1
|
Soltani B, Ahmadrajabi R, Kalantar-Neyestanaki D. Critical resistance to carbapenem and aminoglycosides in Pseudomonas aeruginosa: spread of bla NDM/16S methylase armA harboring isolates with intrinsic resistance mechanisms in Kerman, Iran. BMC Infect Dis 2024; 24:1188. [PMID: 39434025 PMCID: PMC11494745 DOI: 10.1186/s12879-024-10085-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is one of the main Gram-negative bacterium causes of infections in hospital settings, and the spread of them is a significant challenge to public health. METHODS A total of 30 non-duplicate isolates of CRPA were collected. Antibacterial susceptibility of isolates to antibiotic agents, AmpC β-lactamase production, and biofilm formation were determined. Minimum biofilm inhibitory concentrations (MBIC) of isolates to cefepime (FEP), imipenem (IPM), ceftazidime (CAZ), and meropenem (MEM) were evaluated with/without cloxacillin (CLX). The carbapenemase and 16 S rRNA methylase genes were identified by PCR, and the transcription levels of oprD, ampC, and mexA genes were determined by quantitative real-time PCR (qPCR). ERIC-PCR was used to detect genetic relationships among isolates. RESULTS All isolates were multidrug resistant (MDR) and strong biofilm producers. The resistance genes including blaNDM, blaIMP, blaVIM, blaSIM, blaGES, and armA were detected in 21 (70%), 6 (20%), 3 (10%), 2 (6.6%), 1 (3.3%), and 17 (56.6%) of the isolates, respectively. CLX at 500 and 1000 µg/mL significantly reduced the level of MIC to MEM, IPM, CAZ, and FEP, also at 2000 µg/mL significantly reduced the level of MBIC to MEM, IPM, CAZ, and FEP. In all isolates, the transcription levels of oprD were significantly downregulated as well as significantly increased for ampC and mexA. ERIC-PCR typing results divided 30 isolates into four clusters A to D. CONCLUSION In this study, we reported the spread of different clones of CRPA harboring co-existence of various carbapenemase genes with armA 16 S rRNA methylase for the first time in Kerman, Iran. Also, our isolates had several mechanisms of resistance to carbapenems as well as ability biofilm formation along with resistance to aminoglycosides, the further spread of which could cause serious challenges in our hospital settings. Therefore, serious monitoring is necessary to reduce their prevalence.
Collapse
Affiliation(s)
- Behnaz Soltani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Roya Ahmadrajabi
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Davood Kalantar-Neyestanaki
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Hujer AM, Marshall SH, Mack AR, Hujer KM, Bakthavatchalam YD, Umarkar K, Palwe SR, Takalkar S, Joshi PR, Shrivastava R, Periasamy H, Bhagwat SS, Patel MV, Veeraraghavan B, Bonomo RA. Transcending the challenge of evolving resistance mechanisms in Pseudomonas aeruginosa through β-lactam-enhancer-mechanism-based cefepime/zidebactam. mBio 2023; 14:e0111823. [PMID: 37889005 PMCID: PMC10746216 DOI: 10.1128/mbio.01118-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/14/2023] [Indexed: 10/28/2023] Open
Abstract
Compared to other genera of Gram-negative pathogens, Pseudomonas is adept in acquiring complex non-enzymatic and enzymatic resistance mechanisms thus remaining a challenge to even novel antibiotics including recently developed β-lactam and β-lactamase inhibitor combinations. This study shows that the novel β-lactam enhancer approach enables cefepime/zidebactam to overcome both non-enzymatic and enzymatic resistance mechanisms associated with a challenging panel of P. aeruginosa. This study highlights that the β-lactam enhancer mechanism is a promising alternative to the conventional β-lactam/β-lactamase inhibitor approach in combating ever-evolving MDR P. aeruginosa.
Collapse
Affiliation(s)
- Andrea M. Hujer
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Steven H. Marshall
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA
| | - Andrew R. Mack
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Kristine M. Hujer
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | - Kushal Umarkar
- Wockhardt Research Centre, Aurangabad, Maharashtra, India
| | | | | | | | | | | | | | | | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Departments of Pharmacology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, and the CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| |
Collapse
|
3
|
Eggers O, Renschler FA, Michalek LA, Wackler N, Walter E, Smollich F, Klein K, Sonnabend MS, Egle V, Angelov A, Engesser C, Borisova M, Mayer C, Schütz M, Bohn E. YgfB increases β-lactam resistance in Pseudomonas aeruginosa by counteracting AlpA-mediated ampDh3 expression. Commun Biol 2023; 6:254. [PMID: 36894667 PMCID: PMC9998450 DOI: 10.1038/s42003-023-04609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/17/2023] [Indexed: 03/11/2023] Open
Abstract
YgfB-mediated β-lactam resistance was recently identified in multi drug resistant Pseudomonas aeruginosa. We show that YgfB upregulates expression of the β-lactamase AmpC by repressing the function of the regulator of the programmed cell death pathway AlpA. In response to DNA damage, the antiterminator AlpA induces expression of the alpBCDE autolysis genes and of the peptidoglycan amidase AmpDh3. YgfB interacts with AlpA and represses the ampDh3 expression. Thus, YgfB indirectly prevents AmpDh3 from reducing the levels of cell wall-derived 1,6-anhydro-N-acetylmuramyl-peptides, required to induce the transcriptional activator AmpR in promoting the ampC expression and β-lactam resistance. Ciprofloxacin-mediated DNA damage induces AlpA-dependent production of AmpDh3 as previously shown, which should reduce β-lactam resistance. YgfB, however, counteracts the β-lactam enhancing activity of ciprofloxacin by repressing ampDh3 expression and lowering the benefits of this drug combination. Altogether, YgfB represents an additional player in the complex regulatory network of AmpC regulation.
Collapse
Affiliation(s)
- Ole Eggers
- Institute for Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Fabian A Renschler
- Institute for Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Lydia Anita Michalek
- Institute for Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Noelle Wackler
- Institute for Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Elias Walter
- Institute for Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Fabian Smollich
- Institute for Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Kristina Klein
- Institute for Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Michael S Sonnabend
- Institute for Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), Institute for Medical Microbiology and Hygiene, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Valentin Egle
- Institute for Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Angel Angelov
- NGS Competence Center Tübingen (NCCT), Institute for Medical Microbiology and Hygiene, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Christina Engesser
- NGS Competence Center Tübingen (NCCT), Institute for Medical Microbiology and Hygiene, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Marina Borisova
- Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
- Department of Biology, Organismic Interactions/Glycobiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Christoph Mayer
- Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
- Department of Biology, Organismic Interactions/Glycobiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Monika Schütz
- Institute for Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Erwin Bohn
- Institute for Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany.
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.
- Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany.
| |
Collapse
|
4
|
Shirai T, Akagawa M, Makino M, Ishii M, Arai A, Nagasawa N, Sada M, Kimura R, Okayama K, Ishioka T, Ishii H, Hirai S, Ryo A, Tomita H, Kimura H. Molecular Evolutionary Analyses of the Pseudomonas-Derived Cephalosporinase Gene. Microorganisms 2023; 11:635. [PMID: 36985209 PMCID: PMC10057138 DOI: 10.3390/microorganisms11030635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Despite the increasing evidence of the clinical impact of Pseudomonas-derived cephalosporinase (PDC) sequence polymorphisms, the molecular evolution of its encoding gene, blaPDC, remains elusive. To elucidate this, we performed a comprehensive evolutionary analysis of blaPDC. A Bayesian Markov Chain Monte Carlo phylogenetic tree revealed that a common ancestor of blaPDC diverged approximately 4660 years ago, leading to the formation of eight clonal variants (clusters A-H). The phylogenetic distances within clusters A to G were short, whereas those within cluster H were relatively long. Two positive selection sites and many negative selection sites were estimated. Two PDC active sites overlapped with negative selection sites. In docking simulation models based on samples selected from clusters A and H, piperacillin was bound to the serine and the threonine residues of the PDC active sites, with the same binding mode for both models. These results suggest that, in P. aeruginosa, blaPDC is highly conserved, and PDC exhibits similar antibiotic resistance functionality regardless of its genotype.
Collapse
Affiliation(s)
- Tatsuya Shirai
- Advanced Medical Science Research Center, Gunma Paz University Research Institute, Shibukawa 377-0008, Gunma, Japan
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka 181-8611, Tokyo, Japan
| | - Mao Akagawa
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki 370-0006, Gunma, Japan
| | - Miho Makino
- Department of Medical Technology, Gunma Paz University School of Medical Science and Technology, Takasaki 370-0006, Gunma, Japan
| | - Manami Ishii
- Department of Medical Technology, Gunma Paz University School of Medical Science and Technology, Takasaki 370-0006, Gunma, Japan
| | - Ayaka Arai
- Department of Medical Technology, Gunma Paz University School of Medical Science and Technology, Takasaki 370-0006, Gunma, Japan
| | - Norika Nagasawa
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki 370-0006, Gunma, Japan
| | - Mitsuru Sada
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka 181-8611, Tokyo, Japan
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki 370-0006, Gunma, Japan
| | - Ryusuke Kimura
- Advanced Medical Science Research Center, Gunma Paz University Research Institute, Shibukawa 377-0008, Gunma, Japan
- Department of Bacteriology, Gunma University Graduate School of Medicine, Maebashi 371-8514, Gunma, Japan
| | - Kaori Okayama
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki 370-0006, Gunma, Japan
| | - Taisei Ishioka
- Department of Agriculture, Takasaki University of Health Welfare, Takasaki 370-0033, Gunma, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka 181-8611, Tokyo, Japan
| | - Shinichiro Hirai
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Musashimurayama 162-8640, Tokyo, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama 236-0004, Kanagawa, Japan
| | - Haruyoshi Tomita
- Department of Bacteriology, Gunma University Graduate School of Medicine, Maebashi 371-8514, Gunma, Japan
| | - Hirokazu Kimura
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki 370-0006, Gunma, Japan
| |
Collapse
|
5
|
He H, Choi Y, Wu SJ, Fang X, Anderson AK, Liou SY, Roberts MC, Lee Y, Dodd MC. Application of Nucleotide-Based Kinetic Modeling Approaches to Predict Antibiotic Resistance Gene Degradation during UV- and Chlorine-Based Wastewater Disinfection Processes: From Bench- to Full-Scale. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15141-15155. [PMID: 36098629 DOI: 10.1021/acs.est.2c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study investigated antibiotic resistance gene (ARG) degradation kinetics in wastewaters during bench- and full-scale treatment with UV light and chlorine─with the latter maintained as free available chlorine (FAC) in low-ammonia wastewater and converted into monochloramine (NH2Cl) in high-ammonia wastewater. Twenty-three 142-1509 bp segments (i.e., amplicons) of seven ARGs (blt, mecA, vanA, tet(A), ampC, blaNDM, blaKPC) and the 16S rRNA gene from antibiotic resistant bacteria (ARB) strains Bacillus subtilis, Staphylococcus aureus, Enterococcus faecium, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae were monitored as disinfection targets by qPCR. Rate constants for ARG and 16S rRNA gene amplicon degradation by UV, FAC, and NH2Cl were measured in phosphate buffer and used to expand and validate several recently developed approaches to predict DNA segment degradation rate constants based solely on their nucleotide contents, which were then applied to model ARG degradation during bench-scale treatment in buffer and wastewater matrixes. Kinetics of extracellular and intracellular ARG degradation by UV and FAC were well predicted up to ∼1-2-log10 elimination, although with decreasing accuracy at higher levels for intracellular genes, while NH2Cl yielded minimal degradation under all conditions (agreeing with predictions). ARB inactivation kinetics varied substantially across strains, with intracellular gene degradation lagging cell inactivation in each case. ARG degradation levels observed during full-scale disinfection at two wastewater treatment facilities were consistent with bench-scale measurements and predictions, where UV provided ∼1-log10 ARG degradation, and chlorination of high-ammonia wastewater (dominated by NH2Cl) yielded minimal ARG degradation.
Collapse
Affiliation(s)
- Huan He
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| | - Yegyun Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sean J Wu
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| | - Xuzhi Fang
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| | - Annika K Anderson
- Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Sin-Yi Liou
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| | - Marilyn C Roberts
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, United States
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Michael C Dodd
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
Rebelo AR, Bortolaia V, Leekitcharoenphon P, Hansen DS, Nielsen HL, Ellermann-Eriksen S, Kemp M, Røder BL, Frimodt-Møller N, Søndergaard TS, Coia JE, Østergaard C, Westh H, Aarestrup FM. One Day in Denmark: Comparison of Phenotypic and Genotypic Antimicrobial Susceptibility Testing in Bacterial Isolates From Clinical Settings. Front Microbiol 2022; 13:804627. [PMID: 35756053 PMCID: PMC9226621 DOI: 10.3389/fmicb.2022.804627] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial susceptibility testing (AST) should be fast and accurate, leading to proper interventions and therapeutic success. Clinical microbiology laboratories rely on phenotypic methods, but the continuous improvement and decrease in the cost of whole-genome sequencing (WGS) technologies make them an attractive alternative. Studies evaluating the performance of WGS-based prediction of antimicrobial resistance (AMR) for selected bacterial species have shown promising results. There are, however, significant gaps in the literature evaluating the applicability of WGS as a diagnostics method in real-life clinical settings against the range of bacterial pathogens experienced there. Thus, we compared standard phenotypic AST results with WGS-based predictions of AMR profiles in bacterial isolates without preselection of defined species, to evaluate the applicability of WGS as a diagnostics method in clinical settings. We collected all bacterial isolates processed by all Danish Clinical Microbiology Laboratories in 1 day. We randomly selected 500 isolates without any preselection of species. We performed AST through standard broth microdilution (BMD) for 488 isolates (n = 6,487 phenotypic AST results) and compared results with in silico antibiograms obtained through WGS (Illumina NextSeq) followed by bioinformatics analyses using ResFinder 4.0 (n = 5,229 comparisons). A higher proportion of AMR was observed for Gram-negative bacteria (10.9%) than for Gram-positive bacteria (6.1%). Comparison of BMD with WGS data yielded a concordance of 91.7%, with discordant results mainly due to phenotypically susceptible isolates harboring genetic AMR determinants. These cases correspond to 6.2% of all isolate-antimicrobial combinations analyzed and to 6.8% of all phenotypically susceptible combinations. We detected fewer cases of phenotypically resistant isolates without any known genetic resistance mechanism, particularly 2.1% of all combinations analyzed, which corresponded to 26.4% of all detected phenotypic resistances. Most discordances were observed for specific combinations of species-antimicrobial: macrolides and tetracycline in streptococci, ciprofloxacin and β-lactams in combination with β-lactamase inhibitors in Enterobacterales, and most antimicrobials in Pseudomonas aeruginosa. WGS has the potential to be used for surveillance and routine clinical microbiology. However, in clinical microbiology settings and especially for certain species and antimicrobial agent combinations, further developments in AMR gene databases are needed to ensure higher concordance between in silico predictions and expected phenotypic AMR profiles.
Collapse
Affiliation(s)
- Ana Rita Rebelo
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Valeria Bortolaia
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.,Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | | | - Hans Linde Nielsen
- Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Michael Kemp
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - Bent Løwe Røder
- Department of Clinical Microbiology, Slagelse Hospital, Slagelse, Denmark
| | | | | | - John Eugenio Coia
- Department of Clinical Microbiology, Hospital of South West Jutland, Esbjerg, Denmark
| | - Claus Østergaard
- Department of Clinical Microbiology, Vejle Hospital, Vejle, Denmark
| | - Henrik Westh
- Department of Clinical Microbiology, Hvidovre Hospital, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Frank M Aarestrup
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
7
|
Abstract
Class C β-lactamases or cephalosporinases can be classified into two functional groups (1, 1e) with considerable molecular variability (≤20% sequence identity). These enzymes are mostly encoded by chromosomal and inducible genes and are widespread among bacteria, including Proteobacteria in particular. Molecular identification is based principally on three catalytic motifs (64SXSK, 150YXN, 315KTG), but more than 70 conserved amino-acid residues (≥90%) have been identified, many close to these catalytic motifs. Nevertheless, the identification of a tiny, phylogenetically distant cluster (including enzymes from the genera Legionella, Bradyrhizobium, and Parachlamydia) has raised questions about the possible existence of a C2 subclass of β-lactamases, previously identified as serine hydrolases. In a context of the clinical emergence of extended-spectrum AmpC β-lactamases (ESACs), the genetic modifications observed in vivo and in vitro (point mutations, insertions, or deletions) during the evolution of these enzymes have mostly involved the Ω- and H-10/R2-loops, which vary considerably between genera, and, in some cases, the conserved triplet 150YXN. Furthermore, the conserved deletion of several amino-acid residues in opportunistic pathogenic species of Acinetobacter, such as A. baumannii, A. calcoaceticus, A. pittii and A. nosocomialis (deletion of residues 304-306), and in Hafnia alvei and H. paralvei (deletion of residues 289-290), provides support for the notion of natural ESACs. The emergence of higher levels of resistance to β-lactams, including carbapenems, and to inhibitors such as avibactam is a reality, as the enzymes responsible are subject to complex regulation encompassing several other genes (ampR, ampD, ampG, etc.). Combinations of resistance mechanisms may therefore be at work, including overproduction or change in permeability, with the loss of porins and/or activation of efflux systems.
Collapse
|
8
|
β-lactam Resistance in Pseudomonas aeruginosa: Current Status, Future Prospects. Pathogens 2021; 10:pathogens10121638. [PMID: 34959593 PMCID: PMC8706265 DOI: 10.3390/pathogens10121638] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is a major opportunistic pathogen, causing a wide range of acute and chronic infections. β-lactam antibiotics including penicillins, carbapenems, monobactams, and cephalosporins play a key role in the treatment of P. aeruginosa infections. However, a significant number of isolates of these bacteria are resistant to β-lactams, complicating treatment of infections and leading to worse outcomes for patients. In this review, we summarize studies demonstrating the health and economic impacts associated with β-lactam-resistant P. aeruginosa. We then describe how β-lactams bind to and inhibit P. aeruginosa penicillin-binding proteins that are required for synthesis and remodelling of peptidoglycan. Resistance to β-lactams is multifactorial and can involve changes to a key target protein, penicillin-binding protein 3, that is essential for cell division; reduced uptake or increased efflux of β-lactams; degradation of β-lactam antibiotics by increased expression or altered substrate specificity of an AmpC β-lactamase, or by the acquisition of β-lactamases through horizontal gene transfer; and changes to biofilm formation and metabolism. The current understanding of these mechanisms is discussed. Lastly, important knowledge gaps are identified, and possible strategies for enhancing the effectiveness of β-lactam antibiotics in treating P. aeruginosa infections are considered.
Collapse
|
9
|
Díaz-Ríos C, Hernández M, Abad D, Álvarez-Montes L, Varsaki A, Iturbe D, Calvo J, Ocampo-Sosa AA. New Sequence Type ST3449 in Multidrug-Resistant Pseudomonas aeruginosa Isolates from a Cystic Fibrosis Patient. Antibiotics (Basel) 2021; 10:antibiotics10050491. [PMID: 33922748 PMCID: PMC8146123 DOI: 10.3390/antibiotics10050491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most critical bacterial pathogens associated with chronic infections in cystic fibrosis patients. Here we show the phenotypic and genotypic characterization of five consecutive multidrug-resistant isolates of P. aeruginosa collected during a month from a CF patient with end-stage lung disease and fatal outcome. The isolates exhibited distinct colony morphologies and pigmentation and differences in their capacity to produce biofilm and virulence potential evaluated in larvae of Galleria mellonella. Whole genome-sequencing showed that isolates belonged to a novel sequence type ST3449 and serotype O6. Analysis of their resistome demonstrated the presence of genes blaOXA-396, blaPAO, aph(3')-IIb, catB, crpP and fosA and new mutations in chromosomal genes conferring resistance to different antipseudomonal antibiotics. Genes exoS, exoT, exoY, toxA, lasI, rhlI and tse1 were among the 220 virulence genes detected. The different phenotypic and genotypic features found reveal the adaptation of clone ST3449 to the CF lung environment by a number of mutations affecting genes related with biofilm formation, quorum sensing and antimicrobial resistance. Most of these mutations are commonly found in CF isolates, which may give us important clues for future development of new drug targets to combat P. aeruginosa chronic infections.
Collapse
Affiliation(s)
- Catalina Díaz-Ríos
- Instituto de Investigación Sanitaria Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain; (C.D.-R.); (L.Á.-M.)
| | - Marta Hernández
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), 47071 Valladolid, Spain; (M.H.); (D.A.)
| | - David Abad
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), 47071 Valladolid, Spain; (M.H.); (D.A.)
| | - Laura Álvarez-Montes
- Instituto de Investigación Sanitaria Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain; (C.D.-R.); (L.Á.-M.)
| | - Athanasia Varsaki
- Centro de Investigación y Formación Agraria (CIFA), 39600 Muriedas, Spain;
| | - David Iturbe
- Servicio de Neumología, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain;
| | - Jorge Calvo
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain;
| | - Alain A. Ocampo-Sosa
- Instituto de Investigación Sanitaria Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain; (C.D.-R.); (L.Á.-M.)
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain;
- Correspondence:
| |
Collapse
|
10
|
El Shamy AA, Zakaria Z, Tolba MM, Salah Eldin N, Rabea AT, Tawfick MM, Nasser HA. AmpC β-Lactamase Variable Expression in Common Multidrug-Resistant Nosocomial Bacterial Pathogens from a Tertiary Hospital in Cairo, Egypt. Int J Microbiol 2021; 2021:6633888. [PMID: 33854549 PMCID: PMC8021464 DOI: 10.1155/2021/6633888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/18/2021] [Accepted: 03/16/2021] [Indexed: 12/26/2022] Open
Abstract
The emergence of AmpC (pAmpC) β-lactamases conferring resistance to the third-generation cephalosporins has become a major clinical concern worldwide. In this study, we aimed to evaluate the expression of AmpC β-lactamase encoding gene among the pathogenic Gram-positive and Gram-negative resistant bacteria screened from clinical samples of Egyptian patients enrolled into El-Qasr El-Ainy Tertiary Hospital in Cairo, Egypt. A total of 153 bacterial isolates of the species Pseudomonas aeruginosa, Klebsiella pneumoniae, and Enterococcus faecium were isolated from patients diagnosed with urinary tract infection (UTI), respiratory tract infection (RTI), and wound infections. The total number of E. faecium isolates was 53, comprising 29 urine isolates, 5 sputum isolates, and 19 wound swab isolates, whereas the total number of P. aeruginosa isolates was 49, comprising 27 urine isolates, 7 sputum isolates, and 15 wound swab isolates, and that of the K. pneumoniae isolates was 51, comprising 20 urine isolates, 25 sputum isolates, and 6 wound swab isolates. Our results indicated that there is no significant difference in the expression of AmpC β-lactamase gene among the tested bacterial species with respect to the type of infection and/or clinical specimen. However, the expression patterns of AmpC β-lactamase gene markedly differed according to the antibacterial resistance characteristics of the tested isolates.
Collapse
Affiliation(s)
- Aliaa Ali El Shamy
- Microbiology and Immunology Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Zainab Zakaria
- Biomedical Research Lab, Research and Development Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Mahmoud M. Tolba
- Pharmaceutical Division, Ministry of Health and Population, Faiyum, Egypt
| | - Nermeen Salah Eldin
- Microbiology and Immunology Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Al-Taher Rabea
- Biomedical Research Lab, Research and Development Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Mahmoud M. Tawfick
- Microbiology and Immunology Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hebatallah A. Nasser
- Microbiology and Immunology Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| |
Collapse
|
11
|
Wang Y, Cheng X, Wan C, Wei J, Gao C, Zhang Y, Zeng H, Peng L, Luo P, Lu D, Zou Q, Gu J. Development of a Chimeric Vaccine Against Pseudomonas aeruginosa Based on the Th17-Stimulating Epitopes of PcrV and AmpC. Front Immunol 2021; 11:601601. [PMID: 33552056 PMCID: PMC7859429 DOI: 10.3389/fimmu.2020.601601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
Pulmonary infection caused by Pseudomonas aeruginosa (PA) has created an urgent need for an efficient vaccine, but the protection induced by current candidates is limited, partially because of the high variability of the PA genome. Antigens targeting pulmonary Th17 responses are able to provide antibody-independent and broad-spectrum protection; however, little information about Th17-stimulating antigens in PA is available. Herein, we identified two novel PA antigens that effectively induce Th17-dependent protection, namely, PcrV (PA1706) and AmpC (PA4110). Compared to intramuscular immunization, intranasal immunization enhanced the protection of rePcrV due to activation of a Th17 response. The Th17-stimulating epitopes of PcrV and AmpC were identified, and the recombinant protein PVAC was designed and generated by combining these Th17-stimulating epitopes. PVAC was successfully produced in soluble form and elicited broad protective immunity against PA. Our results provide an alternative strategy for the development of Th17-based vaccines against PA and other pathogens.
Collapse
Affiliation(s)
- Ying Wang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xin Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Chuang Wan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jinning Wei
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Chen Gao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yi Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Liusheng Peng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ping Luo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Dongshui Lu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jiang Gu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
12
|
Kandasamy K, Thirumalmuthu K, Prajna NV, Lalitha P, Mohankumar V, Devarajan B. Comparative genomics of ocular Pseudomonas aeruginosa strains from keratitis patients with different clinical outcomes. Genomics 2020; 112:4769-4776. [DOI: 10.1016/j.ygeno.2020.08.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022]
|
13
|
Abdelrahman DN, Taha AA, Dafaallah MM, Mohammed AA, El Hussein ARM, Hashim AI, Hamedelnil YF, Altayb HN. β-lactamases (bla TEM, bla SHV, bla CTXM-1, bla VEB, bla OXA-1 ) and class C β-lactamases gene frequency in Pseudomonas aeruginosa isolated from various clinical specimens in Khartoum State, Sudan: a cross sectional study. F1000Res 2020; 9:774. [PMID: 33363717 PMCID: PMC7737708 DOI: 10.12688/f1000research.24818.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Pseudomonas aeruginosa is a pathogenic bacterium, causing nosocomial infections with intrinsic and acquired resistance mechanisms to a large group of antibiotics, including β-lactams. This study aimed to determine the susceptibility pattern to selected antibiotics and to index the first reported β-lactamases genes frequency in Ps. aeruginosa in Khartoum State, Sudan. Methods: 121 Ps. aeruginosa clinical isolates from various clinical specimens were used in this cross sectional study conducted in Khartoum State. Eighty isolates were confirmed as Ps. aeruginosa through conventional identification methods and species specific primers. The susceptibility pattern of the confirmed isolates to selected antibiotics was done following the Kirby Bauer disk diffusion method. Multiplex PCR was used for detection of seven β-lactamase genes ( blaTEM, blaSHV, blaCTXM-1, blaVEB, blaOXA-1, blaAmpC and blaDHA). Results: Of the 80 confirmed Ps. aeruginosa isolates, 8 (10%) were resistant to Imipenem while all isolates were resistant to Amoxicillin and Amoxyclav (100%). A total of 43 (54%) Ps. aeruginosa isolates were positive for blaTEM, blaSHV, blaCTXM-1, blaVEB and blaOXA-1 genes, while 27 (34%) were positive for class C β- Lactamases, and 20 (25%) were positive for both classes. Frequency of beta-lactamases genes was as follows: blaTEM, 19 (44.2%); blaSHV, 16 (37.2%); bla CTX-M1, 10 (23.3%); blaVEB, 14 (32.6%); blaOXA-1, 7 (16.3%). blaAmpC 22 (81.5%) and bla DHA 8 (29.6%). In total, 3 (11.1%) isolates were positive for both bla AmpC and blaDHA genes. Conclusion: Ps. aeruginosa isolates showed a high rate of β- lactamases production, with co-resistance to other antibiotic classes. The lowest resistance rate of Ps. aeruginosa was to Imipenem followed by Gentamicin and Ciprofloxacin. No statistically significant relationship between production of β-lactamases in Ps. aeruginosa and resistance to third generation cephalosporins was found.
Collapse
Affiliation(s)
- Dina N Abdelrahman
- Department of Virology, Central Laboratory, Khartoum, Sudan.,Department of Microbiology, College of Medical Laboratory Sciences, Sudan University of Science and Technology, Khartoum, Sudan
| | - Aya A Taha
- Department of Microbiology, College of Medical Laboratory Sciences, Sudan University of Science and Technology, Khartoum, Sudan
| | - Mazar M Dafaallah
- Department of Microbiology, College of Medical Laboratory Sciences, Sudan University of Science and Technology, Khartoum, Sudan
| | - Alaa Abdelgafoor Mohammed
- Department of Pharmaceutical Biotechnology, College of Pharmacy, Ahfad University for Women, Omdurman, Khartoum, Sudan
| | | | - Ahmed I Hashim
- Department of Microbiology, College of Medical Laboratory Sciences, Sudan University of Science and Technology, Khartoum, Sudan
| | - Yousif F Hamedelnil
- Department of Microbiology, College of Medical Laboratory Sciences, Sudan University of Science and Technology, Khartoum, Sudan
| | - Hisham N Altayb
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Abdelrahman DN, Taha AA, Dafaallah MM, Mohammed AA, El Hussein ARM, Hashim AI, Hamedelnil YF, Altayb HN. β-lactamases (bla TEM, bla SHV, bla CTXM-1, bla VEB, bla OXA-1 ) and class C β-lactamases gene frequency in Pseudomonas aeruginosa isolated from various clinical specimens in Khartoum State, Sudan: a cross sectional study. F1000Res 2020; 9:774. [PMID: 33363717 PMCID: PMC7737708 DOI: 10.12688/f1000research.24818.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2020] [Indexed: 10/28/2023] Open
Abstract
Background:Pseudomonas aeruginosa is a pathogenic bacterium, causing nosocomial infections with intrinsic and acquired resistance mechanisms to a large group of antibiotics, including β-lactams. This study aimed to determine the susceptibility pattern to selected antibiotics and to index the first reported β-lactamases genes frequency in Ps. aeruginosa in Khartoum State, Sudan. Methods: 121 Ps. aeruginosa clinical isolates from various clinical specimens were used in this cross sectional study conducted in Khartoum State. Eighty isolates were confirmed as Ps.aeruginosa through conventional identification methods and species specific primers. The susceptibility pattern of the confirmed isolates to selected antibiotics was done following the Kirby Bauer disk diffusion method. Multiplex PCR was used for detection of seven β-lactamase genes ( blaTEM, blaSHV, blaCTXM-1, blaVEB, blaOXA-1, blaAmpC and blaDHA). Results: Of the 80 confirmed Ps. aeruginosa isolates, 8 (10%) were resistant to Imipenem while all isolates were resistant to Amoxicillin and Amoxyclav (100%). A total of 43 (54%) Ps. aeruginosa isolates were positive for blaTEM, blaSHV, blaCTXM-1, blaVEB and blaOXA-1 genes, while 27 (34%) were positive for class C β- Lactamases, and 20 (25%) were positive for both classes. Frequency of beta-lactamases genes was as follows: blaTEM, 19 (44.2%); blaSHV, 16 (37.2%); bla CTX-M1, 10 (23.3%); blaVEB, 14 (32.6%); blaOXA-1, 7 (16.3%). blaAmpC 22 (81.5%) and bla DHA 8 (29.6%). In total, 3 (11.1%) isolates were positive for both bla AmpC and blaDHA genes. Conclusion:Ps. aeruginosa isolates showed a high rate of β- lactamases production, with co-resistance to other antibiotic classes. The lowest resistance rate of Ps. aeruginosa was to Imipenem followed by Gentamicin and Ciprofloxacin. No statistically significant relationship between production of β-lactamases in Ps. aeruginosa and resistance to third generation cephalosporins was found.
Collapse
Affiliation(s)
- Dina N. Abdelrahman
- Department of Virology, Central Laboratory, Khartoum, Sudan
- Department of Microbiology, College of Medical Laboratory Sciences, Sudan University of Science and Technology, Khartoum, Sudan
| | - Aya A. Taha
- Department of Microbiology, College of Medical Laboratory Sciences, Sudan University of Science and Technology, Khartoum, Sudan
| | - Mazar M. Dafaallah
- Department of Microbiology, College of Medical Laboratory Sciences, Sudan University of Science and Technology, Khartoum, Sudan
| | - Alaa Abdelgafoor Mohammed
- Department of Pharmaceutical Biotechnology, College of Pharmacy, Ahfad University for Women, Omdurman, Khartoum, Sudan
| | | | - Ahmed I. Hashim
- Department of Microbiology, College of Medical Laboratory Sciences, Sudan University of Science and Technology, Khartoum, Sudan
| | - Yousif F. Hamedelnil
- Department of Microbiology, College of Medical Laboratory Sciences, Sudan University of Science and Technology, Khartoum, Sudan
| | - Hisham N. Altayb
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Sonnabend MS, Klein K, Beier S, Angelov A, Kluj R, Mayer C, Groß C, Hofmeister K, Beuttner A, Willmann M, Peter S, Oberhettinger P, Schmidt A, Autenrieth IB, Schütz M, Bohn E. Identification of Drug Resistance Determinants in a Clinical Isolate of Pseudomonas aeruginosa by High-Density Transposon Mutagenesis. Antimicrob Agents Chemother 2020; 64:e01771-19. [PMID: 31818817 PMCID: PMC7038268 DOI: 10.1128/aac.01771-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/25/2019] [Indexed: 01/02/2023] Open
Abstract
With the aim to identify potential new targets to restore antimicrobial susceptibility of multidrug-resistant (MDR) Pseudomonas aeruginosa isolates, we generated a high-density transposon (Tn) insertion mutant library in an MDR P. aeruginosa bloodstream isolate (isolate ID40). The depletion of Tn insertion mutants upon exposure to cefepime or meropenem was measured in order to determine the common resistome for these clinically important antipseudomonal β-lactam antibiotics. The approach was validated by clean deletions of genes involved in peptidoglycan synthesis/recycling, such as the genes for the lytic transglycosylase MltG, the murein (Mur) endopeptidase MepM1, the MurNAc/GlcNAc kinase AmgK, and the uncharacterized protein YgfB, all of which were identified in our screen as playing a decisive role in survival after treatment with cefepime or meropenem. We found that the antibiotic resistance of P. aeruginosa can be overcome by targeting usually nonessential genes that turn essential in the presence of therapeutic concentrations of antibiotics. For all validated genes, we demonstrated that their deletion leads to the reduction of ampC expression, resulting in a significant decrease in β-lactamase activity, and consequently, these mutants partly or completely lost resistance against cephalosporins, carbapenems, and acylaminopenicillins. In summary, the determined resistome may comprise promising targets for the development of drugs that may be used to restore sensitivity to existing antibiotics, specifically in MDR strains of P. aeruginosa.
Collapse
Affiliation(s)
- Michael S Sonnabend
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Kristina Klein
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Sina Beier
- Center for Bioinformatics (ZBIT), Universität Tübingen, Tübingen, Germany
| | - Angel Angelov
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Robert Kluj
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Department of Biology, Microbiology & Biotechnology, Universität Tübingen, Tübingen, Germany
| | - Christoph Mayer
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Department of Biology, Microbiology & Biotechnology, Universität Tübingen, Tübingen, Germany
| | - Caspar Groß
- Institut für Medizinische Genetik und Angewandte Genomik, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Kathrin Hofmeister
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Antonia Beuttner
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Matthias Willmann
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Silke Peter
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Philipp Oberhettinger
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Annika Schmidt
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Ingo B Autenrieth
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Monika Schütz
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Erwin Bohn
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Pahlavanzadeh F, Kalantar-Neyestanaki D, Motamedifar M, Savari M, Mansouri S. First detection of insertion sequences ISpa1635 and IS1411 among non-carbapenemase producing strains of Pseudomonas aeruginosa in Kerman, Iran. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Dehbashi S, Tahmasebi H, Arabestani MR. Association between Beta-lactam Antibiotic Resistance and Virulence Factors in AmpC Producing Clinical Strains of P. aeruginosa. Osong Public Health Res Perspect 2018; 9:325-333. [PMID: 30584496 PMCID: PMC6296806 DOI: 10.24171/j.phrp.2018.9.6.06] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objectives The purpose of this study was to determine the presence of IMP and OXA genes in clinical strains of Pseudomonas aeruginosa (P. aeruginosa) that are carriers of the ampC gene. Methods In this study, 105 clinical isolates of P. aeruginosa were collected. Antibiotic resistance patterns were determined using the disk diffusion method. The strains carrying AmpC enzymes were characterized by a combination disk method. Multiplex-PCR was used to identify resistance and virulence genes, chi-square test was used to determine the relationship between variables. Results Among 105 isolates of P. aeruginosa, the highest antibiotic resistance was to cefotaxime and aztreonam, and the least resistance was to colictin and ceftazidime. There were 49 isolates (46.66%) that showed an AmpC phenotype. In addition, the frequencies of the resistance genes were; OXA48 gene 85.2%, OXA199, 139 3.8%, OXA23 3.8%, OXA2 66.6%, OXA10 3.8%, OXA51 85.2% and OXA58 3.8%. The IMP27 gene was detected in 9 isolates (8.57%) and the IMP3.34 was detected in 11 isolates (10.47%). Other genes detected included; lasR (17.1%), lasB (18%) and lasA (26.6%). There was a significant relationship between virulence factors and the OX and IMP genes (p ≤ 0.05). Conclusion The relationship between antibiotic resistance and virulence factors observed in this study could play an important role in outbreaks associated with P. aeruginosa infections.
Collapse
Affiliation(s)
- Sanaz Dehbashi
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamed Tahmasebi
- Department of Microbiology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
18
|
In Vivo Resistance to Ceftolozane/Tazobactam in Pseudomonas aeruginosa Arising by AmpC- and Non-AmpC-Mediated Pathways. Case Rep Infect Dis 2018; 2018:9095203. [PMID: 30675406 PMCID: PMC6323425 DOI: 10.1155/2018/9095203] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/12/2018] [Accepted: 11/28/2018] [Indexed: 11/18/2022] Open
Abstract
Two pairs of ceftolozane/tazobactam susceptible/resistant P. aeruginosa were isolated from 2 patients after exposure to β-lactams. The genetic basis of ceftolozane/tazobactam resistance was evaluated, and β-lactam-resistant mechanisms were assessed by phenotypic assays. Whole genome sequencing identified mutations in AmpC including the mutation (V213A) and a deletion of 7 amino acids (P210–G216) in the Ω-loop. Phenotypic assays showed that ceftolozane/tazobactam resistance in the strain with AmpCV213A variant was associated with increased β-lactamase hydrolysis activity. On the other hand, the deletion of 7 amino acids in the Ω-loop of AmpC did not display enhanced β-lactamase activity. Resistance to ceftolozane/tazobactam in P. aeruginosa is associated with changes in AmpC; however, the apparent loss of β-lactamase activity in AmpC∆7 suggests that non-AmpC mechanisms could play an important role in resistance to β-lactam/β-lactamase inhibitor combinations.
Collapse
|
19
|
Subedi D, Vijay AK, Kohli GS, Rice SA, Willcox M. Association between possession of ExoU and antibiotic resistance in Pseudomonas aeruginosa. PLoS One 2018; 13:e0204936. [PMID: 30265709 PMCID: PMC6161911 DOI: 10.1371/journal.pone.0204936] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/17/2018] [Indexed: 12/22/2022] Open
Abstract
Virulent strains of Pseudomonas aeruginosa are often associated with an acquired cytotoxic protein, exoenzyme U (ExoU) that rapidly destroys the cell membranes of host cells by its phospholipase activity. Strains possessing the exoU gene are predominant in eye infections and are more resistant to antibiotics. Thus, it is essential to understand treatment options for these strains. Here, we have investigated the resistance profiles and genes associated with resistance for fluoroquinolone and beta-lactams. A total of 22 strains of P. aeruginosa from anterior eye infections, microbial keratitis (MK), and the lungs of cystic fibrosis (CF) patients were used. Based on whole genome sequencing, the prevalence of the exoU gene was 61.5% in MK isolates whereas none of the CF isolates possessed this gene. Overall, higher antibiotic resistance was observed in the isolates possessing exoU. Of the exoU strains, all except one were resistant to fluoroquinolones, 100% were resistant to beta-lactams. 75% had mutations in quinolone resistance determining regions (T81I gyrA and/or S87L parC) which correlated with fluoroquinolone resistance. In addition, exoU strains had mutations at K76Q, A110T, and V126E in ampC, Q155I and V356I in ampR and E114A, G283E, and M288R in mexR genes that are associated with higher beta-lactamase and efflux pump activities. In contrast, such mutations were not observed in the strains lacking exoU. The expression of the ampC gene increased by up to nine-fold in all eight exoU strains and the ampR was upregulated in seven exoU strains compared to PAO1. The expression of mexR gene was 1.4 to 3.6 fold lower in 75% of exoU strains. This study highlights the association between virulence traits and antibiotic resistance in pathogenic P. aeruginosa.
Collapse
Affiliation(s)
- Dinesh Subedi
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
- * E-mail:
| | - Ajay Kumar Vijay
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Gurjeet Singh Kohli
- The Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Scott A. Rice
- The Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
- The School of Biological Sciences, Nanyang Technological University, Singapore
- The ithree institute, The University of Technology Sydney, Sydney NSW Australia
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
20
|
Tam VH, Pérez C, Ledesma KR, Lewis RE. Transcriptional profiles of pulmonary innate immune responses to isogenic antibiotic-susceptible and multidrug-resistant Pseudomonas aeruginosa. Microbiol Immunol 2018; 62:291-294. [PMID: 29418013 DOI: 10.1111/1348-0421.12581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 12/30/2022]
Abstract
The virulence of an isogenic pair of Pseudomonas aeruginosa strains was studied under similar experimental conditions in two animal infection models. The time to death was significantly longer for the multidrug resistant (MDR) than the wild-type strain. The transcriptional profiles of 84 innate immune response genes in the lungs of immune competent Balb/C mice were further compared. Significantly weaker expression of genes involved in production of soluble pattern recognition receptor and complement were observed in animals infected with the MDR strain. Altered patterns of innate immune system activation may explain the attenuated virulence in MDR bacteria.
Collapse
Affiliation(s)
- Vincent H Tam
- University of Houston College of Pharmacy, 4849 Calhoun Road, Houston, TX, 77204, USA
| | - Cynthia Pérez
- University of Houston College of Pharmacy, 4849 Calhoun Road, Houston, TX, 77204, USA
| | - Kimberly R Ledesma
- University of Houston College of Pharmacy, 4849 Calhoun Road, Houston, TX, 77204, USA
| | - Russell E Lewis
- University of Houston College of Pharmacy, 4849 Calhoun Road, Houston, TX, 77204, USA
| |
Collapse
|
21
|
Abodakpi H, Chang KT, Sánchez Díaz AM, Cantón R, Lasco TM, Chan K, Sofjan AK, Tam VH. Prevalence of extended-spectrum beta-lactamase and carbapenemase-producing bloodstream isolates of Klebsiella pneumoniae in a tertiary care hospital. J Chemother 2017; 30:115-119. [PMID: 29125052 DOI: 10.1080/1120009x.2017.1399233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To improve prescribing of empiric therapy, the local molecular epidemiology of extended-spectrum beta-lactamases (ESBLs) and Klebsiella pneumoniae carbapenemases (KPCs) in bloodstream isolates of K. pneumoniae were evaluated. Isolates resistant to third generation cephalosporins were screened phenotypically for ESBLs and carbapenemases, and subsequently confirmed by PCR for the presence of ESBL (blaTEM, blaSHV and blaCTX-M) and carbapenemase (blaKPC, blaVIM, blaNDM and blaOXA-48) genes. Hydrolytic activity (functional gene expression) was quantified using a nitrocefin degradation assay and correlated to ceftazidime or meropenem MIC. Clonality was assessed by repetitive element-based PCR. Beta-lactamases were functionally expressed in 13 isolates (15.5%); 7 (53.8%) harboured blaCTX-M-15 and 6 (46.2%) carried the blaKPC-2 gene. Correlation of hydrolytic activity to MIC yielded a coefficient of 98% for isolates expressing ESBLs alone and 56% for carbapenemase producers. Four unique ESBL-expressing clones and five carbapenem-resistant clones were identified. All 13 resistant isolates were susceptible to ceftazidime/avibactam (MIC ≤ 8/4 mg/L).
Collapse
Affiliation(s)
- Henrietta Abodakpi
- a Department of Pharmacological and Pharmaceutical Sciences , University of Houston College of Pharmacy , Houston , TX , USA
| | - Kai-Tai Chang
- b Department of Pharmacy Practice and Translational Research , University of Houston College of Pharmacy , Houston , TX , USA
| | - Ana María Sánchez Díaz
- c Servicio de Microbiología , Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) , Madrid , Spain
| | - Rafael Cantón
- c Servicio de Microbiología , Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) , Madrid , Spain
| | - Todd M Lasco
- d Department of Pathology , Baylor St. Luke's Medical Center , Houston , TX , USA
| | - Katrina Chan
- a Department of Pharmacological and Pharmaceutical Sciences , University of Houston College of Pharmacy , Houston , TX , USA
| | - Amelia K Sofjan
- b Department of Pharmacy Practice and Translational Research , University of Houston College of Pharmacy , Houston , TX , USA
| | - Vincent H Tam
- a Department of Pharmacological and Pharmaceutical Sciences , University of Houston College of Pharmacy , Houston , TX , USA.,b Department of Pharmacy Practice and Translational Research , University of Houston College of Pharmacy , Houston , TX , USA
| |
Collapse
|
22
|
Haidar G, Philips NJ, Shields RK, Snyder D, Cheng S, Potoski BA, Doi Y, Hao B, Press EG, Cooper VS, Clancy CJ, Nguyen MH. Ceftolozane-Tazobactam for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Infections: Clinical Effectiveness and Evolution of Resistance. Clin Infect Dis 2017; 65:110-120. [PMID: 29017262 PMCID: PMC5848332 DOI: 10.1093/cid/cix182] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/24/2017] [Indexed: 12/22/2022] Open
Abstract
Background Data on the use of ceftolozane-tazobactam and emergence of ceftolozane-tazobactam resistance during multidrug resistant (MDR)-Pseudomonas aeruginosa infections are limited. Methods We performed a retrospective study of 21 patients treated with ceftolozane-tazobactam for MDR-P. aeruginosa infections. Whole genome sequencing and quantitative real-time polymerase chain reaction were performed on longitudinal isolates. Results Median age was 58 years; 9 patients (43%) were transplant recipients. Median simplified acute physiology score-II (SAPS-II) was 26. Eighteen (86%) patients were treated for respiratory tract infections; others were treated for bloodstream, complicated intraabdominal infections, or complicated urinary tract infections. Ceftolozane-tazobactam was discontinued in 1 patient (rash). Thirty-day all-cause and attributable mortality rates were 10% (2/21) and 5% (1/21), respectively; corresponding 90-day mortality rates were 48% (10/21) and 19% (4/21). The ceftolozane-tazobactam failure rate was 29% (6/21). SAPS-II score was the sole predictor of failure. Ceftolozane-tazobactam resistance emerged in 3 (14%) patients. Resistance was associated with de novo mutations, rather than acquisition of resistant nosocomial isolates. ampC overexpression and mutations were identified as potential resistance determinants. Conclusions In this small study, ceftolozane-tazobactam was successful in treating 71% of patients with MDR-P. aeruginosa infections, most of whom had pneumonia. The emergence of ceftolozane-tazobactam resistance in 3 patients is worrisome and may be mediated in part by AmpC-related mechanisms. More research on treatment responses and resistance during various types of MDR-P. aeruginosa infections is needed to define ceftolozane-tazobactam's place in the armamentarium.
Collapse
Affiliation(s)
- Ghady Haidar
- Department of Medicine, University of Pittsburgh
| | - Nathan J Philips
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine
| | - Ryan K Shields
- Department of Medicine, University of Pittsburgh
- Antibiotic Management Program, and
- XDR Pathogen Laboratory, University of Pittsburgh Medical Center
| | - Daniel Snyder
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine
| | - Shaoji Cheng
- XDR Pathogen Laboratory, University of Pittsburgh Medical Center
| | - Brian A Potoski
- Department of Medicine, University of Pittsburgh
- Antibiotic Management Program, and
- Department of Pharmacy and Therapeutics, University of Pittsburgh, and
| | - Yohei Doi
- Department of Medicine, University of Pittsburgh
| | - Binghua Hao
- XDR Pathogen Laboratory, University of Pittsburgh Medical Center
| | | | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine
| | - Cornelius J Clancy
- Department of Medicine, University of Pittsburgh
- XDR Pathogen Laboratory, University of Pittsburgh Medical Center
- VA Pittsburgh Healthcare System, Pennsylvania
| | - M Hong Nguyen
- Department of Medicine, University of Pittsburgh
- Antibiotic Management Program, and
- XDR Pathogen Laboratory, University of Pittsburgh Medical Center
| |
Collapse
|
23
|
Molecular Characterization of Resistance Genes in MDR-ESKAPE Pathogens. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.2.17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Geisinger E, Isberg RR. Interplay Between Antibiotic Resistance and Virulence During Disease Promoted by Multidrug-Resistant Bacteria. J Infect Dis 2017; 215:S9-S17. [PMID: 28375515 DOI: 10.1093/infdis/jiw402] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Diseases caused by antibiotic-resistant bacteria in hospitals are the outcome of complex relationships between several dynamic factors, including bacterial pathogenicity, the fitness costs of resistance in the human host, and selective forces resulting from interventions such as antibiotic therapy. The emergence and fate of mutations that drive antibiotic resistance are governed by these interactions. In this review, we will examine how different forms of antibiotic resistance modulate bacterial fitness and virulence potential, thus influencing the ability of pathogens to evolve in the context of nosocomial infections. We will focus on 3 important multidrug-resistant pathogens that are notoriously problematic in hospitals: Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus. An understanding of how antibiotic resistance mutations shape the pathobiology of multidrug-resistant infections has the potential to drive novel strategies that can control the development and spread of drug resistance.
Collapse
Affiliation(s)
- Edward Geisinger
- Howard Hughes Medical Institute, and.,Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Ralph R Isberg
- Howard Hughes Medical Institute, and.,Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
25
|
Guo C, Wang K, Hou S, Wan L, Lv J, Zhang Y, Qu X, Chen S, Xu J. H 2O 2 and/or TiO 2 photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2017; 323:710-718. [PMID: 27776873 DOI: 10.1016/j.jhazmat.2016.10.041] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
Inactivating antibiotic resistant bacteria (ARB) and removing antibiotic resistance genes (ARGs) are very important to prevent their spread into the environment. Previous efforts have been taken to eliminate ARB and ARGs from aqueous solution and sludges, however, few satisfying results have been obtained. This study investigated whether photocatalysis by TiO2 was able to reduce the two ARGs, mecA and ampC, within the host ARB, methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa, respectively. The addition of H2O2 and matrix effect on the removal of ARB and ARGs were also studied. TiO2 thin films showed great effect on both ARB inactivation and ARGs removal. Approximately 4.5-5.0 and 5.5-5.8 log ARB reductions were achieved by TiO2 under 6 and 12mJ/cm2 UV254 fluence dose, respectively. For ARGs, 5.8 log mecA reduction and 4.7 log ampC reduction were achieved under 120mJ/cm2 UV254 fluence dose in the presence of TiO2. Increasing dosage of H2O2 enhanced the removal efficiencies of ARB and ARGs. The results also demonstrated that photocatalysis by TiO2 was capable of removing both intracellular and extracellular forms of ARGs. This study provided a potential alternative method for the removal of ARB and ARGs from aqueous solution.
Collapse
Affiliation(s)
- Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kai Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Wuxi SensingNet Industrialization Research Institute, Wuxi 214000, China
| | - Song Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Li Wan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiapei Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaodong Qu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, and Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Shuyi Chen
- Wuxi SensingNet Industrialization Research Institute, Wuxi 214000, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
26
|
Morinaka A, Tsutsumi Y, Yamada K, Takayama Y, Sakakibara S, Takata T, Abe T, Furuuchi T, Inamura S, Sakamaki Y, Tsujii N, Ida T. In vitro and in vivo activities of the diazabicyclooctane OP0595 against AmpC-derepressed Pseudomonas aeruginosa. J Antibiot (Tokyo) 2016; 70:246-250. [PMID: 27999441 DOI: 10.1038/ja.2016.150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/04/2016] [Accepted: 11/21/2016] [Indexed: 01/02/2023]
Abstract
Pseudomonas aeruginosa is a common cause for healthcare-associated infections, which have been historically treated by antipseudomonal β-lactam agents in the clinical setting. However, P. aeruginosa has evolved to overcome these β-lactam agents via multiple endogenous resistance mechanisms, including derepression of the chromosomal cephalosporinase (AmpC). In this article, we investigated the effective concentration of OP0595 for combination with piperacillin, cefepime or meropenem in in vitro susceptibility tests, and the antibacterial activity of cefepime in combination with OP0595 in both in vitro time-kill studies and in vivo murine thigh infection model study with AmpC-derepressed P. aeruginosa. The sufficient combinational concentration of OP0595 was a 4 μg ml-1 with all these three β-lactam agents. OP0595 increased the antibacterial activity of cefepime in both in vitro and in vivo studies against all strains tested. Taken together, OP0595 is the diazabicyclooctane serine β-lactamase inhibitor with activity against AmpC-derepressed P. aeruginosa and its combinational use with a β-lactam agent will provide a new approach for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Takao Abe
- Meiji Seika Pharma Co., Ltd., Yokohama, Japan
| | | | | | | | | | - Takashi Ida
- Meiji Seika Pharma Co., Ltd., Yokohama, Japan
| |
Collapse
|
27
|
Mutations in β-Lactamase AmpC Increase Resistance of Pseudomonas aeruginosa Isolates to Antipseudomonal Cephalosporins. Antimicrob Agents Chemother 2015; 59:6248-55. [PMID: 26248364 DOI: 10.1128/aac.00825-15] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/19/2015] [Indexed: 12/22/2022] Open
Abstract
Mutation-dependent overproduction of intrinsic β-lactamase AmpC is considered the main cause of resistance of clinical strains of Pseudomonas aeruginosa to antipseudomonal penicillins and cephalosporins. Analysis of 31 AmpC-overproducing clinical isolates exhibiting a greater resistance to ceftazidime than to piperacillin-tazobactam revealed the presence of 17 mutations in the β-lactamase, combined with various polymorphic amino acid substitutions. When overexpressed in AmpC-deficient P. aeruginosa 4098, the genes coding for 20/23 of these AmpC variants were found to confer a higher (2-fold to >64-fold) resistance to ceftazidime and ceftolozane-tazobactam than did the gene from reference strain PAO1. The mutations had variable effects on the MICs of ticarcillin, piperacillin-tazobactam, aztreonam, and cefepime. Depending on their location in the AmpC structure and their impact on β-lactam MICs, they could be assigned to 4 distinct groups. Most of the mutations affecting the omega loop, the R2 domain, and the C-terminal end of the protein were shared with extended-spectrum AmpCs (ESACs) from other Gram-negative species. Interestingly, two new mutations (F121L and P154L) were predicted to enlarge the substrate binding pocket by disrupting the stacking between residues F121 and P154. We also found that the reported ESACs emerged locally in a variety of clones, some of which are epidemic and did not require hypermutability. Taken together, our results show that P. aeruginosa is able to adapt to efficacious β-lactams, including the newer cephalosporin ceftolozane, through a variety of mutations affecting its intrinsic β-lactamase, AmpC. Data suggest that the rates of ESAC-producing mutants are ≥1.5% in the clinical setting.
Collapse
|
28
|
Tan SYY, Chua SL, Liu Y, Høiby N, Andersen LP, Givskov M, Song Z, Yang L. Comparative genomic analysis of rapid evolution of an extreme-drug-resistant Acinetobacter baumannii clone. Genome Biol Evol 2013; 5:807-18. [PMID: 23538992 PMCID: PMC3673627 DOI: 10.1093/gbe/evt047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The emergence of extreme-drug-resistant (EDR) bacterial strains in hospital and nonhospital clinical settings is a big and growing public health threat. Understanding the antibiotic resistance mechanisms at the genomic levels can facilitate the development of next-generation agents. Here, comparative genomics has been employed to analyze the rapid evolution of an EDR Acinetobacter baumannii clone from the intensive care unit (ICU) of Rigshospitalet at Copenhagen. Two resistant A. baumannii strains, 48055 and 53264, were sequentially isolated from two individuals who had been admitted to ICU within a 1-month interval. Multilocus sequence typing indicates that these two isolates belonged to ST208. The A. baumannii 53264 strain gained colistin resistance compared with the 48055 strain and became an EDR strain. Genome sequencing indicates that A. baumannii 53264 and 48055 have almost identical genomes-61 single-nucleotide polymorphisms (SNPs) were found between them. The A. baumannii 53264 strain was assembled into 130 contigs, with a total length of 3,976,592 bp with 38.93% GC content. The A. baumannii 48055 strain was assembled into 135 contigs, with a total length of 4,049,562 bp with 39.00% GC content. Genome comparisons showed that this A. baumannii clone is classified as an International clone II strain and has 94% synteny with the A. baumannii ACICU strain. The ResFinder server identified a total of 14 antibiotic resistance genes in the A. baumannii clone. Proteomic analyses revealed that a putative porin protein was down-regulated when A. baumannii 53264 was exposed to antimicrobials, which may reduce the entry of antibiotics into the bacterial cell.
Collapse
Affiliation(s)
- Sean Yang-Yi Tan
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
29
|
McKinney CW, Pruden A. Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:13393-400. [PMID: 23153396 DOI: 10.1021/es303652q] [Citation(s) in RCA: 282] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Disinfection of wastewater treatment plant effluent may be an important barrier for limiting the spread of antibiotic-resistant bacteria (ARBs) and antibiotic resistance genes (ARGs). While ideally disinfection should destroy ARGs, to prevent horizontal gene transfer to downstream bacteria, little is known about the effect of conventional water disinfection technologies on ARGs. This study examined the potential of UV disinfection to damage four ARGs, mec(A), van(A), tet(A), and amp(C), both in extracellular form and present within a host ARBs: methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium (VRE), Escherichia coli SMS-3-5, and Pseudomonas aeruginosa 01, respectively. An extended amplicon-length quantitative polymerase chain reaction assay was developed to enhance capture of ARG damage events and also to normalize to an equivalent length of target DNA (∼1000 bp) for comparison. It was found that the two Gram-positive ARBs (MRSA and VRE) were more resistant to UV disinfection than the two Gram-negative ARBs (E. coli and P. aeruginosa). The two Gram-positive organisms also possessed smaller total genome sizes, which could also have reduced their susceptibility to UV because of fewer potential pyrimidine dimer targets. An effect of cell type on damage to ARGs was only observed in VRE and P. aeruginosa, the latter potentially because of extracellular polymeric substances. In general, damage of ARGs required much greater UV doses (200-400 mJ/cm² for 3- to 4-log reduction) than ARB inactivation (10-20 mJ/cm² for 4- to 5-log reduction). The proportion of amplifiable ARGs following UV treatment exhibited a strong negative correlation with the number of adjacent thymines (Pearson r < -0.9; p < 0.0001). ARBs surviving UV treatment were negatively correlated with total genome size (Pearson r < -0.9; p < 0.0001) and adjacent cytosines (Pearson r < -0.88; p < 0.0001) but positively correlated with adjacent thymines (Pearson r > 0.85; p < 0.0001). This suggests that formation of thymine dimers is not the sole mechanism of ARB inactivation. Overall, the results indicate that UV is limited in its potential to damage ARGs and other disinfection technologies should be explored.
Collapse
Affiliation(s)
- Chad W McKinney
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
30
|
Phenotypic detection and polymerase chain reaction screening of extended-spectrum β-lactamases produced by Pseudomonas aeruginosa isolates. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2012; 45:200-7. [DOI: 10.1016/j.jmii.2011.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 07/14/2011] [Accepted: 08/09/2011] [Indexed: 11/22/2022]
|
31
|
Development of a colorimetric assay for rapid quantitative measurement of clavulanic acid in microbial samples. SCIENCE CHINA-LIFE SCIENCES 2012; 55:158-63. [PMID: 22415687 DOI: 10.1007/s11427-012-4287-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 01/17/2012] [Indexed: 10/28/2022]
Abstract
We developed a colorimetric assay to quantify clavulanic acid (CA) in culture broth of Streptomyces clavuligerus, to facilitate screening of a large number of S. clavuligerus mutants. The assay is based on a β-lactamase-catalyzed reaction, in which the yellow substrate nitrocefin (λ (max)=390 nm) is converted to a red product (λ (max)=486 nm). Since CA can irreversibly inhibit β-lactamase activity, the level of CA in a sample can be measured as a function of the A (390)/A (486) ratio in the assay mixture. The sensitivity and detection window of the assay were determined to be 50 μg L(-1) and 50 μg L(-1) to 10 mg L(-1), respectively. The reliability of the assay was confirmed by comparing assay results with those obtained by HPLC. The assay was used to screen a pool of 65 S. clavuligerus mutants and was reliable for identifying CA over-producing mutants. Therefore, the assay saves time and labor in large-scale mutant screening and evaluation tasks. The detection window and the reliability of this assay are markedly better than those of previously reported CA assays. This assay method is suitable for high throughput screening of microbial samples and allows direct visual observation of CA levels on agar plates.
Collapse
|
32
|
Abstract
Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us?
Collapse
Affiliation(s)
- Keith Poole
- Department of Microbiology and Immunology, Queen's University Kingston, ON, Canada
| |
Collapse
|
33
|
Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2011; 2:65. [PMID: 21747788 PMCID: PMC3128976 DOI: 10.3389/fmicb.2011.00065] [Citation(s) in RCA: 561] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/24/2011] [Indexed: 01/04/2023] Open
Abstract
Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us?
Collapse
Affiliation(s)
- Keith Poole
- Department of Microbiology and Immunology, Queen's University Kingston, ON, Canada
| |
Collapse
|
34
|
Hirsch EB, Tam VH. Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert Rev Pharmacoecon Outcomes Res 2010; 10:441-51. [PMID: 20715920 DOI: 10.1586/erp.10.49] [Citation(s) in RCA: 289] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rates of antibiotic resistance in Pseudomonas aeruginosa are increasing worldwide. The multidrug-resistant (MDR) phenotype in P. aeruginosa could be mediated by several mechanisms including multidrug efflux systems, enzyme production, outer membrane protein (porin) loss and target mutations. Currently, no international consensus on the definition of multidrug resistance exists, making direct comparison of the literature difficult. Inappropriate empirical therapy has been associated with increased mortality in P. aeruginosa infections; delays in starting appropriate therapy may contribute to increased length of hospital stay and persistence of infection. In addition, worse clinical outcomes may be associated with MDR infections owing to limited effective antimicrobial options. This article aims to summarize the contemporary literature on patient outcomes following infections caused by drug-resistant P. aeruginosa. The impact of antimicrobial therapy on patient outcomes, mortality and morbidity; and the economic impact of MDR P. aeruginosa infections will be examined.
Collapse
Affiliation(s)
- Elizabeth B Hirsch
- University of Houston College of Pharmacy, 1441 Moursund Street, Houston, TX 77030, USA
| | | |
Collapse
|
35
|
Zhao WH, Hu ZQ. β-Lactamases identified in clinical isolates ofPseudomonas aeruginosa. Crit Rev Microbiol 2010; 36:245-58. [DOI: 10.3109/1040841x.2010.481763] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Soberón JR, Sgariglia MA, Sampietro DA, Quiroga EN, Sierra MG, Vattuone MA. Purification and identification of antibacterial phenolics from Tripodanthus acutifolius leaves. J Appl Microbiol 2009; 108:1757-68. [PMID: 19922598 DOI: 10.1111/j.1365-2672.2009.04579.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS To perform an activity-guided purification, identification and quantification of antibacterial compounds from Tripodanthus acutifolius infusion. To validate the antibacterial activity of purified substances. METHODS AND RESULTS Bioautographic methods were employed as screening assays for purifying bioactive substances. Purification procedures included sephadex LH-20 column chromatography and reverse phase HPLC. Identification was achieved by spectroscopic methods (UV-Vis, MS, NMR and polarimetry) and chromatographic assays (paper chromatography and HPLC). Antibacterial activity was studied by microdilution, colony count and photometric assays, Sytox green stain and transmission electron microscopy (TEM). Four glycoflavonoids (rutin, nicotiflorin, hyperoside and isoquercitrin) and an unusual phenylbutanoid glycoside (tripodantoside) were purified and identified. Tripodantoside was found at 6.59 +/- 0.82 g per 100 g of dry leaves. The flavonoids showed bactericidal effect at a concentration of 4 mg ml(-1) against Staphylococcus aureus and Pseudomonas aeruginosa strains from American Type Culture Collection, while tripodantoside was almost four times more active than those compounds, with a minimum bactericidal concentration = 1.024 mg ml(-1) against these strains. Tripodantoside aglycone showed bacteriolytic effects on the assayed strains, causing evident damages on cell wall and membrane, while tripodantoside did not exhibit those effects. CONCLUSIONS The antibacterial activity of T. acutifolius infusion would be partially attributed to the purified glycoflavonoids and mainly to tripodantoside. SIGNIFICANCE AND IMPACT The high extraction yield and the antibacterial activity exhibited by tripodantoside makes this chemical structure of interest to support further studies dealing with chemical modifications to increase the antibacterial activity or to seek another activities.
Collapse
Affiliation(s)
- J R Soberón
- Cátedra de Fitoquímica, Instituto de Estudios Vegetales Dr. A.R. Sampietro, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho, San Miguel de Tucumán, Tucumán, Argentina
| | | | | | | | | | | |
Collapse
|
37
|
Impact of AmpC overexpression on outcomes of patients with Pseudomonas aeruginosa bacteremia. Diagn Microbiol Infect Dis 2009; 63:279-85. [PMID: 19135330 DOI: 10.1016/j.diagmicrobio.2008.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 10/29/2008] [Accepted: 11/11/2008] [Indexed: 12/24/2022]
Abstract
AmpC overexpression (AmpC++) is a significant mechanism of beta-lactam resistance in Pseudomonas aeruginosa, but its impact on clinical outcomes is not well established. To examine the influence of AmpC++ on clinical outcomes of patients with P. aeruginosa bacteremia, we screened all bloodstream P. aeruginosa isolates obtained from 2003 to 2006 for AmpC++. Demographics and outcomes were retrospectively compared between patients with P. aeruginosa bacteremia caused by AmpC++ and pan-susceptible strains (wild-type controls). Of the 263 isolates screened, 63 (24.0%) were nonsusceptible to ceftazidime. Clinical data of 42 AmpC++ isolates from 21 patients were compared with 33 control patients. The 2 groups were similar in sex and race. Patients in the AmpC++ group was more likely to receive inappropriate empiric antibiotics (odds ratio [OR] = 67.5; 95% confidence interval [CI], 6.3-720.0) and experience microbiologic persistence (OR = 12.2; 95% CI, 1.7-87.7). In institutions with a high prevalence of AmpC++, empiric therapy with agents with activity against AmpC++ strains may be warranted.
Collapse
|
38
|
Sec- and Tat-dependent translocation of beta-lactamases across the Escherichia coli inner membrane. Antimicrob Agents Chemother 2008; 53:242-8. [PMID: 18981261 DOI: 10.1128/aac.00642-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
beta-Lactamases represent the major resistance mechanism of gram-negative bacteria against beta-lactam antibiotics. The amino acid sequences of these proteins vary widely, but all are located in the periplasm of bacteria. In this study, we investigated the translocation mechanism of representative beta-lactamases in an Escherichia coli model. N-terminal signal sequence analyses, antibiotic activity assay, and direct measurement of translocation of a green fluorescent protein (GFP) reporter fused to beta-lactamases revealed that most were exported via the Sec pathway. However, the Stenotrophomonas maltophilia L2 beta-lactamase was exported via the E. coli Tat translocase, while the S. maltophilia L1 beta-lactamase was Sec dependent. These results show the possible Tat-dependent translocation of beta-lactamases in the E. coli model system. In addition, the mutation of the cytoskeleton-encoding gene mreB, which may be involved in the spatial organization of penicillin-binding proteins, decreased the MIC of beta-lactams for beta-lactamase-producing E. coli. These findings provide new knowledge about beta-lactamase translocation, a putative new target for addressing beta-lactamase-mediated resistance.
Collapse
|
39
|
Identification of Two Multidrug-Resistant Pseudomonas aeruginosa Clonal Lineages with a Countrywide Distribution in Hungary. Curr Microbiol 2008; 58:111-6. [DOI: 10.1007/s00284-008-9285-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2008] [Accepted: 09/08/2008] [Indexed: 01/29/2023]
|
40
|
Role of ampD homologs in overproduction of AmpC in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2008; 52:3922-7. [PMID: 18779353 DOI: 10.1128/aac.00341-08] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AmpD indirectly regulates the production of AmpC beta-lactamase via the cell wall recycling pathway. Recent publications have demonstrated the presence of multiple ampD genes in Pseudomonas aeruginosa and Escherichia coli. In the prototype P. aeruginosa strain, PAO1, the three ampD genes (ampD, ampDh2, and ampDh3) contribute to a stepwise regulation of ampC beta-lactamase and help explain the partial versus full derepression of ampC. In the present study, the roles of the three ampD homologs in nine clinical P. aeruginosa isolates with either partial or full derepression of ampC were evaluated. In eight of nine isolates, decreased RNA expression of the ampD genes was not associated with an increase in ampC expression. Sequence analyses revealed that every derepressed isolate carried mutations in ampD, and in two fully derepressed strains, only ampD was mutated. Furthermore, every ampDh2 gene was of the wild type, and in some fully derepressed isolates, ampDh3 was also of the wild type. Mutations in ampD and ampDh3 were tested for their effect on function by using a plasmid model system, and the observed mutations resulted in nonfunctional AmpD proteins. Therefore, although the sequential deletion of the ampD homologs of P. aeruginosa can explain partial and full derepression in PAO1, the same model does not explain the overproduction of AmpC observed in these clinical isolates. Overall, the findings of the present study indicate that there is still an unknown factor(s) that contributes to ampC regulation in P. aeruginosa.
Collapse
|
41
|
Tam VH, Gamez EA, Weston JS, Gerard LN, Larocco MT, Caeiro JP, Gentry LO, Garey KW. Outcomes of bacteremia due to Pseudomonas aeruginosa with reduced susceptibility to piperacillin-tazobactam: implications on the appropriateness of the resistance breakpoint. Clin Infect Dis 2008; 46:862-7. [PMID: 18279040 DOI: 10.1086/528712] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Bacteremia due to Pseudomonas aeruginosa is associated with grave clinical outcomes. Recent studies have emphasized the importance of appropriate empirical therapy, but controversy arises when piperacillin-tazobactam is used against isolates with reduced susceptibility. METHODS We performed a retrospective cohort study of pseudomonal bacteremia from 2002 to 2006. Patients were identified by the microbiology laboratory database, and pertinent clinical data (demographic characteristics, baseline Acute Physiology and Chronic Health Evaluation [APACHE] II scores, source of bacteremia, and therapy) were retrieved from the electronic medical records. All patients received appropriate empirical therapy within 24 h of positive culture results. Patients receiving piperacillin-tazobactam were compared with those receiving other agents (control subjects). The primary outcome was 30-day mortality from the first day of bacteremia. RESULTS A total of 34 bacteremia episodes were identified involving isolates with reduced susceptibility to piperacillin-tazobactam (minimum inhibitory concentration, 32 or 64 mg/L, reported as susceptible); piperacillin-tazobactam was empirically given in 7 episodes. There was no significant difference in baseline characteristics between the 2 groups. Thirty-day mortality was found to be 85.7% in the piperacillin-tazobactam group and 22.2% in the control group (P = .004). Time to hospital mortality was also found to be shorter in the piperacillin-tazobactam group (P < .001). In the multivariate analysis, 30-day mortality was found to be associated with empirical piperacillin-tazobactam therapy (odds ratio, 220.5; 95% confidence interval, 3.8-12707.4; P = .009), after adjustment for differences in age and APACHE II score. CONCLUSIONS In P. aeruginosa bacteremia due to isolates with reduced piperacillin-tazobactam susceptibility, empirical piperacillin-tazobactam therapy was associated with increased mortality. Additional studies are warranted to examine the appropriateness of the current Clinical Laboratory Standards Institute resistance breakpoint of piperacillin-tazobactam.
Collapse
Affiliation(s)
- Vincent H Tam
- University of Houston College of Pharmacy, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Tam VH, Chang KT, LaRocco MT, Schilling AN, McCauley SK, Poole K, Garey KW. Prevalence, mechanisms, and risk factors of carbapenem resistance in bloodstream isolates of Pseudomonas aeruginosa. Diagn Microbiol Infect Dis 2007; 58:309-14. [PMID: 17617302 DOI: 10.1016/j.diagmicrobio.2007.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 05/07/2007] [Accepted: 05/12/2007] [Indexed: 01/04/2023]
Abstract
We examined the prevalence of various carbapenem resistance mechanisms in Pseudomonas aeruginosa bloodstream isolates from a university-affiliated hospital. Isolates obtained in 2003 and 2004 were screened for meropenem/imipenem resistance, and clonality was assessed by repetitive-element-based polymerase chain reaction. The presence of carbapenemase and AmpC overexpression was ascertained by spectrophotometric assays. Outer membrane protein profiles were examined by sodium dodecyl sulfate polyacrylamide gel electrophoresis, and efflux pump overexpression was confirmed by Western blotting. We examined 129 nonrepeat isolates; 21 isolates (from 13 distinct clones) were resistant to meropenem or imipenem (prevalence rate = 16.3%). Nineteen (90.5%) carbapenem-resistant isolates had reduced OprD expression, and 6 (28.6%) isolates had overexpression of MexB. Increased length of hospital stay was identified as a significant risk factor for bacteremia due to carbapenem-resistant P. aeruginosa. Understanding the prevalence and mechanism of carbapenem resistance in P. aeruginosa may guide empiric therapy for nosocomial infections in our hospital.
Collapse
Affiliation(s)
- Vincent H Tam
- Department of Clinical Sciences and Administration, University of Houston College of Pharmacy, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|