1
|
Munaron L, Chinigò G, Scarpellino G, Ruffinatti FA. The fallacy of functional nomenclature in the kingdom of biological multifunctionality: physiological and evolutionary considerations on ion channels. J Physiol 2024; 602:2367-2381. [PMID: 37635695 DOI: 10.1113/jp284422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Living organisms are multiscale complex systems that have evolved high degrees of multifunctionality and redundancy in the structure-function relationship. A number of factors, only in part determined genetically, affect the jobs of proteins. The overall structural organization confers unique molecular properties that provide the potential to perform a pattern of activities, some of which are co-opted by specific environments. The variety of multifunctional proteins is expanding, but most cases are handled individually and according to the still dominant 'one structure-one function' approach, which relies on the attribution of canonical names typically referring to the first task identified for a given protein. The present topical review focuses on the multifunctionality of ion channels as a paradigmatic example. Mounting evidence reports the ability of many ion channels (including members of voltage-dependent, ligand-gated and transient receptor potential families) to exert biological effects independently of their ion conductivity. 'Functionally based' nomenclature (the practice of naming a protein or family of proteins based on a single purpose) is a conceptual bias for three main reasons: (i) it increases the amount of ambiguity, deceiving our understanding of the multiple contributions of biomolecules that is the heart of the complexity; (ii) it is in stark contrast to protein evolution dynamics, largely based on multidomain arrangement; and (iii) it overlooks the crucial role played by the microenvironment in adjusting the actions of cell structures and in tuning protein isoform diversity to accomplish adaptational requirements. Biological information in protein physiology is distributed among different entwined layers working as the primary 'locus' of natural selection and of evolutionary constraints.
Collapse
Affiliation(s)
- Luca Munaron
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgia Chinigò
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgia Scarpellino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | | |
Collapse
|
2
|
Zou FL, Liu JP, Zuo C, He PF, Ye JX, Zhang WJ. The functional role of P2 purinergic receptors in the progression of gastric cancer. Purinergic Signal 2024:10.1007/s11302-024-10000-7. [PMID: 38470513 DOI: 10.1007/s11302-024-10000-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Studies have confirmed that P2 purinergic receptors (P2X receptors and P2Y receptors) expressed in gastric cancer (GC) cells and GC tissues and correlates with their function. Endogenous nucleotides including ATP, ADP, UTP, and UDP, as P2 purinergic receptors activators, participate in P2 purinergic signal transduction pathway. These activated P2 purinergic receptors regulate the progression of GC mainly by mediating ion channels and intracellular signal cascades. It is worth noting that there is a difference in the expression of P2 purinergic receptors in GC, which may play different roles in the progression of GC as a tumor promoting factor or a tumor suppressor factor. Among them, P2 × 7, P2Y2 and P2Y6 receptors have certain clinical significance in patients with GC and may be used as biological molecular markers for the prediction of patients with GC. Therefore, in this paper, we discuss the functional role of nucleotide / P2 purinergic receptors signal axis in regulating the progression of GC and that these P2 purinergic receptors may be used as potential molecular targets for the prevention and treatment of GC.
Collapse
Affiliation(s)
- Fei-Long Zou
- Thyroid surgery, Shenzhen Bao'an District Songgang People's Hospital, Shenzhen City, 518105, China
| | - Ji-Peng Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, 343000, China
| | - Cheng Zuo
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, 343000, China
| | - Peng-Fei He
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, 343000, China
| | - Jin-Xiong Ye
- Thyroid surgery, Shenzhen Bao'an District Songgang People's Hospital, Shenzhen City, 518105, China.
| | - Wen-Jun Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, 343000, China.
| |
Collapse
|
3
|
Wang Z, Zhu S, Tan S, Zeng Y, Zeng H. The P2 purinoceptors in prostate cancer. Purinergic Signal 2023; 19:255-263. [PMID: 35771310 PMCID: PMC9984634 DOI: 10.1007/s11302-022-09874-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/25/2022] [Indexed: 02/08/2023] Open
Abstract
P2 purinoceptors are composed of ligand-gated ion channel type (P2X receptor) and G protein-coupled metabolite type (P2Y receptor). Both these receptors have played important roles in the prostate cancer microenvironment in recent years. P2X and P2Y receptors can contribute to prostate cancer's growth and invasiveness. However, the comprehensive mechanisms have yet to be identified. By summarizing the relevant studies, we believe that P2X and P2Y receptors play a dual role in cancer cell growth depending on the prostate cancer microenvironment and different downstream signalling pathways. We also summarized how different signalling pathways contribute to tumor invasiveness and metastasis through P2X and P2Y receptors, focusing on understanding the specific mechanisms led by P2X4, P2X7, and P2Y2. Statins may reduce and prevent tumor progression through P2X7 so that P2X purinergic receptors may have clinical implications in the management of prostate cancer. Furthermore, P2X7 receptors can aid in the early detection of prostate cancer. We hope that this review will provide new insights for future mechanistic and clinical investigations into the role of P2 purinergic receptors in prostate cancer.
Collapse
Affiliation(s)
- Zilin Wang
- The Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Sha Zhu
- The Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Sirui Tan
- Department of Abdominal Cancer, Medical School, West China Hospital, Sichuan University, Cancer Center, Chengdu, West China, China
| | - Yuhao Zeng
- The Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Zeng
- The Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Zhang C, Zhao J, Mi W, Zhang Y, Zhong X, Tan G, Li F, Li X, Xu Y, Zhang Y. Comprehensive analysis of microglia gene and subpathway signatures for glioma prognosis and drug screening: linking microglia to glioma. Lab Invest 2022; 20:277. [PMID: 35729639 PMCID: PMC9210642 DOI: 10.1186/s12967-022-03475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/08/2022] [Indexed: 11/10/2022]
Abstract
Glioma is the most common malignant tumors in the brain. Previous studies have revealed that, as the innate immune cells in nervous system, microglia cells were involved in glioma pathology. And, the resident microglia displayed its specific biological roles which distinguished with peripheral macrophages. In this study, an integrated analysis was performed based on public resource database to explore specific biological of microglia within glioma. Through comprehensive analysis, the biological characterization underlying two conditions, glioma microglia compared to glioma macrophage (MicT/MacT) as well as glioma microglia compared to normal microglia (MicT/MicN), were revealed. Notably, nine core MicT/MicN genes displayed closely associations with glioma recurrence and prognosis, such as P2RY2, which was analyzed in more than 2800 glioma samples from 25 studies. Furthermore, we applied a random walk based strategy to identify microglia specific subpathways and developed SubP28 signature for glioma prognostic analysis. Multiple validation data sets confirmed the predictive performance of SubP28 and involvement in molecular subtypes. The associations between SuP28 score and microglia M1/M2 polarization were also explored for both GBM and LGG types. Finally, a comprehensive drug-subpathway network was established for screening candidate medicable molecules (drugs) and identifying therapeutic subpathway targets. In conclusions, the comprehensive analysis of microglia related gene and functional signatures in glioma pathobiologic events by large-scale data sets displayed a framework to dissect inner connection between microglia and glioma, and identify robust signature for glioma clinical implications.
Collapse
Affiliation(s)
- Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jiaxin Zhao
- Center of Cerebrovascular Disease, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Zhuhai, 519000, China
| | - Wanqi Mi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yuxi Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xiaoling Zhong
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Guiyuan Tan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Feng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Yanjun Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
5
|
Maynard JP, Sfanos KS. P2 purinergic receptor dysregulation in urologic disease. Purinergic Signal 2022; 18:267-287. [PMID: 35687210 PMCID: PMC9184359 DOI: 10.1007/s11302-022-09875-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
P2 purinergic receptors are involved in the normal function of the kidney, bladder, and prostate via signaling that occurs in response to extracellular nucleotides. Dysregulation of these receptors is common in pathological states and often associated with disease initiation, progression, or aggressiveness. Indeed, P2 purinergic receptor expression is altered across multiple urologic disorders including chronic kidney disease, polycystic kidney disease, interstitial cystitis, urinary incontinence, overactive bladder syndrome, prostatitis, and benign prostatic hyperplasia. P2 purinergic receptors are likewise indirectly associated with these disorders via receptor-mediated inflammation and pain, a common characteristic across most urologic disorders. Furthermore, select P2 purinergic receptors are overexpressed in urologic cancer including renal cell carcinoma, urothelial carcinoma, and prostate adenocarcinoma, and pre-clinical studies depict P2 purinergic receptors as potential therapeutic targets. Herein, we highlight the compelling evidence for the exploration of P2 purinergic receptors as biomarkers and therapeutic targets in urologic cancers and other urologic disease. Likewise, there is currently optimism for P2 purinergic receptor-targeted therapeutics for the treatment of inflammation and pain associated with urologic diseases. Further exploration of the common pathways linking P2 purinergic receptor dysregulation to urologic disease might ultimately help in gaining new mechanistic insight into disease processes and therapeutic targeting.
Collapse
Affiliation(s)
- Janielle P Maynard
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA.
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Scarpellino G, Genova T, Quarta E, Distasi C, Dionisi M, Fiorio Pla A, Munaron L. P2X Purinergic Receptors Are Multisensory Detectors for Micro-Environmental Stimuli That Control Migration of Tumoral Endothelium. Cancers (Basel) 2022; 14:2743. [PMID: 35681724 PMCID: PMC9179260 DOI: 10.3390/cancers14112743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
The tumoral microenvironment often displays peculiar features, including accumulation of extracellular ATP, hypoxia, low pH-acidosis, as well as an imbalance in zinc (Zn2+) and calcium (Ca2+). We previously reported the ability of some purinergic agonists to exert an anti-migratory activity on tumor-derived human endothelial cells (TEC) only when applied at a high concentration. They also trigger calcium signals associated with release from intracellular stores and calcium entry from the external medium. Here, we provide evidence that high concentrations of BzATP (100 µM), a potent agonist of P2X receptors, decrease migration in TEC from different tumors, but not in normal microvascular ECs (HMEC). The same agonist evokes a calcium increase in TEC from the breast and kidney, as well as in HMEC, but not in TEC from the prostate, suggesting that the intracellular pathways responsible for the P2X-induced impairment of TEC migration could vary among different tumors. The calcium signal is mainly due to a long-lasting calcium entry from outside and is strictly dependent on the presence of the receptor occupancy. Low pH, as well as high extracellular Zn2+ and Ca2+, interfere with the response, a distinctive feature typically found in some P2X purinergic receptors. This study reveals that a BzATP-sensitive pathway impairs the migration of endothelial cells from different tumors through mechanisms finely tuned by environmental factors.
Collapse
Affiliation(s)
- Giorgia Scarpellino
- Department of Life Sciences & Systems Biology, University of Torino, 10123 Torino, Italy; (G.S.); (T.G.); (E.Q.); (A.F.P.)
| | - Tullio Genova
- Department of Life Sciences & Systems Biology, University of Torino, 10123 Torino, Italy; (G.S.); (T.G.); (E.Q.); (A.F.P.)
| | - Elisa Quarta
- Department of Life Sciences & Systems Biology, University of Torino, 10123 Torino, Italy; (G.S.); (T.G.); (E.Q.); (A.F.P.)
| | - Carla Distasi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (C.D.); (M.D.)
| | - Marianna Dionisi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (C.D.); (M.D.)
| | - Alessandra Fiorio Pla
- Department of Life Sciences & Systems Biology, University of Torino, 10123 Torino, Italy; (G.S.); (T.G.); (E.Q.); (A.F.P.)
| | - Luca Munaron
- Department of Life Sciences & Systems Biology, University of Torino, 10123 Torino, Italy; (G.S.); (T.G.); (E.Q.); (A.F.P.)
| |
Collapse
|
7
|
P2Y purinergic signaling in prostate cancer: Emerging insights into pathophysiology and therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188732. [DOI: 10.1016/j.bbcan.2022.188732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
|
8
|
Le HTT, Murugesan A, Candeias NR, Ramesh T, Yli-Harja O, Kandhavelu M. P2Y1 agonist HIC in combination with androgen receptor inhibitor abiraterone acetate impairs cell growth of prostate cancer. Apoptosis 2022; 27:283-295. [PMID: 35129730 PMCID: PMC8940814 DOI: 10.1007/s10495-022-01716-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
Abstract
P2Y receptors belong to the large superfamily of G-protein-coupled receptors and play a crucial role in cell death and survival. P2Y1 receptor has been identified as a marker for prostate cancer (PCa). A previously unveiled selective P2Y1 receptor agonist, the indoline-derived HIC (1-(1-((2-hydroxy-5-nitrophenyl)(4-hydroxyphenyl)methyl)indoline-4-carbonitrile), induces a series of molecular and biological responses in PCa cells PC3 and DU145, but minimal toxicity to normal cells. Here, we evaluated the combinatorial effect of HIC with abiraterone acetate (AA) targeted on androgen receptor (AR) on the inhibition of PCa cells. Here, the presence of HIC and AA significantly inhibited cell proliferation of PC3 and DU145 cells with time-dependent manner as a synerfistic combination. Moreover, it was also shown that the anticancer and antimetastasis effects of the combinratorial drugs were noticed through a decrease in colony-forming ability, cell migration, and cell invasion. In addition, the HIC + AA induced apoptotic population of PCa cells as well as cell cycle arrest in G1 progression phase. In summary, these studies show that the combination of P2Y1 receptor agonist, HIC and AR inhibitor, AA, effectively improved the antitumor activity of each drug. Thus, the combinatorial model of HIC and AA should be a novel and promising therapeutic strategy for treating prostate cancer.
Collapse
Affiliation(s)
- Hien Thi Thu Le
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, P.O.Box 553, 33101, Tampere, Finland
| | - Akshaya Murugesan
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, P.O.Box 553, 33101, Tampere, Finland
- Department of Biotechnology, Lady Doak College, Thallakulam, Madurai, 625002, India
| | - Nuno R Candeias
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101, Tampere, Finland
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Kingdom of Saudi Arabia
| | - Olli Yli-Harja
- Computational Systems Biology Research Group, Faculty of Medicine and Health Technology and BioMediTech, Tampere University, P.O.Box 553, 33101, Tampere, Finland
- Institute for Systems Biology, 1441N 34th Street, Seattle, WA, 98103-8904, USA
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, P.O.Box 553, 33101, Tampere, Finland.
| |
Collapse
|
9
|
Alvarez CL, Troncoso MF, Espelt MV. Extracellular ATP and adenosine in tumor microenvironment: Roles in epithelial-mesenchymal transition, cell migration, and invasion. J Cell Physiol 2021; 237:389-400. [PMID: 34514618 DOI: 10.1002/jcp.30580] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022]
Abstract
Under nonpathological conditions, the extracellular nucleotide concentration remains constant and low (nM range) because of a close balance between ATP release and ATP consumption. This balance is completely altered in cancer disease. Adenine and uridine nucleotides are found in the extracellular space of tumors in high millimolar (mM) concentrations acting as extracellular signaling molecules. In general, although uridine nucleotides may be involved in different tumor cell responses, purinergic signaling in cancer is preferentially focused on adenine nucleotides and nucleosides. Extracellular ATP can bind to specific receptors (P receptors) triggering different responses, or it can be hydrolyzed by ectoenzymes bound to cell membranes to render the final product adenosine. The latter pathway plays an important role in the increase of adenosine in tumor microenvironment. In this study, we will focus on extracellular ATP and adenosine, their effects acting as ligands of specific receptors, activating ectoenzymes, and promoting epithelial-mesenchymal transition, migration, and invasion in cancer cells. Finding the roles that these nucleotides play in tumor microenvironment may be important to design new intervention strategies in cancer therapies.
Collapse
Affiliation(s)
- Cora L Alvarez
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Universidad de Buenos Aires, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Buenos Aires, Argentina
| | - María F Troncoso
- CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María V Espelt
- CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
10
|
Functional characterization of HIC, a P2Y1 agonist, as a p53 stabilizer for prostate cancer cell death induction. Future Med Chem 2021; 13:1845-1864. [PMID: 34505540 DOI: 10.4155/fmc-2021-0159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: (1-(2-hydroxy-5-nitrophenyl)(4-hydroxyphenyl)methyl)indoline-4-carbonitrile (HIC), an agonist of the P2Y1 receptor (P2Y1R), induces cell death in prostate cancer cells. However, the molecular mechanism behind the inhibition of HIC in prostate cancer remains elusive. Methods & results: Here, to outline the inhibitory role of HIC on prostate cancer cells, PC-3 and DU145 cell lines were treated with the respective IC50 concentrations, which reduced cell proliferation, adherence properties and spheroid formation. HIC was able to arrest the cell cycle at G1/S phase and also induced apoptosis and DNA damage, validated by gene expression profiling. HIC inhibited the prostate cancer cells' migration and invasion, revealing its antimetastatic ability. P2Y1R-targeted HIC affects p53, MAPK and NF-κB protein expression, thereby improving the p53 stabilization essential for G1/S arrest and cell death. Conclusion: These findings provide an insight on the potential use of HIC, which remains the mainstay treatment for prostate cancer.
Collapse
|
11
|
Reyna-Jeldes M, Díaz-Muñoz M, Madariaga JA, Coddou C, Vázquez-Cuevas FG. Autocrine and paracrine purinergic signaling in the most lethal types of cancer. Purinergic Signal 2021; 17:345-370. [PMID: 33982134 PMCID: PMC8410929 DOI: 10.1007/s11302-021-09785-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer comprises a collection of diseases that occur in almost any tissue and it is characterized by an abnormal and uncontrolled cell growth that results in tumor formation and propagation to other tissues, causing tissue and organ malfunction and death. Despite the undeniable improvement in cancer diagnostics and therapy, there is an urgent need for new therapeutic and preventive strategies with improved efficacy and fewer side effects. In this context, purinergic signaling emerges as an interesting candidate as a cancer biomarker or therapeutic target. There is abundant evidence that tumor cells have significant changes in the expression of purinergic receptors, which comprise the G-protein coupled P2Y and AdoR families of receptors and the ligand-gated ion channel P2X receptors. Tumor cells also exhibit changes in the expression of nucleotidases and other enzymes involved in nucleotide metabolism, and the concentrations of extracellular nucleotides are significantly higher than those observed in normal cells. In this review, we will focus on the potential role of purinergic signaling in the ten most lethal cancers (lung, breast, colorectal, liver, stomach, prostate, cervical, esophagus, pancreas, and ovary), which together are responsible for more than 5 million annual deaths.
Collapse
Affiliation(s)
- M Reyna-Jeldes
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
- Núcleo para el Estudio del Cáncer a nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta, Chile
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, México
| | - J A Madariaga
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Núcleo para el Estudio del Cáncer a nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta, Chile
| | - C Coddou
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile.
- Núcleo para el Estudio del Cáncer a nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta, Chile.
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, México.
| |
Collapse
|
12
|
Liu X, Riquelme MA, Tian Y, Zhao D, Acosta FM, Gu S, Jiang JX. ATP Inhibits Breast Cancer Migration and Bone Metastasis through Down-Regulation of CXCR4 and Purinergic Receptor P2Y11. Cancers (Basel) 2021; 13:cancers13174293. [PMID: 34503103 PMCID: PMC8428338 DOI: 10.3390/cancers13174293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The skeleton is the most frequent metastatic site for advanced breast cancer, and complications resulting from breast cancer metastasis are a leading cause of death in patients. Therefore, the discovery of new targets for the treatment of breast cancer bone metastasis is of great significance. ATP released by bone osteocytes is shown to activate purinergic signaling and inhibit the metastasis of breast cancer cells in the bone. The aim of our study was to unveil the underlying molecular mechanism of ATP and purinergic signaling in inhibiting the bone metastasis of breast cancer cells. We demonstrated that CXCR4 and P2Y11 are key factors in regulating this process, and understanding of this important mechanism will aid in identifying new targets and developing first-in-class therapeutics. Abstract ATP released by bone osteocytes is shown to activate purinergic signaling and inhibit the metastasis of breast cancer cells into the bone. However, the underlying molecular mechanism is not well understood. Here, we demonstrate the important roles of the CXCR4 and P2Y11 purinergic receptors in mediating the inhibitory effect of ATP on breast cancer cell migration and bone metastasis. Wound-healing and transwell migration assays showed that non-hydrolysable ATP analogue, ATPγS, inhibited migration of bone-tropic human breast cancer cells in a dose-dependent manner. BzATP, an agonist for P2X7 and an inducer for P2Y11 internalization, had a similar dose-dependent inhibition on cell migration. Both ATPγS and BzATP suppressed the expression of CXCR4, a chemokine receptor known to promote breast cancer bone metastasis, and knocking down CXCR4 expression by siRNA attenuated the inhibitory effect of ATPγS on cancer cell migration. While a P2X7 antagonist A804598 had no effect on the impact of ATPγS on cell migration, antagonizing P2Y11 by NF157 ablated the effect of ATPγS. Moreover, the reduction in P2Y11 expression by siRNA decreased cancer cell migration and abolished the impact of ATPγS on cell migration and CXCR4 expression. Similar to the effect of ATPγS on cell migration, antagonizing P2Y11 inhibited bone-tropic breast cancer cell migration in a dose-dependent manner. An in vivo study using an intratibial bone metastatic model showed that ATPγS inhibited breast cancer growth in the bone. Taken together, these results suggest that ATP inhibits bone-tropic breast cancer cells by down-regulating the P2Y11 purinergic receptor and the down-regulation of CXCR4 expression.
Collapse
Affiliation(s)
- Xiaowen Liu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Manuel A. Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
| | - Yi Tian
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Dezhi Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
| | - Francisca M. Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
- Correspondence: ; Tel.: +1-210-562-4094
| |
Collapse
|
13
|
High CD39 expression is associated with the non-muscle-invasive phenotype of human bladder cancer. Oncotarget 2021; 12:1580-1586. [PMID: 34381563 PMCID: PMC8351603 DOI: 10.18632/oncotarget.28029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022] Open
Abstract
Background: An accurate prediction of progression is critical to define the management of bladder cancer (BC). The ectonucleotidases CD39 and CD73 play strategic roles in calibrating purinergic signals via an extracellular balance between ATP and adenosine. The altered expression of these enzymes plays a potential role in tumor invasion and metastasis, therefore, has been proposed to be used for prognosis of solid tumor. In BC this is not yet clear. Objective: This study aimed to evaluate CD39 and CD73 expression in a cohort of patients with non-muscle-invasive (NMI) and muscle-invasive (MI) BC regard to its association with clinicopathological features. Materials and Methods: Retrospective clinical follow-up data and primary urothelial BC specimens of 162 patients were used (87 from patients who underwent transurethral resection and 75 from cystectomized patients). Tissue microarrays were constructed, and immunohistochemistry for CD39 and CD73 was performed to make associations with clinicopathological data. Results: Overall, 96 were NMI (59.3%) and 66 MI (40.7%). CD39 immunoreactivity in BC cells was found in 72% of the cases, while CD73 was found in 97%. High CD39 expression alone was more frequent in NMI BC (p < 0.001), while CD73 expression was not powerful to predict the stage of BC. The association of both markers confirmed that only CD39 has potential in BC prognosis. Conclusions: The altered expression of CD39 presented herein supports the idea that this ectonucleotidase may be involved in bladder tumorigenesis. High expression of CD39 in tumor cells is correlated with the early stage of BC.
Collapse
|
14
|
Zhang WJ. Effect of P2X purinergic receptors in tumor progression and as a potential target for anti-tumor therapy. Purinergic Signal 2021; 17:151-162. [PMID: 33420658 PMCID: PMC7954979 DOI: 10.1007/s11302-020-09761-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
The development of tumors is a complex pathological process involving multiple factors, multiple steps, and multiple genes. Their prevention and treatment have always been a difficult problem at present. A large number of studies have proved that the tumor microenvironment plays an important role in the progression of tumors. The tumor microenvironment is the place where tumor cells depend for survival, and it plays an important role in regulating the growth, proliferation, apoptosis, migration, and invasion of tumor cells. P2X purinergic receptors, which depend on the ATP ion channel, can be activated by ATP in the tumor microenvironment, and by mediating tumor cells and related cells (such as immune cells) in the tumor microenvironment. They play an important regulatory role on the effects of the skeleton, membrane fluidity, and intracellular molecular metabolism of tumor cells. Therefore, here, we outlined the biological characteristics of P2X purinergic receptors, described the effect of tumor microenvironment on tumor progression, and discussed the effect of ATP on tumor. Moreover, we explored the role of P2X purinergic receptors in the development of tumors and anti-tumor therapy. These data indicate that P2X purinergic receptors may be used as another potential pharmacological target for tumor prevention and treatment.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, 343000, Jiangxi, China.
| |
Collapse
|
15
|
Chandran N, Iyer M, Siama Z, Vellingiri B, Narayanasamy A. Purinergic signalling pathway: therapeutic target in ovarian cancer. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00059-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
The lack of early diagnostic tools and the development of chemoresistance have made ovarian cancer (OC) one of the deadliest gynaecological cancers. The tumour microenvironment is characterised by the extracellular release of high levels of ATP, which is followed by the activation of P1 adenosinergic and P2 purinergic signalling systems. The sequential hydrolysis of ATP by the ectonucleotidases CD39 and CD73 generates adenosine, which creates an immune suppressive microenvironment by inhibiting the T and NK cell responses via the A2A adenosine receptor.
Main body of the abstract
In OC, adenosine-induced pAMPK pathway leads to the inhibition of cell growth and proliferation, which offers new treatment options to prevent or overcome chemoresistance. The activation of P2Y12 and P2Y1 purinergic receptors expressed in the platelets promotes epithelial-mesenchymal transition (EMT). The inhibitors of these receptors will be the effective therapeutic targets in managing OC. Furthermore, research on these signalling systems indicates an expanding field of opportunities to specifically target the purinergic receptors for the treatment of OC.
Short conclusion
In this review, we have described the complex purinergic signalling mechanism involved in the development of OC and discussed the merits of targeting the components involved in the purinergic signalling pathway.
Collapse
|
16
|
Synthesis and preclinical validation of novel P2Y1 receptor ligands as a potent anti-prostate cancer agent. Sci Rep 2019; 9:18938. [PMID: 31831761 PMCID: PMC6908675 DOI: 10.1038/s41598-019-55194-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Purinergic receptor is a potential drug target for neuropathic pain, Alzheimer disease, and prostate cancer. Focusing on the structure-based ligand discovery, docking analysis on the crystal structure of P2Y1 receptor (P2Y1R) with 923 derivatives of 1-indolinoalkyl 2-phenolic compound is performed to understand the molecular insights of the receptor. The structural model identified the top novel ligands, 426 (compound 1) and 636 (compound 2) having highest binding affinity with the docking score of -7.38 and -6.92. We have reported the interaction efficacy and the dynamics of P2Y1R protein with the ligands. The best hits synthesized were experimentally optimized as a potent P2Y1 agonists. These ligands exhibits anti-proliferative effect against the PC-3 and DU-145 cells (IC50 = 15 µM - 33 µM) with significant increase in the calcium level in dose- and time-dependent manner. Moreover, the activation of P2Y1R induced the apoptosis via Capase3/7 and ROS signaling pathway. Thus it is evidenced that the newly synthesized ligands, as a P2Y1R agonists could potentially act as a therapeutic drug for treating prostate cancer.
Collapse
|
17
|
Gong D, Zhang J, Chen Y, Xu Y, Ma J, Hu G, Huang Y, Zheng J, Zhai W, Xue W. The m 6A-suppressed P2RX6 activation promotes renal cancer cells migration and invasion through ATP-induced Ca 2+ influx modulating ERK1/2 phosphorylation and MMP9 signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:233. [PMID: 31159832 PMCID: PMC6547495 DOI: 10.1186/s13046-019-1223-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/09/2019] [Indexed: 12/24/2022]
Abstract
Background Previous study demonstrated that extracellular ATP could promote cell migration and invasion in multiple human cancers. Till now, the pro-invasive mechanisms of ATP and P2RX6, a preferred receptor for ATP, are still poorly studied in RCC. Methods Bioinformatics analysis was performed to identify the differentially expressed genes during RCC different stages. Tissue microarray, IHC staining and survival analysis was respectively used to evaluate potential clinical function. In vitro and in vivo assays were performed to explore the P2RX6 biological effects in RCC progression. Results We found that ATP might increase RCC cells migration and invasion through P2RX6. Mechanism dissection revealed that ATP-P2RX6 might modulate the Ca2+-mediated p-ERK1/2/MMP9 signaling to increase the RCC cells migration and invasion. Furthermore, METTL14 implicated m6A modification in RCC and down-regulated P2RX6 protein translation. In addition, human clinical survey also indicated the positive correlation of this newly identified signaling in RCC progression and prognosis. Conclusions Our findings revealed that the newly identified ATP-P2RX6-Ca2+-p-ERK1/2-MMP9 signaling facilitates RCC cell invasion and metastasis. Targeting this novel signaling pathway with small molecules might help us to develop a new approach to better suppress RCC progression. Electronic supplementary material The online version of this article (10.1186/s13046-019-1223-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dongkui Gong
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, 200072, China
| | - Jin Zhang
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yonghui Chen
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yunfei Xu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, 200072, China
| | - Junjie Ma
- Department of Urology, Pudong Hospital, School of Medicine in Fudan University, Shanghai, 201300, China
| | - Guanghui Hu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, 200072, China
| | - Yiran Huang
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Junhua Zheng
- Department of Urology, Shanghai First People's Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200080, China.
| | - Wei Zhai
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
18
|
Ramu D, Garg S, Ayana R, Keerthana AK, Sharma V, Saini CP, Sen S, Pati S, Singh S. Novel β-carboline-quinazolinone hybrids disrupt Leishmania donovani redox homeostasis and show promising antileishmanial activity. Biochem Pharmacol 2016; 129:26-42. [PMID: 28017772 DOI: 10.1016/j.bcp.2016.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022]
Abstract
Visceral Leishmaniasis is a deadly parasitic disease caused by Leishmania donovani. Paucity exists in the discovery of novel chemotherapeutics against Leishmaniasis. In this study, we synthesized a natural product inspired Diversity Oriented Synthesis library of L. donovani Trypanothione reductase (LdTR) inhibitor β-carboline-quinazolinone hybrids, which are different in stereochemical architecture and diverse in the bioactive chemical space. It is noteworthy that chirality affects drug-to-protein binding affinity since proteins in any living system are present only in one of the chiral forms. Upon evaluation of the hybrids, one of the chiral forms i.e. Compound 1 showed profound cytotoxic effect in micromolar range as compared to its other chiral form i.e. Compound 2. In-silico docking studies confirmed high binding efficiency of Compound 1 with the catalytic pocket of LdTR. Treatment of L. donovani parasites with Compound 1 inhibits LdTR activity, induces imbalance in redox homeostasis by enhancing ROS, disrupts the mitochondrial membrane potential, modifies actin polymerization and alters the surface topology and architecture. All these cellular modifications eventually led to apoptosis-like death of promastigotes. Furthermore, we synthesized the analogues of Compound 1 and found that these compounds show profound antileishmanial activity in the nanomolar range both in promastigotes and intracellular amastigotes. The enhanced inhibitory potential of these compounds was further supported by in-silico analysis of protein-ligand interactions which revealed high binding efficiency towards the catalytic pocket of LdTR. Taken together, this study reports the serendipitous discovery of β-carboline-quinazolinone hybrids with enhanced antileishmanial activity along with the in-depth structure-activity relationships and mechanism of action of these analogues.
Collapse
Affiliation(s)
- Dandugudumula Ramu
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, India
| | - Swati Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, India
| | - R Ayana
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, India
| | - A K Keerthana
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, India
| | - Vijeta Sharma
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, India
| | - C P Saini
- Department of Physics, School of Natural Sciences, Shiv Nadar University, India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, India
| | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, India
| | - Shailja Singh
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, India; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
19
|
Burnstock G. Short- and long-term (trophic) purinergic signalling. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150422. [PMID: 27377731 PMCID: PMC4938022 DOI: 10.1098/rstb.2015.0422] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2016] [Indexed: 12/26/2022] Open
Abstract
There is long-term (trophic) purinergic signalling involving cell proliferation, differentiation, motility and death in the development and regeneration of most systems of the body, in addition to fast purinergic signalling in neurotransmission, neuromodulation and secretion. It is not always easy to distinguish between short- and long-term signalling. For example, adenosine triphosphate (ATP) can sometimes act as a short-term trigger for long-term trophic events that become evident days or even weeks after the original challenge. Examples of short-term purinergic signalling during sympathetic, parasympathetic and enteric neuromuscular transmission and in synaptic transmission in ganglia and in the central nervous system are described, as well as in neuromodulation and secretion. Long-term trophic signalling is described in the immune/defence system, stratified epithelia in visceral organs and skin, embryological development, bone formation and resorption and in cancer. It is likely that the increase in intracellular Ca(2+) in response to both P2X and P2Y purinoceptor activation participates in many short- and long-term physiological effects.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Dreisig K, Kornum BR. A critical look at the function of the P2Y11 receptor. Purinergic Signal 2016; 12:427-37. [PMID: 27246167 DOI: 10.1007/s11302-016-9514-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 04/17/2016] [Indexed: 11/30/2022] Open
Abstract
The P2Y11 receptor is a member of the purinergic receptor family. It has been overlooked, somewhat due to the lack of a P2ry11 gene orthologue in the murine genome, which prevents the generation of knockout mice, which have been so helpful for defining the roles of other P2Y receptors. Furthermore, some of the studies reported to date have methodological shortcomings, making it difficult to determine the function of P2Y11 with certainty. In this review, we discuss the lack of a murine "P2Y11-like receptor" and highlight the limitations of the currently available methods used to investigate the P2Y11 receptor. These methods include protein recognition with antibodies that show very little specificity, gene expression studies that completely overlook the existence of a fusion transcript between the adjacent PPAN gene and P2RY11, and agonists/antagonists reported to be specific for the P2Y11 receptor but which have not been tested for activity on numerous other adenosine 5'-triphosphate (ATP)-binding receptors. We suggest a set of criteria for evaluating whether a dataset describes effects mediated by the P2Y11 receptor. Following these criteria, we conclude that the current evidence suggests a role for P2Y11 in immune activation with cell type-specific effects.
Collapse
Affiliation(s)
- Karin Dreisig
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark
| | - Birgitte Rahbek Kornum
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark.
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark.
| |
Collapse
|
21
|
Kale VP, Amin SG, Pandey MK. Targeting ion channels for cancer therapy by repurposing the approved drugs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2747-55. [PMID: 25843679 DOI: 10.1016/j.bbamem.2015.03.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 03/18/2015] [Accepted: 03/27/2015] [Indexed: 12/21/2022]
Abstract
Ion channels have been shown to be involved in oncogenesis and efforts are being poured in to target the ion channels. There are many clinically approved drugs with ion channels as "off" targets. The question is, can these drugs be repurposed to inhibit ion channels for cancer treatment? Repurposing of drugs will not only save investors' money but also result in safer drugs for cancer patients. Advanced bioinformatics techniques and availability of a plethora of open access data on FDA approved drugs for various indications and omics data of large number of cancer types give a ray of hope to look for possibility of repurposing those drugs for cancer treatment. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Vijay Pralhad Kale
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Shantu G Amin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Manoj K Pandey
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
22
|
Roger S, Jelassi B, Couillin I, Pelegrin P, Besson P, Jiang LH. Understanding the roles of the P2X7 receptor in solid tumour progression and therapeutic perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2584-602. [PMID: 25450340 DOI: 10.1016/j.bbamem.2014.10.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/13/2014] [Accepted: 10/20/2014] [Indexed: 01/05/2023]
Abstract
P2X7 is an intriguing ionotropic receptor for which the activation by extracellular ATP induces rapid inward cationic currents and intracellular signalling pathways associated with numerous physiological processes such as the induction of the inflammatory cascade, the survival and proliferation of cells. In contrast, long-term stimulation of P2X7 is generally associated with membrane permeabilisation and cell death. Recently, P2X7 has attracted great attention in the cancer field, and particularly in the neoplastic transformation and the progression of solid tumours. A growing number of studies were published; however they often appeared contradictory in their results and conclusions. As such, the involvement of P2X7 in the oncogenic process remains unclear so far. The present review aims to discuss the current knowledge and hypotheses on the involvement of the P2X7 receptor in the development and progression of solid tumours, and highlight the different aspects that require further clarification in order to decipher whether P2X7 could be considered as a cancer biomarker or as a target for pharmacological intervention. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Sébastien Roger
- Inserm UMR1069 Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France; Département de Physiologie Animale, UFR Sciences et Techniques, Université François-Rabelais de Tours, Avenue Monge, 37200 Tours, France.
| | - Bilel Jelassi
- Inserm UMR1069 Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Isabelle Couillin
- UMR CNRS 7355 Experimental and Molecular Immunology and Neurogenetics, Université d'Orléans, 3B rue de la Ferollerie, F-45071 Orléans, France
| | - Pablo Pelegrin
- Inflammation and Experimental Surgery Research Unit, CIBERehd, Clinical University Hospital "Virgen de la Arrixaca", Murcia's BioHealth Research Institute IMIB-Arrixaca, Carretera Cartagena-Madrid s/n, 30120 Murcia, Spain
| | - Pierre Besson
- Inserm UMR1069 Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
23
|
Burnstock G, Di Virgilio F. Purinergic signalling and cancer. Purinergic Signal 2014; 9:491-540. [PMID: 23797685 DOI: 10.1007/s11302-013-9372-5] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/06/2013] [Indexed: 01/24/2023] Open
Abstract
Receptors for extracellular nucleotides are widely expressed by mammalian cells. They mediate a large array of responses ranging from growth stimulation to apoptosis, from chemotaxis to cell differentiation and from nociception to cytokine release, as well as neurotransmission. Pharma industry is involved in the development and clinical testing of drugs selectively targeting the different P1 nucleoside and P2 nucleotide receptor subtypes. As described in detail in the present review, P2 receptors are expressed by all tumours, in some cases to a very high level. Activation or inhibition of selected P2 receptor subtypes brings about cancer cell death or growth inhibition. The field has been largely neglected by current research in oncology, yet the evidence presented in this review, most of which is based on in vitro studies, although with a limited amount from in vivo experiments and human studies, warrants further efforts to explore the therapeutic potential of purinoceptor targeting in cancer.
Collapse
|
24
|
Jin H, Eun SY, Lee JS, Park SW, Lee JH, Chang KC, Kim HJ. P2Y2 receptor activation by nucleotides released from highly metastatic breast cancer cells increases tumor growth and invasion via crosstalk with endothelial cells. Breast Cancer Res 2014; 16:R77. [PMID: 25156554 PMCID: PMC4406012 DOI: 10.1186/bcr3694] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/01/2014] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Extracellular nucleotides are released and detectable in a high concentration within the tumor microenvironment. G protein-coupled P2Y2 nucleotide receptor (P2Y2R) is activated equipotently by adenosine triphosphate (ATP) and uridine 5'-triphosphate (UTP), which mediate proinflammatory responses such as cell migration and proliferation. However, the role of P2Y2R in the process of cancer metastasis remains unclear. This study aimed to determine the role of P2Y2R in the proliferation, migration and invasion of highly metastatic MDA-MB-231 breast cancer cells through crosstalk with endothelial cells (ECs). METHODS ATP release and P2Y2R activity between high metastatic breast cancer cell MDA-MB-231 and low metastatic breast cancer cell MCF-7 were compared. Then, the role of P2Y2R on tumor growth and invasion via crosstalk with ECs was examined in vitro, using MDA-MB-231 cells and ECs transfected with control- or P2Y2R-siRNA, and in vivo, using an animal model injected with control-shRNA- or P2Y2R-shRNA-transfected MDA-MB-231 cells. RESULTS We found that this highly metastatic breast cancer cell line released higher levels of ATP and showed a higher P2Y2R activity in comparison to a low metastatic breast cancer cell line, MCF-7. In MDA-MB-231 cells, P2Y2R activation by ATP or UTP increased proliferation at 24 or 72 hours, which was abolished by P2Y2R knock-down. In addition, the adhesion of MDA-MB-231 cells to ECs and cell migration were both significantly increased by ATP or UTP through the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in MDA-MB-231 or ECs but not in cells where P2Y2R was knocked down. Furthermore, ATP- or UTP-mediated activation of P2Y2R induced MDA-MB-231 invasion through ECs, increased matrix metalloproteinase-9 (MMP-9) activity and vascular endothelial growth factor (VEGF) production in MDA-MB-231 and induced the phosphorylation of vascular endothelial (VE)-cadherin in ECs. Tumor growth and metastasis to other tissues were dramatically reduced, and body weight was increased in mice injected with P2Y2R-shRNA-transfected MDA-MB-231 cells compared to mice injected with control shRNA-transfected MDA-MB-231 cells. CONCLUSION This study suggests that P2Y2R may play an important role in cancer metastasis via modulation of the crosstalk between cancer cells and ECs.
Collapse
Affiliation(s)
- Hana Jin
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Korea.
| | - So Young Eun
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Korea.
| | - Jong Sil Lee
- Department of Pathology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, 660-751, Korea.
| | - Sang Won Park
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Korea.
| | - Jae Heun Lee
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Korea.
| | - Ki Churl Chang
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Korea.
| | - Hye Jung Kim
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Korea.
| |
Collapse
|
25
|
Burnstock G. Purinergic signalling in the urinary tract in health and disease. Purinergic Signal 2014; 10:103-55. [PMID: 24265069 PMCID: PMC3944045 DOI: 10.1007/s11302-013-9395-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/25/2022] Open
Abstract
Purinergic signalling is involved in a number of physiological and pathophysiological activities in the lower urinary tract. In the bladder of laboratory animals there is parasympathetic excitatory cotransmission with the purinergic and cholinergic components being approximately equal, acting via P2X1 and muscarinic receptors, respectively. Purinergic mechanosensory transduction occurs where ATP, released from urothelial cells during distension of bladder and ureter, acts on P2X3 and P2X2/3 receptors on suburothelial sensory nerves to initiate the voiding reflex, via low threshold fibres, and nociception, via high threshold fibres. In human bladder the purinergic component of parasympathetic cotransmission is less than 3 %, but in pathological conditions, such as interstitial cystitis, obstructed and neuropathic bladder, the purinergic component is increased to 40 %. Other pathological conditions of the bladder have been shown to involve purinoceptor-mediated activities, including multiple sclerosis, ischaemia, diabetes, cancer and bacterial infections. In the ureter, P2X7 receptors have been implicated in inflammation and fibrosis. Purinergic therapeutic strategies are being explored that hopefully will be developed and bring benefit and relief to many patients with urinary tract disorders.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
26
|
Burnstock G. Purinergic signalling in the reproductive system in health and disease. Purinergic Signal 2014; 10:157-87. [PMID: 24271059 PMCID: PMC3944041 DOI: 10.1007/s11302-013-9399-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/16/2022] Open
Abstract
There are multiple roles for purinergic signalling in both male and female reproductive organs. ATP, released as a cotransmitter with noradrenaline from sympathetic nerves, contracts smooth muscle via P2X1 receptors in vas deferens, seminal vesicles, prostate and uterus, as well as in blood vessels. Male infertility occurs in P2X1 receptor knockout mice. Both short- and long-term trophic purinergic signalling occurs in reproductive organs. Purinergic signalling is involved in hormone secretion, penile erection, sperm motility and capacitation, and mucous production. Changes in purinoceptor expression occur in pathophysiological conditions, including pre-eclampsia, cancer and pain.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
27
|
Chadet S, Jelassi B, Wannous R, Angoulvant D, Chevalier S, Besson P, Roger S. The activation of P2Y2 receptors increases MCF-7 breast cancer cells migration through the MEK-ERK1/2 signalling pathway. Carcinogenesis 2014; 35:1238-47. [PMID: 24390819 DOI: 10.1093/carcin/bgt493] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adenosine 5'-triphosphate (ATP) is found in high concentrations in the extracellular microenvironment of tumours and is postulated to play critical roles in cancer progression. In the present study, we found that stimulation of human MCF-7 breast cancer cells with 30 µM ATP increased their migration by 140 ± 31%, whereas it had minor or no effect on their proliferation. This effect was prevented by the ectonucleotidase apyrase and was antagonized by suramin and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid, consistently with the participation of P2 receptors. MCF-7 cells expressed messenger RNA for all known P2Y receptors and for P2X2, P2X4, P2X5, P2X6 and P2X7 receptors. Brief applications (20 s) of external ATP resulted in a 50 pA P2X-like inward current. ATP, but not adenosine diphosphate or uridine diphosphate, increased the intracellular calcium concentration in absence of extracellular calcium, and this effect was prevented by the inhibition of phospholipase C. Uridine triphosphate (UTP) (10 µM) and 2-thio-UTP (10 µM) increased intracellular calcium concentration and cell migration to the same extent as ATP. The UTP-dependent increase in cell migration was absent in cells knocked-down for P2Y2. It was inhibited by MEK inhibitor PD98059. UTP induced a time-dependent phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), which was prevented by the incubation with PD98059. Taken together, these results highlight the importance of the purinergic signalling in cancer cells and indicate that the activation of P2Y2 receptors enhances breast cancer cells migration through the activation of a MEK-ERK1/2-dependent signalling pathway.
Collapse
Affiliation(s)
- Stéphanie Chadet
- UMR Inserm 1069 Nutrition, Croissance et Cancer and EA 4245 Cellules Dendritiques, Immunodulation et Greffes, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France and
| | | | | | - Denis Angoulvant
- EA 4245 Cellules Dendritiques, Immunodulation et Greffes, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France and
| | | | | | - Sébastien Roger
- UMR Inserm 1069 Nutrition, Croissance et Cancer and Département de Physiologie Animale, UFR Sciences et Techniques, Université François-Rabelais de Tours, Avenue Monge, 37200 Tours, France
| |
Collapse
|
28
|
Säll J, Carlsson M, Gidlöf O, Holm A, Humlén J, Ohman J, Svensson D, Nilsson BO, Jönsson D. The antimicrobial peptide LL-37 alters human osteoblast Ca2+ handling and induces Ca2+-independent apoptosis. J Innate Immun 2013; 5:290-300. [PMID: 23406612 DOI: 10.1159/000346587] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/17/2012] [Indexed: 11/19/2022] Open
Abstract
The human antimicrobial peptide cathelicidin LL-37 has, besides its antimicrobial properties, also been shown to regulate apoptosis in a cell type-specific manner. Mechanisms involved in LL-37-regulated apoptotic signaling are not identified. Here, we show that LL-37 reduces the human osteoblast-like MG63 cell number and cell viability in the micromolar concentration range with an IC50 value of about 5 µM. Treatment with 4 µM LL-37 increased the number of annexin V-positive cells and stimulated activation of caspase 3 showing that LL-37 promotes apoptosis. Treatment with 4 µM LL-37 caused an acute and sustained rise in intracellular Ca(2+) concentration assessed by laser-scanning confocal microscopy of Fluo-4-AM-loaded MG63 cells. LL-37 increased Ca(2+) also in the presence of the respective L- and T-type voltage-sensitive Ca(2+) channel blockers nifedipine and NiCl2. LL-37 had no effect on Ca(2+) in cells incubated with Ca(2+)-free solution. LL-37 (4 and 8 µM) reduced the MG63 cell number both in the presence and absence of Ca(2+) in the medium. In conclusion, LL-37 reduces the osteoblast cell number by promoting apoptosis, and furthermore, LL-37 stimulates Ca(2+) inflow via a mechanism independent of voltage-sensitive Ca(2+) channels. Interestingly, LL-37-induced lowering of the cell number seems to be mediated via a mechanism independent of Ca(2+).
Collapse
Affiliation(s)
- Johanna Säll
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Burnstock G. Purinergic signalling in the lower urinary tract. Acta Physiol (Oxf) 2013; 207:40-52. [PMID: 23176070 DOI: 10.1111/apha.12012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/22/2011] [Accepted: 09/10/2012] [Indexed: 02/01/2023]
Abstract
The aim of this review is to describe the conceptual steps contributing to our current knowledge of purinergic signalling and to consider its involvement in the physiology and pathophysiology of the lower urinary tract. The voiding reflex involves ATP released as a cotransmitter with acetylcholine from parasympathetic nerves supplying the bladder and ATP released from urothelial cells during bladder distension to initiate the voiding reflex via P2X3 receptors on suburothelial low threshold sensory nerve fibres. This mechanosensory transduction pathway also participates, via high threshold sensory nerve fibres, in the initiation of pain in bladder and ureter. Treatment of prostate and bladder cancer with ATP is effective against the primary tumours in animal models and human cell lines, via P2X5 and P2X7 receptors, and also improves the systemic symptoms associated with advanced malignancy. Acupuncture is widely used for the treatment of urinary disorders, and a purinergic hypothesis is discussed for the underlying mechanism.
Collapse
Affiliation(s)
- G. Burnstock
- Autonomic Neuroscience Centre; University College Medical School; London; UK
| |
Collapse
|
30
|
Davis FM, Kenny PA, Soo ETL, van Denderen BJW, Thompson EW, Cabot PJ, Parat MO, Roberts-Thomson SJ, Monteith GR. Remodeling of purinergic receptor-mediated Ca2+ signaling as a consequence of EGF-induced epithelial-mesenchymal transition in breast cancer cells. PLoS One 2011; 6:e23464. [PMID: 21850275 PMCID: PMC3151299 DOI: 10.1371/journal.pone.0023464] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 07/18/2011] [Indexed: 01/15/2023] Open
Abstract
Background The microenvironment plays a pivotal role in tumor cell proliferation, survival and migration. Invasive cancer cells face a new set of environmental challenges as they breach the basement membrane and colonize distant organs during the process of metastasis. Phenotypic switching, such as that which occurs during epithelial-mesenchymal transition (EMT), may be associated with a remodeling of cell surface receptors and thus altered responses to signals from the tumor microenvironment. Methodology/Principal Findings We assessed changes in intracellular Ca2+ in cells loaded with Fluo-4 AM using a fluorometric imaging plate reader (FLIPRTETRA) and observed significant changes in the potency of ATP (EC50 0.175 µM (−EGF) versus 1.731 µM (+EGF), P<0.05), and the nature of the ATP-induced Ca2+ transient, corresponding with a 10-fold increase in the mesenchymal marker vimentin (P<0.05). We observed no change in the sensitivity to PAR2-mediated Ca2+ signaling, indicating that these alterations are not simply a consequence of changes in global Ca2+ homeostasis. To determine whether changes in ATP-mediated Ca2+ signaling are preceded by alterations in the transcriptional profile of purinergic receptors, we analyzed the expression of a panel of P2X ionotropic and P2Y metabotropic purinergic receptors using real-time RT-PCR and found significant and specific alterations in the suite of ATP-activated purinergic receptors during EGF-induced EMT in breast cancer cells. Our studies are the first to show that P2X5 ionotropic receptors are enriched in the mesenchymal phenotype and that silencing of P2X5 leads to a significant reduction (25%, P<0.05) in EGF-induced vimentin protein expression. Conclusions The acquisition of a new suite of cell surface purinergic receptors is a feature of EGF-mediated EMT in MDA-MB-468 breast cancer cells. Such changes may impart advantageous phenotypic traits and represent a novel mechanism for the targeting of cancer metastasis.
Collapse
Affiliation(s)
- Felicity M. Davis
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Paraic A. Kenny
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Eliza T-L. Soo
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- University of Melbourne Department Surgery, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Bryce J. W. van Denderen
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- University of Melbourne Department Medicine, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Erik W. Thompson
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- University of Melbourne Department Surgery, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Peter J. Cabot
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Marie-Odile Parat
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Gregory R. Monteith
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
31
|
Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death. Cell Death Dis 2011; 1:e9. [PMID: 21364628 PMCID: PMC3032501 DOI: 10.1038/cddis.2009.11] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purinergic signalling system, which uses purines and pyrimidines as chemical transmitters, and purinoceptors as effectors, is deeply rooted in evolution and development and is a pivotal factor in cell communication. The ATP and its derivatives function as a 'danger signal' in the most primitive forms of life. Purinoceptors are extraordinarily widely distributed in all cell types and tissues and they are involved in the regulation of an even more extraordinary number of biological processes. In addition to fast purinergic signalling in neurotransmission, neuromodulation and secretion, there is long-term (trophic) purinergic signalling involving cell proliferation, differentiation, motility and death in the development and regeneration of most systems of the body. In this article, we focus on the latter in the immune/defence system, in stratified epithelia in visceral organs and skin, embryological development, bone formation and resorption, as well as in cancer.
Collapse
|
32
|
Li HJ, Wang LY, Qu HN, Yu LH, Burnstock G, Ni X, Xu M, Ma B. P2Y2 receptor-mediated modulation of estrogen-induced proliferation of breast cancer cells. Mol Cell Endocrinol 2011; 338:28-37. [PMID: 21356271 DOI: 10.1016/j.mce.2011.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 01/28/2011] [Accepted: 02/18/2011] [Indexed: 11/30/2022]
Abstract
It is known that estrogen promotes the proliferation of breast cancer cells. Agonists to P2Y(2) receptors promote or suppress proliferation in different cancers. In the present study, the methods of methylthiazoltetrazolium (MTT) assay, real-time RT-PCR, Western blot and fluorescent calcium imaging analysis were used to investigate whether P2Y(2) receptors play a role in the effects of estrogen on the breast cancer cell lines, MCF-7 and MDA-MB-231. We found that P2Y(2) receptors were expressed in both the estrogen receptor alpha (ER(α))-positive breast cancer cell line MCF-7 and the ER(α)-negative breast cancer cell line MDA-MB-231. 17β-Estradiol (17β-E(2)) (1 pM to 1000 nM) promoted proliferation of MCF-7 cells, which was blocked by the ER antagonist ICI 182,780 (1 μM) and the ER(α) antagonist methyl-piperidino-pyrazole (MPP, 50 μM), but not by the ER(β) antagonist 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol (PHTPP, 50 μM) or ER(β) small interfering RNA. The P2Y(2) and P2Y(4) receptor agonist UTP (10-100 μM) suppressed the viability of breast cancer cells in both MCF-7 and MDA-MB-231 cells. The effect was blocked by suramin (10-100 μM), known to be an effective antagonist against P2Y(2), but not P2Y(4), receptor-mediated responses. 17β-E(2) played a more positive role in promoting proliferation in MCF-7 cells when suramin blocked the functional P2Y(2) receptors. 17β-E(2) (0.1-1000 nM) downregulated the expression of P2Y(2) receptors in terms of both mRNA and protein levels in MCF-7 cells. The effect was blocked by ICI 182,780 and MPP, but not PHTPP or ER(β) small interfering RNA. 17β-E(2) did not affect the expression of P2Y(2) receptors in MDA-MB-231. UTP (10-100 μM) led to a sharp increase in intracellular Ca(2+) in MCF-7 cells. Pre-incubation with 17β-E(2) (0.1 μM) attenuated UTP-induced [Ca(2+)](i), which was blocked by ICI182,780 and MPP, but not PHTPP. It is suggested that estrogen, via ER(α) receptors, promotes proliferation of breast cancer cells by down-regulating P2Y(2) receptor expression and attenuating P2Y(2)-induced increase of [Ca(2+)](i).
Collapse
Affiliation(s)
- Han-jun Li
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Abstract
This review begins with background information about the discovery and conceptual steps contributing to our current knowledge of purinergic signalling. It then deals with several topics concerned with the physiology and pathophysiology of the lower urinary tract, including: the involvement in the voiding reflex of ATP released as a co-transmitter with acetylcholine from parasympathetic nerves supplying the bladder and ATP released from urothelial cells during bladder distension to initiate the voiding reflex via P2X₃ receptors on suburothelial low-threshold sensory nerve fibres; this latter mechanosensory transduction pathway is also involved via high-threshold fibres in the initiation of pain. Treatment of prostate and bladder cancer with ATP not only appears to be effective against the primary tumours, but also improves the systemic symptoms associated with advanced malignancy. There is dual control of the tone of blood vessels: constriction by ATP released as a co-transmitter from sympathetic nerves and vasodilatation via ATP released from endothelial cells during shear stress acting on endothelial P2 receptors to release nitric oxide. A purinergic hypothesis is discussed for the mechanism underlying acupuncture, widely used for the treatment of urinary disorders.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, London, UK.
| |
Collapse
|
35
|
Ion channels and the hallmarks of cancer. Trends Mol Med 2010; 16:107-21. [PMID: 20167536 DOI: 10.1016/j.molmed.2010.01.005] [Citation(s) in RCA: 307] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/13/2010] [Accepted: 01/13/2010] [Indexed: 01/19/2023]
Abstract
Plasma membrane (PM) ion channels contribute to virtually all basic cellular processes and are also involved in the malignant phenotype of cancer cells. Here, we review the role of ion channels in cancer in the context of their involvement in the defined hallmarks of cancer: 1) self-sufficiency in growth signals, 2) insensitivity to antigrowth signals, 3) evasion of programmed cell death (apoptosis), 4) limitless replicative potential, 5) sustained angiogenesis and 6) tissue invasion and metastasis. Recent studies have indicated that the contribution of specific ion channels to these hallmarks varies for different types of cancer. Therefore, to determine the importance of ion channels as targets for cancer diagnosis and treatment their expression, function and regulation must be assessed for each cancer.
Collapse
|
36
|
ATP sensitizes H460 lung carcinoma cells to cisplatin-induced apoptosis. Chem Biol Interact 2010; 184:338-45. [PMID: 20156429 DOI: 10.1016/j.cbi.2010.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 02/03/2010] [Accepted: 02/05/2010] [Indexed: 12/13/2022]
Abstract
Platinum resistance of cancer cells may evolve due to a decrease in intracellular drug accumulation, decreased cell permeability or by an increased deactivation of the drug by glutathione (GSH). The aim of this study was (1) to investigate the effect of adenosine 5'-triphosphate (ATP) on the cytotoxicity of cisplatin in a large cell lung carcinoma cell line (H460), and (2) to examine the potential involvement of increased cisplatin uptake, GSH depletion and pyrimidine starvation by ATP in this effect. H460 cells were harvested and seeded (5% CO(2); 37 degrees C). Subsequently, cells were incubated with medium or ATP followed by an incubation with cisplatin. Cytotoxicity screening was analyzed by the sulforhodamine B (SRB) colorimetric assay, lactate dehydrogenase and caspase-3/7 activity. Pre-incubation for 72h with 0.3 and 3mM ATP strongly enhanced the anti-proliferative potency of cisplatin 2.9- and 7.6-fold, respectively. Moreover, after incubation of H460 cells with 0.3mM ATP the intracellular platinum concentration increased, indicating increased cisplatin uptake by ATP. ATP, despite lowering the LD(50) of cisplatin, did not modulate GSH levels in H460 cells. ATP itself showed a biphasic effect on H460 cell growth: 0.3mM inhibited H460 cell growth via the pyrimidine starvation effect, activation of caspase-3/7 and LDH leakage, while 3mM ATP showed no effect on cell growth. In conclusion, ATP sensitizes the H460 cells to cisplatin-induced apoptosis. The effect of 0.3mM ATP is not due to GSH depletion but involves increased cisplatin uptake and pyrimidine starvation due to ATP conversion to adenosine followed by cellular uptake.
Collapse
|
37
|
Corriden R, Insel PA. Basal release of ATP: an autocrine-paracrine mechanism for cell regulation. Sci Signal 2010; 3:re1. [PMID: 20068232 DOI: 10.1126/scisignal.3104re1] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cells release adenosine triphosphate (ATP), which activates plasma membrane-localized P2X and P2Y receptors and thereby modulates cellular function in an autocrine or paracrine manner. Release of ATP and the subsequent activation of P2 receptors help establish the basal level of activation (sometimes termed "the set point") for signal transduction pathways and regulate a wide array of responses that include tissue blood flow, ion transport, cell volume regulation, neuronal signaling, and host-pathogen interactions. Basal release and autocrine or paracrine responses to ATP are multifunctional, evolutionarily conserved, and provide an economical means for the modulation of cell, tissue, and organismal biology.
Collapse
Affiliation(s)
- Ross Corriden
- Departments of Pharmacology and Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
38
|
|
39
|
Yang DM, Teng HC, Chen KH, Tsai ML, Lee TK, Chou YC, Chi CW, Chiou SH, Lee CH. Clodronate-Induced Cell Apoptosis in Human Thyroid Carcinoma Is Mediated via the P2 Receptor Signaling Pathway. J Pharmacol Exp Ther 2009; 330:613-23. [DOI: 10.1124/jpet.109.152447] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
40
|
Shabbir M, Burnstock G. Purinergic receptor-mediated effects of adenosine 5'-triphosphate in urological malignant diseases. Int J Urol 2008; 16:143-50. [PMID: 19183233 DOI: 10.1111/j.1442-2042.2008.02207.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adenosine 5'-triphosphate (ATP) mediates a variety of biological functions and has been shown to play a physiological role in almost every system in the body. In the genito-urinary system, extracellular ATP has been shown to play a functional role in several different capacities, ranging from nociception in the ureter and bladder, to erectile dysfunction via its action on different 'purinergic receptors'. Discovery of the trophic effects of ATP has led to a surge in interest in this signalling system in various malignancies. To date five P2 receptor subtypes have been implicated in the growth inhibition of cancer cells, namely P2X5, P2X7, P2Y1, P2Y2 and P2Y11. Limited data are available on urological malignancies. ATP induces its anti-neoplastic effect primarily via purinergic receptor-mediated apoptosis via calcium-independent pathways, and this has been confirmed in vitro and in vivo. Studies have highlighted functional roles for the P2X5 and/or P2Y11 receptors in both hormone refractory prostate cancer and high-grade bladder cancer, although the contributory effect of pro-apoptotic P2X7 receptors remains unclear. Clinical trials have shown intravenous ATP successfully attenuates a range of systemic symptoms associated with advanced malignancies. This raises the possibility that selective targeting of specific aberrant pathways may allow for treatment of advanced primary malignancies and their systemic effects.
Collapse
Affiliation(s)
- Majid Shabbir
- Department of Urology, St. George's Hospital, London, UK
| | | |
Collapse
|
41
|
Deli T, Csernoch L. Extracellular ATP and cancer: an overview with special reference to P2 purinergic receptors. Pathol Oncol Res 2008; 14:219-31. [PMID: 18575829 DOI: 10.1007/s12253-008-9071-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 05/22/2008] [Indexed: 12/12/2022]
Abstract
Purinergic signal transduction mechanisms have been appreciated as a complex intercellular signalling network that plays an important regulatory role in both short- and long-term processes in practically every living cell. One of the most intriguing aspects of the field is the participation of ATP and other purine nucleotides in the determination of cell fate and the way they direct cells towards proliferation, differentiation or apoptosis, thereby possibly taking part in promoting or preventing malignant transformation. In this review, following a very brief introduction to the historical aspects of purinergic signalling and a concise overview of the structure of and signal transduction pathways coupled to P2 purinergic receptors, the current theories concerning the possible ways how extracellular ATP can alter the function of tumour cells and the effectiveness of anticancer therapies are discussed, including pharmacological, nutritional, vasoactive and 'anti-antioxidant' actions of the nucleotide. The effects of ATP on animals inoculated with human tumours and on patients with cancer are looked over next, and then an overview of the literature regarding the expression and presumed functions of P2 purinoceptors on tumour cells in vitro is presented, sorted out according to the relevant special clinical fields. The article is closed by reviewing the latest developments in the diagnostic use of P2 purinergic receptors as tumour markers and prognostic factors, while discussing some of the difficulties and pitfalls of the therapeutic use of ATP analogues.
Collapse
Affiliation(s)
- Tamás Deli
- Department of Physiology, Research Centre for Molecular Medicine, Medical and Health Science Centre, University of Debrecen, Debrecen, Hungary
| | | |
Collapse
|
42
|
Shabbir M, Thompson C, Jarmulowiczc M, Mikhailidis D, Burnstock G. Effect of extracellular ATP on the growth of hormone-refractory prostate cancer in vivo. BJU Int 2008; 102:108-12. [PMID: 18325054 DOI: 10.1111/j.1464-410x.2008.07578.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate whether the antineoplastic action of ATP on hormone-refractory prostate carcinoma (HRPC) cells in vitro also occurs in vivo, by examining the effect of ATP in vivo on tumours resulting from implanted HRPC cells in mice. MATERIALS AND METHODS HRPC tumour cells DU145 and PC-3 were implanted into male nude athymic mice. The effect of daily intraperitoneal (i.p.) injections of ATP (25 mm) on the growth of freshly implanted and established HRPC tumours was assessed. Histological examination using light and electron microscopy was used to confirm retention of the original ultrastructure of the implanted tumours. RESULTS Daily i.p. injections of ATP significantly reduced the growth of freshly implanted DU145 tumour by 57.8% (P = 0.003), and reduced the rate of growth of established DU145 tumour by 69.0% (P = 0.006). ATP also significantly reduced the growth of freshly implanted PC-3 tumour by 68.9% (P < 0.001). ATP treatment had no adverse effects on the host mice. CONCLUSION Our results show, for the first time, that ATP effectively reduces the growth of advanced HRPC tumours in vivo. This may represent a step in establishing ATP as an effective agent for HRPC treatment.
Collapse
Affiliation(s)
- Majid Shabbir
- Department of Urology, Royal Free and University College Medical School, London, UK
| | | | | | | | | |
Collapse
|