. Here we investigate the interactions of EBOV-GP with host surface molecules using purified EBOV-GP, EBOV-GP-transfected cell lines, and EBOV-GP-pseudotyped lentiviral particles. Subsequently, we wanted to examine which receptors are involved in this recognition by binding studies to cells transfected with the EBOV-GP as well as to recombinant soluble EBOV-GP. As the viral components can also bind to inhibitory receptors of immune cells (e.g., Siglecs, TIM-1), they can even suppress the activity of immune effector cells. Our data show that natural killer (NK) cell receptors NKp44 and NKp46, selectins (CD62E/P/L), the host factors DC-SIGNR/DC-SIGN, and inhibitory Siglecs function as receptors for EBOV-GP. Our results show also moderate to strong avidity of homing receptors (P-, L-, and E-selectin) and DC-SIGNR/DC-SIGN to purified EBOV-GP, to cells transfected with EBOV-GP, as well as to the envelope of a pseudotyped lentiviral vector carrying the EBOV-GP. The concomitant activation and inhibition of the immune system exemplifies the evolutionary antagonism between the immune system and pathogens. Altogether these interactions with activating and inhibitory receptors result in a reduced NK cell-mediated lysis of EBOV-GP-expressing cells. Modulation of these interactions may provide new strategies for treating infections caused by this virus.
Collapse
Affiliation(s)
- Mostafa Jarahian
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katharina Marstaller
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadine Banna
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roshanak Ahani
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Lea K Boller
- Department of Immunology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | | | - Angel Cid-Arregui
- Targeted Tumor Vaccines Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Momburg
- Antigen Presentation and T/NK Cell Activation Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carsten Watzl
- Department of Immunology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| |
Collapse
|
5
|
Goodier MR, Riley EM. Regulation of the human NK cell compartment by pathogens and vaccines. Clin Transl Immunology 2021; 10:e1244. [PMID: 33505682 PMCID: PMC7813579 DOI: 10.1002/cti2.1244] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Natural killer cells constitute a phenotypically diverse population of innate lymphoid cells with a broad functional spectrum. Classically defined as cytotoxic lymphocytes with the capacity to eliminate cells lacking self‐MHC or expressing markers of stress or neoplastic transformation, critical roles for NK cells in immunity to infection in the regulation of immune responses and as vaccine‐induced effector cells have also emerged. A crucial feature of NK cell biology is their capacity to integrate signals from pathogen‐, tumor‐ or stress‐induced innate pathways and from antigen‐specific immune responses. The extent to which innate and acquired immune mediators influence NK cell effector function is influenced by the maturation and differentiation state of the NK cell compartment; moreover, NK cell differentiation is driven in part by exposure to infection. Pathogens can thus mould the NK cell response to maximise their own success and/or minimise the damage they cause. Here, we review recent evidence that pathogen‐ and vaccine‐derived signals influence the differentiation, adaptation and subsequent effector function of human NK cells.
Collapse
Affiliation(s)
- Martin R Goodier
- Department of Infection Biology London School of Hygiene and Tropical Medicine London UK
| | - Eleanor M Riley
- Institute of Immunology and Infection Research School of Biological Sciences University of Edinburgh Edinburgh UK
| |
Collapse
|
6
|
Diaz-Salazar C, Sun JC. Natural killer cell responses to emerging viruses of zoonotic origin. Curr Opin Virol 2020; 44:97-111. [PMID: 32784125 PMCID: PMC7415341 DOI: 10.1016/j.coviro.2020.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
Emerging viral diseases pose a major threat to public health worldwide. Nearly all emerging viruses, including Ebola, Dengue, Nipah, West Nile, Zika, and coronaviruses (including SARS-Cov2, the causative agent of the current COVID-19 pandemic), have zoonotic origins, indicating that animal-to-human transmission constitutes a primary mode of acquisition of novel infectious diseases. Why these viruses can cause profound pathologies in humans, while natural reservoir hosts often show little evidence of disease is not completely understood. Differences in the host immune response, especially within the innate compartment, have been suggested to be involved in this divergence. Natural killer (NK) cells are innate lymphocytes that play a critical role in the early antiviral response, secreting effector cytokines and clearing infected cells. In this review, we will discuss the mechanisms through which NK cells interact with viruses, their contribution towards maintaining equilibrium between the virus and its natural host, and their role in disease progression in humans and other non-natural hosts.
Collapse
Affiliation(s)
- Carlos Diaz-Salazar
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, United States
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, United States.
| |
Collapse
|
7
|
Distinct Immunogenicity and Efficacy of Poxvirus-Based Vaccine Candidates against Ebola Virus Expressing GP and VP40 Proteins. J Virol 2018. [PMID: 29514907 DOI: 10.1128/jvi.00363-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Zaire and Sudan ebolavirus species cause a severe disease in humans and nonhuman primates (NHPs) characterized by a high mortality rate. There are no licensed therapies or vaccines against Ebola virus disease (EVD), and the recent 2013 to 2016 outbreak in West Africa highlighted the need for EVD-specific medical countermeasures. Here, we generated and characterized head-to-head the immunogenicity and efficacy of five vaccine candidates against Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV) based on the highly attenuated poxvirus vector modified vaccinia virus Ankara (MVA) expressing either the virus glycoprotein (GP) or GP together with the virus protein 40 (VP40) forming virus-like particles (VLPs). In a human monocytic cell line, the different MVA vectors (termed MVA-EBOVs and MVA-SUDVs) triggered robust innate immune responses, with production of beta interferon (IFN-β), proinflammatory cytokines, and chemokines. Additionally, several innate immune cells, such as dendritic cells, neutrophils, and natural killer cells, were differentially recruited in the peritoneal cavity of mice inoculated with MVA-EBOVs. After immunization of mice with a homologous prime/boost protocol (MVA/MVA), total IgG antibodies against GP or VP40 from Zaire and Sudan ebolavirus were differentially induced by these vectors, which were mainly of the IgG1 and IgG3 isotypes. Remarkably, an MVA-EBOV construct coexpressing GP and VP40 protected chimeric mice challenged with EBOV to a greater extent than a vector expressing GP alone. These results support the consideration of MVA-EBOVs and MVA-SUDVs expressing GP and VP40 and producing VLPs as best-in-class potential vaccine candidates against EBOV and SUDV.IMPORTANCE EBOV and SUDV cause a severe hemorrhagic fever affecting humans and NHPs. Since their discovery in 1976, they have caused several sporadic epidemics, with the recent outbreak in West Africa from 2013 to 2016 being the largest and most severe, with more than 11,000 deaths being reported. Although some vaccines are in advanced clinical phases, less expensive, safer, and more effective licensed vaccines are desirable. We generated and characterized head-to-head the immunogenicity and efficacy of five novel vaccines against EBOV and SUDV based on the poxvirus MVA expressing GP or GP and VP40. The expression of GP and VP40 leads to the formation of VLPs. These MVA-EBOV and MVA-SUDV recombinants triggered robust innate and humoral immune responses in mice. Furthermore, MVA-EBOV recombinants expressing GP and VP40 induced high protection against EBOV in a mouse challenge model. Thus, MVA expressing GP and VP40 and producing VLPs is a promising vaccine candidate against EBOV and SUDV.
Collapse
|
8
|
Wagstaffe HR, Mooney JP, Riley EM, Goodier MR. Vaccinating for natural killer cell effector functions. Clin Transl Immunology 2018; 7:e1010. [PMID: 29484187 PMCID: PMC5822400 DOI: 10.1002/cti2.1010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/19/2017] [Accepted: 12/29/2017] [Indexed: 12/21/2022] Open
Abstract
Vaccination has proved to be highly effective in reducing global mortality and eliminating infectious diseases. Building on this success will depend on the development of new and improved vaccines, new methods to determine efficacy and optimum dosing and new or refined adjuvant systems. NK cells are innate lymphoid cells that respond rapidly during primary infection but also have adaptive characteristics enabling them to integrate innate and acquired immune responses. NK cells are activated after vaccination against pathogens including influenza, yellow fever and tuberculosis, and their subsequent maturation, proliferation and effector function is dependent on myeloid accessory cell-derived cytokines such as IL-12, IL-18 and type I interferons. Activation of antigen-presenting cells by live attenuated or whole inactivated vaccines, or by the use of adjuvants, leads to enhanced and sustained NK cell activity, which in turn contributes to T cell recruitment and memory cell formation. This review explores the role of cytokine-activated NK cells as vaccine-induced effector cells and in recall responses and their potential contribution to vaccine and adjuvant development.
Collapse
Affiliation(s)
- Helen R Wagstaffe
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
| | - Jason P Mooney
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Eleanor M Riley
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Martin R Goodier
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
9
|
Semeraro M, Rusakiewicz S, Minard-Colin V, Delahaye NF, Enot D, Vély F, Marabelle A, Papoular B, Piperoglou C, Ponzoni M, Perri P, Tchirkov A, Matta J, Lapierre V, Shekarian T, Valsesia-Wittmann S, Commo F, Prada N, Poirier-Colame V, Bressac B, Cotteret S, Brugieres L, Farace F, Chaput N, Kroemer G, Valteau-Couanet D, Zitvogel L. Clinical impact of the NKp30/B7-H6 axis in high-risk neuroblastoma patients. Sci Transl Med 2016; 7:283ra55. [PMID: 25877893 DOI: 10.1126/scitranslmed.aaa2327] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The immunosurveillance mechanisms governing high-risk neuroblastoma (HR-NB), a major pediatric malignancy, have been elusive. We identify a potential role for natural killer (NK) cells, in particular the interaction between the NK receptor NKp30 and its ligand, B7-H6, in the metastatic progression and survival of HR-NB after myeloablative multimodal chemotherapy and stem cell transplantation. NB cells expressing the NKp30 ligand B7-H6 stimulated NK cells in an NKp30-dependent manner. Serum concentration of soluble B7-H6 correlated with the down-regulation of NKp30, bone marrow metastases, and chemoresistance, and soluble B7-H6 contained in the serum of HR-NB patients inhibited NK cell functions in vitro. The expression of distinct NKp30 isoforms affecting the polarization of NK cell functions correlated with 10-year event-free survival in three independent cohorts of HR-NB in remission from metastases after induction chemotherapy (n = 196, P < 0.001), adding prognostic value to known risk factors such as N-Myc amplification and age >18 months. We conclude that the interaction between NKp30 and B7-H6 may contribute to the fate of NB patients and that both the expression of NKp30 isoforms on circulating NK cells and the concentration of soluble B7-H6 in the serum may be clinically useful as biomarkers for risk stratification.
Collapse
Affiliation(s)
- Michaela Semeraro
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. INSERM U1015, GRCC, 94805 Villejuif, France. Department of Pediatric Oncology, GRCC, 94805 Villejuif, France. University of Paris Sud XI, 94805 Villejuif, France. Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France. INSERM U1138, 94805 Villejuif, France
| | - Sylvie Rusakiewicz
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. INSERM U1015, GRCC, 94805 Villejuif, France. Center of Clinical Investigations in Biotherapies of Cancer, CICBT507, GRCC, 94805 Villejuif, France
| | - Véronique Minard-Colin
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. INSERM U1015, GRCC, 94805 Villejuif, France. Department of Pediatric Oncology, GRCC, 94805 Villejuif, France
| | - Nicolas F Delahaye
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. INSERM U1015, GRCC, 94805 Villejuif, France
| | - David Enot
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France. INSERM U1138, 94805 Villejuif, France
| | - Frédéric Vély
- Centre d'Immunologie de Marseille-Luminy, INSERM, U1104, F-13009 Marseille, France. CNRS, UMR7280, F-13009 Marseille, France. Aix Marseille Université, UM2, F-13009 Marseille, France. Service d'Immunologie, Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, F-13009 Marseille, France
| | - Aurélien Marabelle
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052 CNRS 5286, Centre Léon Bérard, Université de Lyon, 69000 Lyon, France
| | - Benjamin Papoular
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. INSERM U1015, GRCC, 94805 Villejuif, France
| | - Christelle Piperoglou
- Service d'Immunologie, Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, F-13009 Marseille, France
| | - Mirco Ponzoni
- Giannina Gaslini Hospital, Experimental Therapy Unit Laboratory of Oncology, 16147 Genoa, Italy
| | - Patrizia Perri
- Giannina Gaslini Hospital, Experimental Therapy Unit Laboratory of Oncology, 16147 Genoa, Italy
| | - Andrei Tchirkov
- EA 4677 ERTICa, CHU et Centre Jean Perrin, 63011 Clermont-Ferrand, France. CHU de Clermont-Ferrand, Service de Cytogénétique Médicale, Hôpital Estaing, 63001 Clermont-Ferrand, France
| | - Jessica Matta
- Centre d'Immunologie de Marseille-Luminy, INSERM, U1104, F-13009 Marseille, France. CNRS, UMR7280, F-13009 Marseille, France. Aix Marseille Université, UM2, F-13009 Marseille, France
| | - Valérie Lapierre
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. Cell Therapy Unit, GRCC, 94805 Villejuif, France
| | - Tala Shekarian
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052 CNRS 5286, Centre Léon Bérard, Université de Lyon, 69000 Lyon, France
| | - Sandrine Valsesia-Wittmann
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052 CNRS 5286, Centre Léon Bérard, Université de Lyon, 69000 Lyon, France
| | - Frédéric Commo
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. INSERM U1015, GRCC, 94805 Villejuif, France
| | - Nicole Prada
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. INSERM U1015, GRCC, 94805 Villejuif, France
| | - Vichnou Poirier-Colame
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. INSERM U1015, GRCC, 94805 Villejuif, France
| | - Brigitte Bressac
- Service de Génétique, Molecular Genetic Department, GRCC, 94805 Villejuif, France
| | - Sophie Cotteret
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. INSERM U1015, GRCC, 94805 Villejuif, France
| | - Laurence Brugieres
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. Department of Pediatric Oncology, GRCC, 94805 Villejuif, France
| | - Françoise Farace
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. INSERM U981, 94805 Villejuif, France
| | - Nathalie Chaput
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. INSERM U1015, GRCC, 94805 Villejuif, France. Center of Clinical Investigations in Biotherapies of Cancer, CICBT507, GRCC, 94805 Villejuif, France
| | - Guido Kroemer
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France. INSERM U1138, 94805 Villejuif, France. University of Paris Descartes/ParisV, Sorbonne Paris Cité, 75005 Paris, France. Pôle de Biologie, Hôpital Européen Georges Pompidou, 75015 Paris, France.
| | - Dominique Valteau-Couanet
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. INSERM U1015, GRCC, 94805 Villejuif, France. Department of Pediatric Oncology, GRCC, 94805 Villejuif, France
| | - Laurence Zitvogel
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. INSERM U1015, GRCC, 94805 Villejuif, France. University of Paris Sud XI, 94805 Villejuif, France. Center of Clinical Investigations in Biotherapies of Cancer, CICBT507, GRCC, 94805 Villejuif, France.
| |
Collapse
|
10
|
Waggoner SN, Reighard SD, Gyurova IE, Cranert SA, Mahl SE, Karmele EP, McNally JP, Moran MT, Brooks TR, Yaqoob F, Rydyznski CE. Roles of natural killer cells in antiviral immunity. Curr Opin Virol 2015; 16:15-23. [PMID: 26590692 PMCID: PMC4821726 DOI: 10.1016/j.coviro.2015.10.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/20/2015] [Accepted: 10/24/2015] [Indexed: 01/01/2023]
Abstract
NK cells can kill virus-infected cells and protect against severe infections. Long-lived memory NK cells may develop after vaccination or infection. NK cells are potent regulatory of antiviral T and B cell responses. The role of NK cells in human infection is complex and context-dependent.
Natural killer (NK) cells are important in immune defense against virus infections. This is predominantly considered a function of rapid, innate NK-cell killing of virus-infected cells. However, NK cells also prime other immune cells through the release of interferon gamma (IFN-γ) and other cytokines. Additionally, NK cells share features with long-lived adaptive immune cells and can impact disease pathogenesis through the inhibition of adaptive immune responses by virus-specific T and B cells. The relative contributions of these diverse and conflicting functions of NK cells in humans are poorly defined and likely context-dependent, thereby complicating the development of therapeutic interventions. Here we focus on the contributions of NK cells to disease in diverse virus infections germane to human health.
Collapse
Affiliation(s)
- Stephen N Waggoner
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Immunology Graduate Program, University of Cincinnati, Cincinnati, OH, United States; Medical Scientist Training Program, University of Cincinnati, Cincinnati, OH, United States; Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati, Cincinnati, OH, United States.
| | - Seth D Reighard
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Immunology Graduate Program, University of Cincinnati, Cincinnati, OH, United States; Medical Scientist Training Program, University of Cincinnati, Cincinnati, OH, United States
| | - Ivayla E Gyurova
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati, Cincinnati, OH, United States
| | - Stacey A Cranert
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Sarah E Mahl
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Erik P Karmele
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Jonathan P McNally
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael T Moran
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Immunology Graduate Program, University of Cincinnati, Cincinnati, OH, United States
| | - Taylor R Brooks
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Fazeela Yaqoob
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Immunology Graduate Program, University of Cincinnati, Cincinnati, OH, United States
| | - Carolyn E Rydyznski
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Immunology Graduate Program, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
11
|
Williams KJN, Qiu X, Fernando L, Jones SM, Alimonti JB. VSVΔG/EBOV GP-induced innate protection enhances natural killer cell activity to increase survival in a lethal mouse adapted Ebola virus infection. Viral Immunol 2015; 28:51-61. [PMID: 25494457 DOI: 10.1089/vim.2014.0069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Members of the species Zaire ebolavirus cause severe hemorrhagic fever with up to a 90% mortality rate in humans. The VSVΔG/EBOV GP vaccine has provided 100% protection in the mouse, guinea pig, and nonhuman primate (NHP) models, and has also been utilized as a post-exposure therapeutic to protect mice, guinea pigs, and NHPs from a lethal challenge of Ebola virus (EBOV). EBOV infection causes rapid mortality in human and animal models, with death occurring as early as 6 days after infection, suggesting a vital role for the innate immune system to control the infection before cells of the adaptive immune system can assume control. Natural killer (NK) cells are the predominant cell of the innate immune response, which has been shown to expand with VSVΔG/EBOV GP treatment. In the current study, an in vivo mouse model of the VSVΔG/EBOV GP post-exposure treatment was used for a mouse adapted (MA)-EBOV infection, to determine the putative VSVΔG/EBOV GP-induced protective mechanism of NK cells. NK depletion studies demonstrated that mice with NK cells survive longer in a MA-EBOV infection, which is further enhanced with VSVΔG/EBOV GP treatment. NK cell mediated cytotoxicity and IFN-γ secretion was significantly higher with VSVΔG/EBOV GP treatment. Cell mediated cytotoxicity assays and perforin knockout mice experiments suggest that there are perforin-dependent and -independent mechanisms involved. Together, these data suggest that NK cells play an important role in VSVΔG/EBOV GP-induced protection of EBOV by increasing NK cytotoxicity, and IFN-γ secretion.
Collapse
Affiliation(s)
- Kinola J N Williams
- 1 Department of Medical Microbiology and Immunology, University of Alberta , Edmonton, Canada
| | | | | | | | | |
Collapse
|
12
|
Falasca L, Agrati C, Petrosillo N, Di Caro A, Capobianchi MR, Ippolito G, Piacentini M. Molecular mechanisms of Ebola virus pathogenesis: focus on cell death. Cell Death Differ 2015; 22:1250-9. [PMID: 26024394 PMCID: PMC4495366 DOI: 10.1038/cdd.2015.67] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/31/2015] [Accepted: 04/20/2015] [Indexed: 12/28/2022] Open
Abstract
Ebola virus (EBOV) belongs to the Filoviridae family and is responsible for a severe disease characterized by the sudden onset of fever and malaise accompanied by other non-specific signs and symptoms; in 30–50% of cases hemorrhagic symptoms are present. Multiorgan dysfunction occurs in severe forms with a mortality up to 90%. The EBOV first attacks macrophages and dendritic immune cells. The innate immune reaction is characterized by a cytokine storm, with secretion of numerous pro-inflammatory cytokines, which induces a huge number of contradictory signals and hurts the immune cells, as well as other tissues. Other highly pathogenic viruses also trigger cytokine storms, but Filoviruses are thought to be particularly lethal because they affect a wide array of tissues. In addition to the immune system, EBOV attacks the spleen and kidneys, where it kills cells that help the body to regulate its fluid and chemical balance and that make proteins that help the blood to clot. In addition, EBOV causes liver, lungs and kidneys to shut down their functions and the blood vessels to leak fluid into surrounding tissues. In this review, we analyze the molecular mechanisms at the basis of Ebola pathogenesis with a particular focus on the cell death pathways induced by the virus. We also discuss how the treatment of the infection can benefit from the recent experience of blocking/modulating cell death in human degenerative diseases.
Collapse
Affiliation(s)
- L Falasca
- National Institute for Infectious Diseases, Lazzaro Spallanzani, Rome, Italy
| | - C Agrati
- National Institute for Infectious Diseases, Lazzaro Spallanzani, Rome, Italy
| | - N Petrosillo
- National Institute for Infectious Diseases, Lazzaro Spallanzani, Rome, Italy
| | - A Di Caro
- National Institute for Infectious Diseases, Lazzaro Spallanzani, Rome, Italy
| | - M R Capobianchi
- National Institute for Infectious Diseases, Lazzaro Spallanzani, Rome, Italy
| | - G Ippolito
- National Institute for Infectious Diseases, Lazzaro Spallanzani, Rome, Italy
| | - M Piacentini
- 1] National Institute for Infectious Diseases, Lazzaro Spallanzani, Rome, Italy [2] Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
13
|
Shurtleff AC, Bavari S. Animal models for ebolavirus countermeasures discovery: what defines a useful model? Expert Opin Drug Discov 2015; 10:685-702. [PMID: 26004783 DOI: 10.1517/17460441.2015.1035252] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Ebolaviruses are highly pathogenic filoviruses, which cause disease in humans and nonhuman primates (NHP) in Africa. The Zaire ebolavirus outbreak in 2014, which continues to greatly affect Western Africa and other countries to which the hemorrhagic fever was exported due to travel of unsymptomatic yet infected individuals, was complicated by the lack of available licensed vaccines or therapeutics to combat infection. After almost a year of research at an increased pace to find and test vaccines and therapeutics, there is now a deeper understanding of the available disease models for ebolavirus infection. Demonstration of vaccine or therapeutic efficacy in NHP models of ebolavirus infection is crucial to the development and eventual licensure of ebolavirus medical countermeasures, so that safe and effective countermeasures can be accelerated into human clinical trials. AREAS COVERED The authors describe ebolavirus hemorrhagic fever (EHF) disease in various animal species: mice, guinea pigs, hamsters, pigs and NHP, to include baboons, marmosets, rhesus and cynomolgus macaques, as well as African green monkeys. Because the NHP models are supremely useful for therapeutics and vaccine testing, emphasis is placed on comparison of these models, and their use as gold-standard models of EHF. EXPERT OPINION Animal models of EHF varying from rodents to NHP species are currently under evaluation for their reproducibility and utility for modeling infection in humans. Complete development and licensure of therapeutic agents and vaccines will require demonstration that mechanisms conferring protection in NHP models of infection are predictive of protective responses in humans, for a given countermeasure.
Collapse
Affiliation(s)
- Amy C Shurtleff
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Division of Molecular and Translational Sciences , 1425 Porter Street, Frederick, MD 21702 , USA +1 301 619 4246 ; +1 541 754 3545 ;
| | | |
Collapse
|
14
|
Forbes CA, Coudert JD. Mechanisms regulating NK cell activation during viral infection. Future Virol 2015. [DOI: 10.2217/fvl.14.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT NK cells constitute a population of lymphocytes involved in innate immune functions. They play a critical role in antiviral immune surveillance. Viruses have evolved with their host species for millions of years, each exerting a selective pressure upon the other. As a corollary, the pathways used by the immune system that are critical to control viral infection can be revealed by defining the role of viral gene products that are nonessential for virus replication. We relate here the battery of resources available to NK cells to recognize and eliminate viruses and reciprocally the immune evasion mechanisms developed by viruses to prevent NK cell activation.
Collapse
Affiliation(s)
- Catherine A Forbes
- Centre for Experimental Immunology, Lions Eye Institute, 2 Verdun St, Nedlands, WA 6009, Australia
| | - Jerome D Coudert
- Centre for Experimental Immunology, Lions Eye Institute, 2 Verdun St, Nedlands, WA 6009, Australia
- Centre for Ophthalmology & Vision Science, M517, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| |
Collapse
|
15
|
Prada N, Antoni G, Commo F, Rusakiewicz S, Semeraro M, Boufassa F, Lambotte O, Meyer L, Gougeon ML, Zitvogel L. Analysis of NKp30/NCR3 isoforms in untreated HIV-1-infected patients from the ANRS SEROCO cohort. Oncoimmunology 2014; 2:e23472. [PMID: 23802087 PMCID: PMC3661172 DOI: 10.4161/onci.23472] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 12/31/2012] [Accepted: 01/03/2013] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells play a prominent role at the intersection between innate and cognate immunity, thus influencing the development of multiple pathological conditions including HIV-1-induced AIDS. Not only NK cells directly kill HIV-1-infected cells, but also control the maturation and/or elimination of dendritic cells (DCs). These functions are regulated by the delicate balance between activating and inhibiting receptors expressed at the NK-cell surface. Among the former, NKp30 has raised significant interest since the alternative splicing of its intracellular domain leads to differential effector functions, dictating the prognosis of patients bearing gastrointestinal sarcoma, and B7-H6 has recently been identified as its main ligand. Since NKp30 is downregulated in CD56-/CD16+ NK cells expanded in viremic, chronically infected HIV-1+ patients, we decided to investigate the predictive value of NKp30 splice variants for spontaneous disease progression in 89 therapy-naïve HIV-1-infected individuals enrolled in an historical cohort of patients followed since diagnosis (ANRS SEROCO cohort). We found no difference in the representation of NK-cell subsets (CD56bright, CD56dim, CD56neg) in HIV-1-infected patients as compared with healthy subjects. NKp30 downregulation was detected in CD56dim and CD56neg NK-cell subsets, yet this did not convey any prognostic value. None of the NKp30 isoforms did affect disease progression, as measured in terms of time-to-loss of circulating CD4+ T cells, time-to-AIDS-defining events and overall survival. NKp30 isoforms do not seem to play a major role in the outcome of HIV-1 infection, but the heterogeneity of the immuno-virological status of patients at enrollment could have to be taken into account.
Collapse
Affiliation(s)
- Nicole Prada
- INSERM U1015; Institut Gustave Roussy; Villejuif, France ; Institut Pasteur; Antiviral Immunity, Biotherapy and Vaccine Unit; Infection and Epidemiology Department; Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Li Y, Mariuzza RA. Structural basis for recognition of cellular and viral ligands by NK cell receptors. Front Immunol 2014; 5:123. [PMID: 24723923 PMCID: PMC3972465 DOI: 10.3389/fimmu.2014.00123] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/10/2014] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells are key components of innate immune responses to tumors and viral infections. NK cell function is regulated by NK cell receptors that recognize both cellular and viral ligands, including major histocompatibility complex (MHC), MHC-like, and non-MHC molecules. These receptors include Ly49s, killer immunoglobulin-like receptors, leukocyte immunoglobulin-like receptors, and NKG2A/CD94, which bind MHC class I (MHC-I) molecules, and NKG2D, which binds MHC-I paralogs such as the stress-induced proteins MICA and ULBP. In addition, certain viruses have evolved MHC-like immunoevasins, such as UL18 and m157 from cytomegalovirus, that act as decoy ligands for NK receptors. A growing number of NK receptor–ligand interaction pairs involving non-MHC molecules have also been identified, including NKp30–B7-H6, killer cell lectin-like receptor G1–cadherin, and NKp80–AICL. Here, we describe crystal structures determined to date of NK cell receptors bound to MHC, MHC-related, and non-MHC ligands. Collectively, these structures reveal the diverse solutions that NK receptors have developed to recognize these molecules, thereby enabling the regulation of NK cytolytic activity by both host and viral ligands.
Collapse
Affiliation(s)
- Yili Li
- W. M. Keck Laboratory for Structural Biology, Institute for Bioscience and Biotechnology Research, University of Maryland , Rockville, MD , USA ; Department of Cell Biology and Molecular Genetics, University of Maryland , College Park, MD , USA
| | - Roy A Mariuzza
- W. M. Keck Laboratory for Structural Biology, Institute for Bioscience and Biotechnology Research, University of Maryland , Rockville, MD , USA ; Department of Cell Biology and Molecular Genetics, University of Maryland , College Park, MD , USA
| |
Collapse
|
17
|
Sivori S, Carlomagno S, Pesce S, Moretta A, Vitale M, Marcenaro E. TLR/NCR/KIR: Which One to Use and When? Front Immunol 2014; 5:105. [PMID: 24678311 PMCID: PMC3958761 DOI: 10.3389/fimmu.2014.00105] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/01/2014] [Indexed: 01/06/2023] Open
Abstract
By means of a complex receptor array, Natural killer (NK) cells can recognize variable patterns of ligands and regulate or amplify accordingly their effector functions. Such NK receptors include old, rather conserved, molecules, such as toll-like receptors (TLRs), which enable NK cells to respond both to viral and bacterial products, and newer and evolving molecules, such as killer Ig-like receptors and natural cytotoxicity receptors, which control NK cytotoxicity and are responsible for the elimination of virus-infected or tumor cells without damaging self-unaltered cells. In addition, to rapidly gain new functions NK cells also can acquire new receptors by trogocytosis. Thus, NK cells may have adapted their receptors to different functional needs making them able to play a key role in the modulation of critical events occurring in several compartments of human body (primarily in SLCs but also in decidua during pregnancy). In this review, we will discuss on how the various types of receptors can be used to address specific functions in different immunological contexts.
Collapse
Affiliation(s)
- Simona Sivori
- Dipartimento di Medicina Sperimentale, Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova , Genova , Italy
| | - Simona Carlomagno
- Dipartimento di Medicina Sperimentale, Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova , Genova , Italy
| | - Silvia Pesce
- Dipartimento di Medicina Sperimentale, Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova , Genova , Italy
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova , Genova , Italy
| | - Massimo Vitale
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy
| | - Emanuela Marcenaro
- Dipartimento di Medicina Sperimentale, Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova , Genova , Italy
| |
Collapse
|
18
|
Abstract
Natural killer (NK) cells are key components of innate immune responses, providing surveillance against cells undergoing tumorigenesis or infection, by viruses or internal pathogens. NK cells can directly eliminate compromised cells and regulate downstream responses of the innate and acquired immune systems through the release of immune modulators (cytokines, interferons). The importance of the role NK cells play in immune defense was demonstrated originally in herpes viral infections, usually mild or localized, which become severe and life threatening in NK-deficient patients . NK cell effector functions are governed by balancing opposing signals from a diverse array of activating and inhibitory receptors. Many NK receptors occur in paired activating and inhibitory isoforms and recognize major histocompatibility complex (MHC) class I proteins with varying degrees of peptide specificity. Structural studies have made considerable inroads into understanding the molecular mechanisms employed to broadly recognize multiple MHC ligands or specific pathogen-associated antigens and the strategies employed by viruses to thwart these defenses. Although many details of NK development, signaling, and integration remain mysterious, it is clear that NK receptors are key components of a system exquisitely tuned to sense any dysregulation in MHC class I expression, or the expression of certain viral antigens, resulting in the elimination of affected cells.
Collapse
Affiliation(s)
- Kathryn A Finton
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
19
|
Seidel E, Glasner A, Mandelboim O. Virus-mediated inhibition of natural cytotoxicity receptor recognition. Cell Mol Life Sci 2012; 69:3911-20. [PMID: 22547090 PMCID: PMC11115132 DOI: 10.1007/s00018-012-1001-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 12/29/2022]
Abstract
Natural killer (NK) cells are a part of the innate immune system that functions mainly to kill transformed and infected cells. Their activity is controlled by signals derived from a panel of activating and inhibitory receptors. The natural cytotoxicity receptors (NCRs): NKp30, NKp44, and NKp46 (NCR1 in mice) are prominent among the activating NK cell receptors and they are, notably, the only NK-activating receptors that are able to recognize pathogen-derived ligands. In addition, the NCRs also recognize cellular ligands, the identity of which remains largely unknown. In this review, we summarize the current knowledge regarding viruses that are recognized by the NCRs, focusing on the diverse immune-evasion mechanisms employed by viruses to escape this detection. We also discuss the unique role the NCRs have in regulating NK cell activity with particular emphasis on the in vivo function of NKp46/NCR1.
Collapse
Affiliation(s)
- Einat Seidel
- The Department of Immunology and Cancer Research, The Lautenberg Center for General and Tumor Immunology, IMRIC, Hadassah Medical School, The Hebrew University, 91120 Jerusalem, Israel
| | - Ariella Glasner
- The Department of Immunology and Cancer Research, The Lautenberg Center for General and Tumor Immunology, IMRIC, Hadassah Medical School, The Hebrew University, 91120 Jerusalem, Israel
| | - Ofer Mandelboim
- The Department of Immunology and Cancer Research, The Lautenberg Center for General and Tumor Immunology, IMRIC, Hadassah Medical School, The Hebrew University, 91120 Jerusalem, Israel
| |
Collapse
|
20
|
Russier M, Reynard S, Tordo N, Baize S. NK cells are strongly activated by Lassa and Mopeia virus-infected human macrophages in vitro but do not mediate virus suppression. Eur J Immunol 2012; 42:1822-32. [PMID: 22585682 DOI: 10.1002/eji.201142099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lassa virus (LASV) and Mopeia virus (MOPV) are closely related Arenaviruses. LASV causes hemorrhagic fever, whereas MOPV is not pathogenic. Both viruses display tropism for APCs such as DCs and macrophages. During viral infections, NK cells are involved in the clearance of infected cells and promote optimal immune responses by interacting with APCs. We used an in vitro model of human NK and APC coculture to study the role of NK cells and to characterize their interactions with APCs during LASV and MOPV infections. As expected, NK cells alone were neither infected nor activated by LASV and MOPV, and infected DCs did not activate NK cells. By contrast, LASV- and MOPV-infected macrophages activated NK cells, as shown by the upregulation of CD69, NKp30, and NKp44, the downregulation of CXCR3, and an increase in NK-cell proliferation. NK cells acquired enhanced cytotoxicity, as illustrated by the increase in granzyme B (GrzB) expression and killing of K562 targets, but did not produce IFN-γ. Contact between NK cells and infected macrophages and type I IFNs were essential for activation; however, NK cells could not kill infected cells and control infection. Overall, these findings show that MOPV- as well as pathogenic LASV-infected macrophages mediate NK-cell activation.
Collapse
Affiliation(s)
- Marion Russier
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, France
| | | | | | | |
Collapse
|
21
|
Vidal SM, Khakoo SI, Biron CA. Natural killer cell responses during viral infections: flexibility and conditioning of innate immunity by experience. Curr Opin Virol 2012; 1:497-512. [PMID: 22180766 DOI: 10.1016/j.coviro.2011.10.017] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Natural killer (NK) cells mediate innate defense against viral infections, but the mechanisms in place to access their functions as needed during diverse challenges while limiting collateral damage are poorly understood. Recent molecular characterization of effects mediated through infection-induced inhibitory/activating NK receptor-ligand pairs and cytokines are providing new insights into pathways regulating their responses and revealing unexpected consequences for NK cell subset effects, maintenance, proliferation and function through times overlapping with adaptive and long-lived immunity. The observations define flexible pathways for experience-induced 'conditioning' and challenge narrowly defined roles for NK cells and innate immunity as first responders with prescribed functions. They suggest that individual experiences as well as genes influence the innate immune resources available to fight off an infection.
Collapse
Affiliation(s)
- Silvia M Vidal
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
22
|
Shurtleff AC, Warren TK, Bavari S. Nonhuman primates as models for the discovery and development of ebolavirus therapeutics. Expert Opin Drug Discov 2012; 6:233-50. [PMID: 22647202 DOI: 10.1517/17460441.2011.554815] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Ebolaviruses are human pathogenic Category A priority pathogens for which no vaccines or therapeutics are currently licensed; however, several therapeutic agents have shown promising efficacy in nonhuman primate models of infection and are potential candidates for use in humans. Demonstration of efficacy in nonhuman primate models of ebolavirus infection will probably be central to the development and eventual licensure of ebolavirus medical countermeasures given the ethical and feasibility constraints of human efficacy assessments. AREAS COVERED The authors describe ebolavirus hemorrhagic fever (EHF), with an emphasis on comparing human and nonhuman primate pathophysiology. Published data examining human and animal clinical disease parameters, histopathological findings, and immune responses in fatal and nonfatal cases are synthesized and evaluated. Importantly, the authors also introduce and describe the FDA Animal Efficacy Rule as well as recent advances in antiviral drug development strategies for the treatment of EHF. EXPERT OPINION Well-characterized models of ebolavirus infection are currently under development and scrutiny as to their accuracy and utility for modeling fatal infection in humans. The advanced development and eventual licensure of therapeutic agents will require demonstration that mechanisms conferring protection in nonhuman primate models of infection are predictive of protective responses in humans.
Collapse
Affiliation(s)
- Amy C Shurtleff
- US Army Medical Research Institute of Infectious Diseases, Integrated Toxicology Division, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA +1 301 619 4246 ; +1 541 754 3545 ;
| | | | | |
Collapse
|
23
|
The histone deacetylase inhibitor valproic acid lessens NK cell action against oncolytic virus-infected glioblastoma cells by inhibition of STAT5/T-BET signaling and generation of gamma interferon. J Virol 2012; 86:4566-77. [PMID: 22318143 DOI: 10.1128/jvi.05545-11] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tumor virotherapy has been and continues to be used in clinical trials. One barrier to effective viral oncolysis, consisting of the interferon (IFN) response induced by viral infection, is inhibited by valproic acid (VPA) and other histone deacetylase inhibitors (HDACi). Innate immune cell recruitment and activation have been shown to be deleterious to the efficacy of oncolytic herpes simplex virus (oHSV) infection, and in this report we demonstrate that VPA limits this deleterious response. VPA, administered prior to oHSV inoculation in an orthotopic glioblastoma mouse model, resulted in a decline in NK and macrophage recruitment into tumor-bearing brains at 6 and 24 h post-oHSV infection. Interestingly, there was a robust rebound of recruitment of these cells at 72 h post-oHSV infection. The observed initial decline in immune cell recruitment was accompanied by a reduction in their activation status. VPA was also found to have a profound immunosuppressive effect on human NK cells in vitro. NK cytotoxicity was abrogated following exposure to VPA, consistent with downmodulation of cytotoxic gene expression of granzyme B and perforin at the mRNA and protein levels. In addition, suppression of gamma IFN (IFN-γ) production by VPA was associated with decreased STAT5 phosphorylation and dampened T-BET expression. Despite VPA-mediated immune suppression, mice were not at significantly increased risk for HSV encephalitis. These findings indicate that one of the avenues by which VPA enhances oHSV efficacy is through initial suppression of immune cell recruitment and inhibition of inflammatory cell pathways within NK cells.
Collapse
|
24
|
Wang H, Zheng X, Wei H, Tian Z, Sun R. Preparation and functional identification of a monoclonal antibody against the recombinant soluble human NKp30 receptor. Int Immunopharmacol 2011; 11:1732-9. [PMID: 21718806 DOI: 10.1016/j.intimp.2011.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/05/2011] [Accepted: 06/10/2011] [Indexed: 01/28/2023]
Abstract
NKp30 is an important activating receptor of human natural killer (NK) cells that participates in NK cell activation and cytotoxicity against tumor and infected cells. To study the function of NKp30, anti-human NKp30 monoclonal antibody was prepared. The human NKp30 ectodomain (rhNKp30) was expressed in Escherichia coli as inclusion bodies and refolded using the dilution method. The refolded rhNKp30 was purified by immobilized metal affinity chromatography. The activity of soluble rhNKp30 was confirmed by flow cytometry and NK cytotoxicity assays. Four hybridoma cell lines producing monoclonal antibodies against rhNKp30 were obtained. One of the monoclonal antibodies, designated as "3G5", was highly specific and could be used in western blotting, immunoprecipitation, ELISA, and flow cytometry assays. The preparation of soluble rhNKp30 and a monoclonal antibody against NKp30 may provide useful tools for further functional studies of human NKp30.
Collapse
Affiliation(s)
- Hongwei Wang
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | | | | | | | | |
Collapse
|
25
|
Bradfute SB, Bavari S. Correlates of immunity to filovirus infection. Viruses 2011; 3:982-1000. [PMID: 21994766 PMCID: PMC3185794 DOI: 10.3390/v3070982] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/14/2011] [Accepted: 06/16/2011] [Indexed: 12/13/2022] Open
Abstract
Filoviruses can cause severe, often fatal hemorrhagic fever in humans. Recent advances in vaccine and therapeutic drug development have provided encouraging data concerning treatment of these infections. However, relatively little is known about immune responses in fatal versus non-fatal filovirus infection. This review summarizes the published literature on correlates of immunity to filovirus infection, and highlights deficiencies in our knowledge on this topic. It is likely that there are several types of successful immune responses, depending on the type of filovirus, and the presence and timing of vaccination or drug treatment.
Collapse
Affiliation(s)
- Steven B Bradfute
- United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Maryland, MD 21702, USA.
| | | |
Collapse
|
26
|
Bradfute SB, Dye JM, Bavari S. Filovirus vaccines. HUMAN VACCINES 2011; 7:701-11. [PMID: 21519188 PMCID: PMC3219077 DOI: 10.4161/hv.7.6.15398] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/18/2011] [Accepted: 02/22/2011] [Indexed: 11/19/2022]
Abstract
Filoviruses can cause severe and often fatal hemorrhagic fever in humans and non-human primates (NHPs). Although there are currently no clinically proven treatments for filovirus disease, much progress has been made in recent years in the discovery of therapeutics and vaccines against these viruses. A variety of vaccine platforms have been shown to be effective against filovirus infection. This review summarizes the literature in this field, focusing on vaccines that have been shown to protect NHPs from infection. Furthermore, the uses of rodent models in vaccine development, as well as correlates of immunity, are discussed.
Collapse
Affiliation(s)
- Steven B Bradfute
- United States Army Medical Research Institute of Infectious Diseases, National Interagency Biodefense Campus; Fort Detrick, Frederick, MD, USA
| | | | | |
Collapse
|
27
|
The structural basis of ligand recognition by natural killer cell receptors. J Biomed Biotechnol 2011; 2011:203628. [PMID: 21629745 PMCID: PMC3100565 DOI: 10.1155/2011/203628] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 03/14/2011] [Indexed: 11/18/2022] Open
Abstract
Natural killer cells are a group of lymphocytes which function as tightly controlled surveillance operatives which identify transformed cells through a discrete balance of activating and inhibitory receptors ultimately leading to the destruction of incongruent cells. The understanding of this finely tuned balancing act has been aided by the high-resolution structure determination of activating and inhibitory receptors both alone and in complex with their ligands. This paper collates these structural studies detailing the aspects which directly relate to the natural killer cell function and serves to inform both the specialized structural biologist reader and a more general immunology audience.
Collapse
|
28
|
Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nat Med 2011; 17:700-7. [PMID: 21552268 DOI: 10.1038/nm.2366] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 04/01/2011] [Indexed: 12/15/2022]
Abstract
The natural killer (NK) cell receptor NKp30 is involved in the recognition of tumor and dendritic cells (DCs). Here we describe the influence of three NKp30 splice variants on the prognosis of gastrointestinal sarcoma (GIST), a malignancy that expresses NKp30 ligands and that is treated with NK-stimulatory KIT tyrosine kinase inhibitors. Healthy individuals and those with GIST show distinct patterns of transcription of functionally different NKp30 isoforms. In a retrospective analysis of 80 individuals with GIST, predominant expression of the immunosuppressive NKp30c isoform (over the immunostimulatory NKp30a and NKp30b isoforms) was associated with reduced survival of subjects, decreased NKp30-dependent tumor necrosis factor-α (TNF-α) and CD107a release, and defective interferon-γ (IFN-γ) and interleukin-12 (IL-12) secretion in the NK-DC cross-talk that could be restored by blocking of IL-10. Preferential NKp30c expression resulted partly from a single-nucleotide polymorphism at position 3790 in the 3' untranslated region of the gene encoding NKp30. The genetically determined NKp30 status predicts the clinical outcomes of individuals with GIST independently from KIT mutation.
Collapse
|
29
|
Guo H, Kumar P, Malarkannan S. Evasion of natural killer cells by influenza virus. J Leukoc Biol 2010; 89:189-94. [PMID: 20682623 DOI: 10.1189/jlb.0610319] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
NK cells are important innate immune effectors during influenza virus infection. However, the influenza virus seems able to use several tactics to counter NK cell recognition for immune evasion. In this review, we will summarize and discuss recent advances regarding the understanding of NK cell evasion mechanisms manipulated by the influenza virus to facilitate its rapid replication inside the respiratory epithelial cells.
Collapse
Affiliation(s)
- Hailong Guo
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA.
| | | | | |
Collapse
|
30
|
Lee SH, Biron CA. Here today--not gone tomorrow: roles for activating receptors in sustaining NK cells during viral infections. Eur J Immunol 2010; 40:923-32. [PMID: 20209503 DOI: 10.1002/eji.201040304] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The conclusive evidence supporting a role for NK cells in defense against viruses has been obtained under conditions of NK cell deficiencies prior to infections. NK cell proliferation can be induced during infections, but the advantages of resulting expansion have been unclear because NK cell basal frequency is already high. However, NK cell decreases are also observed during certain conditions of viral infection. Given the range of potent antiviral and immunoregulatory functions of NK cells, such "disappearance" dramatically changes the resources available to the host. New studies demonstrate that proliferation dependent on activating receptors for virus-induced ligands is key for NK cell maintenance, and allows their continued availability for control of adaptive immune responses and immunopathology. This pathway for sustaining NK cells may represent a system used generally to select subsets for rescue during homeostatic purging. In the case of NK cells, though, nonselection limits continued access to the many beneficial functions of NK cells. The observations resolve the long-standing conundrum of reported NK cell increases and decreases during viral infections. Moreover, they demonstrate a previously unappreciated role for activating receptors, i.e. to keep NK cells here today and also tomorrow.
Collapse
Affiliation(s)
- Seung-Hwan Lee
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
31
|
Cárdenas WB. Evasion of the interferon-mediated antiviral response by filoviruses. Viruses 2010; 2:262-282. [PMID: 21994610 PMCID: PMC3185555 DOI: 10.3390/v2010262] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 01/11/2010] [Accepted: 01/19/2010] [Indexed: 01/09/2023] Open
Abstract
The members of the filoviruses are recognized as some of the most lethal viruses affecting human and non-human primates. The only two genera of the Filoviridae family, Marburg virus (MARV) and Ebola virus (EBOV), comprise the main etiologic agents of severe hemorrhagic fever outbreaks in central Africa, with case fatality rates ranging from 25 to 90%. Fatal outcomes have been associated with a late and dysregulated immune response to infection, very likely due to the virus targeting key host immune cells, such as macrophages and dendritic cells (DCs) that are necessary to mediate effective innate and adaptive immune responses. Despite major progress in the development of vaccine candidates for filovirus infections, a licensed vaccine or therapy for human use is still not available. During the last ten years, important progress has been made in understanding the molecular mechanisms of filovirus pathogenesis. Several lines of evidence implicate the impairment of the host interferon (IFN) antiviral innate immune response by MARV or EBOV as an important determinant of virulence. In vitro and in vivo experimental infections with recombinant Zaire Ebola virus (ZEBOV), the best characterized filovirus, demonstrated that the viral protein VP35 plays a key role in inhibiting the production of IFN-α/β. Further, the action of VP35 is synergized by the inhibition of cellular responses to IFN-α/β by the minor matrix viral protein VP24. The dual action of these viral proteins may contribute to an efficient initial virus replication and dissemination in the host. Noticeably, the analogous function of these viral proteins in MARV has not been reported. Because the IFN response is a major component of the innate immune response to virus infection, this chapter reviews recent findings on the molecular mechanisms of IFN-mediated antiviral evasion by filovirus infection.
Collapse
Affiliation(s)
- Washington B Cárdenas
- Laboratorio de Biomedicina, FIMCM, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo, Km 30.5 via Perimetral, Apartado 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
32
|
Crozat K, Vivier E, Dalod M. Crosstalk between components of the innate immune system: promoting anti-microbial defenses and avoiding immunopathologies. Immunol Rev 2009; 227:129-49. [PMID: 19120481 DOI: 10.1111/j.1600-065x.2008.00736.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Because it reaches full functional efficacy rapidly upon encounter with a pathogen, the innate immune system is considered as the first line of defense against infections. The sensing of microbes or of transformed or infected cells, through innate immune recognition receptors (referred to as activating I2R2), initiates pro-inflammatory responses and innate immune effector functions. Other I2R2 with inhibitory properties bind self-ligands constitutively expressed in host. However, this dichotomy in the recognition of foreign or induced self versus constitutive self by I2R2 is not always respected in certain non-infectious conditions reminiscent of immunopathologies. In this review, we discuss that immune mechanisms have evolved to avoid inappropriate inflammatory disorders in individuals. Molecular crossregulation exists between components of I2R2 signaling pathways, and intricate interactions between cells from both innate and adaptive immune systems set the bases of controlled immune responses. We also pinpoint that, like T or B cells, some cells of the innate immune system must go through education processes to prevent autoreactivity. In addition, we illustrate how gene expression profiling of immune cell types is a useful tool to find functional homologies between cell subsets of different species and to speculate about unidentified functions of these cells in the responses to pathogen infections.
Collapse
Affiliation(s)
- Karine Crozat
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
| | | | | |
Collapse
|
33
|
Zucchini N, Crozat K, Baranek T, Robbins SH, Altfeld M, Dalod M. Natural killer cells in immunodefense against infective agents. Expert Rev Anti Infect Ther 2009; 6:867-85. [PMID: 19053900 DOI: 10.1586/14787210.6.6.867] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Following the discovery of innate immune receptors, the topics of innate immunity and its role in defense against infective agents have recently blossomed into very active research fields, after several decades of neglect. Among innate immune cells, natural killer (NK) cells are endowed with the unique ability to recognize and kill cells infected with a variety of pathogens, irrespective of prior sensitization to these microbes. NK cells have a number of other functions, including cytokine production and immunoregulatory activities. Major advances have recently been made in the understanding of the role of NK cells in the physiopathology of infectious diseases. The cellular and molecular mechanisms regulating the acquisition of effector functions by NK cells and their triggering upon pathogenic encounters are being unraveled. The possibility that the power of NK cells could be harnessed for the design of innovative treatments against infections is a major incentive for biologists to further explore NK cell subset complexity and to identify the ligands that activate NK cell receptors.
Collapse
Affiliation(s)
- Nicolas Zucchini
- Centre d'Immunologie de Marseille-Luminy, Université de Méditerranée, Marseille, France.
| | | | | | | | | | | |
Collapse
|
34
|
Tang Q, Grzywacz B, Wang H, Kataria N, Cao Q, Wagner JE, Blazar BR, Miller JS, Verneris MR. Umbilical cord blood T cells express multiple natural cytotoxicity receptors after IL-15 stimulation, but only NKp30 is functional. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008. [PMID: 18802053 DOI: 181/7/4507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The natural cytotoxicity receptors (NCRs) NKp30, NKp44, and NKp46 are thought to be NK lineage restricted. Herein we show that IL-15 induces NCR expression on umbilical cord blood (UCB) T cells. NCRs were mainly on CD8(+) and CD56(+) UCB T cells. Only NKp30 was functional as demonstrated by degranulation, IFN-gamma release, redirected killing, and apoptosis. Since NCRs require adaptor proteins for function, the expressions of these adaptors were determined. The adaptors used by NKp30 and NKp46, FcepsilonR1gamma and CD3zeta, were detected in UCB T cells. There was a near absence of DAP12, the adaptor for NKp44, consistent with a hypofunctional state. NKp46 was on significantly fewer UCB T cells, possibly accounting for its lack of function. Adult peripheral blood (PB) T cells showed minimal NCR acquisition after culture with IL-15. Since UCB contains a high frequency of naive T cells, purified naive T cells from adult PB were tested. Although NKp30 was expressed on a small fraction of naive PB T cells, it was nonfunctional. In contrast to UCB, PB T cells lacked FcepsilonR1gamma expression. These results demonstrate differences between UCB and PB T cells regarding NCR expression and function. Such findings challenge the concept that NCRs are NK cell specific.
Collapse
Affiliation(s)
- Qin Tang
- Department of Pediatrics, Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tang Q, Grzywacz B, Wang H, Kataria N, Cao Q, Wagner JE, Blazar BR, Miller JS, Verneris MR. Umbilical cord blood T cells express multiple natural cytotoxicity receptors after IL-15 stimulation, but only NKp30 is functional. THE JOURNAL OF IMMUNOLOGY 2008; 181:4507-15. [PMID: 18802053 DOI: 10.4049/jimmunol.181.7.4507] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The natural cytotoxicity receptors (NCRs) NKp30, NKp44, and NKp46 are thought to be NK lineage restricted. Herein we show that IL-15 induces NCR expression on umbilical cord blood (UCB) T cells. NCRs were mainly on CD8(+) and CD56(+) UCB T cells. Only NKp30 was functional as demonstrated by degranulation, IFN-gamma release, redirected killing, and apoptosis. Since NCRs require adaptor proteins for function, the expressions of these adaptors were determined. The adaptors used by NKp30 and NKp46, FcepsilonR1gamma and CD3zeta, were detected in UCB T cells. There was a near absence of DAP12, the adaptor for NKp44, consistent with a hypofunctional state. NKp46 was on significantly fewer UCB T cells, possibly accounting for its lack of function. Adult peripheral blood (PB) T cells showed minimal NCR acquisition after culture with IL-15. Since UCB contains a high frequency of naive T cells, purified naive T cells from adult PB were tested. Although NKp30 was expressed on a small fraction of naive PB T cells, it was nonfunctional. In contrast to UCB, PB T cells lacked FcepsilonR1gamma expression. These results demonstrate differences between UCB and PB T cells regarding NCR expression and function. Such findings challenge the concept that NCRs are NK cell specific.
Collapse
Affiliation(s)
- Qin Tang
- Department of Pediatrics, Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yang C, Ye L, Compans RW. Protection against filovirus infection: virus-like particle vaccines. Expert Rev Vaccines 2008; 7:333-44. [PMID: 18393603 DOI: 10.1586/14760584.7.3.333] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Significant progress has been made in vaccine development against infection by Ebola and Marburg viruses, members of the Filoviridae, which cause severe hemorrhagic fevers in humans with no effective treatment and a mortality rate of up to 90%. Several vaccine strategies have been shown to effectively protect immunized animals against filovirus infection. Among these candidate vaccine strategies, virus-like particles represent a promising approach and have been shown to protect small laboratory animals as well as nonhuman primates against lethal challenge by Ebola and/or Marburg viruses. This review briefly summarizes filovirus epidemiology and pathogenesis, and focuses on the discussion of recent advances in filovirus vaccine development and the current understanding of protective immune responses against filovirus infection with an emphasis on the progress and challenge of filovirus virus-like particle vaccine development.
Collapse
Affiliation(s)
- Chinglai Yang
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
37
|
Bradfute SB, Warfield KL, Bavari S. Functional CD8+ T Cell Responses in Lethal Ebola Virus Infection. THE JOURNAL OF IMMUNOLOGY 2008; 180:4058-66. [DOI: 10.4049/jimmunol.180.6.4058] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Robbins SH, Bessou G, Cornillon A, Zucchini N, Rupp B, Ruzsics Z, Sacher T, Tomasello E, Vivier E, Koszinowski UH, Dalod M. Natural killer cells promote early CD8 T cell responses against cytomegalovirus. PLoS Pathog 2007; 3:e123. [PMID: 17722980 PMCID: PMC1950948 DOI: 10.1371/journal.ppat.0030123] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 07/05/2007] [Indexed: 12/25/2022] Open
Abstract
Understanding the mechanisms that help promote protective immune responses to pathogens is a major challenge in biomedical research and an important goal for the design of innovative therapeutic or vaccination strategies. While natural killer (NK) cells can directly contribute to the control of viral replication, whether, and how, they may help orchestrate global antiviral defense is largely unknown. To address this question, we took advantage of the well-defined molecular interactions involved in the recognition of mouse cytomegalovirus (MCMV) by NK cells. By using congenic or mutant mice and wild-type versus genetically engineered viruses, we examined the consequences on antiviral CD8 T cell responses of specific defects in the ability of the NK cells to control MCMV. This system allowed us to demonstrate, to our knowledge for the first time, that NK cells accelerate CD8 T cell responses against a viral infection in vivo. Moreover, we identify the underlying mechanism as the ability of NK cells to limit IFN-α/β production to levels not immunosuppressive to the host. This is achieved through the early control of cytomegalovirus, which dramatically reduces the activation of plasmacytoid dendritic cells (pDCs) for cytokine production, preserves the conventional dendritic cell (cDC) compartment, and accelerates antiviral CD8 T cell responses. Conversely, exogenous IFN-α administration in resistant animals ablates cDCs and delays CD8 T cell activation in the face of NK cell control of viral replication. Collectively, our data demonstrate that the ability of NK cells to respond very early to cytomegalovirus infection critically contributes to balance the intensity of other innate immune responses, which dampens early immunopathology and promotes optimal initiation of antiviral CD8 T cell responses. Thus, the extent to which NK cell responses benefit the host goes beyond their direct antiviral effects and extends to the prevention of innate cytokine shock and to the promotion of adaptive immunity. To fight viral infections, vertebrates have developed a battery of innate and adaptive immune responses aimed at inhibiting viral replication or at killing infected cells. These responses include the early production of innate antiviral cytokines, especially interferons α and β (IFN-α/β), and the activation of cytotoxic lymphocytes such as the innate natural killer (NK) cells and the adaptive CD8 T cells. While critical for antiviral defense, cytokine or CD8 T cell responses can be detrimental or even fatal to the host when deregulated. Therefore, we need to better understand how the different arms of antiviral immunity are regulated. In particular, NK cells are proposed to play a protective role in a variety of viral infection in humans, but the underlying mechanisms remain poorly understood. Here, in a mouse model of cytomegalovirus infection, we demonstrate that NK cells prevent an excessive production of IFN-α/β and promote more efficient antiviral CD8 T cell responses. We thus show that NK cells can help promote health over disease during viral infections by regulating both innate and adaptive immune responses. It will be important to examine in humans whether NK cells control innate cytokine production to prevent immunopathology and to promote adaptive immunity against herpesviruses, HIV-1, influenza, or SARS.
Collapse
Affiliation(s)
- Scott H Robbins
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM (U631), Marseille, France
- CNRS (UMR6102), Marseille, France
| | - Gilles Bessou
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM (U631), Marseille, France
- CNRS (UMR6102), Marseille, France
| | - Amélie Cornillon
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM (U631), Marseille, France
- CNRS (UMR6102), Marseille, France
| | - Nicolas Zucchini
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM (U631), Marseille, France
- CNRS (UMR6102), Marseille, France
| | - Brigitte Rupp
- Max von Pettenkofer Institut für Virologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Zsolt Ruzsics
- Max von Pettenkofer Institut für Virologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Torsten Sacher
- Max von Pettenkofer Institut für Virologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elena Tomasello
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM (U631), Marseille, France
- CNRS (UMR6102), Marseille, France
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM (U631), Marseille, France
- CNRS (UMR6102), Marseille, France
- Assistance Publique-Hôpitaux de Marseille and Hôpital de la Conception, Marseille, France
| | - Ulrich H Koszinowski
- Max von Pettenkofer Institut für Virologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marc Dalod
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM (U631), Marseille, France
- CNRS (UMR6102), Marseille, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
39
|
Martinez O, Valmas C, Basler CF. Ebola virus-like particle-induced activation of NF-kappaB and Erk signaling in human dendritic cells requires the glycoprotein mucin domain. Virology 2007; 364:342-54. [PMID: 17434557 PMCID: PMC2034500 DOI: 10.1016/j.virol.2007.03.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 01/05/2007] [Accepted: 03/09/2007] [Indexed: 01/22/2023]
Abstract
Dendritic cells (DCs), important early targets of Ebola virus (EBOV) infection in vivo, are activated by Ebola virus-like particles (VLPs). To better understand this phenomenon, we have systematically assessed the response of DCs to VLPs of different compositions. VLPs containing the viral matrix protein (VP40) and the viral glycoprotein (GP), were found to induce a proinflammatory response highly similar to a prototypical DC activator, LPS. This response included the production of several proinflammatory cytokines, activation of numerous transcription factors including NF-kappaB, the functional importance of which was demonstrated by employing inhibitors of NF-kappaB activation, and activation of ERK1/2 MAP kinase. In contrast, VLPs constituted with a mutant GP lacking the heavily glycosylated mucin domain showed impaired NF-kappaB and Erk activation and induced less DC cytokine production. We conclude that the GP mucin domain is required for VLPs to stimulate human dendritic cells through NF-kappaB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Osvaldo Martinez
- Department of Microbiology, Box 1124, Mount Sinai School of Medicine, 1 Gustave L Levy Place, New York, NY 10029, USA
| | | | | |
Collapse
|