1
|
Ortlieb C, Labrosse A, Ruess L, Steinert M. Biotic interactions between the human pathogen Legionella pneumophila and nematode grazers in cooling tower biofilms. PLoS One 2024; 19:e0309820. [PMID: 39453963 PMCID: PMC11508163 DOI: 10.1371/journal.pone.0309820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/19/2024] [Indexed: 10/27/2024] Open
Abstract
Biofilms in cooling towers represent a common habitat for the human pathogen Legionella pneumophila. Within the biofilm consortium, frequent interactions with protozoa, i.e. amoebae and ciliates, were reported, while nematodes have only recently been considered as potential environmental reservoir for the pathogenic bacteria. This study is the first approach to investigate the biotic interactions between L. pneumophila and bacterial-feeding nematodes in a semi-natural biofilm model. The species were Diploscapter coronatus, Diploscapter pachys, Plectus similis and Plectus sp., which all co-occur with L. pneumophila in the environment. Biofilms derived from cooling towers were either inoculated with mCherry-labeled L. pneumophila solely or in combination with GFP-labeled Escherichia coli. All experiments were conducted in single-species set-ups and multi-species (D. coronatus and P. similis) set-ups, to account for interspecific competition. Bacterial ingestion was assessed after 24 and 96 h as fluorescence patterns in the digestive tract of the nematodes using confocal laser scanning microscopy. L. pneumophila cells were ingested by all nematode species, with D. coronatus having the highest pathogen load. The fluorescence intensity (i.e. bacterial load) varied between compartments within the digestive tract and was independent of incubation time. Bacterial cells accumulated mostly around the cardia and in the intestine, while less cells were found within stoma and pharynx. Interspecific competition changed the pattern, i.e. with incubation of D. coronatus and P. similis in the same biofilm a significantly higher pathogen load occurred in the intestine of D. coronatus than P. similis after 24 h and 96 h. Remarkably, when given a choice between L. pneumophila and E. coli, P. similis was the only nematode species containing both bacteria after incubation for 24 h. None of the other nematode species contained E. coli after 24 h and 96 h incubation, while L. pneumophila was present. This study thus provides the first evidence, that under environmental conditions L. pneumophila is a frequent diet of bacterial-feeding nematodes, highlighting their potential as pathogen vectors or even host in cooling tower habitats.
Collapse
Affiliation(s)
- Christin Ortlieb
- Institute of Biology, Ecology, Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Aurélie Labrosse
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Liliane Ruess
- Institute of Biology, Ecology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Steinert
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
2
|
Bontemps Z, Paranjape K, Guy L. Host-bacteria interactions: ecological and evolutionary insights from ancient, professional endosymbionts. FEMS Microbiol Rev 2024; 48:fuae021. [PMID: 39081075 PMCID: PMC11338181 DOI: 10.1093/femsre/fuae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Interactions between eukaryotic hosts and their bacterial symbionts drive key ecological and evolutionary processes, from regulating ecosystems to the evolution of complex molecular machines and processes. Over time, endosymbionts generally evolve reduced genomes, and their relationship with their host tends to stabilize. However, host-bacteria relationships may be heavily influenced by environmental changes. Here, we review these effects on one of the most ancient and diverse endosymbiotic groups, formed by-among others-Legionellales, Francisellaceae, and Piscirickettsiaceae. This group is referred to as Deep-branching Intracellular Gammaproteobacteria (DIG), whose last common ancestor presumably emerged about 2 Ga ago. We show that DIGs are globally distributed, but generally at very low abundance, and are mainly identified in aquatic biomes. Most DIGs harbour a type IVB secretion system, critical for host-adaptation, but its structure and composition vary. Finally, we review the different types of microbial interactions that can occur in diverse environments, with direct or indirect effects on DIG populations. The increased use of omics technologies on environmental samples will allow a better understanding of host-bacterial interactions and help unravel the definition of DIGs as a group from an ecological, molecular, and evolutionary perspective.
Collapse
Affiliation(s)
- Zélia Bontemps
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75237 Uppsala, Sweden
| | - Kiran Paranjape
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75237 Uppsala, Sweden
| | - Lionel Guy
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75237 Uppsala, Sweden
| |
Collapse
|
3
|
Leseigneur C, Buchrieser C. Modelling Legionnaires' disease: Lessons learned from invertebrate and vertebrate animal models. Eur J Cell Biol 2023; 102:151369. [PMID: 37926040 DOI: 10.1016/j.ejcb.2023.151369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023] Open
Abstract
The study of virulence of Legionella pneumophila and its interactions with its hosts has been predominantly conducted in cellulo in the past decades. Although easy to implement and allowing the dissection of molecular pathways underlying host-pathogen interactions, these cellular models fail to provide conditions of the complex environments encountered by the bacteria during the infection of multicellular organisms. To improve our understanding of human infection, several animal models have been developed. This review provides an overview of the invertebrate and vertebrate models that have been established to study L. pneumophila infection and that are alternatives to the classical mouse model, which does not recall human infection with L. pneumophila well. Finally we provide insight in the main contributions made by these models along with their pros and cons.
Collapse
Affiliation(s)
- Clarisse Leseigneur
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires, 75724 Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires, 75724 Paris, France.
| |
Collapse
|
4
|
Du Y, Shi H, Guo Q, Liu C, Zhao K. Hirudomacin: a Protein with Dual Effects of Direct Bacterial Inhibition and Regulation of Innate Immunity. Appl Environ Microbiol 2023; 89:e0052723. [PMID: 37428035 PMCID: PMC10370334 DOI: 10.1128/aem.00527-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/29/2023] [Indexed: 07/11/2023] Open
Abstract
Hirudomacin (Hmc) belongs to the Macin family of antimicrobial peptides, which can be used for bactericidal purposes in vitro by cleaving cell membranes. Although the Macin family has broad-spectrum antibacterial properties, few studies have been reported on bacterial inhibition by enhancing innate immunity. To further investigate the mechanism of Hmc inhibition, we chose the classical innate immune model organism Caenorhabditis elegans as the study subject. In this investigation, we found that Hmc treatment directly reduced the number of Staphylococcus aureus and Escherichia coli in the intestine of infected wild-type nematodes and infected pmk-1 mutant nematodes. Hmc treatment significantly prolonged the life span of infected wild-type nematodes and increased the expression of antimicrobial effectors (clec-82, nlp-29, lys-1, lys-7), and Hmc treatment still significantly increased the expression of antimicrobial effectors (clec-82, nlp-29, lys-7) in wild-type nematodes in the absence of bacterial stimulation. In addition, Hmc treatment significantly increased the expression of key genes of the pmk-1/p38 MAPK pathway (pmk-1, tir-1, atf-7, skn-1) under both infected and uninfected conditions but failed to increase the life span of infected pmk-1 mutant nematodes as well as the expression of antimicrobial effector genes. Western blot results further demonstrated that Hmc treatment significantly elevated pmk-1 protein expression levels in infected wild-type nematodes. In conclusion, our data suggest that Hmc has both direct bacteriostatic and immunomodulatory effects and may upregulate antimicrobial peptides in response to infection via the pmk-1/p38 MAPK pathway. It has the potential to serve as a new antibacterial agent and immune modulator. IMPORTANCE In today's world, bacterial drug resistance is becoming increasingly serious, and natural antibacterial proteins are attracting attention because of advantages such as their diverse and complex antibacterial modes, lack of residue, and harder-to-develop drug resistance. Notably, there are few antibacterial proteins with multiple effects such as direct antibacterial and innate immunity enhancement at the same time. We believe that an ideal antimicrobial agent can be developed only through a more comprehensive and in-depth study of the bacteriostatic mechanism of natural antibacterial proteins. The significance of our study is that based on the known in vitro bacterial inhibition of Hirudomacin (Hmc), we further clarified its mechanism in vivo, which can be subsequently developed as a natural bacterial inhibitor for various applications in medicine, food, farming, and daily chemicals.
Collapse
Affiliation(s)
- Yu Du
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province, People’s Republic of China
| | - Hongzhuan Shi
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province, People’s Republic of China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province, People’s Republic of China
| | - Chang Liu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province, People’s Republic of China
| | - Kun Zhao
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province, People’s Republic of China
| |
Collapse
|
5
|
Viana F, Boucontet L, Laghi V, Schator D, Ibranosyan M, Jarraud S, Colucci-Guyon E, Buchrieser C. Hiding in the yolk: A unique feature of Legionella pneumophila infection of zebrafish. PLoS Pathog 2023; 19:e1011375. [PMID: 37155695 DOI: 10.1371/journal.ppat.1011375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/18/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
The zebrafish has become a powerful model organism to study host-pathogen interactions. Here, we developed a zebrafish model to dissect the innate immune response to Legionella pneumophila during infection. We show that L. pneumophila cause zebrafish larvae death in a dose dependent manner. Additionally, we show that macrophages are the first line of defence and cooperate with neutrophils to clear the infection. Immunocompromised humans have an increased propensity to develop pneumonia, when either macrophages or neutrophils are depleted, these "immunocompromised" larvae become lethally sensitive to L. pneumophila. Also, as observed in human infections, the adaptor signalling molecule Myd88 is not required to control disease in the larvae. Furthermore, proinflammatory cytokine genes il1β and tnf-α were upregulated during infection, recapitulating key immune responses seen in human infection. Strikingly, we uncovered a previously undescribed infection phenotype in zebrafish larvae, whereby bloodborne, wild type L. pneumophila invade and grow in the larval yolk region, a phenotype not observed with a type IV secretion system deficient mutant that cannot translocate effectors into its host cell. Thus, zebrafish larva represents an innovative L. pneumophila infection model that mimics important aspects of the human immune response to L. pneumophila infection and will allow the elucidation of mechanisms by which type IV secretion effectors allow L. pneumophila to cross host cell membranes and obtain nutrients from nutrient rich environments.
Collapse
Affiliation(s)
- Flávia Viana
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires and CNRS UMR 6047, Paris, France
| | - Laurent Boucontet
- Institut Pasteur, Unité Macrophages et Développement de l'Immunité and CNRS UMR 3738, Paris, France
| | - Valerio Laghi
- Institut Pasteur, Unité Macrophages et Développement de l'Immunité and CNRS UMR 3738, Paris, France
| | - Daniel Schator
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires and CNRS UMR 6047, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Marine Ibranosyan
- National Reference Centre of Legionella, Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France
| | - Sophie Jarraud
- National Reference Centre of Legionella, Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France
- Centre International de Recherche en Infectiologie, Université Lyon 1, UMR CNRS 5308, Inserm U1111, ENS de Lyon, Lyon, France
| | - Emma Colucci-Guyon
- Institut Pasteur, Unité Macrophages et Développement de l'Immunité and CNRS UMR 3738, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires and CNRS UMR 6047, Paris, France
| |
Collapse
|
6
|
Lafuente E, Carles L, Walser J, Giulio M, Wullschleger S, Stamm C, Räsänen K. Effects of anthropogenic stress on hosts and their microbiomes: Treated wastewater alters performance and gut microbiome of a key detritivore ( Asellus aquaticus). Evol Appl 2023; 16:824-848. [PMID: 37124094 PMCID: PMC10130563 DOI: 10.1111/eva.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/24/2023] [Accepted: 02/17/2023] [Indexed: 04/03/2023] Open
Abstract
Human activity is a major driver of ecological and evolutionary change in wild populations and can have diverse effects on eukaryotic organisms as well as on environmental and host-associated microbial communities. Although host-microbiome interactions can be a major determinant of host fitness, few studies consider the joint responses of hosts and their microbiomes to anthropogenic changes. In freshwater ecosystems, wastewater is a widespread anthropogenic stressor that represents a multifarious environmental perturbation. Here, we experimentally tested the impact of treated wastewater on a keystone host (the freshwater isopod Asellus aquaticus) and its gut microbiome. We used a semi-natural flume experiment, in combination with 16S rRNA amplicon sequencing, to assess how different concentrations (0%, 30%, and 80%) of nonfiltered wastewater (i.e. with chemical toxicants, nutrients, organic particles, and microbes) versus ultrafiltered wastewater (i.e. only dissolved pollutants and nutrients) affected host survival, growth, and food consumption as well as mid- and hindgut bacterial community composition and diversity. Our results show that while host survival was not affected by the treatments, host growth increased and host feeding rate decreased with nonfiltered wastewater - potentially indicating that A. aquaticus fed on organic matter and microbes available in nonfiltered wastewater. Furthermore, even though the midgut microbiome (diversity and composition) was not affected by any of our treatments, nonfiltered wastewater influenced bacterial composition (but not diversity) in the hindgut. Ultrafiltered wastewater, on the other hand, affected both community composition and bacterial diversity in the hindgut, an effect that in our system differed between sexes. While the functional consequences of microbiome changes and their sex specificity are yet to be tested, our results indicate that different components of multifactorial stressors (i.e. different constituents of wastewater) can affect hosts and their microbiome in distinct (even opposing) manners and have a substantial impact on eco-evolutionary responses to anthropogenic stressors.
Collapse
Affiliation(s)
- Elvira Lafuente
- Eawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Louis Carles
- Eawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Jean‐Claude Walser
- Department of Environmental Systems Science D‐USYS, Genetic Diversity CentreSwiss Federal Institute of Technology (ETH), ZürichZürichSwitzerland
| | - Marco Giulio
- Eawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Simon Wullschleger
- Eawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Christian Stamm
- Eawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Katja Räsänen
- Eawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
7
|
Legionella pneumophila and Free-Living Nematodes: Environmental Co-Occurrence and Trophic Link. Microorganisms 2023; 11:microorganisms11030738. [PMID: 36985310 PMCID: PMC10056204 DOI: 10.3390/microorganisms11030738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Free-living nematodes harbor and disseminate various soil-borne bacterial pathogens. Whether they function as vectors or environmental reservoirs for the aquatic L. pneumophila, the causative agent of Legionnaires’ disease, is unknown. A survey screening of biofilms of natural (swimming lakes) and technical (cooling towers) water habitats in Germany revealed that nematodes can act as potential reservoirs, vectors or grazers of L. pneumophila in cooling towers. Consequently, the nematode species Plectus similis and L. pneumophila were isolated from the same cooling tower biofilm and taken into a monoxenic culture. Using pharyngeal pumping assays, potential feeding relationships between P. similis and different L. pneumophila strains and mutants were examined and compared with Plectus sp., a species isolated from a L. pneumophila-positive thermal source biofilm. The assays showed that bacterial suspensions and supernatants of the L. pneumophila cooling tower isolate KV02 decreased pumping rate and feeding activity in nematodes. However, assays investigating the hypothesized negative impact of Legionella’s major secretory protein ProA on pumping rate revealed opposite effects on nematodes, which points to a species-specific response to ProA. To extend the food chain by a further trophic level, Acanthamoebae castellanii infected with L. pneumphila KV02 were offered to nematodes. The pumping rates of P. similis increased when fed with L. pneumophila-infected A. castellanii, while Plectus sp. pumping rates were similar when fed either infected or non-infected A. castellanii. This study revealed that cooling towers are the main water bodies where L. pneumophila and free-living nematodes coexist and is the first step in elucidating the trophic links between coexisting taxa from that habitat. Investigating the Legionella–nematode–amoebae interactions underlined the importance of amoebae as reservoirs and transmission vehicles of the pathogen for nematode predators.
Collapse
|
8
|
Mraz AL, Weir MH. Knowledge to Predict Pathogens: Legionella pneumophila Lifecycle Systematic Review Part II Growth within and Egress from a Host Cell. Microorganisms 2022; 10:141. [PMID: 35056590 PMCID: PMC8780890 DOI: 10.3390/microorganisms10010141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
Legionella pneumophila (L. pneumophila) is a pathogenic bacterium of increasing concern, due to its ability to cause a severe pneumonia, Legionnaires' Disease (LD), and the challenges in controlling the bacteria within premise plumbing systems. L. pneumophila can thrive within the biofilm of premise plumbing systems, utilizing protozoan hosts for protection from environmental stressors and to increase its growth rate, which increases the bacteria's infectivity to human host cells. Typical disinfectant techniques have proven to be inadequate in controlling L. pneumophila in the premise plumbing system, exposing users to LD risks. As the bacteria have limited infectivity to human macrophages without replicating within a host protozoan cell, the replication within, and egress from, a protozoan host cell is an integral part of the bacteria's lifecycle. While there is a great deal of information regarding how L. pneumophila interacts with protozoa, the ability to use this data in a model to attempt to predict a concentration of L. pneumophila in a water system is not known. This systematic review summarizes the information in the literature regarding L. pneumophila's growth within and egress from the host cell, summarizes the genes which affect these processes, and calculates how oxidative stress can downregulate those genes.
Collapse
Affiliation(s)
- Alexis L. Mraz
- School of Nursing, Health, Exercise Science, The College of New Jersey, P.O. Box 7718, 2000 Pennington Rd., Ewing, NJ 08628, USA
| | - Mark H. Weir
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH 43210, USA;
- Sustainability Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Lancaster CE, Fountain A, Dayam RM, Somerville E, Sheth J, Jacobelli V, Somerville A, Terebiznik MR, Botelho RJ. Phagosome resolution regenerates lysosomes and maintains the degradative capacity in phagocytes. J Cell Biol 2021; 220:212440. [PMID: 34180943 PMCID: PMC8241537 DOI: 10.1083/jcb.202005072] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/05/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022] Open
Abstract
Phagocytes engulf unwanted particles into phagosomes that then fuse with lysosomes to degrade the enclosed particles. Ultimately, phagosomes must be recycled to help recover membrane resources that were consumed during phagocytosis and phagosome maturation, a process referred to as “phagosome resolution.” Little is known about phagosome resolution, which may proceed through exocytosis or membrane fission. Here, we show that bacteria-containing phagolysosomes in macrophages undergo fragmentation through vesicle budding, tubulation, and constriction. Phagosome fragmentation requires cargo degradation, the actin and microtubule cytoskeletons, and clathrin. We provide evidence that lysosome reformation occurs during phagosome resolution since the majority of phagosome-derived vesicles displayed lysosomal properties. Importantly, we show that clathrin-dependent phagosome resolution is important to maintain the degradative capacity of macrophages challenged with two waves of phagocytosis. Overall, our work suggests that phagosome resolution contributes to lysosome recovery and to maintaining the degradative power of macrophages to handle multiple waves of phagocytosis.
Collapse
Affiliation(s)
- Charlene E Lancaster
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, Ontario, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Aaron Fountain
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| | - Roaya M Dayam
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| | - Elliott Somerville
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Javal Sheth
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, Ontario, Canada
| | - Vanessa Jacobelli
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Alex Somerville
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Mauricio R Terebiznik
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, Ontario, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Scheithauer L, Thiem S, Schmelz S, Dellmann A, Büssow K, Brouwer RMHJ, Ünal CM, Blankenfeldt W, Steinert M. Zinc metalloprotease ProA of Legionella pneumophila increases alveolar septal thickness in human lung tissue explants by collagen IV degradation. Cell Microbiol 2021; 23:e13313. [PMID: 33491325 DOI: 10.1111/cmi.13313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/25/2023]
Abstract
ProA is a secreted zinc metalloprotease of Legionella pneumophila causing lung damage in animal models of Legionnaires' disease. Here we demonstrate that ProA promotes infection of human lung tissue explants (HLTEs) and dissect the contribution to cell type specific replication and extracellular virulence mechanisms. For the first time, we reveal that co-incubation of HLTEs with purified ProA causes a significant increase of the alveolar septal thickness. This destruction of connective tissue fibres was further substantiated by collagen IV degradation assays. The moderate attenuation of a proA-negative mutant in A549 epithelial cells and THP-1 macrophages suggests that effects of ProA in tissue mainly result from extracellular activity. Correspondingly, ProA contributes to dissemination and serum resistance of the pathogen, which further expands the versatile substrate spectrum of this thermolysin-like protease. The crystal structure of ProA at 1.48 Å resolution showed high congruence to pseudolysin of Pseudomonas aeruginosa, but revealed deviations in flexible loops, the substrate binding pocket S1 ' and the repertoire of cofactors, by which ProA can be distinguished from respective homologues. In sum, this work specified virulence features of ProA at different organisational levels by zooming in from histopathological effects in human lung tissue to atomic details of the protease substrate determination.
Collapse
Affiliation(s)
- Lina Scheithauer
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stefanie Thiem
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stefan Schmelz
- Structure and Function of Proteins, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Ansgar Dellmann
- Institut für Pathologie, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Germany
| | - Konrad Büssow
- Structure and Function of Proteins, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - René M H J Brouwer
- Herz-, Thorax-, Gefäßchirurgie, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Germany.,Institut für Psychologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Can M Ünal
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.,Fen Fakültesi, Turkish-German University, Istanbul, Turkey
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
11
|
Paranjape K, Bédard É, Shetty D, Hu M, Choon FCP, Prévost M, Faucher SP. Unravelling the importance of the eukaryotic and bacterial communities and their relationship with Legionella spp. ecology in cooling towers: a complex network. MICROBIOME 2020; 8:157. [PMID: 33183356 PMCID: PMC7664032 DOI: 10.1186/s40168-020-00926-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cooling towers are a major source of large community-associated outbreaks of Legionnaires' disease, a severe pneumonia. This disease is contracted when inhaling aerosols that are contaminated with bacteria from the genus Legionella, most importantly Legionella pneumophila. How cooling towers support the growth of this bacterium is still not well understood. As Legionella species are intracellular parasites of protozoa, it is assumed that protozoan community in cooling towers play an important role in Legionella ecology and outbreaks. However, the exact mechanism of how the eukaryotic community contributes to Legionella ecology is still unclear. Therefore, we used 18S rRNA gene amplicon sequencing to characterize the eukaryotic communities of 18 different cooling towers. The data from the eukaryotic community was then analysed with the bacterial community of the same towers in order to understand how each community could affect Legionella spp. ecology in cooling towers. RESULTS We identified several microbial groups in the cooling tower ecosystem associated with Legionella spp. that suggest the presence of a microbial loop in these systems. Dissolved organic carbon was shown to be a major factor in shaping the eukaryotic community and may be an important factor for Legionella ecology. Network analysis, based on co-occurrence, revealed that Legionella was correlated with a number of different organisms. Out of these, the bacterial genus Brevundimonas and the ciliate class Oligohymenophorea were shown, through in vitro experiments, to stimulate the growth of L. pneumophila through direct and indirect mechanisms. CONCLUSION Our results suggest that Legionella ecology depends on the host community, including ciliates and on several groups of organisms that contribute to its survival and growth in the cooling tower ecosystem. These findings further support the idea that some cooling tower microbiomes may promote the survival and growth of Legionella better than others. Video Abstract.
Collapse
Affiliation(s)
- Kiran Paranjape
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Émilie Bédard
- Department of Civil Engineering, Polytechnique Montreal, Montréal, QC, Canada
| | - Deeksha Shetty
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Mengqi Hu
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Fiona Chan Pak Choon
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Michèle Prévost
- Department of Civil Engineering, Polytechnique Montreal, Montréal, QC, Canada
| | - Sébastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
12
|
Boilattabi N, Barrassi L, Bouanane-Darenfed A, La Scola B. Isolation and identification of Legionella spp. from hot spring water in Algeria by culture and molecular methods. J Appl Microbiol 2020; 130:1394-1400. [PMID: 32985039 DOI: 10.1111/jam.14871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
AIMS Due to infectious risk associated with the presence of Legionella in warm water, we determined the prevalence of living Legionella spp. in hot spring water in Algeria. METHODS AND RESULTS Detection of Legionella by culture was done by using two methods, direct culture on agar plates and co-culture with amoeba. Fifty samples were taken from different hot springs in northern Algeria, including swimming pools, showers and thermal sources. Legionella pneumophila serotypes were predominant, accounting for 60% of positive samples. Direct method allowed the isolation of 13 L. pneumophila only of 50 samples (26%), whereas co-culture using a panel of three free living amoeba allowed the isolation of 119 Legionella species from the same samples (80%) CONCLUSIONS: Amoeba co-culture allowed the isolation of several Legionella sp., while direct culture allowed the isolation of L. pneumophila only. Remarkably, Legionella longbeachae, usually isolated from soil and compost, was isolated for the first time in thermal water in three samples using Vermamoeba vermiformis co-culture. SIGNIFICANCE AND IMPACT OF THE STUDY The presence of Legionella in the water of hot springs in Algeria, which are mainly frequented by individuals at risk of Legionellosis, requires urgent control measures.
Collapse
Affiliation(s)
- N Boilattabi
- Laboratoire de Biologie Cellulaire et Moléculaire (LBCM), Equipe de Microbiologie, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), El Alia, Alger, Algérie.,Unité de Recherche Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, AP-HM, IRD, IHU Méditerranée Infection, Marseille, France
| | - L Barrassi
- Unité de Recherche Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, AP-HM, IRD, IHU Méditerranée Infection, Marseille, France
| | - A Bouanane-Darenfed
- Laboratoire de Biologie Cellulaire et Moléculaire (LBCM), Equipe de Microbiologie, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), El Alia, Alger, Algérie
| | - B La Scola
- Unité de Recherche Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, AP-HM, IRD, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
13
|
Fontaine SS, Kohl KD. Gut microbiota of invasive bullfrog tadpoles responds more rapidly to temperature than a noninvasive congener. Mol Ecol 2020; 29:2449-2462. [PMID: 32463954 DOI: 10.1111/mec.15487] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 12/28/2022]
Abstract
Environmental temperature can alter the composition, diversity, and function of ectothermic vertebrate gut microbial communities, which may result in negative consequences for host physiology, or conversely, increase phenotypic plasticity and persistence in harsh conditions. The magnitude of either of these effects will depend on the length of time animals are exposed to extreme temperatures, and how quickly the composition and function of the gut microbiota can respond to temperature change. However, the temporal effects of temperature on gut microbiota are currently unknown. Here, we investigated the length of time required for increased temperature to alter the composition of gut bacterial communities in tadpoles of two frog species, the green frog, Lithobates clamitans, and its congener, the globally invasive American bullfrog, L. catesbeianus. We also explored the potential functional consequences of these changes by comparing predicted metagenomic profiles across temperature treatments at the last experimental time point. Bullfrog-associated microbial communities were more plastic than those of the green frog. Specifically, bullfrog communities were altered by increased temperature within hours, while green frog communities took multiple days to exhibit significant changes. Further, over ten times more bullfrog bacterial functional pathways were temperature-dependent compared to the green frog. These results support our hypothesis that bullfrog gut microbial communities would respond more rapidly to temperature change, potentially bolstering their ability to exploit novel environments. More broadly, we have revealed that even short-term increases in environmental temperature, expected to occur frequently under global climate change, can alter the gut microbiota of ectothermic vertebrates.
Collapse
Affiliation(s)
- Samantha S Fontaine
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Chatfield CH, Zaia J, Sauer C. Legionella pneumophila Attachment to Biofilms of an Acidovorax Isolate from a Drinking Water-Consortium Requires the Lcl-Adhesin Protein. Int Microbiol 2020; 23:597-605. [PMID: 32451737 DOI: 10.1007/s10123-020-00126-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/02/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022]
Abstract
Human infection by Legionella pneumophila (Lpn) only occurs via contaminated water from man-made sources, and eradication of these bacteria from man-made water systems is complicated by biofilm colonization. Using a continuously fed biofilm reactor model, we grew a biofilm consortium from potable water that was able to prolong recovery of Lpn CFU from biofilms. This effect was recreated using a subset of those species in a simplified consortium composed of eight bacterial isolates from the first biofilm reactor. In the reactor with the eight-species consortium, Lpn biofilm CFU was relatively stable over a 12-day trial. An isolate of Acidovorax from the consortium was, as a single species biofilm, able to promote Lpn surface attachment. Other isolates from the Pelomonas genus grew as equally robust biofilms alone, but did not promote surface attachment of Lpn. This attachment was disrupted by cationic polysaccharides and loss of the Lpn Lcl collagen-like adhesin protein. This work demonstrates that, while Lpn was fairly incompetent at attachment to surfaces to form a biofilm alone, pre-existing biofilms allowed attachment of Lpn as secondary colonizers. In addition, we demonstrate that initial attachment of Lpn to Acidovorax biofilms is likely via the Lcl-adhesin protein.
Collapse
Affiliation(s)
| | - Jenna Zaia
- Department of Biological Sciences, SUNY Cortland, Cortland, New York, USA
| | - Cassidy Sauer
- Department of Biological Sciences, SUNY Cortland, Cortland, New York, USA
| |
Collapse
|
15
|
Swart AL, Hilbi H. Phosphoinositides and the Fate of Legionella in Phagocytes. Front Immunol 2020; 11:25. [PMID: 32117224 PMCID: PMC7025538 DOI: 10.3389/fimmu.2020.00025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/08/2020] [Indexed: 01/28/2023] Open
Abstract
Legionella pneumophila is the causative agent of a severe pneumonia called Legionnaires' disease. The environmental bacterium replicates in free-living amoebae as well as in lung macrophages in a distinct compartment, the Legionella-containing vacuole (LCV). The LCV communicates with a number of cellular vesicle trafficking pathways and is formed by a plethora of secreted bacterial effector proteins, which target host cell proteins and lipids. Phosphoinositide (PI) lipids are pivotal determinants of organelle identity, membrane dynamics and vesicle trafficking. Accordingly, eukaryotic cells tightly regulate the production, turnover, interconversion, and localization of PI lipids. L. pneumophila modulates the PI pattern in infected cells for its own benefit by (i) recruiting PI-decorated vesicles, (ii) producing effectors acting as PI interactors, phosphatases, kinases or phospholipases, and (iii) subverting host PI metabolizing enzymes. The PI conversion from PtdIns(3)P to PtdIns(4)P represents a decisive step during LCV maturation. In this review, we summarize recent progress on elucidating the strategies, by which L. pneumophila subverts host PI lipids to promote LCV formation and intracellular replication.
Collapse
Affiliation(s)
- A Leoni Swart
- Faculty of Medicine, Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | - Hubert Hilbi
- Faculty of Medicine, Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| |
Collapse
|
16
|
Mondino S, Schmidt S, Rolando M, Escoll P, Gomez-Valero L, Buchrieser C. Legionnaires’ Disease: State of the Art Knowledge of Pathogenesis Mechanisms of Legionella. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:439-466. [DOI: 10.1146/annurev-pathmechdis-012419-032742] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Legionella species are environmental gram-negative bacteria able to cause a severe form of pneumonia in humans known as Legionnaires’ disease. Since the identification of Legionella pneumophila in 1977, four decades of research on Legionella biology and Legionnaires’ disease have brought important insights into the biology of the bacteria and the molecular mechanisms that these intracellular pathogens use to cause disease in humans. Nowadays, Legionella species constitute a remarkable model of bacterial adaptation, with a genus genome shaped by their close coevolution with amoebae and an ability to exploit many hosts and signaling pathways through the secretion of a myriad of effector proteins, many of which have a eukaryotic origin. This review aims to discuss current knowledge of Legionella infection mechanisms and future research directions to be taken that might answer the many remaining open questions. This research will without a doubt be a terrific scientific journey worth taking.
Collapse
Affiliation(s)
- Sonia Mondino
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS UMR 3525, 75015 Paris, France;, , , , ,
| | - Silke Schmidt
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS UMR 3525, 75015 Paris, France;, , , , ,
- Sorbonne Université, Collège doctoral, 75005 Paris, France
| | - Monica Rolando
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS UMR 3525, 75015 Paris, France;, , , , ,
| | - Pedro Escoll
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS UMR 3525, 75015 Paris, France;, , , , ,
| | - Laura Gomez-Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS UMR 3525, 75015 Paris, France;, , , , ,
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS UMR 3525, 75015 Paris, France;, , , , ,
| |
Collapse
|
17
|
Abstract
Caenorhabditis elegans can serve as a simple genetic host to study interactions between Legionellaceae and their hosts and to examine the contribution of specific gene products to virulence and immunity. C. elegans nematodes have several appealing attributes as a host organism; they are inexpensive, have robust genetic analysis tools, have a simple anatomy yet display a wide range of complex behaviors, and, as invertebrates, do not require animal ethics protocols. Use of C. elegans as a host model complements cell-based models, providing additional support and consistency of the experimental data obtained from multiple models. The C. elegans innate immune system functions similarly to that of the alveolar macrophage including the apoptosis [a.k.a. programmed cell death (PCD)] pathway located within the germline. The digestive tract of C. elegans is a primary interface between the innate immune system and bacterial pathogens. Thus, the C. elegans host model provides an alternative approach to investigate L. pneumophila immunopathogenesis, particularly in the view of the recent discovery of Legionella-containing vacuoles within the gonadal tissues of Legionella-colonized nematodes supporting the plausible evolutionary origin of the strategies employed by L. pneumophila to counteract macrophage cellular responses.
Collapse
|
18
|
Peptidyl-Prolyl- cis/ trans-Isomerases Mip and PpiB of Legionella pneumophila Contribute to Surface Translocation, Growth at Suboptimal Temperature, and Infection. Infect Immun 2018; 87:IAI.00939-17. [PMID: 30323027 DOI: 10.1128/iai.00939-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 09/12/2018] [Indexed: 12/31/2022] Open
Abstract
The gammaproteobacterium Legionella pneumophila is the causative agent of Legionnaires' disease, an atypical pneumonia that manifests itself with severe lung damage. L. pneumophila, a common inhabitant of freshwater environments, replicates in free-living amoebae and persists in biofilms in natural and man-made water systems. Its environmental versatility is reflected in its ability to survive and grow within a broad temperature range as well as its capability to colonize and infect a wide range of hosts, including protozoa and humans. Peptidyl-prolyl-cis/trans-isomerases (PPIases) are multifunctional proteins that are mainly involved in protein folding and secretion in bacteria. In L. pneumophila the surface-associated PPIase Mip was shown to facilitate the establishment of the intracellular infection cycle in its early stages. The cytoplasmic PpiB was shown to promote cold tolerance. Here, we set out to analyze the interrelationship of these two relevant PPIases in the context of environmental fitness and infection. We demonstrate that the PPIases Mip and PpiB are important for surfactant-dependent sliding motility and adaptation to suboptimal temperatures, features that contribute to the environmental fitness of L. pneumophila Furthermore, they contribute to infection of the natural host Acanthamoeba castellanii as well as human macrophages and human explanted lung tissue. These effects were additive in the case of sliding motility or synergistic in the case of temperature tolerance and infection, as assessed by the behavior of the double mutant. Accordingly, we propose that Mip and PpiB are virulence modulators of L. pneumophila with compensatory action and pleiotropic effects.
Collapse
|
19
|
Best AM, Abu Kwaik Y. Evasion of phagotrophic predation by protist hosts and innate immunity of metazoan hosts by Legionella pneumophila. Cell Microbiol 2018; 21:e12971. [PMID: 30370624 DOI: 10.1111/cmi.12971] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/08/2018] [Accepted: 10/24/2018] [Indexed: 12/18/2022]
Abstract
Legionella pneumophila is a ubiquitous environmental bacterium that has evolved to infect and proliferate within amoebae and other protists. It is thought that accidental inhalation of contaminated water particles by humans is what has enabled this pathogen to proliferate within alveolar macrophages and cause pneumonia. However, the highly evolved macrophages are equipped with more sophisticated innate defence mechanisms than are protists, such as the evolution of phagotrophic feeding into phagocytosis with more evolved innate defence processes. Not surprisingly, the majority of proteins involved in phagosome biogenesis (~80%) have origins in the phagotrophy stage of evolution. There are a plethora of highly evolved cellular and innate metazoan processes, not represented in protist biology, that are modulated by L. pneumophila, including TLR2 signalling, NF-κB, apoptotic and inflammatory processes, histone modification, caspases, and the NLRC-Naip5 inflammasomes. Importantly, L. pneumophila infects haemocytes of the invertebrate Galleria mellonella, kill G. mellonella larvae, and proliferate in and kill Drosophila adult flies and Caenorhabditis elegans. Although coevolution with protist hosts has provided a substantial blueprint for L. pneumophila to infect macrophages, we discuss the further evolutionary aspects of coevolution of L. pneumophila and its adaptation to modulate various highly evolved innate metazoan processes prior to becoming a human pathogen.
Collapse
Affiliation(s)
- Ashley M Best
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky.,Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
20
|
Abstract
Within the human host, Legionella pneumophila replicates within alveolar macrophages, leading to pneumonia. However, L. pneumophila is an aquatic generalist pathogen that replicates within a wide variety of protist hosts, including amoebozoa, percolozoa, and ciliophora. The intracellular lifestyles of L. pneumophila within the two evolutionarily distant hosts macrophages and protists are remarkably similar. Coevolution with numerous protist hosts has shaped plasticity of the genome of L. pneumophila, which harbors numerous proteins encoded by genes acquired from primitive eukaryotic hosts through interkingdom horizontal gene transfer. The Dot/Icm type IVb translocation system translocates ∼6,000 effectors among Legionella species and >320 effector proteins in L. pneumophila into host cells to modulate a plethora of cellular processes to create proliferative niches. Since many of the effectors have likely evolved to modulate cellular processes of primitive eukaryotic hosts, it is not surprising that most of the effectors do not contribute to intracellular growth within human macrophages. Some of the effectors may modulate highly conserved eukaryotic processes, while others may target protist-specific processes that are absent in mammals. The lack of studies to determine the role of the effectors in adaptation of L. pneumophila to various protists has hampered the progress to determine the function of most of these effectors, which are routinely studied in mouse or human macrophages. Since many protists restrict L. pneumophila, utilization of such hosts can also be instrumental in deciphering the mechanisms of failure of L. pneumophila to overcome restriction of certain protist hosts. Here, we review the interaction of L. pneumophila with its permissive and restrictive protist environmental hosts and outline the accomplishments as well as gaps in our knowledge of L. pneumophila-protist host interaction and L. pneumophila's evolution to become a human pathogen.
Collapse
Affiliation(s)
- Ashley Best
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
21
|
Swart AL, Harrison CF, Eichinger L, Steinert M, Hilbi H. Acanthamoeba and Dictyostelium as Cellular Models for Legionella Infection. Front Cell Infect Microbiol 2018; 8:61. [PMID: 29552544 PMCID: PMC5840211 DOI: 10.3389/fcimb.2018.00061] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
Environmental bacteria of the genus Legionella naturally parasitize free-living amoebae. Upon inhalation of bacteria-laden aerosols, the opportunistic pathogens grow intracellularly in alveolar macrophages and can cause a life-threatening pneumonia termed Legionnaires' disease. Intracellular replication in amoebae and macrophages takes place in a unique membrane-bound compartment, the Legionella-containing vacuole (LCV). LCV formation requires the bacterial Icm/Dot type IV secretion system, which translocates literally hundreds of "effector" proteins into host cells, where they modulate crucial cellular processes for the pathogen's benefit. The mechanism of LCV formation appears to be evolutionarily conserved, and therefore, amoebae are not only ecologically significant niches for Legionella spp., but also useful cellular models for eukaryotic phagocytes. In particular, Acanthamoeba castellanii and Dictyostelium discoideum emerged over the last years as versatile and powerful models. Using genetic, biochemical and cell biological approaches, molecular interactions between amoebae and Legionella pneumophila have recently been investigated in detail with a focus on the role of phosphoinositide lipids, small and large GTPases, autophagy components and the retromer complex, as well as on bacterial effectors targeting these host factors.
Collapse
Affiliation(s)
- A Leoni Swart
- Institute of Medical Microbiology, Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Christopher F Harrison
- Max von Pettenkofer Institute, Medical Faculty, Ludwig-Maximilians University Munich, Munich, Germany
| | - Ludwig Eichinger
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Michael Steinert
- Department of Life Sciences, Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Hubert Hilbi
- Institute of Medical Microbiology, Medical Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Abu Khweek A, Amer AO. Factors Mediating Environmental Biofilm Formation by Legionella pneumophila. Front Cell Infect Microbiol 2018. [PMID: 29535972 PMCID: PMC5835138 DOI: 10.3389/fcimb.2018.00038] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Legionella pneumophila (L. pneumophila) is an opportunistic waterborne pathogen and the causative agent for Legionnaires' disease, which is transmitted to humans via inhalation of contaminated water droplets. The bacterium is able to colonize a variety of man-made water systems such as cooling towers, spas, and dental lines and is widely distributed in multiple niches, including several species of protozoa In addition to survival in planktonic phase, L. pneumophila is able to survive and persist within multi-species biofilms that cover surfaces within water systems. Biofilm formation by L. pneumophila is advantageous for the pathogen as it leads to persistence, spread, resistance to treatments and an increase in virulence of this bacterium. Furthermore, Legionellosis outbreaks have been associated with the presence of L. pneumophila in biofilms, even after the extensive chemical and physical treatments. In the microbial consortium-containing L. pneumophila among other organisms, several factors either positively or negatively regulate the presence and persistence of L. pneumophila in this bacterial community. Biofilm-forming L. pneumophila is of a major importance to public health and have impact on the medical and industrial sectors. Indeed, prevention and removal protocols of L. pneumophila as well as diagnosis and hospitalization of patients infected with this bacteria cost governments billions of dollars. Therefore, understanding the biological and environmental factors that contribute to persistence and physiological adaptation in biofilms can be detrimental to eradicate and prevent the transmission of L. pneumophila. In this review, we focus on various factors that contribute to persistence of L. pneumophila within the biofilm consortium, the advantages that the bacteria gain from surviving in biofilms, genes and gene regulation during biofilm formation and finally challenges related to biofilm resistance to biocides and anti-Legionella treatments.
Collapse
Affiliation(s)
- Arwa Abu Khweek
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| | - Amal O Amer
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, College of Medicine, Ohio State University, Columbus, OH, United States
| |
Collapse
|
23
|
Kamaladevi A, Balamurugan K. Global Proteomics Revealed Klebsiella pneumoniae Induced Autophagy and Oxidative Stress in Caenorhabditis elegans by Inhibiting PI3K/AKT/mTOR Pathway during Infection. Front Cell Infect Microbiol 2017; 7:393. [PMID: 28932706 PMCID: PMC5592217 DOI: 10.3389/fcimb.2017.00393] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/22/2017] [Indexed: 01/29/2023] Open
Abstract
The enterobacterium, Klebsiella pneumoniae invades the intestinal epithelium of humans by interfering with multiple host cell response. To uncover a system-level overview of host response during infection, we analyzed the global dynamics of protein profiling in Caenorhabditis elegans using quantitative proteomics approach. Comparison of protein samples of nematodes exposed to K. pneumoniae for 12, 24, and 36 h by 2DE revealed several changes in host proteome. A total of 266 host-encoded proteins were identified by 2DE MALDI-MS/MS and LC-MS/MS and the interacting partners of the identified proteins were predicted by STRING 10.0 analysis. In order to understand the interacting partners of regulatory proteins with similar or close pI ranges, a liquid IEF was performed and the isolated fractions containing proteins were identified by LC-MS/MS. Functional bioinformatics analysis on identified proteins deciphered that they were mostly related to the metabolism, dauer formation, apoptosis, endocytosis, signal transduction, translation, developmental, and reproduction process. Gene enrichment analysis suggested that the metabolic process as the most overrepresented pathway regulated against K. pneumoniae infection. The dauer-like formation in infected C. elegans along with intestinal atrophy and ROS during the physiological analysis indicated that the regulation of metabolic pathway is probably through the involvement of mTOR. Immunoblot analysis supported the above notion that the K. pneumoniae infection induced protein mis-folding in host by involving PI3Kinase/AKT-1/mTOR mediated pathway. Furthermore, the susceptibility of pdi-2, akt-1, and mTOR C. elegans mutants confirmed the role and involvement of PI3K/AKT/mTOR pathway in mediating protein mis-folding which appear to be translating the vulnerability of host defense toward K. pneumoniae infection.
Collapse
|
24
|
Hochstrasser R, Hilbi H. Intra-Species and Inter-Kingdom Signaling of Legionella pneumophila. Front Microbiol 2017; 8:79. [PMID: 28217110 PMCID: PMC5289986 DOI: 10.3389/fmicb.2017.00079] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/11/2017] [Indexed: 12/24/2022] Open
Abstract
The ubiquitous Gram-negative bacterium Legionella pneumophila parasitizes environ mental amoebae and, upon inhalation, replicates in alveolar macrophages, thus causing a life-threatening pneumonia called “Legionnaires’ disease.” The opportunistic pathogen employs a bi-phasic life cycle, alternating between a replicative, non-virulent phase and a stationary, transmissive/virulent phase. L. pneumophila employs the Lqs (Legionella quorum sensing) system as a major regulator of the growth phase switch. The Lqs system comprises the autoinducer synthase LqsA, the homologous sensor kinases LqsS and LqsT, as well as a prototypic response regulator termed LqsR. These components produce, detect, and respond to the α-hydroxyketone signaling molecule LAI-1 (Legionella autoinducer-1, 3-hydroxypentadecane-4-one). LAI-1-mediated signal transduction through the sensor kinases converges on LqsR, which dimerizes upon phosphorylation. The Lqs system regulates the bacterial growth phase switch, pathogen-host cell interactions, motility, natural competence, filament production, and expression of a chromosomal “fitness island.” Yet, LAI-1 not only mediates bacterial intra-species signaling, but also modulates the motility of eukaryotic cells through the small GTPase Cdc42 and thus promotes inter-kingdom signaling. Taken together, the low molecular weight compound LAI-1 produced by L. pneumophila and sensed by the bacteria as well as by eukaryotic cells plays a major role in pathogen-host cell interactions.
Collapse
Affiliation(s)
- Ramon Hochstrasser
- Department of Medicine, Institute of Medical Microbiology, University of Zürich Zürich, Switzerland
| | - Hubert Hilbi
- Department of Medicine, Institute of Medical Microbiology, University of Zürich Zürich, Switzerland
| |
Collapse
|
25
|
Rasch J, Krüger S, Fontvieille D, Ünal CM, Michel R, Labrosse A, Steinert M. Legionella-protozoa-nematode interactions in aquatic biofilms and influence of Mip on Caenorhabditis elegans colonization. Int J Med Microbiol 2016; 306:443-51. [PMID: 27288243 DOI: 10.1016/j.ijmm.2016.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/03/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaireś disease, is naturally found in aquatic habitats. The intracellular life cycle within protozoa pre-adapted the "accidental" human pathogen to also infect human professional phagocytes like alveolar macrophages. Previous studies employing the model organism Caenorhabditis elegans suggest that also nematodes might serve as a natural host for L. pneumophila. Here, we report for the first time from a natural co-habitation of L. pneumophila and environmental nematode species within biofilms of a warm water spring. In addition, we identified the protozoan species Oxytricha bifaria, Stylonychia mytilus, Ciliophrya sp. which have never been described as potential interaction partners of L. pneumophila before. Modeling and dissection of the Legionella-protozoa-nematode interaction revealed that C. elegans ruptures Legionella-infected amoebal cells and by this means incorporate the pathogen. Further infection studies revealed that the macrophage infectivity potentiator (Mip) protein of L. pneumophila, which is known to bind collagen IV during human lung infection, promotes the colonization of the intestinal tract of L4 larvae of C. elegans and negatively influences the life span of the worms. The Mip-negative L. pneumophila mutant exhibited a 32-fold reduced colonization rate of the nematodes after 48h when compared to the wild-type strain. Taken together, these studies suggest that nematodes may serve as natural hosts for L. pneumophila, promote their persistence and dissemination in the environment, and co-evolutionarily pre-adapt the pathogen for interactions with extracellular constituents of human lung tissue.
Collapse
Affiliation(s)
- Janine Rasch
- Institut für Mikrobiologie, Technische Universität Braunschweig, Germany
| | - Stefanie Krüger
- Institut für Mikrobiologie, Technische Universität Braunschweig, Germany
| | | | - Can M Ünal
- Institut für Mikrobiologie, Technische Universität Braunschweig, Germany
| | - Rolf Michel
- Central Institute of the Federal Armed Forces Medical Services, Koblenz, Germany
| | | | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Germany; Helmholtz Center for Infection Research, Braunschweig, Germany.
| |
Collapse
|
26
|
Schell U, Simon S, Hilbi H. Inflammasome Recognition and Regulation of the Legionella Flagellum. Curr Top Microbiol Immunol 2016; 397:161-81. [PMID: 27460809 DOI: 10.1007/978-3-319-41171-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Gram-negative bacterium Legionella pneumophila colonizes extracellular environmental niches and infects free-living protozoa. Upon inhalation into the human lung, the opportunistic pathogen grows in macrophages and causes a fulminant pneumonia termed Legionnaires' disease. L. pneumophila employs a biphasic life cycle, comprising a replicative, non-virulent, and a stationary, virulent form. In the latter phase, the pathogen produces a plethora of so-called effector proteins, which are injected into host cells, where they subvert pivotal processes and promote the formation of a distinct membrane-bound compartment, the Legionella-containing vacuole. In the stationary phase, the bacteria also produce a single monopolar flagellum and become motile. L. pneumophila flagellin is recognized by and triggers the host's NAIP5 (Birc1e)/NLRC4 (Ipaf) inflammasome, which leads to caspase-1 activation, pore formation, and pyroptosis. The production of L. pneumophila flagellin and pathogen-host interactions are controlled by a complex stationary phase regulatory network, detecting nutrient availability as well as the Legionella quorum sensing (Lqs) signaling compound LAI-1 (3-hydroxypentadecane-4-one). Thus, the small molecule LAI-1 coordinates L. pneumophila flagellin production and motility, inflammasome activation, and virulence.
Collapse
Affiliation(s)
- Ursula Schell
- Max von Pettenkofer Institute, Ludwig-Maximilians University, Pettenkoferstraße 9a, 80336, Munich, Germany
| | - Sylvia Simon
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30/32, 8006, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30/32, 8006, Zürich, Switzerland.
| |
Collapse
|
27
|
Hellinga JR, Garduño RA, Kormish JD, Tanner JR, Khan D, Buchko K, Jimenez C, Pinette MM, Brassinga AKC. Identification of vacuoles containing extraintestinal differentiated forms of Legionella pneumophila in colonized Caenorhabditis elegans soil nematodes. Microbiologyopen 2015; 4:660-81. [PMID: 26131925 PMCID: PMC4554460 DOI: 10.1002/mbo3.271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/13/2015] [Accepted: 05/19/2015] [Indexed: 11/24/2022] Open
Abstract
Legionella pneumophila, a causative agent of Legionnaires’ disease, is a facultative intracellular parasite of freshwater protozoa. Legionella pneumophila features a unique developmental network that involves several developmental forms including the infectious cyst forms. Reservoirs of L. pneumophila include natural and man-made freshwater systems; however, recent studies have shown that isolates of L. pneumophila can also be obtained directly from garden potting soil suggesting the presence of an additional reservoir. A previous study employing the metazoan Caenorhabditis elegans, a member of the Rhabditidae family of free-living soil nematodes, demonstrated that the intestinal lumen can be colonized with L. pneumophila. While both replicative forms and differentiated forms were observed in C. elegans, these morphologically distinct forms were initially observed to be restricted to the intestinal lumen. Using live DIC imaging coupled with focused transmission electron microscopy analyses, we report here that L. pneumophila is able to invade and establish Legionella-containing vacuoles (LCVs) in the intestinal cells. In addition, LCVs containing replicative and differentiated cyst forms were observed in the pseudocoelomic cavity and gonadal tissue of nematodes colonized with L. pneumophila. Furthermore, establishment of LCVs in the gonadal tissue was Dot/Icm dependent and required the presence of the endocytic factor RME-1 to gain access to maturing oocytes. Our findings are novel as this is the first report, to our knowledge, of extraintestinal LCVs containing L. pneumophila cyst forms in C. elegans tissues, highlighting the potential of soil-dwelling nematodes as an alternate environmental reservoir for L. pneumophila.
Collapse
Affiliation(s)
- Jacqueline R Hellinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Rafael A Garduño
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 1X5.,Department of Medicine, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 1X5
| | - Jay D Kormish
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Jennifer R Tanner
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Deirdre Khan
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Kristyn Buchko
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Celine Jimenez
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Mathieu M Pinette
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Ann Karen C Brassinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| |
Collapse
|
28
|
Ashbolt NJ. Environmental (Saprozoic) Pathogens of Engineered Water Systems: Understanding Their Ecology for Risk Assessment and Management. Pathogens 2015; 4:390-405. [PMID: 26102291 PMCID: PMC4493481 DOI: 10.3390/pathogens4020390] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 11/20/2022] Open
Abstract
Major waterborne (enteric) pathogens are relatively well understood and treatment controls are effective when well managed. However, water-based, saprozoic pathogens that grow within engineered water systems (primarily within biofilms/sediments) cannot be controlled by water treatment alone prior to entry into water distribution and other engineered water systems. Growth within biofilms or as in the case of Legionella pneumophila, primarily within free-living protozoa feeding on biofilms, results from competitive advantage. Meaning, to understand how to manage water-based pathogen diseases (a sub-set of saprozoses) we need to understand the microbial ecology of biofilms; with key factors including biofilm bacterial diversity that influence amoebae hosts and members antagonistic to water-based pathogens, along with impacts from biofilm substratum, water temperature, flow conditions and disinfectant residual—all control variables. Major saprozoic pathogens covering viruses, bacteria, fungi and free-living protozoa are listed, yet today most of the recognized health burden from drinking waters is driven by legionellae, non-tuberculous mycobacteria (NTM) and, to a lesser extent, Pseudomonas aeruginosa. In developing best management practices for engineered water systems based on hazard analysis critical control point (HACCP) or water safety plan (WSP) approaches, multi-factor control strategies, based on quantitative microbial risk assessments need to be developed, to reduce disease from largely opportunistic, water-based pathogens.
Collapse
Affiliation(s)
- Nicholas J Ashbolt
- School of Public Health, University of Alberta, Rm 3-57D South Academic Building, Edmonton, AB T6G 2G7, Canada.
| |
Collapse
|
29
|
Cao Y, Tian B, Ji X, Shang S, Lu C, Zhang K. Associated bacteria of different life stages of Meloidogyne incognita using pyrosequencing-based analysis. J Basic Microbiol 2015; 55:950-60. [PMID: 25809195 DOI: 10.1002/jobm.201400816] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/30/2015] [Indexed: 11/09/2022]
Abstract
The root knot nematode (RKN), Meloidogyne incognita, belongs to the most damaging plant pathogens worldwide, and is able to infect almost all cultivated plants, like tomato. Recent research supports the hypothesis that bacteria often associated with plant-parasitic nematodes, function as nematode parasites, symbionts, or commensal organisms etc. In this study, we explored the bacterial consortia associated with M. incognita at different developmental stages, including egg mass, adult female and second-stage juvenile using the pyrosequencing approach. The results showed that Proteobacteria, with a proportion of 71-84%, is the most abundant phylum associated with M. incognita in infected tomato roots, followed by Actinobacteria, Bacteroidetes, Firmicutes etc. Egg mass, female and second-stage juvenile of M. incognita harbored a core microbiome with minor difference in communities and diversities. Several bacteria genera identified in M. incognita are recognized cellulosic microorganisms, pathogenic bacteria, nitrogen-fixing bacteria and antagonists to M. incognita. Some genera previously identified in other plant-parasitic nematodes were also found in tomato RKNs. The potential biological control microorganisms, including the known bacterial pathogens and nematode antagonists, such as Actinomycetes and Pseudomonas, showed the largest diversity and proportion in egg mass, and dramatically decreased in second-stage juvenile and female of M. incognita. This is the first comprehensive report of bacterial flora associated with the RKN identified by pyrosequencing-based analysis. The results provide valuable information for understanding nematode-microbiota interactions and may be helpful in the development of novel nematode-control strategies.
Collapse
Affiliation(s)
- Yi Cao
- Key Laboratory for Conservation and Utilization of Bio-resource, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Baoyu Tian
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Xinglai Ji
- Key Laboratory for Conservation and Utilization of Bio-resource, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Shenghua Shang
- Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Chaojun Lu
- Key Laboratory for Conservation and Utilization of Bio-resource, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Keqin Zhang
- Key Laboratory for Conservation and Utilization of Bio-resource, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| |
Collapse
|
30
|
Corsaro D, Venditti D. Detection of novel Chlamydiae and Legionellales from human nasal samples of healthy volunteers. Folia Microbiol (Praha) 2015; 60:325-34. [PMID: 25697709 DOI: 10.1007/s12223-015-0378-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 02/05/2015] [Indexed: 01/23/2023]
Abstract
Chlamydiae are intracellular bacterial parasites of eukaryotes, ranging from amoebae to humans. They comprise many novel members and are investigated as emerging pathogens. Environmental studies highlighted similarities between the ecologies of chlamydiae and legionellae, both groups being important agents of respiratory infections. Herein, we analyzed nasal samples from healthy persons, searching for the presence of amoebae, chlamydiae and legionellae. From a total of 25 samples, we recovered by PCR eight samples positive to chlamydiae and six samples positive to legionellae. Among these samples, four were positive to both organisms. The sequencing of 16S rDNAs allowed to identify (i) among Chlamydiae: Parachlamydia acanthamoebae, Chlamydophila psittaci, Chlamydophila felis, and members of Rhabdochlamydiaceae, Simkaniaceae and E6 lineage and (ii) among Legionellaceae: Legionella longbeachae, Legionella bozemanii and Legionella impletisoli. Unexpectedly, we also recovered Diplorickettsia sp. Amoebae collected from nasal mucosae, Acanthamoeba and Vermamoeba, were endosymbiont-free, and chlamydiae revealed refractory to amoeba coculture. This study shows common exposure to chlamydiae and legionellae and suggests open air activities like gardening as a probable additional source of infection.
Collapse
Affiliation(s)
- Daniele Corsaro
- CHLAREAS Chlamydia Research Association, 12 rue du Maconnais, 54500, Vandoeuvre-lès-Nancy, France,
| | | |
Collapse
|
31
|
Prashar A, Bhatia S, Gigliozzi D, Martin T, Duncan C, Guyard C, Terebiznik MR. Filamentous morphology of bacteria delays the timing of phagosome morphogenesis in macrophages. ACTA ACUST UNITED AC 2014; 203:1081-97. [PMID: 24368810 PMCID: PMC3871431 DOI: 10.1083/jcb.201304095] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Uptake of bacterial filaments by macrophages is characterized by a prolonged phagocytic cup stage and diminished microbicidal activity during phagosome maturation. Although filamentous morphology in bacteria has been associated with resistance to phagocytosis, our understanding of the cellular mechanisms behind this process is limited. To investigate this, we followed the phagocytosis of both viable and dead Legionella pneumophila filaments. The engulfment of these targets occurred gradually and along the longitudinal axis of the filament, therefore defining a long-lasting phagocytic cup stage that determined the outcome of phagocytosis. We found that these phagocytic cups fused with endosomes and lysosomes, events linked to the maturation of phagosomes according to the canonical pathway, and not with the remodeling of phagocytic cups. Nevertheless, despite acquiring phagolysosomal features these phagocytic cups failed to develop hydrolytic capacity before their sealing. This phenomenon hampered the microbicidal activity of the macrophage and enhanced the capacity of viable filamentous L. pneumophila to escape phagosomal killing in a length-dependent manner. Our results demonstrate that key aspects in phagocytic cup remodeling and phagosomal maturation could be influenced by target morphology.
Collapse
Affiliation(s)
- Akriti Prashar
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
The Legionella pneumophila collagen-like protein mediates sedimentation, autoaggregation, and pathogen-phagocyte interactions. Appl Environ Microbiol 2013; 80:1441-54. [PMID: 24334670 DOI: 10.1128/aem.03254-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although only partially understood, multicellular behavior is relatively common in bacterial pathogens. Bacterial aggregates can resist various host defenses and colonize their environment more efficiently than planktonic cells. For the waterborne pathogen Legionella pneumophila, little is known about the roles of autoaggregation or the parameters which allow cell-cell interactions to occur. Here, we determined the endogenous and exogenous factors sufficient to allow autoaggregation to take place in L. pneumophila. We show that isolates from Legionella species which do not produce the Legionella collagen-like protein (Lcl) are deficient in autoaggregation. Targeted deletion of the Lcl-encoding gene (lpg2644) and the addition of Lcl ligands impair the autoaggregation of L. pneumophila. In addition, Lcl-induced autoaggregation requires divalent cations. Escherichia coli producing surface-exposed Lcl is able to autoaggregate and shows increased biofilm production. We also demonstrate that L. pneumophila infection of Acanthamoeba castellanii and Hartmanella vermiformis is potentiated under conditions which promote Lcl dependent autoaggregation. Overall, this study shows that L. pneumophila is capable of autoaggregating in a process that is mediated by Lcl in a divalent-cation-dependent manner. It also reveals that Lcl potentiates the ability of L. pneumophila to come in contact, attach, and infect amoebae.
Collapse
|
33
|
Harding CR, Schroeder GN, Collins JW, Frankel G. Use of Galleria mellonella as a model organism to study Legionella pneumophila infection. J Vis Exp 2013:e50964. [PMID: 24299965 PMCID: PMC3923569 DOI: 10.3791/50964] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Legionella pneumophila, the causative agent of a severe pneumonia named Legionnaires' disease, is an important human pathogen that infects and replicates within alveolar macrophages. Its virulence depends on the Dot/Icm type IV secretion system (T4SS), which is essential to establish a replication permissive vacuole known as the Legionella containing vacuole (LCV). L. pneumophila infection can be modeled in mice however most mouse strains are not permissive, leading to the search for novel infection models. We have recently shown that the larvae of the wax moth Galleria mellonella are suitable for investigation of L. pneumophila infection. G. mellonella is increasingly used as an infection model for human pathogens and a good correlation exists between virulence of several bacterial species in the insect and in mammalian models. A key component of the larvae's immune defenses are hemocytes, professional phagocytes, which take up and destroy invaders. L. pneumophila is able to infect, form a LCV and replicate within these cells. Here we demonstrate protocols for analyzing L. pneumophila virulence in the G. mellonella model, including how to grow infectious L. pneumophila, pretreat the larvae with inhibitors, infect the larvae and how to extract infected cells for quantification and immunofluorescence microscopy. We also describe how to quantify bacterial replication and fitness in competition assays. These approaches allow for the rapid screening of mutants to determine factors important in L. pneumophila virulence, describing a new tool to aid our understanding of this complex pathogen.
Collapse
Affiliation(s)
- Clare R Harding
- Center for Molecular Bacteriology and Infection, Imperial College London
| | | | | | | |
Collapse
|
34
|
Widespread occurrence of bacterial human virulence determinants in soil and freshwater environments. Appl Environ Microbiol 2013; 79:5488-97. [PMID: 23835169 DOI: 10.1128/aem.01633-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The occurrence of 22 bacterial human virulence genes (encoding toxins, adhesins, secretion systems, regulators of virulence, inflammatory mediators, and bacterial resistance) in beech wood soil, roadside soil, organic agricultural soil, and freshwater biofilm was investigated by nested PCR. The presence of clinically relevant bacterial groups known to possess virulence genes was tested by PCR of 16S and 23S rRNA genes. For each of the virulence genes detected in the environments, sequencing and NCBI BLAST analysis confirmed the identity of the PCR products. The virulence genes showed widespread environmental occurrence, as 17 different genes were observed. Sixteen genes were detected in beech wood soil, and 14 were detected in roadside and organic agricultural soils, while 11 were detected in the freshwater biofilm. All types of virulence traits were represented in all environments; however, the frequency at which they were detected was variable. A principal-component analysis suggested that several factors influenced the presence of the virulence genes; however, their distribution was most likely related to the level of contamination by polycyclic aromatic hydrocarbons and pH. The occurrence of the virulence genes in the environments generally did not appear to be the result of the presence of clinically relevant bacteria, indicating an environmental origin of the virulence genes. The widespread occurrence of the virulence traits and the high degree of sequence conservation between the environmental and clinical sequences suggest that soil and freshwater environments may constitute reservoirs of virulence determinants normally associated with human disease.
Collapse
|
35
|
Evaluating the pathogenic potential of environmental Escherichia coli by using the Caenorhabditis elegans infection model. Appl Environ Microbiol 2013; 79:2435-45. [PMID: 23377948 DOI: 10.1128/aem.03501-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The detection and abundance of Escherichia coli in water is used to monitor and mandate the quality of drinking and recreational water. Distinguishing commensal waterborne E. coli isolates from those that cause diarrhea or extraintestinal disease in humans is important for quantifying human health risk. A DNA microarray was used to evaluate the distribution of virulence genes in 148 E. coli environmental isolates from a watershed in eastern Ontario, Canada, and in eight clinical isolates. Their pathogenic potential was evaluated with Caenorhabditis elegans, and the concordance between the bioassay result and the pathotype deduced by genotyping was explored. Isolates identified as potentially pathogenic on the basis of their complement of virulence genes were significantly more likely to be pathogenic to C. elegans than those determined to be potentially nonpathogenic. A number of isolates that were identified as nonpathogenic on the basis of genotyping were pathogenic in the infection assay, suggesting that genotyping did not capture all potentially pathogenic types. The detection of the adhesin-encoding genes sfaD, focA, and focG, which encode adhesins; of iroN2, which encodes a siderophore receptor; of pic, which encodes an autotransporter protein; and of b1432, which encodes a putative transposase, was significantly associated with pathogenicity in the infection assay. Overall, E. coli isolates predicted to be pathogenic on the basis of genotyping were indeed so in the C. elegans infection assay. Furthermore, the detection of C. elegans-infective environmental isolates predicted to be nonpathogenic on the basis of genotyping suggests that there are hitherto-unrecognized virulence factors or combinations thereof that are important in the establishment of infection.
Collapse
|
36
|
Abstract
Caenorhabditis elegans can serve as a simple genetic host to study interactions between Legionellaceae and their hosts, and to examine the contribution of specific gene products to virulence and immunity. C. elegans nematodes have several appealing attributes as a host organism; they are inexpensive, have robust genetic analysis tools, have a simple anatomy yet display a wide range of complex behaviors, and, as invertebrates, do not require animal ethics protocols. Use of C. elegans as a host model complements cell-based models, providing additional support and consistency of the experimental data obtained from multiple models. The C. elegans innate immune system functions similarly to that of the alveolar macrophage including the apoptosis [e.g. programmed cell death (PCD)] pathway located within the germline. The digestive tract of C. elegans is a primary interface between the innate immune system and bacterial pathogens. Thus, the C. elegans host model provides an alternative approach to investigate Legionella pneumophila immunopathogenesis.
Collapse
|
37
|
Escoll P, Rolando M, Gomez-Valero L, Buchrieser C. From amoeba to macrophages: exploring the molecular mechanisms of Legionella pneumophila infection in both hosts. Curr Top Microbiol Immunol 2013; 376:1-34. [PMID: 23949285 DOI: 10.1007/82_2013_351] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Legionella pneumophila is a Gram-negative bacterium and the causative agent of Legionnaires' disease. It replicates within amoeba and infects accidentally human macrophages. Several similarities are seen in the L. pneumophila-infection cycle in both hosts, suggesting that the tools necessary for macrophage infection may have evolved during co-evolution of L. pneumophila and amoeba. The establishment of the Legionella-containing vacuole (LCV) within the host cytoplasm requires the remodeling of the LCV surface and the hijacking of vesicles and organelles. Then L. pneumophila replicates in a safe intracellular niche in amoeba and macrophages. In this review we will summarize the existing knowledge of the L. pneumophila infection cycle in both hosts at the molecular level and compare the factors involved within amoeba and macrophages. This knowledge will be discussed in the light of recent findings from the Acanthamoeba castellanii genome analyses suggesting the existence of a primitive immune-like system in amoeba.
Collapse
Affiliation(s)
- Pedro Escoll
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS UMR, 3525, Paris, France
| | | | | | | |
Collapse
|
38
|
Prashar A, Bhatia S, Tabatabaeiyazdi Z, Duncan C, Garduño RA, Tang P, Low DE, Guyard C, Terebiznik MR. Mechanism of invasion of lung epithelial cells by filamentousLegionella pneumophila. Cell Microbiol 2012; 14:1632-55. [DOI: 10.1111/j.1462-5822.2012.01828.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 06/04/2012] [Accepted: 06/06/2012] [Indexed: 01/22/2023]
Affiliation(s)
| | - Sonam Bhatia
- Department of Biological Sciences; University of Toronto at Scarborough; Toronto; ON; M1C 1A4; Canada
| | | | - Carla Duncan
- Ontario Agency for Health Protection and Promotion; Toronto; ON; M9P 3T1; Canada
| | - Rafael A. Garduño
- Department of Microbiology and Immunology and Department of Medicine - Division of Infectious Diseases; Dalhousie University; Halifax; NS; B3H 1X5; Canada
| | - Patrick Tang
- Ontario Agency for Health Protection and Promotion; Toronto; ON; M9P 3T1; Canada
| | | | | | | |
Collapse
|
39
|
Legionella pneumophila pathogenesis in the Galleria mellonella infection model. Infect Immun 2012; 80:2780-90. [PMID: 22645286 DOI: 10.1128/iai.00510-12] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Legionella pneumophila is a facultative intracellular human pathogen and the etiological agent of severe pneumonia known as Legionnaires' disease. Its virulence depends on protein secretion systems, in particular, the Dot/Icm type IV secretion system (T4SS), which is essential to establish a replication-permissive vacuole in macrophages. The analysis of the role of these systems and their substrates for pathogenesis requires easy-to-use models which approximate human infection. We examined the effectiveness of the larvae of the wax moth Galleria mellonella as a new model for L. pneumophila infection. We found that the L. pneumophila strains 130b, Paris, and JR32 caused mortality of the G. mellonella larvae that was strain, infectious dose, growth phase, and T4SS dependent. Wild-type L. pneumophila persisted and replicated within the larvae, whereas T4SS mutants were rapidly cleared. L. pneumophila strain Lp02, which is attenuated in the absence of thymidine but has a functional T4SS, resisted clearance in G. mellonella up to 18 h postinfection without inducing mortality. Immunofluorescence and transmission electron microscopy revealed that L. pneumophila resided within insect hemocytes in a vacuole that ultrastructurally resembled the Legionella-containing vacuole (LCV) observed in macrophages. The vacuole was decorated with the T4SS effector and LCV marker SidC. Infection caused severe damage to the insect organs and triggered immune responses, including activation of the phenoloxidase cascade leading to melanization, nodule formation, and upregulation of antimicrobial peptides. Taken together, these results suggest that G. mellonella provides an effective model to investigate the interaction between L. pneumophila and the host.
Collapse
|
40
|
Caenorhabditis elegans as an Alternative Model to Study Senescence of Host Defense and the Prevention by Immunonutrition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 710:19-27. [DOI: 10.1007/978-1-4419-5638-5_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Ünal C, Schwedhelm KF, Thiele A, Weiwad M, Schweimer K, Frese F, Fischer G, Hacker J, Faber C, Steinert M. Collagen IV-derived peptide binds hydrophobic cavity of Legionella pneumophila Mip and interferes with bacterial epithelial transmigration. Cell Microbiol 2011; 13:1558-72. [DOI: 10.1111/j.1462-5822.2011.01641.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Hilbi H, Hoffmann C, Harrison CF. Legionella spp. outdoors: colonization, communication and persistence. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:286-296. [PMID: 23761274 DOI: 10.1111/j.1758-2229.2011.00247.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bacteria of the genus Legionella persist in a wide range of environmental habitats, including biofilms, protozoa and nematodes. Legionellaceae are 'accidental' human pathogens that upon inhalation cause a severe pneumonia termed 'Legionnaires' disease'. The interactions of L. pneumophila with eukaryotic hosts are governed by the Icm/Dot type IV secretion system (T4SS) and more than 150 'effector proteins', which subvert signal transduction pathways and promote the formation of the replication-permissive 'Legionella-containing vacuole'. The Icm/Dot T4SS is essential to infect free-living protozoa, such as the amoeba Dictyostelium discoideum, as well as the nematode Caenorhabditis elegans, or mammalian macrophages. To adapt to different niches, L. pneumophila not only responds to exogenous cues, but also to endogenous signals, such as the α-hydroxyketone compound LAI-1 (Legionella autoinducer-1). The long-term adaptation of Legionella spp. is based on extensive horizontal DNA transfer. In fact, Legionella spp. have acquired canonical 'genomic islands' of prokaryotic origin, but also a number of eukaryotic genes. Since many aspects of Legionella virulence against environmental predators and immune phagocytes are similar, an understanding of Legionella ecology provides valuable insights into the pathogenesis of legionellaceae for humans.
Collapse
Affiliation(s)
- Hubert Hilbi
- Max von Pettenkofer Institute, Ludwig-Maximilian University Munich, Pettenkoferstrasse 9a, 80336 Munich, Germany
| | | | | |
Collapse
|
43
|
Abstract
Reported cases of legionellosis attributable to Legionella longbeachae infection have increased worldwide. In Australia and New Zealand, L. longbeachae has been a known cause of legionellosis since the late 1980s. All cases for which a source was confirmed were associated with potting mixes and composts. Unlike the situation with other Legionella spp., L. longbeachae-contaminated water systems in the built environment that cause disease have not been reported. Spatially and temporally linked outbreaks of legionellosis associated with this organism also have not been reported. Sporadic cases of disease seem to be limited to persons who have had direct contact with potting soil or compost. Long-distance travel of the organism resulting in infection has not been reported. These factors indicate emergence of an agent of legionellosis that differs in etiology from other species and possibly in route of disease transmission.
Collapse
Affiliation(s)
- Harriet Whiley
- Flinders University, Adelaide, South Australia, Australia
| | | |
Collapse
|
44
|
Jameson-Lee M, Garduño RA, Hoffman PS. DsbA2 (27 kDa Com1-like protein) of Legionella pneumophila catalyses extracytoplasmic disulphide-bond formation in proteins including the Dot/Icm type IV secretion system. Mol Microbiol 2011; 80:835-52. [PMID: 21375592 DOI: 10.1111/j.1365-2958.2011.07615.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Gram-negative bacteria, thiol oxidoreductases catalyse the formation of disulphide bonds (DSB) in extracytoplasmic proteins. In this study, we sought to identify DSB-forming proteins required for assembly of macromolecular structures in Legionella pneumophila. Here we describe two DSB-forming proteins, one annotated as dsbA1 and the other annotated as a 27 kDa outer membrane protein similar to Com1 of Coxiella burnetii, which we designate as dsbA2. Both proteins are predicted to be periplasmic, and while dsbA1 mutants were readily isolated and without phenotype, dsbA2 mutants were not obtained. To advance studies of DsbA2, a cis-proline residue at position 198 was replaced with threonine that enables formation of stable disulphide-bond complexes with substrate proteins. Expression of DsbA2 P198T mutant protein from an inducible promoter produced dominant-negative effects on DsbA2 function that resulted in loss of infectivity for amoeba and HeLa cells and loss of Dot/Icm T4SS-mediated contact haemolysis of erythrocytes. Analysis of captured DsbA2 P198T-substrate complexes from L. pneumophila by mass spectrometry identified periplasmic and outer membrane proteins that included components of the Dot/Icm T4SS. More broadly, our studies establish a DSB oxidoreductase function for the Com1 lineage of DsbA2-like proteins which appear to be conserved among those bacteria also expressing T4SS.
Collapse
Affiliation(s)
- Max Jameson-Lee
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
45
|
Luo ZQ. Striking a balance: modulation of host cell death pathways by legionella pneumophila. Front Microbiol 2011; 2:36. [PMID: 21687427 PMCID: PMC3109273 DOI: 10.3389/fmicb.2011.00036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 02/10/2011] [Indexed: 12/20/2022] Open
Abstract
Programmed cell death is considered the ultimate solution for the host to eliminate infected cells, leading to the abolishment of the niche for microbial replication and the ablation of infection. Thus, it is not surprising that successful pathogens have evolved diverse strategies to reprogram the cell death pathways for their proliferation. Using effector proteins translocated by the Dot/Icm type IV secretion system, the facultative intracellular pathogen Legionella pneumophila manipulates multiple host cellular processes to create a niche within host cells to support its replication. Investigation in the past decade has established that in mammalian cells this bacterium actively modulates two host cell death pathways, namely the canonical apoptotic pathway controlled by the mitochondrion and the pyroptotic pathway controlled by the Nod-like receptor Naip5 and the Ipaf inflammasome. In this review, I will discuss the recent progress in understanding the mechanisms the bacterium employs to interfere with these host cell death pathways and how such modulation contribute to the intracellular life cycle of the pathogen.
Collapse
Affiliation(s)
- Zhao-Qing Luo
- Department of Biological Sciences, Purdue University West Lafayette, IN, USA
| |
Collapse
|
46
|
Detection of protozoan hosts for Legionella pneumophila in engineered water systems by using a biofilm batch test. Appl Environ Microbiol 2010; 76:7144-53. [PMID: 20851993 DOI: 10.1128/aem.00926-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila proliferates in aquatic habitats within free-living protozoa, 17 species of which have been identified as hosts by using in vitro experiments. The present study aimed at identifying protozoan hosts for L. pneumophila by using a biofilm batch test (BBT). Samples (600 ml) collected from 21 engineered freshwater systems, with added polyethylene cylinders to promote biofilm formation, were inoculated with L. pneumophila and subsequently incubated at 37°C for 20 days. Growth of L. pneumophila was observed in 16 of 18 water types when the host protozoan Hartmannella vermiformis was added. Twelve of the tested water types supported growth of L. pneumophila or indigenous Legionella anisa without added H. vermiformis. In 12 of 19 BBT flasks H. vermiformis was indicated as a host, based on the ratio between maximum concentrations of L. pneumophila and H. vermiformis, determined with quantitative PCR (Q-PCR), and the composition of clone libraries of partial 18S rRNA gene fragments. Analyses of 609 eukaryotic clones from the BBTs revealed that 68 operational taxonomic units (OTUs) showed the highest similarity to free-living protozoa. Forty percent of the sequences clustering with protozoa showed ≥99.5% similarity to H. vermiformis. None of the other protozoa serving as hosts in in vitro studies were detected in the BBTs. In several tests with growth of L. pneumophila, the protozoa Diphylleia rotans, Echinamoeba thermarum, and Neoparamoeba sp. were identified as candidate hosts. In vitro studies are needed to confirm their role as hosts for L. pneumophila. Unidentified protozoa were implicated as hosts for uncultured Legionella spp. grown in BBT flasks at 15°C.
Collapse
|
47
|
Abstract
The genus Legionella contains more than 50 species, of which at least 24 have been associated with human infection. The best-characterized member of the genus, Legionella pneumophila, is the major causative agent of Legionnaires' disease, a severe form of acute pneumonia. L. pneumophila is an intracellular pathogen, and as part of its pathogenesis, the bacteria avoid phagolysosome fusion and replicate within alveolar macrophages and epithelial cells in a vacuole that exhibits many characteristics of the endoplasmic reticulum (ER). The formation of the unusual L. pneumophila vacuole is a feature of its interaction with the host, yet the mechanisms by which the bacteria avoid classical endosome fusion and recruit markers of the ER are incompletely understood. Here we review the factors that contribute to the ability of L. pneumophila to infect and replicate in human cells and amoebae with an emphasis on proteins that are secreted by the bacteria into the Legionella vacuole and/or the host cell. Many of these factors undermine eukaryotic trafficking and signaling pathways by acting as functional and, in some cases, structural mimics of eukaryotic proteins. We discuss the consequences of this mimicry for the biology of the infected cell and also for immune responses to L. pneumophila infection.
Collapse
|
48
|
Caenorhabditis elegans as an alternative model host for legionella pneumophila, and protective effects of Bifidobacterium infantis. Appl Environ Microbiol 2010; 76:4105-8. [PMID: 20418445 DOI: 10.1128/aem.03021-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The survival times of Caenorhabditis elegans worms infected with Legionella pneumophila from day 7.5 or later after hatching were shorter than those of uninfected worms. However, nematodes fed bifidobacteria prior to Legionella infection were resistant to Legionella. These nematodes may act as a unique alternative host for Legionella research.
Collapse
|
49
|
Hilbi H, Jarraud S, Hartland E, Buchrieser C. Update on Legionnaires' disease: pathogenesis, epidemiology, detection and control. Mol Microbiol 2010; 76:1-11. [PMID: 20149105 PMCID: PMC2914503 DOI: 10.1111/j.1365-2958.2010.07086.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Legionellosis or Legionnaires' disease is an emerging and often-fatal form of pneumonia that is most severe in elderly and immunocompromised people, an ever-increasing risk group for infection. In recent years, the genomics of Legionella spp. has significantly increased our knowledge of the pathogenesis of this disease by providing new insights into the evolution and genetic and physiological basis of Legionella-host interactions. The seventh international conference on Legionella, Legionella 2009, illustrated many recent conceptual advances in epidemiology, pathogenesis and ecology. Experts in different fields presented new findings on basic mechanisms of pathogen-host interactions and bacterial evolution, as well as the clinical management and environmental prevalence and persistence of Legionella. The presentations revealed remarkable facts about the genetic and metabolic basis of the intracellular lifestyle of Legionella and reported on its striking ability to manipulate host cell processes by molecular mimicry. Together, these investigations will lead to new approaches for the treatment and prevention of Legionnaires' disease.
Collapse
Affiliation(s)
- Hubert Hilbi
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sophie Jarraud
- Centre National de Référence des Legionella, Université de Lyon, INSERM U851, Faculté de Médecine, IFR 128, Lyon, France
| | - Elizabeth Hartland
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France
- CNRS URA 2171, Paris, France
| |
Collapse
|