1
|
Matsui M, Lynch LE, Distefano I, Galante A, Gade AR, Wang HG, Gómez-Banoy N, Towers P, Sinden DS, Wei EQ, Barnett AS, Johnson K, Lima R, Rubio-Navarro A, Li AK, Marx SO, McGraw TE, Thornton PS, Timothy KW, Lo JC, Pitt GS. Multiple beta cell-independent mechanisms drive hypoglycemia in Timothy syndrome. Nat Commun 2024; 15:8980. [PMID: 39420001 PMCID: PMC11487186 DOI: 10.1038/s41467-024-52885-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
The canonical G406R mutation that increases Ca2+ influx through the CACNA1C-encoded CaV1.2 Ca2+ channel underlies the multisystem disorder Timothy syndrome (TS), characterized by life-threatening arrhythmias. Severe episodic hypoglycemia is among the poorly characterized non-cardiac TS pathologies. While hypothesized from increased Ca2+ influx in pancreatic beta cells and consequent hyperinsulinism, this hypoglycemia mechanism is undemonstrated because of limited clinical data and lack of animal models. We generated a CaV1.2 G406R knockin mouse model that recapitulates key TS features, including hypoglycemia. Unexpectedly, these mice do not show hyperactive beta cells or hyperinsulinism in the setting of normal intrinsic beta cell function, suggesting dysregulated glucose homeostasis. Patient data confirm the absence of hyperinsulinism. We discover multiple alternative contributors, including perturbed counterregulatory hormone responses with defects in glucagon secretion and abnormal hypothalamic control of glucose homeostasis. These data provide new insights into contributions of CaV1.2 channels and reveal integrated consequences of the mutant channels driving life-threatening events in TS.
Collapse
Affiliation(s)
- Maiko Matsui
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Lauren E Lynch
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Isabella Distefano
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Allison Galante
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Aravind R Gade
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Hong-Gang Wang
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Nicolas Gómez-Banoy
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
- Weill Center for Metabolic Health, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Patrick Towers
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Daniel S Sinden
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Eric Q Wei
- Department of Medicine, MSRB II, 2 Genome Ct, Duke University Medical Center, Durham, NC, 27710, USA
| | - Adam S Barnett
- Department of Medicine, MSRB II, 2 Genome Ct, Duke University Medical Center, Durham, NC, 27710, USA
| | - Kenneth Johnson
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Renan Lima
- Weill Center for Metabolic Health, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Alfonso Rubio-Navarro
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
- Weill Center for Metabolic Health, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Ang K Li
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
- Weill Center for Metabolic Health, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
| | - Steven O Marx
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 622 W 168th St, PH-3 Center, New York, NY, USA
- Department of Pharmacology, Vagelos College of Physicians and Surgeons, Columbia University, 622 W 168th St, PH-3 Center, New York, NY, USA
| | - Timothy E McGraw
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Ave, New York, NY, 10065, USA
| | - Paul S Thornton
- Division of Endocrinology and Diabetes, Cook Children's Medical Center, 801 7th Ave, Fort Worth, TX, 76104, USA
| | - Katherine W Timothy
- Children's Hospital Boston, Harvard Medical School, 300 Longwood Ave., Boston, MA, 02115, USA
| | - James C Lo
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
- Weill Center for Metabolic Health, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA
- Division of Cardiology, Department of Medicine, Weill Cornell Medicine, 413 E. 69th St, New York, NY, 10021, USA
| | - Geoffrey S Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, 413 E. 69th St., New York, NY, 10021, USA.
| |
Collapse
|
2
|
Shukla S, Comerci CJ, Süel GM, Jahed Z. Bioelectronic tools for understanding the universal language of electrical signaling across species and kingdoms. Biosens Bioelectron 2024; 267:116843. [PMID: 39426280 DOI: 10.1016/j.bios.2024.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/10/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Modern bioelectronic tools are rapidly advancing to detect electric potentials within networks of electrogenic cells, such as cardiomyocytes, neurons, and pancreatic beta cells. However, it is becoming evident that electrical signaling is not limited to the animal kingdom but may be a universal form of cell-cell communication. In this review, we discuss the existing evidence of, and tools used to collect, subcellular, single-cell and network-level electrical signals across kingdoms, including bacteria, plants, fungi, and even viruses. We discuss how cellular networks employ altered electrical "circuitry" and intercellular mechanisms across kingdoms, and we assess the functionality and scalability of cutting-edge nanobioelectronics to collect electrical signatures regardless of cell size, shape, or function. Researchers today aim to design micro- and nano-topographic structures which harness mechanosensitive membrane and cytoskeletal pathways that enable tight electrical coupling to subcellular compartments within high-throughput recording systems. Finally, we identify gaps in current knowledge of inter-species and inter-kingdom electrical signaling and propose critical milestones needed to create a central theory of electrical signaling across kingdoms. Our discussion demonstrates the need for high resolution, high throughput tools which can probe multiple, diverse cell types at once in their native or experimentally-modeled environments. These advancements will not only reveal the underlying biophysical laws governing the universal language of electrical communication, but can enable bidirectional electrical communication and manipulation of biological systems.
Collapse
Affiliation(s)
- Shivani Shukla
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States
| | - Colin J Comerci
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Gürol M Süel
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Zeinab Jahed
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
3
|
Lewis ST, Greenway F, Tucker TR, Alexander M, Jackson LK, Hepford SA, Loveridge B, Lakey JRT. A Receptor Story: Insulin Resistance Pathophysiology and Physiologic Insulin Resensitization's Role as a Treatment Modality. Int J Mol Sci 2023; 24:10927. [PMID: 37446104 DOI: 10.3390/ijms241310927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Physiologic insulin secretion consists of an oscillating pattern of secretion followed by distinct trough periods that stimulate ligand and receptor activation. Apart from the large postprandial bolus release of insulin, β cells also secrete small amounts of insulin every 4-8 min independent of a meal. Insulin resistance is associated with a disruption in the normal cyclical pattern of insulin secretion. In the case of type-2 diabetes, β-cell mass is reduced due to apoptosis and β cells secrete insulin asynchronously. When ligand/receptors are constantly exposed to insulin, a negative feedback loop down regulates insulin receptor availability to insulin, creating a relative hyperinsulinemia. The relative excess of insulin leads to insulin resistance (IR) due to decreased receptor availability. Over time, progressive insulin resistance compromises carbohydrate metabolism, and may progress to type-2 diabetes (T2D). In this review, we discuss insulin resistance pathophysiology and the use of dynamic exogenous insulin administration in a manner consistent with more normal insulin secretion periodicity to reverse insulin resistance. Administration of insulin in such a physiologic manner appears to improve insulin sensitivity, lower HgbA1c, and, in some instances, has been associated with the reversal of end-organ damage that leads to complications of diabetes. This review outlines the rationale for how the physiologic secretion of insulin orchestrates glucose metabolism, and how mimicking this secretion profile may serve to improve glycemic control, reduce cellular inflammation, and potentially improve outcomes in patients with diabetes.
Collapse
Affiliation(s)
| | - Frank Greenway
- Clinical Trials Unit, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 77808, USA
| | - Tori R Tucker
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92617, USA
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Orange, CA 92686, USA
| | - Levonika K Jackson
- Well Cell Global, Medical and Scientific Advisory Board, Houston, TX 77079, USA
| | - Scott A Hepford
- Well Cell Global, Medical and Scientific Advisory Board, Houston, TX 77079, USA
| | - Brian Loveridge
- Well Cell Global, Medical and Scientific Advisory Board, Houston, TX 77079, USA
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, Orange, CA 92686, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92868, USA
| |
Collapse
|
4
|
de Klerk E, Xiao Y, Emfinger CH, Keller MP, Berrios DI, Loconte V, Ekman AA, White KL, Cardone RL, Kibbey RG, Attie AD, Hebrok M. Loss of ZNF148 enhances insulin secretion in human pancreatic β cells. JCI Insight 2023; 8:157572. [PMID: 37288664 PMCID: PMC10393241 DOI: 10.1172/jci.insight.157572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/05/2023] [Indexed: 06/09/2023] Open
Abstract
Insulin secretion from pancreatic β cells is essential to the maintenance of glucose homeostasis. Defects in this process result in diabetes. Identifying genetic regulators that impair insulin secretion is crucial for the identification of novel therapeutic targets. Here, we show that reduction of ZNF148 in human islets, and its deletion in stem cell-derived β cells (SC-β cells), enhances insulin secretion. Transcriptomics of ZNF148-deficient SC-β cells identifies increased expression of annexin and S100 genes whose proteins form tetrameric complexes involved in regulation of insulin vesicle trafficking and exocytosis. ZNF148 in SC-β cells prevents translocation of annexin A2 from the nucleus to its functional place at the cell membrane via direct repression of S100A16 expression. These findings point to ZNF148 as a regulator of annexin-S100 complexes in human β cells and suggest that suppression of ZNF148 may provide a novel therapeutic strategy to enhance insulin secretion.
Collapse
Affiliation(s)
| | - Yini Xiao
- UCSF Diabetes Center, UCSF, San Francisco, California, USA
| | - Christopher H Emfinger
- Department of Biochemistry, University of Wisconsin-Madison, DeLuca Biochemistry Laboratories, Madison, Wisconsin, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, DeLuca Biochemistry Laboratories, Madison, Wisconsin, USA
| | | | - Valentina Loconte
- Department of Anatomy, School of Medicine, UCSF, San Francisco, California, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- National Center for X-ray Tomography, Advanced Light Source, Berkeley, California, USA
| | - Axel A Ekman
- National Center for X-ray Tomography, Advanced Light Source, Berkeley, California, USA
| | - Kate L White
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Rebecca L Cardone
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, Connecticut, USA
| | - Richard G Kibbey
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, Connecticut, USA
| | - Alan D Attie
- Departments of Biochemistry, Chemistry, and Medicine, University of Wisconsin-Madison, DeLuca Biochemistry Laboratories, Madison, Wisconsin, USA
| | | |
Collapse
|
5
|
The mechanisms of chromogranin B-regulated Cl- homeostasis. Biochem Soc Trans 2022; 50:1659-1672. [PMID: 36511243 DOI: 10.1042/bst20220435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
Chloride is the most abundant inorganic anions in almost all cells and in human circulation systems. Its homeostasis is therefore important for systems physiology and normal cellular activities. This topic has been extensively studied with chloride loaders and extruders expressed in both cell surfaces and intracellular membranes. With the newly discovered, large-conductance, highly selective Cl- channel formed by membrane-bound chromogranin B (CHGB), which differs from all other known anion channels of conventional transmembrane topology, and is distributed in plasma membranes, endomembrane systems, endosomal, and endolysosomal compartments in cells expressing it, we will discuss the potential physiological importance of the CHGB channels to Cl- homeostasis, cellular excitability and volume control, and cation uptake or release at the cellular and subcellular levels. These considerations and CHGB's association with human diseases make the CHGB channel a possible druggable target for future molecular therapeutics.
Collapse
|
6
|
Lubberding AF, Juhl CR, Skovhøj EZ, Kanters JK, Mandrup‐Poulsen T, Torekov SS. Celebrities in the heart, strangers in the pancreatic beta cell: Voltage-gated potassium channels K v 7.1 and K v 11.1 bridge long QT syndrome with hyperinsulinaemia as well as type 2 diabetes. Acta Physiol (Oxf) 2022; 234:e13781. [PMID: 34990074 PMCID: PMC9286829 DOI: 10.1111/apha.13781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/20/2021] [Accepted: 01/02/2022] [Indexed: 12/13/2022]
Abstract
Voltage‐gated potassium (Kv) channels play an important role in the repolarization of a variety of excitable tissues, including in the cardiomyocyte and the pancreatic beta cell. Recently, individuals carrying loss‐of‐function (LoF) mutations in KCNQ1, encoding Kv7.1, and KCNH2 (hERG), encoding Kv11.1, were found to exhibit post‐prandial hyperinsulinaemia and episodes of hypoglycaemia. These LoF mutations also cause the cardiac disorder long QT syndrome (LQTS), which can be aggravated by hypoglycaemia. Interestingly, patients with LQTS also have a higher burden of diabetes compared to the background population, an apparent paradox in relation to the hyperinsulinaemic phenotype, and KCNQ1 has been identified as a type 2 diabetes risk gene. This review article summarizes the involvement of delayed rectifier K+ channels in pancreatic beta cell function, with emphasis on Kv7.1 and Kv11.1, using the cardiomyocyte for context. The functional and clinical consequences of LoF mutations and polymorphisms in these channels on blood glucose homeostasis are explored using evidence from pre‐clinical, clinical and genome‐wide association studies, thereby evaluating the link between LQTS, hyperinsulinaemia and type 2 diabetes.
Collapse
Affiliation(s)
- Anniek F. Lubberding
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Christian R. Juhl
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Emil Z. Skovhøj
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Jørgen K. Kanters
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Thomas Mandrup‐Poulsen
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Signe S. Torekov
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
7
|
Liu T, Cui L, Xue H, Yang X, Liu M, Zhi L, Yang H, Liu Z, Zhang M, Guo Q, He P, Liu Y, Zhang Y. Telmisartan Potentiates Insulin Secretion via Ion Channels, Independent of the AT1 Receptor and PPARγ. Front Pharmacol 2021; 12:739637. [PMID: 34594226 PMCID: PMC8477257 DOI: 10.3389/fphar.2021.739637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/30/2021] [Indexed: 01/15/2023] Open
Abstract
Angiotensin II type 1 (AT1) receptor blockers (ARBs), as antihypertensive drugs, have drawn attention for their benefits to individuals with diabetes and prediabetes. However, the direct effects of ARBs on insulin secretion remain unclear. In this study, we aimed to investigate the insulinotropic effect of ARBs and the underlying electrophysiological mechanism. We found that only telmisartan among the three ARBs (telmisartan, valsartan, and irbesartan) exhibited an insulin secretagogue role in rat islets. Independent of AT1 receptor and peroxisome proliferator-activated receptor γ (PPARγ), telmisartan exerted effects on ion channels including voltage-dependent potassium (Kv) channels and L-type voltage-gated calcium channels (VGCCs) to promote extracellular Ca2+ influx, thereby potentiating insulin secretion in a glucose-dependent manner. Furthermore, we identified that telmisartan directly inhibited Kv2.1 channel on a Chinese hamster ovary cell line with Kv2.1 channel overexpression. Acute exposure of db/db mice to a telmisartan dose equivalent to therapeutic doses in humans resulted in lower blood glucose and increased plasma insulin concentration in OGTT. We further observed the telmisartan-induced insulinotropic and electrophysiological effects on pathological pancreatic islets or β-cells isolated from db/db mice. Collectively, our results establish an important insulinotropic function of telmisartan distinct from other ARBs in the treatment of diabetes.
Collapse
Affiliation(s)
- Tao Liu
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China.,Department of General Surgery, Shanxi Bethune Hospital (Third Hospital of Shanxi Medical University), Taiyuan, China
| | - Lijuan Cui
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Huan Xue
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Xiaohua Yang
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Mengmeng Liu
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Linping Zhi
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Huanhuan Yang
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Zhihong Liu
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Min Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Qing Guo
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Peifeng He
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
8
|
Dudek KD, Osipovich AB, Cartailler JP, Gu G, Magnuson MA. Insm1, Neurod1, and Pax6 promote murine pancreatic endocrine cell development through overlapping yet distinct RNA transcription and splicing programs. G3-GENES GENOMES GENETICS 2021; 11:6358139. [PMID: 34534285 PMCID: PMC8527475 DOI: 10.1093/g3journal/jkab303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022]
Abstract
Insm1, Neurod1, and Pax6 are essential for the formation and function of pancreatic endocrine cells. Here, we report comparative immunohistochemical, transcriptomic, functional enrichment, and RNA splicing analyses of these genes using gene knock-out mice. Quantitative immunohistochemical analysis confirmed that elimination of each of these three factors variably impairs the proliferation, survival, and differentiation of endocrine cells. Transcriptomic analysis revealed that each factor contributes uniquely to the transcriptome although their effects were overlapping. Functional enrichment analysis revealed that genes downregulated by the elimination of Insm1, Neurod1, and Pax6 are commonly involved in mRNA metabolism, chromatin organization, secretion, and cell cycle regulation, and upregulated genes are associated with protein degradation, autophagy, and apoptotic process. Elimination of Insm1, Neurod1, and Pax6 impaired expression of many RNA-binding proteins thereby altering RNA splicing events, including for Syt14 and Snap25, two genes required for insulin secretion. All three factors are necessary for normal splicing of Syt14, and both Insm1 and Pax6 are necessary for the processing of Snap25. Collectively, these data provide new insights into how Insm1, Neurod1, and Pax6 contribute to the formation of functional pancreatic endocrine cells.
Collapse
Affiliation(s)
- Karrie D Dudek
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.,Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Anna B Osipovich
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Guoquing Gu
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.,Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mark A Magnuson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.,Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
9
|
Abstract
Neurons are highly specialized cells equipped with a sophisticated molecular machinery for the reception, integration, conduction and distribution of information. The evolutionary origin of neurons remains unsolved. How did novel and pre-existing proteins assemble into the complex machinery of the synapse and of the apparatus conducting current along the neuron? In this review, the step-wise assembly of functional modules in neuron evolution serves as a paradigm for the emergence and modification of molecular machinery in the evolution of cell types in multicellular organisms. The pre-synaptic machinery emerged through modification of calcium-regulated large vesicle release, while the postsynaptic machinery has different origins: the glutamatergic postsynapse originated through the fusion of a sensory signaling module and a module for filopodial outgrowth, while the GABAergic postsynapse incorporated an ancient actin regulatory module. The synaptic junction, in turn, is built around two adhesion modules controlled by phosphorylation, which resemble septate and adherens junctions. Finally, neuronal action potentials emerged via a series of duplications and modifications of voltage-gated ion channels. Based on these origins, key molecular innovations are identified that led to the birth of the first neuron in animal evolution.
Collapse
|
10
|
Liu M, Ren L, Zhong X, Ding Y, Liu T, Liu Z, Yang X, Cui L, Yang L, Fan Y, Liu Y, Zhang Y. D2-Like Receptors Mediate Dopamine-Inhibited Insulin Secretion via Ion Channels in Rat Pancreatic β-Cells. Front Endocrinol (Lausanne) 2020; 11:152. [PMID: 32318020 PMCID: PMC7154177 DOI: 10.3389/fendo.2020.00152] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/04/2020] [Indexed: 11/25/2022] Open
Abstract
Dopamine (DA) has a vital role in the central nervous system and also modulates lipid and glucose metabolism. The present study aimed to investigate the effect of dopamine on insulin secretion and the underlying mechanisms in rat pancreatic β-cells. Data from the radioimmunoassay indicated that dopamine inhibited insulin secretion in a glucose- and dose-dependent manner. This inhibitory effect of dopamine was mediated mainly by D2-like receptors, but not D1-like receptors. Whole-cell patch-clamp recordings showed that dopamine decreased voltage-dependent Ca2+ channel currents, which could be reversed by inhibition of the D2-like receptor. Dopamine increased voltage-dependent potassium (KV) channel currents and shortened action potential duration, which was antagonized by inhibition of D2-like receptors. Further experiments showed that D2-like receptor activation by quinpirole increased KV channel currents. In addition, using calcium imaging techniques, we found that dopamine reduced intracellular Ca2+ concentration, which was also reversed by D2-like receptor antagonists. Similarly, quinpirole was found to decrease intracellular Ca2+ levels. Taken together, these findings demonstrate that dopamine inhibits insulin secretion mainly by acting on D2-like receptors, inhibiting Ca2+ channels, and activating Kv channels. This process results in shortened action potential duration and decreased intracellular Ca2+ levels in β-cells. This work offers new insights into a glucose-dependent mechanism whereby dopamine regulates insulin secretion.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Lele Ren
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Xiangqin Zhong
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yaqin Ding
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Tao Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Zhihong Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Xiaohua Yang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Lijuan Cui
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Lijun Yang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yanying Fan
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yunfeng Liu
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Yi Zhang
| |
Collapse
|
11
|
Bai T, Yang H, Wang H, Zhi L, Liu T, Cui L, Liu W, Wang Y, Zhang M, Liu Y, Zhang Y. Inhibition of voltage-gated K+ channels mediates docosahexaenoic acid-stimulated insulin secretion in rat pancreatic β-cells. Food Funct 2020; 11:8893-8904. [DOI: 10.1039/d0fo01891k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Kv channels play a vital role in DHA-augmented insulin secretion through GPR40/AC/cAMP/PLC signaling pathway in rat pancreatic β-cells.
Collapse
|
12
|
PACAP stimulates insulin secretion by PAC1 receptor and ion channels in β-cells. Cell Signal 2019; 61:48-56. [DOI: 10.1016/j.cellsig.2019.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/28/2019] [Accepted: 05/06/2019] [Indexed: 01/02/2023]
|
13
|
Sarmiento BE, Santos Menezes LF, Schwartz EF. Insulin Release Mechanism Modulated by Toxins Isolated from Animal Venoms: From Basic Research to Drug Development Prospects. Molecules 2019; 24:E1846. [PMID: 31091684 PMCID: PMC6571724 DOI: 10.3390/molecules24101846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/23/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Venom from mammals, amphibians, snakes, arachnids, sea anemones and insects provides diverse sources of peptides with different potential medical applications. Several of these peptides have already been converted into drugs and some are still in the clinical phase. Diabetes type 2 is one of the diseases with the highest mortality rate worldwide, requiring specific attention. Diverse drugs are available (e.g., Sulfonylureas) for effective treatment, but with several adverse secondary effects, most of them related to the low specificity of these compounds to the target. In this context, the search for specific and high-affinity compounds for the management of this metabolic disease is growing. Toxins isolated from animal venom have high specificity and affinity for different molecular targets, of which the most important are ion channels. This review will present an overview about the electrical activity of the ion channels present in pancreatic β cells that are involved in the insulin secretion process, in addition to the diversity of peptides that can interact and modulate the electrical activity of pancreatic β cells. The importance of prospecting bioactive peptides for therapeutic use is also reinforced.
Collapse
Affiliation(s)
- Beatriz Elena Sarmiento
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Luis Felipe Santos Menezes
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Elisabeth F Schwartz
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
14
|
Farashi S, Sasanpour P, Rafii-Tabar H. Investigation of the role of ion channels in human pancreatic β-cell hubs: A mathematical modeling study. Comput Biol Med 2018; 97:50-62. [PMID: 29705290 DOI: 10.1016/j.compbiomed.2018.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 12/27/2022]
Abstract
In many cellular networks, the structure of the network follows a scale-free organization, where a limited number of cells are strongly coupled to other cells. These cells are called hub cells and their critical roles are well accepted. Despite their importance, there have been only a few studies investigating the characteristic features of these cells. In this paper, a computational approach is proposed to study the possible role of different ion channels in distinguishing between the hub and non-hub cells. The results show that the P/Q-type and T-type calcium channels may have an especial role in the β-cell hubs because the high-level expressions of these channels make a pancreatic β-cell more potent to force other coupled cells to follow it. In addition, in order to consider the variation of the coupling strength with voltage, a novel mathematical model is proposed for the gap junction coupling between the pancreatic β-cells. The proposed approach is validated based on the data from the literature.
Collapse
Affiliation(s)
- Sajjad Farashi
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pezhman Sasanpour
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Computational Nano-Bioelectromagnetics Research Group, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Hashem Rafii-Tabar
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Peng Y, Zhong GC, Mi Q, Li K, Wang A, Li L, Liu H, Yang G. Potassium measurements and risk of type 2 diabetes: a dose-response meta-analysis of prospective cohort studies. Oncotarget 2017; 8:100603-100613. [PMID: 29246005 PMCID: PMC5725047 DOI: 10.18632/oncotarget.21823] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/23/2017] [Indexed: 01/15/2023] Open
Abstract
Objective To clarify the relationship between serum, dietary, and urinary potassium and the risk of type 2 diabetes mellitus (T2DM). Materials and Methods We searched PubMed and EMBASE through January 6, 2017 for studies reporting risk estimates on the association of potassium measurements and the risk of T2DM. The summary risk estimates were obtained through a random-effects model. Dose-response analysis was conducted. Results Eight studies involving 5,053 cases and 119,993 individuals were included. A trend toward significance was found in the highest versus lowest meta-analysis on serum potassium and T2DM risk (RR = 0.79; 95% CI 0.60-1.04); moreover, the RR per 1 mmol/L increase in serum potassium was 0.83 (95% CI 0.73-0.95). A non-significant association of dietary potassium and T2DM risk was detected (RR for the highest versus lowest category: 0.93; 95% CI 0.81-1.06; RR for every 1000mg increase per day: 1.00, 95% CI 0.96-1.05). A similar non-significant association was found for urinary potassium and T2DM risk (RR for the highest versus lowest category: 0.83; 95% CI 0.39-1.75; RR per 10 mmol increase: 1.00; 95% CI 0.95-1.05). Evidence of a linear association between serum, dietary, and urinary potassium and the risk of T2DM was found (all Pnon-linearity > 0.05). Conclusions Low serum potassium increases the risk of T2DM in a linear dose-response manner; nevertheless, neither dietary potassium nor urinary potassium shows any association with the risk of T2DM. However, these findings should be interpreted with caution due to limited studies.
Collapse
Affiliation(s)
- Yang Peng
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University and Chongqing Clinical Research Center for Geriatrics, Chongqing, China
| | - Guo-Chao Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qiao Mi
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University and Chongqing Clinical Research Center for Geriatrics, Chongqing, China
| | - Kejia Li
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University and Chongqing Clinical Research Center for Geriatrics, Chongqing, China
| | - Ao Wang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University and Chongqing Clinical Research Center for Geriatrics, Chongqing, China
| | - Ling Li
- Key Laboratory of Diagnostic Medicine (Ministry of Education) and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hua Liu
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University and Chongqing Clinical Research Center for Geriatrics, Chongqing, China
| |
Collapse
|
16
|
Li J, Tang B, Zhang W, Wang C, Yang S, Zhang B, Gao X. Relationship and mechanism of Kv2.1 expression to ADH secretion in rats with heart failure. Am J Transl Res 2017; 9:3687-3695. [PMID: 28861159 PMCID: PMC5575182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/29/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To explore the mechanisms of Kv2.1 on the secretion of ADH in rats with heart failure. METHODS In the animal study, 70 healthy male SD rats were selected. Ligation of coronary heart failure model surgery was performed in 60 rats and sham surgery was performed in the other 10 rats. Q-PCR was used to detect the mRNA expression of Kv2.1 in hypothalamus and heart. The protein expression of Kv2.1 and ADH was detected by western blot. In the cell culture study, hypothalamic neurons were cultured and divided into 7 groups. The mRNA expression of Kv2.1 and ADH was detected by Q-PCR. The protein expression of Kv2.1, CamKII, phosphorylation SynapsinI, dephosphorylation SynapsinI and ADH was detected by western blot. RESULTS Compared with the control group of heart failure, LVEDD, LVESD, LVEDV and LVESV were significantly decreased (P < 0.01), and LVEF and LVFS were significantly increased (P < 0.01) in the Kv2.1 agonist group; in the Kv2.1 inhibitor group, LVEDD, LVESD, LVEDV and LVESV were significantly increased (P < 0.01), and LVEF and LVFS were significantly decreased (P < 0.01). In cell culture study, after the different concentrations of Kv2.1 inhibitor gradient down the expression of Kv2.1, intracellular Ca2+ concentration gradient increased (P < 0.01), CamKII and phosphorylation of SynapsinI protein expression gradient increased (P < 0.01), dephosphorylation of SynapsinI protein expression gradient decreased (P < 0.01), and the ADH mRNA and protein expression of gradient increased (P < 0.01). CONCLUSIONS Kv2.1 agonist can prevent the calcium overload by reducing the intracellular Ca2+ concentration, so that the phosphorylation of SynapsinI reduces and exocytosis in hypothalamic neurons is inhibited, which ease the secretion of ADH.
Collapse
Affiliation(s)
- Jiaxiang Li
- Department of Cardiac Surgical Intensive Care Unit, First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Baiyun Tang
- Department of Cardiac Surgical Intensive Care Unit, First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Wenbo Zhang
- Department of Cardiac Surgical Intensive Care Unit, First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Cuiping Wang
- Department of Cardiac Surgical Intensive Care Unit, First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Song Yang
- Department of Cardiac Surgical Intensive Care Unit, First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Bao Zhang
- Department of Cardiac Surgical Intensive Care Unit, First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Xiuren Gao
- Department of Cardiology, First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| |
Collapse
|
17
|
Liu Y, Zhong X, Ding Y, Ren L, Bai T, Liu M, Liu Z, Guo Y, Guo Q, Zhang Y, Yang J, Zhang Y. Inhibition of voltage-dependent potassium channels mediates cAMP-potentiated insulin secretion in rat pancreatic β cells. Islets 2017; 9:11-18. [PMID: 28103136 PMCID: PMC5345751 DOI: 10.1080/19382014.2017.1280644] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Insulin secretion is essential for maintenance of glucose homeostasis. An important intracellular signal regulating insulin secretion is cAMP. In this report, we showed that an increase of cAMP induced by adenylyl cyclase (AC) activator forskolin or by cAMP analog db-cAMP not only potentiated insulin secretion but also inhibited Kv channels, and these effects were reversed by AC inhibitor SQ22536. The cAMP-mediated Kv channel inhibition resulted in prolongation of action potential duration, which partly accounts for the elevation of intracellular Ca2+ induced by activation of cAMP signaling. Taken together, the results suggest that Kv channels are involved in cAMP-potentiated insulin secretion in pancreatic β cells.
Collapse
Affiliation(s)
- Yunfeng Liu
- Department of Endocrinology, the First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
- CONTACT Yunfeng Liu Department of Endocrinology, The first Hospital of Shanxi Medical University, Taiyuan 030001, China; Yi Zhang , Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China
| | - Xiangqin Zhong
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yaqin Ding
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Lele Ren
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Tao Bai
- Department of Endocrinology, the First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Mengmeng Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Zhihong Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Yangyan Guo
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Qing Guo
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yu Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Jing Yang
- Department of Endocrinology, the First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
- CONTACT Yunfeng Liu Department of Endocrinology, The first Hospital of Shanxi Medical University, Taiyuan 030001, China; Yi Zhang , Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
18
|
Wu Y, Shyng SL, Chen PC. Concerted Trafficking Regulation of Kv2.1 and KATP Channels by Leptin in Pancreatic β-Cells. J Biol Chem 2015; 290:29676-90. [PMID: 26453299 DOI: 10.1074/jbc.m115.670877] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Indexed: 11/06/2022] Open
Abstract
In pancreatic β-cells, voltage-gated potassium 2.1 (Kv2.1) channels are the dominant delayed rectifier potassium channels responsible for action potential repolarization. Here, we report that leptin, a hormone secreted by adipocytes known to inhibit insulin secretion, causes a transient increase in surface expression of Kv2.1 channels in rodent and human β-cells. The effect of leptin on Kv2.1 surface expression is mediated by the AMP-activated protein kinase (AMPK). Activation of AMPK mimics whereas inhibition of AMPK occludes the effect of leptin. Inhibition of Ca(2+)/calmodulin-dependent protein kinase kinase β, a known upstream kinase of AMPK, also blocks the effect of leptin. In addition, the cAMP-dependent protein kinase (PKA) is involved in Kv2.1 channel trafficking regulation. Inhibition of PKA prevents leptin or AMPK activators from increasing Kv2.1 channel density, whereas stimulation of PKA is sufficient to promote Kv2.1 channel surface expression. The increased Kv2.1 surface expression by leptin is dependent on actin depolymerization, and pharmacologically induced actin depolymerization is sufficient to enhance Kv2.1 surface expression. The signaling and cellular mechanisms underlying Kv2.1 channel trafficking regulation by leptin mirror those reported recently for ATP-sensitive potassium (KATP) channels, which are critical for coupling glucose stimulation with membrane depolarization. We show that the leptin-induced increase in surface KATP channels results in more hyperpolarized membrane potentials than control cells at stimulating glucose concentrations, and the increase in Kv2.1 channels leads to a more rapid repolarization of membrane potential in cells firing action potentials. This study supports a model in which leptin exerts concerted trafficking regulation of KATP and Kv2.1 channels to coordinately inhibit insulin secretion.
Collapse
Affiliation(s)
- Yi Wu
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239 and
| | - Show-Ling Shyng
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239 and
| | - Pei-Chun Chen
- the Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
19
|
Bonfanti DH, Alcazar LP, Arakaki PA, Martins LT, Agustini BC, de Moraes Rego FG, Frigeri HR. ATP-dependent potassium channels and type 2 diabetes mellitus. Clin Biochem 2015; 48:476-82. [PMID: 25583094 DOI: 10.1016/j.clinbiochem.2014.12.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus is a public health problem, which affects a millions worldwide. Most diabetes cases are classified as type 2 diabetes mellitus, which is highly associated with obesity. Type 2 diabetes is considered a multifactorial disorder, with both environmental and genetic factors contributing to its development. An important issue linked with diabetes development is the failure of the insulin releasing mechanism involving abnormal activity of the ATP-dependent potassium channel, KATP. This channel is a transmembrane protein encoded by the KCNJ11 and ABCC8 genes. Furthermore, polymorphisms in these genes have been linked to type 2 diabetes because of the role of KATP in insulin release. While several genetic variations have been reported to be associated with this disease, the E23K polymorphism is most commonly associated with this pathology, as well as to obesity. Here, we review the molecular genetics of the potassium channel and discusses its most described polymorphisms and their associations with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Dianne Heloisa Bonfanti
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | - Larissa Pontes Alcazar
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | - Priscila Akemi Arakaki
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | - Laysa Toschi Martins
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | - Bruna Carla Agustini
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | | | | |
Collapse
|
20
|
Yang SN, Shi Y, Yang G, Li Y, Yu J, Berggren PO. Ionic mechanisms in pancreatic β cell signaling. Cell Mol Life Sci 2014; 71:4149-77. [PMID: 25052376 PMCID: PMC11113777 DOI: 10.1007/s00018-014-1680-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 07/03/2014] [Accepted: 07/10/2014] [Indexed: 01/07/2023]
Abstract
The function and survival of pancreatic β cells critically rely on complex electrical signaling systems composed of a series of ionic events, namely fluxes of K(+), Na(+), Ca(2+) and Cl(-) across the β cell membranes. These electrical signaling systems not only sense events occurring in the extracellular space and intracellular milieu of pancreatic islet cells, but also control different β cell activities, most notably glucose-stimulated insulin secretion. Three major ion fluxes including K(+) efflux through ATP-sensitive K(+) (KATP) channels, the voltage-gated Ca(2+) (CaV) channel-mediated Ca(2+) influx and K(+) efflux through voltage-gated K(+) (KV) channels operate in the β cell. These ion fluxes set the resting membrane potential and the shape, rate and pattern of firing of action potentials under different metabolic conditions. The KATP channel-mediated K(+) efflux determines the resting membrane potential and keeps the excitability of the β cell at low levels. Ca(2+) influx through CaV1 channels, a major type of β cell CaV channels, causes the upstroke or depolarization phase of the action potential and regulates a wide range of β cell functions including the most elementary β cell function, insulin secretion. K(+) efflux mediated by KV2.1 delayed rectifier K(+) channels, a predominant form of β cell KV channels, brings about the downstroke or repolarization phase of the action potential, which acts as a brake for insulin secretion owing to shutting down the CaV channel-mediated Ca(2+) entry. These three ion channel-mediated ion fluxes are the most important ionic events in β cell signaling. This review concisely discusses various ionic mechanisms in β cell signaling and highlights KATP channel-, CaV1 channel- and KV2.1 channel-mediated ion fluxes.
Collapse
Affiliation(s)
- Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76, Stockholm, Sweden,
| | | | | | | | | | | |
Collapse
|
21
|
Jensen MV, Haldeman JM, Zhang H, Lu D, Huising MO, Vale WW, Hohmeier HE, Rosenberg P, Newgard CB. Control of voltage-gated potassium channel Kv2.2 expression by pyruvate-isocitrate cycling regulates glucose-stimulated insulin secretion. J Biol Chem 2013; 288:23128-40. [PMID: 23788641 DOI: 10.1074/jbc.m113.491654] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent studies have shown that the pyruvate-isocitrate cycling pathway, involving the mitochondrial citrate/isocitrate carrier and the cytosolic NADP-dependent isocitrate dehydrogenase (ICDc), is involved in control of glucose-stimulated insulin secretion (GSIS). Here we demonstrate that pyruvate-isocitrate cycling regulates expression of the voltage-gated potassium channel family member Kv2.2 in islet β-cells. siRNA-mediated suppression of ICDc, citrate/isocitrate carrier, or Kv2.2 expression impaired GSIS, and the effect of ICDc knockdown was rescued by re-expression of Kv2.2. Moreover, chronic exposure of β-cells to elevated fatty acids, which impairs GSIS, resulted in decreased expression of Kv2.2. Surprisingly, knockdown of ICDc or Kv2.2 increased rather than decreased outward K(+) current in the 832/13 β-cell line. Immunoprecipitation studies demonstrated interaction of Kv2.1 and Kv2.2, and co-overexpression of the two channels reduced outward K(+) current compared with overexpression of Kv2.1 alone. Also, siRNA-mediated knockdown of ICDc enhanced the suppressive effect of the Kv2.1-selective inhibitor stromatoxin1 on K(+) currents. Our data support a model in which a key function of the pyruvate-isocitrate cycle is to maintain levels of Kv2.2 expression sufficient to allow it to serve as a negative regulator of Kv channel activity.
Collapse
Affiliation(s)
- Mette V Jensen
- Duke Institute of Molecular Physiology, Duke University Medical Center, Durham, North Carolina 27704, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fridlyand LE, Jacobson DA, Philipson LH. Ion channels and regulation of insulin secretion in human β-cells: a computational systems analysis. Islets 2013; 5:1-15. [PMID: 23624892 PMCID: PMC3662377 DOI: 10.4161/isl.24166] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In mammals an increase in glucose leads to block of ATP dependent potassium channels in pancreatic β cells leading to membrane depolarization. This leads to the repetitive firing of action potentials that increases calcium influx and triggers insulin granule exocytosis. Several important differences between species in this process suggest that a dedicated human-oriented approach is advantageous as extrapolating from rodent data may be misleading in several respects. We examined depolarization-induced spike activity in pancreatic human islet-attached β-cells employing whole-cell patch-clamp methods. We also reviewed the literature concerning regulation of insulin secretion by channel activity and constructed a data-based computer model of human β cell function. The model couples the Hodgkin-Huxley-type ionic equations to the equations describing intracellular Ca²⁺ homeostasis and insulin release. On the basis of this model we employed computational simulations to better understand the behavior of action potentials, calcium handling and insulin secretion in human β cells under a wide range of experimental conditions. This computational system approach provides a framework to analyze the mechanisms of human β cell insulin secretion.
Collapse
|
23
|
Andres MA. Glucose-sensitivity of the afterhyperpolarization potential: role of SK1 channel in insulin-secreting cells. Gen Comp Endocrinol 2012; 178:459-62. [PMID: 22809667 DOI: 10.1016/j.ygcen.2012.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/08/2012] [Indexed: 11/19/2022]
Abstract
The role of the small-conductance, calcium-activated SK potassium channel in regulating pancreatic β cell function remains controversial with conflicting pharmacological results. In this study, we used current clamp recordings to further characterize the function of SK channels in INS-1 cell line. We compared afterhyperpolarization potential (AHP) responses of SK1-downregulated cells with those of control INS-1 cells. They were tested with and without the presence of glucose. We found that cells in which SK1 channel subunit expression had been downregulated exhibited AHPs in the presence of 20mM glucose while control INS-1 cells had AHPs only in the absence of glucose. Our findings show that the glucose-dependence of the AHP in the rat INS-1 cell line depends only on SK1 channel subunit expression.
Collapse
Affiliation(s)
- Marilou A Andres
- Pacific Biosciences Research Center, University of Hawaii, Honolulu, HI 96822, USA.
| |
Collapse
|
24
|
Finol-Urdaneta RK, Remedi MS, Raasch W, Becker S, Clark RB, Strüver N, Pavlov E, Nichols CG, French RJ, Terlau H. Block of Kv1.7 potassium currents increases glucose-stimulated insulin secretion. EMBO Mol Med 2012; 4:424-34. [PMID: 22438204 PMCID: PMC3403299 DOI: 10.1002/emmm.201200218] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 01/26/2023] Open
Abstract
Glucose-stimulated insulin secretion (GSIS) relies on repetitive, electrical spiking activity of the beta cell membrane. Cyclic activation of voltage-gated potassium channels (Kv) generates an outward, ‘delayed rectifier’ potassium current, which drives the repolarizing phase of each spike and modulates insulin release. Although several Kv channels are expressed in pancreatic islets, their individual contributions to GSIS remain incompletely understood. We take advantage of a naturally occurring cone-snail peptide toxin, Conkunitzin-S1 (Conk-S1), which selectively blocks Kv1.7 channels to provide an intrinsically limited, finely graded control of total beta cell delayed rectifier current and hence of GSIS. Conk-S1 increases GSIS in isolated rat islets, likely by reducing Kv1.7-mediated delayed rectifier currents in beta cells, which yields increases in action potential firing and cytoplasmic free calcium. In rats, Conk-S1 increases glucose-dependent insulin secretion without decreasing basal glucose. Thus, we conclude that Kv1.7 contributes to the membrane-repolarizing current of beta cells during GSIS and that block of this specific component of beta cell Kv current offers a potential strategy for enhancing GSIS with minimal risk of hypoglycaemia during metabolic disorders such as Type 2 diabetes.
Collapse
Affiliation(s)
- Rocio K Finol-Urdaneta
- Department of Physiology and Pharmacology, and HBI, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Park D, Jones KL, Lee H, Snutch TP, Taubert S, Riddle DL. Repression of a potassium channel by nuclear hormone receptor and TGF-β signaling modulates insulin signaling in Caenorhabditis elegans. PLoS Genet 2012; 8:e1002519. [PMID: 22359515 PMCID: PMC3280960 DOI: 10.1371/journal.pgen.1002519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 12/15/2011] [Indexed: 12/16/2022] Open
Abstract
Transforming growth factor β (TGF-β) signaling acts through Smad proteins to play fundamental roles in cell proliferation, differentiation, apoptosis, and metabolism. The Receptor associated Smads (R-Smads) interact with DNA and other nuclear proteins to regulate target gene transcription. Here, we demonstrate that the Caenorhabditis elegans R-Smad DAF-8 partners with the nuclear hormone receptor NHR-69, a C. elegans ortholog of mammalian hepatocyte nuclear factor 4α HNF4α), to repress the exp-2 potassium channel gene and increase insulin secretion. We find that NHR-69 associates with DAF-8 both in vivo and in vitro. Functionally, daf-8 nhr-69 double mutants show defects in neuropeptide secretion and phenotypes consistent with reduced insulin signaling such as increased expression of the sod-3 and gst-10 genes and a longer life span. Expression of the exp-2 gene, encoding a voltage-gated potassium channel, is synergistically increased in daf-8 nhr-69 mutants compared to single mutants and wild-type worms. In turn, exp-2 acts selectively in the ASI neurons to repress the secretion of the insulin-like peptide DAF-28. Importantly, exp-2 mutation shortens the long life span of daf-8 nhr-69 double mutants, demonstrating that exp-2 is required downstream of DAF-8 and NHR-69. Finally, animals over-expressing NHR-69 specifically in DAF-28–secreting ASI neurons exhibit a lethargic, hypoglycemic phenotype that is rescued by exogenous glucose. We propose a model whereby DAF-8/R-Smad and NHR-69 negatively regulate the transcription of exp-2 to promote neuronal DAF-28 secretion, thus demonstrating a physiological crosstalk between TGF-β and HNF4α-like signaling in C. elegans. NHR-69 and DAF-8 dependent regulation of exp-2 and DAF-28 also provides a novel molecular mechanism that contributes to the previously recognized link between insulin and TGF-β signaling in C. elegans. All animals must ensure metabolic homeostasis; if they fail to do so, diseases such as obesity and diabetes can develop. To maintain glucose balance, insulin is secreted upon glucose intake in a highly regulated and coordinated process. Previous studies suggested that the transforming growth factor beta (TGF-β) signaling pathway regulates insulin secretion in mammals. In the genetically tractable roundworm Caenorhabditis elegans, TGF-β and insulin signaling modulate larval development and aging, although the molecular link between insulin and TGF-β signaling remains poorly understood. In this study, we show that the TGF-β signaling component DAF-8 partners with NHR-69, a nuclear hormone receptor, to control the expression of the potassium channel exp-2, which in turn modulates the secretion of an insulin-like peptide. A loss-of-function exp-2 mutant exhibits increased insulin secretion and a shortened life span, whereas a gain-of-function mutant exhibits decreased insulin secretion. We also show that tissue-specific expression of nhr-69 in a pair of neurons that secrete neuropeptides causes reduced glucose content, increased insulin-like peptide levels and a lethargic phenotype. Because insulin and TGF-β signaling are linked to numerous diseases, our data may provide novel insights into the mechanisms contributing to pathophysiological changes.
Collapse
Affiliation(s)
- Donha Park
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- * E-mail: (DP); (ST); (DLR)
| | - Karen L. Jones
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Hyojin Lee
- Department of Biochemistry, College of Science, Yonsei University, Seoul, Korea
| | - Terrance P. Snutch
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Stefan Taubert
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- * E-mail: (DP); (ST); (DLR)
| | - Donald L. Riddle
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- * E-mail: (DP); (ST); (DLR)
| |
Collapse
|
26
|
Abstract
OBJECTIVES The canine model has been used extensively to improve the human pancreatic islet isolation technique. At the functional level, dog islets show high similarity to human islets and thus can be a helpful tool for islet research. We describe and compare 2 manual isolation methods, M1 (initial) and M2 (modified), and analyze the variables associated with the outcomes, including islet yield, purity, and glucose-stimulated insulin secretion (GSIS). METHODS Male mongrel dogs were used in the study. M2 (n = 7) included higher collagenase concentration, shorter digestion time, faster shaking speed, colder purification temperature, and higher differential density gradient than M1 (n = 7). RESULTS Islet yield was similar between methods (3111.0 ± 309.1 and 3155.8 ± 644.5 islets/g, M1 and M2, respectively; P = 0.951). Pancreas weight and purity together were directly associated with the yield (adjusted R(2) = 0.61; P = 0.002). Purity was considerably improved with M2 (96.7% ± 1.2% vs 75.0% ± 6.3%; P = 0.006). M2 improved GSIS (P = 0.021). Independently, digestion time was inversely associated with GSIS. CONCLUSIONS We describe an isolation method (M2) to obtain a highly pure yield of dog islets with adequate β-cell glucose responsiveness. The isolation variables associated with the outcomes in our canine model confirm previous reports in other species, including humans.
Collapse
|
27
|
MacDonald PE. Signal integration at the level of ion channel and exocytotic function in pancreatic β-cells. Am J Physiol Endocrinol Metab 2011; 301:E1065-9. [PMID: 21934040 DOI: 10.1152/ajpendo.00426.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Whole body energy balance is ensured by the exquisite control of insulin secretion, the dysregulation of which has serious consequences. Although a great deal has been learned about the control of insulin secretion from pancreatic β-cells in the past 30 years, there remains much to be understood about the molecular mechanisms and interactions that underlie the precise control of this process. Numerous molecular interactions at the plasma membrane mediate the excitatory and amplifying events involved in insulin secretion; this includes interactions between ion channels, signal transduction machinery, and exocytotic proteins. The present Perspectives article considers evidence that key membrane and membrane-associated proteins essential to insulin secretion are regulated in concert as a functional unit, ensuring an integrated excitatory and exocytotic response to the signals that control insulin secretion.
Collapse
Affiliation(s)
- Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
28
|
Willenborg M, Ghaly H, Hatlapatka K, Urban K, Panten U, Rustenbeck I. The signalling role of action potential depolarization in insulin secretion. Biochem Pharmacol 2010; 80:104-12. [PMID: 20303336 DOI: 10.1016/j.bcp.2010.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/11/2010] [Accepted: 03/11/2010] [Indexed: 11/27/2022]
|
29
|
Drews G, Krippeit-Drews P, Düfer M. Electrophysiology of islet cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:115-63. [PMID: 20217497 DOI: 10.1007/978-90-481-3271-3_7] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stimulus-Secretion Coupling (SSC) of pancreatic islet cells comprises electrical activity. Changes of the membrane potential (V(m)) are regulated by metabolism-dependent alterations in ion channel activity. This coupling is best explored in beta-cells. The effect of glucose is directly linked to mitochondrial metabolism as the ATP/ADP ratio determines the open probability of ATP-sensitive K(+) channels (K(ATP) channels). Nucleotide sensitivity and concentration in the direct vicinity of the channels are controlled by several factors including phospholipids, fatty acids, and kinases, e.g., creatine and adenylate kinase. Closure of K(ATP) channels leads to depolarization of beta-cells via a yet unknown depolarizing current. Ca(2+) influx during action potentials (APs) results in an increase of the cytosolic Ca(2+) concentration ([Ca(2+)](c)) that triggers exocytosis. APs are elicited by the opening of voltage-dependent Na(+) and/or Ca(2+) channels and repolarized by voltage- and/or Ca(2+)-dependent K(+) channels. At a constant stimulatory glucose concentration APs are clustered in bursts that are interrupted by hyperpolarized interburst phases. Bursting electrical activity induces parallel fluctuations in [Ca(2+)](c) and insulin secretion. Bursts are terminated by I(Kslow) consisting of currents through Ca(2+)-dependent K(+) channels and K(ATP) channels. This review focuses on structure, characteristics, physiological function, and regulation of ion channels in beta-cells. Information about pharmacological drugs acting on K(ATP) channels, K(ATP) channelopathies, and influence of oxidative stress on K(ATP) channel function is provided. One focus is the outstanding significance of L-type Ca(2+) channels for insulin secretion. The role of less well characterized beta-cell channels including voltage-dependent Na(+) channels, volume sensitive anion channels (VSACs), transient receptor potential (TRP)-related channels, and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is discussed. A model of beta-cell oscillations provides insight in the interplay of the different channels to induce and maintain electrical activity. Regulation of beta-cell electrical activity by hormones and the autonomous nervous system is discussed. alpha- and delta-cells are also equipped with K(ATP) channels, voltage-dependent Na(+), K(+), and Ca(2+) channels. Yet the SSC of these cells is less clear and is not necessarily dependent on K(ATP) channel closure. Different ion channels of alpha- and delta-cells are introduced and SSC in alpha-cells is described in special respect of paracrine effects of insulin and GABA secreted from beta-cells.
Collapse
Affiliation(s)
- Gisela Drews
- Institute of Pharmacy, Department of Pharmacology and Clinical Pharmacy, University of Tübingen, 72076 Tübingen, Germany.
| | | | | |
Collapse
|
30
|
Szollosi A, Nenquin M, Henquin JC. Pharmacological stimulation and inhibition of insulin secretion in mouse islets lacking ATP-sensitive K+ channels. Br J Pharmacol 2010; 159:669-77. [PMID: 20128805 DOI: 10.1111/j.1476-5381.2009.00588.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE ATP-sensitive potassium channels (K(ATP) channels) in beta cells are a major target for insulinotropic drugs. Here, we studied the effects of selected stimulatory and inhibitory pharmacological agents in islets lacking K(ATP) channels. EXPERIMENTAL APPROACH We compared insulin secretion (IS) and cytosolic calcium ([Ca(2+)](c)) changes in islets isolated from control mice and mice lacking sulphonylurea receptor1 (SUR1), and thus K(ATP) channels in their beta cells (Sur1KO). KEY RESULTS While similarly increasing [Ca(2+)](c) and IS in controls, agents binding to site A (tolbutamide) or site B (meglitinide) of SUR1 were ineffective in Sur1KO islets. Of two non-selective blockers of potassium channels, quinine was inactive, whereas tetraethylammonium was more active in Sur1KO compared with control islets. Phentolamine, efaroxan and alinidine, three imidazolines binding to K(IR)6.2 (pore of K(ATP) channels), stimulated control islets, but only phentolamine retained weaker stimulatory effects on [Ca(2+)](c) and IS in Sur1KO islets. Neither K(ATP) channel opener (diazoxide, pinacidil) inhibited Sur1KO islets. Calcium channel blockers (nimodipine, verapamil) or diphenylhydantoin decreased [Ca(2+)](c) and IS in both types of islets, verapamil and diphenylhydantoin being more efficient in Sur1KO islets. Activation of alpha(2)-adrenoceptors or dopamine receptors strongly inhibited IS while partially (clonidine > dopamine) lowering [Ca(2+)](c) (control > Sur1KO islets). CONCLUSIONS AND IMPLICATIONS Those drugs retaining effects on IS in islets lacking K(ATP) channels, also affected [Ca(2+)](c), indicating actions on other ionic channels. The greater effects of some inhibitors in Sur1KO than in control islets might be relevant to medical treatment of congenital hyperinsulinism caused by inactivating mutations of K(ATP) channels.
Collapse
Affiliation(s)
- A Szollosi
- Unité d'Endocrinologie et Métabolisme, Faculty of Medicine, University of Louvain, Brussels, Belgium
| | | | | |
Collapse
|
31
|
Henquin JC, Nenquin M, Ravier MA, Szollosi A. Shortcomings of current models of glucose-induced insulin secretion. Diabetes Obes Metab 2009; 11 Suppl 4:168-79. [PMID: 19817799 DOI: 10.1111/j.1463-1326.2009.01109.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucose-induced insulin secretion by pancreatic beta-cells is generally schematized by a 'consensus model' that involves the following sequence of events: acceleration of glucose metabolism, closure of ATP-sensitive potassium channels (K(ATP) channels) in the plasma membrane, depolarization, influx of Ca(2+) through voltage-dependent calcium channels and a rise in cytosolic-free Ca(2+) concentration that induces exocytosis of insulin-containing granules. This model adequately depicts the essential triggering pathway but is incomplete. In this article, we first make a case for a model of dual regulation in which a metabolic amplifying pathway is also activated by glucose and augments the secretory response to the triggering Ca(2+) signal under physiological conditions. We next discuss experimental evidence, largely but not exclusively obtained from beta-cells lacking K(ATP) channels, which indicates that these channels are not the only possible transducers of glucose effects on the triggering Ca(2+)signal. We finally address the identity of the widely neglected background inward current (Cl(-) efflux vs. Na(+) or Ca(2+) influx through voltage-independent channels) that is necessary to cause beta-cell depolarization when glucose closes K(ATP) channels. More attention should be paid to the possibility that some components of this background current are influenced by glucose metabolism and have their place in a model of glucose-induced insulin secretion.
Collapse
|
32
|
Düfer M, Gier B, Wolpers D, Krippeit-Drews P, Ruth P, Drews G. Enhanced glucose tolerance by SK4 channel inhibition in pancreatic beta-cells. Diabetes 2009; 58:1835-43. [PMID: 19401418 PMCID: PMC2712794 DOI: 10.2337/db08-1324] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 04/22/2009] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Ca(2+)-regulated K(+) channels are involved in numerous Ca(2+)-dependent signaling pathways. In this study, we investigated whether the Ca(2+)-activated K(+) channel of intermediate conductance SK4 (KCa3.1, IK1) plays a physiological role in pancreatic beta-cell function. RESEARCH DESIGN AND METHODS Glucose tolerance and insulin sensitivity were determined in wild-type (WT) or SK4 knockout (SK4-KO) mice. Electrophysiological experiments were performed with the patch-clamp technique. The cytosolic Ca(2+) concentration ([Ca(2+)](c)) was determined by fura-2 fluorescence. Insulin release was assessed by radioimmunoassay, and SK4 protein was detected by Western blot analysis. RESULTS SK4-KO mice showed improved glucose tolerance, whereas insulin sensitivity was not altered. The animals were not hypoglycemic. Isolated SK4-KO beta-cells stimulated with 15 mmol/l glucose had an increased Ca(2+) action potential frequency, and single-action potentials were broadened. These alterations were coupled to increased [Ca(2+)](c). In addition, glucose responsiveness of membrane potential, [Ca(2+)](c), and insulin secretion were shifted to lower glucose concentrations. SK4 protein was expressed in WT islets. An increase in K(+) currents and concomitant membrane hyperpolarization could be evoked in WT beta-cells by the SK4 channel opener DCEBIO (100 micromol/l). Accordingly, the SK4 channel blocker TRAM-34 (1 micromol/l) partly inhibited K(Ca) currents and induced electrical activity at a threshold glucose concentration. In stimulated WT beta-cells, TRAM-34 further increased [Ca(2+)](c) and broadened action potentials similar to those seen in SK4-KO beta-cells. SK4 channels were found to substantially contribute to K(slow) (slowly activating K(+) current). CONCLUSIONS SK4 channels are involved in beta-cell stimulus-secretion coupling. Deficiency of SK4 current induces elevated beta-cell responsiveness and coincides with improved glucose tolerance in vivo. Therefore, pharmacologic modulation of these channels might provide an interesting approach for the development of novel insulinotropic drugs.
Collapse
Affiliation(s)
- Martina Düfer
- From the Institute of Pharmacy, the Department of Pharmacology, University of Tübingen, Tübingen, Germany
| | - Belinda Gier
- From the Institute of Pharmacy, the Department of Pharmacology, University of Tübingen, Tübingen, Germany
| | - Daniela Wolpers
- From the Institute of Pharmacy, the Department of Pharmacology, University of Tübingen, Tübingen, Germany
| | - Peter Krippeit-Drews
- From the Institute of Pharmacy, the Department of Pharmacology, University of Tübingen, Tübingen, Germany
| | - Peter Ruth
- From the Institute of Pharmacy, the Department of Pharmacology, University of Tübingen, Tübingen, Germany
| | - Gisela Drews
- From the Institute of Pharmacy, the Department of Pharmacology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
33
|
A model of action potentials and fast Ca2+ dynamics in pancreatic beta-cells. Biophys J 2009; 96:3126-39. [PMID: 19383458 DOI: 10.1016/j.bpj.2009.01.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 01/05/2009] [Accepted: 01/16/2009] [Indexed: 11/24/2022] Open
Abstract
We examined the ionic mechanisms mediating depolarization-induced spike activity in pancreatic beta-cells. We formulated a Hodgkin-Huxley-type ionic model for the action potential (AP) in these cells based on voltage- and current-clamp results together with measurements of Ca(2+) dynamics in wild-type and Kv2.1 null mouse islets. The model contains an L-type Ca(2+) current, a "rapid" delayed-rectifier K(+) current, a small slowly-activated K(+) current, a Ca(2+)-activated K(+) current, an ATP-sensitive K(+) current, a plasma membrane calcium-pump current and a Na(+) background current. This model, coupled with an equation describing intracellular Ca(2+) homeostasis, replicates beta-cell AP and Ca(2+) changes during one glucose-induced spontaneous spike, the effects of blocking K(+) currents with different inhibitors, and specific complex spike in mouse islets lacking Kv2.1 channels. The currents with voltage-independent gating variables can also be responsible for burst behavior. Original features of this model include new equations for L-type Ca(2+) current, assessment of the role of rapid delayed-rectifier K(+) current, and Ca(2+)-activated K(+) currents, demonstrating the important roles of the Ca(2+)-pump and background currents in the APs and bursts. This model provides acceptable fits to voltage-clamp, AP, and Ca(2+) concentration data based on in silico analysis.
Collapse
|
34
|
Holmkvist J, Banasik K, Andersen G, Unoki H, Jensen TS, Pisinger C, Borch-Johnsen K, Sandbæk A, Lauritzen T, Brunak S, Maeda S, Hansen T, Pedersen O. The type 2 diabetes associated minor allele of rs2237895 KCNQ1 associates with reduced insulin release following an oral glucose load. PLoS One 2009; 4:e5872. [PMID: 19516902 PMCID: PMC2689931 DOI: 10.1371/journal.pone.0005872] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 04/27/2009] [Indexed: 02/07/2023] Open
Abstract
Background Polymorphisms in the potassium channel, voltage-gated, KQT-like subfamily, member 1 (KCNQ1) have recently been reported to associate with type 2 diabetes. The primary aim of the present study was to investigate the putative impact of these KCNQ1 polymorphisms (rs2283228, rs2237892, rs2237895, and rs2237897) on estimates of glucose stimulated insulin release. Methodology/Principal Findings Genotypes were examined for associations with serum insulin levels following an oral glucose tolerance test (OGTT) in a population-based sample of 6,039 middle-aged and treatment-naïve individuals. Insulin release indices estimated from the OGTT and the interplay between insulin sensitivity and insulin release were investigated using linear regression and Hotelling T2 analyses. Applying an additive genetic model the minor C-allele of rs2237895 was associated with reduced serum insulin levels 30 min (mean±SD: (CC) 277±160 vs. (AC) 280±164 vs. (AA) 299±200 pmol/l, p = 0.008) after an oral glucose load, insulinogenic index (29.6±17.4 vs. 30.2±18.7vs. 32.2±22.1, p = 0.007), incremental area under the insulin curve (20,477±12,491 vs. 20,503±12,386 vs. 21,810±14,685, p = 0.02) among the 4,568 individuals who were glucose tolerant. Adjustment for the degree of insulin sensitivity had no effect on the measures of reduced insulin release. The rs2237895 genotype had a similar impact in the total sample of treatment-naïve individuals. No association with measures of insulin release were identified for the less common diabetes risk alleles of rs2237892, rs2237897, or rs2283228. Conclusion The minor C-allele of rs2237895 of KCNQ1, which has a prevalence of about 42% among Caucasians was associated with reduced measures of insulin release following an oral glucose load suggesting that the increased risk of type 2 diabetes, previously reported for this variant, likely is mediated through an impaired beta cell function.
Collapse
Affiliation(s)
| | | | | | - Hiroyuki Unoki
- Laboratory for Endocrinology and Metabolism, Center for Genomic Medicine, RIKEN, Yokohama, Kanagawa, Japan
| | - Thomas Skot Jensen
- Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | - Charlotta Pisinger
- Research Centre for Prevention and Health, Glostrup University Hospital, Glostrup, Denmark
| | - Knut Borch-Johnsen
- Steno Diabetes Center, Gentofte, Denmark
- Faculty of Health Science, University of Aarhus, Aarhus, Denmark
| | - Annelli Sandbæk
- Department of General Practice, University of Aarhus, Aarhus, Denmark
| | - Torsten Lauritzen
- Department of General Practice, University of Aarhus, Aarhus, Denmark
| | - Sören Brunak
- Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | - Shiro Maeda
- Laboratory for Endocrinology and Metabolism, Center for Genomic Medicine, RIKEN, Yokohama, Kanagawa, Japan
| | - Torben Hansen
- Hagedorn Research Institute, Gentofte, Denmark
- Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | - Oluf Pedersen
- Hagedorn Research Institute, Gentofte, Denmark
- Faculty of Health Science, University of Aarhus, Aarhus, Denmark
- Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
35
|
Yoshida M, Dezaki K, Yamato S, Aoki A, Sugawara H, Toyoshima H, Ishikawa SE, Kawakami M, Nakata M, Yada T, Kakei M. Regulation of voltage-gated K+ channels by glucose metabolism in pancreatic beta-cells. FEBS Lett 2009; 583:2225-30. [PMID: 19500583 DOI: 10.1016/j.febslet.2009.05.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 05/28/2009] [Accepted: 05/29/2009] [Indexed: 10/20/2022]
Abstract
Regulation of delayed rectifier-type K(+) channels (Kv-channels) by glucose was studied in rat pancreatic beta-cells. The Kv-channel current was increased in amplitudes by increasing glucose concentration from 2.8 to 16.6mM, while it was decreased by 2.8mM glucose in a reversible manner (down-regulation) in both perforated and conventional whole-cell modes. The current was decreased by FCCP, intrapipette 0mM ATP or AMPPNP. Glyceraldehyde, pyruvic acid, 2-ketoisocaproic acid, and 10mM MgATP prevented the down-regulation induced by 2.8mM or less glucose. The residual current after treatment with Kv2.1-specific blocker, guangxitoxin-1E, was unchanged by lowering or increasing glucose concentration. We conclude that glucose metabolism regulates Kv2.1 channels in rats beta-cells via altering MgATP levels.
Collapse
Affiliation(s)
- Masashi Yoshida
- First Department of Medicine, Saitama Medical Center, Jichi Medical University School of Medicine, Omiya 1-847, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jensen MV, Joseph JW, Ronnebaum SM, Burgess SC, Sherry AD, Newgard CB. Metabolic cycling in control of glucose-stimulated insulin secretion. Am J Physiol Endocrinol Metab 2008; 295:E1287-97. [PMID: 18728221 PMCID: PMC2603555 DOI: 10.1152/ajpendo.90604.2008] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucose-stimulated insulin secretion (GSIS) is central to normal control of metabolic fuel homeostasis, and its impairment is a key element of beta-cell failure in type 2 diabetes. Glucose exerts its effects on insulin secretion via its metabolism in beta-cells to generate stimulus/secretion coupling factors, including a rise in the ATP/ADP ratio, which serves to suppress ATP-sensitive K(+) (K(ATP)) channels and activate voltage-gated Ca(2+) channels, leading to stimulation of insulin granule exocytosis. Whereas this K(ATP) channel-dependent mechanism of GSIS has been broadly accepted for more than 30 years, it has become increasingly apparent that it does not fully describe the effects of glucose on insulin secretion. More recent studies have demonstrated an important role for cyclic pathways of pyruvate metabolism in control of insulin secretion. Three cycles occur in islet beta-cells: the pyruvate/malate, pyruvate/citrate, and pyruvate/isocitrate cycles. This review discusses recent work on the role of each of these pathways in control of insulin secretion and builds a case for the particular relevance of byproducts of the pyruvate/isocitrate cycle, NADPH and alpha-ketoglutarate, in control of GSIS.
Collapse
Affiliation(s)
- Mette V Jensen
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Univ. Medical Center, Durham, NC 27704, USA
| | | | | | | | | | | |
Collapse
|