1
|
Rouhi F, Erami M, Rastgufar S, Jahani M, Aboutalebian S, Soltani S, Fakhim H, Mirhendi H. Quantitative real time PCR for distinction between Pneumocystis jirovecii infection/colonization in hospitalized patients. Front Cell Infect Microbiol 2024; 14:1426200. [PMID: 39380728 PMCID: PMC11458531 DOI: 10.3389/fcimb.2024.1426200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Background Identification of the opportunistic fungus Pneumocystis jirovecii in respiratory specimens presents challenges, particularly in differentiating between colonization and active infection. The present study assessed a probe-based real time PCR (qPCR) diagnostic effectiveness in patients with diverse underlying conditions, particularly those with COVID-19 and pulmonary insufficiency. Methods To set up the qPCR, clinical samples from 281 patients with respiratory ailments were tested. Subsequently, a descriptive study was conducted on 112 patients with pulmonary insufficiency with and without COVID-19 suspected of P. jirovecii infection. All specimens were subjected to DNA extraction followed by nested PCR and qPCR targeting the mitochondrial large subunit (mtLSU)-rRNA gene. Results Based on nested PCR and qPCR, P. jirovecii was identified in 40 out of 281 patients, with slight variations in positive samples observed across dilutions. Three patients who tested positive in nested PCR yielded negative results in probe-based qPCR. Conversely, three patients who tested positive in probe-based qPCR yielded negative results in nested PCR. Considering nested PCR as the golden standard, probe-based qPCR demonstrated good diagnostic performance, with 92.5% sensitivity and 98.7% specificity. Based on cycle threshold (Ct) values, the positive cases were categorized: ≤32 as infection, >35 as colonization, and a grey zone between these values (32 < X ≤ 35). The analysis of 112 PCP-suspected patients revealed a prevalence ranging from 6.25% (nested PCR) to 7% (probe-based qPCR). Conclusions This study suggested Ct values to differentiate Pneumocystis pneumonia/colonization in immunocompromised patients. To further augment the diagnostic sensitivity, it is recommended to integrate qPCR results with clinical parameters and biomarkers to offer a more precise understanding of Pneumocystis-related conditions.
Collapse
Affiliation(s)
- Faezeh Rouhi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahzad Erami
- Department of Infectious Disease, School of Medicine, Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Sepide Rastgufar
- Department of Pathology and Histology, School of Medicine, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Jahani
- Department of Infectious Disease, School of Medicine, Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Shima Aboutalebian
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Mycology Reference Laboratory, Research Core Facilities Laboratory, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sajedeh Soltani
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Fakhim
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Mirhendi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Mycology Reference Laboratory, Research Core Facilities Laboratory, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Node J, Scherer E, Millon L, Bellanger AP. Commercial loop-mediated isothermal amplification (LAMP) assay for rapid diagnosis of Pneumocystis pneumonia: An alternative to immunofluorescence assays. J Mycol Med 2024; 34:101508. [PMID: 39216165 DOI: 10.1016/j.mycmed.2024.101508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
A commercial loop-mediated isothermal amplification (LAMP) assay is available for the detection of Pneumocytis jirovecii (Eazyplex®, Amplex diagnostics, Germany). Few centers currently use this LAMP assay in France. Recently, the commercialization of reagents used to perform the P. jirovecii immunofluorescence assay (IFA) was stopped. This study aimed to assess the position of the commercial LAMP P. jirovecii assay in the diagnostic strategy for Pneumocystis pneumonia. Over 24 months (August 1, 2021, to September 1, 2023), all bronchoalveolar lavage fluid (BALF) samples with a request for P. jirovecii detection were analyzed with the commercial Eazyplex® LAMP assay, using a Genie 2® device (Amplex, diagnostics), in parallel with the techniques used for direct examination. Specific P. jirovecii quantitative real-time PCR (qPCR) was subsequently performed. In total, 346 BALF samples were analyzed by Diff-Quik coloration, IFA, and the commercial Eazyplex® LAMP assay for initial screening. Twenty-six cases of PCP were retained based on radiological, biological and clinical criteria. Among the 26 cases of PCP, 11 BALF samples were positive using the initial screening techniques: four with the three techniques, six by IFA and Eazyplex®, and one only by IFA. The eleven BALF samples were positive with the specific P. jirovecii qPCR assay, with a mean quantification cycle (Cq) of 27 [19-32]. The commercial Eazyplex® LAMP assay is able to provide a result in 25 min and its sensitivity is similar to that of BALF direct examination techniques, such as IFA, which is a technique no longer available on the European market. The sensitivity of the commercial Eazyplex® LAMP assay is however clearly inferior to that of the specific P. jirovecii qPCR assay and, therefore, cannot replace the specific qPCR, but may have a place in the diagnostic strategy.
Collapse
Affiliation(s)
- J Node
- Department of Parasitology-Mycology, University Hospital of Besancon, Besancon, France
| | - E Scherer
- Department of Parasitology-Mycology, University Hospital of Besancon, Besancon, France; Chrono-Environment Research Team UMR/CNRS-6249, University of Bourgogne Franche-Comté, Besançon, France
| | - L Millon
- Department of Parasitology-Mycology, University Hospital of Besancon, Besancon, France; Chrono-Environment Research Team UMR/CNRS-6249, University of Bourgogne Franche-Comté, Besançon, France
| | - A P Bellanger
- Department of Parasitology-Mycology, University Hospital of Besancon, Besancon, France; Chrono-Environment Research Team UMR/CNRS-6249, University of Bourgogne Franche-Comté, Besançon, France.
| |
Collapse
|
3
|
Liu L, Ji T, Chen R, Fan L, Dai J, Qiu Y. High prevalence of pneumocystis pneumonia in interstitial lung disease: a retrospective study. Infection 2024; 52:985-993. [PMID: 38147199 DOI: 10.1007/s15010-023-02148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Interstitial lung disease (ILD) is a new risk category for pneumocystis pneumonia (PCP) with a high mortality rate. The definite diagnostic criteria of PCP in ILD patients have not been established until now. The aims of this study were to identify potential risk factors of PCP in patients with ILD, and to evaluate the performance of metagenomic next-generation sequencing (mNGS), CD4 + T cell count, (1-3)-β-D-Glucan (BG) and lactate dehydrogenase (LDH) in the diagnosis of PCP in ILD patients. METHODS This is a retrospective, single-center, case-control study. ILD patients who underwent mNGS from December 2018 to December 2022 were included in the study. Based on the diagnosis criteria of PCP, these patients were divided into PCP-ILD and non-PCP-ILD groups. The potential risk factors for PCP occurrence in ILD patients were analysed via logistic regression. The diagnostic efficacy of mNGS was compared with serological biomarkers. RESULTS 92 patients with ILD were enrolled, 31 of which had a definite PCP and were assigned to the PCP-ILD group while 61 were to the non-PCP-ILD group. The infection rate of PJ in ILD patients was 33.7% (31/92). The history of glucocorticoid therapy, CD4 + T cell count, BG level and traction bronchiectasis on HRCT were associated with PCP occurrence in ILD patients. LDH level did not reach statistical significance in the logistic regression analysis. mNGS was confirmed as the most accurate test for PCP diagnosis in ILD patients. CONCLUSION ILD is a new risk group of PCP with high PCP prevalence. Clinicians should pay close attention to the occurrence of PCP in ILD patients who possess the risk factors of previous glucocorticoid therapy, decreased CD4 + T cell count, increased BG level and absence of traction bronchiectasis on HRCT. mNGS showed the most excellent performance for PCP diagnosis in ILD patients. Peripheral blood CD4 + T cell count and BG level are alternative diagnostic methods for PCP in ILD patients. However, the diagnostic value of serum LDH level was limited in ILD patients.
Collapse
Affiliation(s)
- Ling Liu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Tong Ji
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Ranxun Chen
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Li Fan
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Jinghong Dai
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Yuying Qiu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
4
|
Orozco-Ugarriza ME, Olivo-Martínez Y, Rodger-Cervantes YE. Protocol for the systematic review of the Pneumocystis jirovecii-associated pneumonia in non-HIV immunocompromised patients. PLoS One 2024; 19:e0302055. [PMID: 38722952 PMCID: PMC11081338 DOI: 10.1371/journal.pone.0302055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/25/2024] [Indexed: 05/13/2024] Open
Abstract
INTRODUCTION Pneumocystis jirovecii pneumonia (PJP) is a well-known and frequent opportunistic infection in HIV patients. However, there has been an increase in the number of reports of PJP in other immunosuppressed patients with autoimmune inflammatory disorders or because of chemotherapy and high doses of steroids, especially when used in combination as part of immunosuppressive therapy. OBJECTIVE Despite the increasing importance of PJP in non-HIV patients, there is a lack of comprehensive and updated information on the epidemiology, pathogenesis, diagnosis, microbiology, treatments, and prophylaxis of this infection in this population. Therefore, the objective of this systematic review is to synthesize information on these aspects, from a perspective of evidence-based medicine. METHODS The protocol is prepared following the preferred reporting items for systematic reviews and meta-analyses (PRISMA-P) guidelines. We will perform a systematic review of literature published between January 2010 and July 2023, using the databases PubMed, Google Scholar, ScienceDirect, and Web of Science. In addition, manual searches will be carried out through related articles, and references to included articles. The main findings and clinical outcomes were extracted from all the eligible studies with a standardized instrument. Two authors will independently screen titles and abstracts, review full texts, and collect data. Disagreements will be resolved by discussion, and a third reviewer will decide if there is no consensus. We will synthesize the results using a narrative or a meta-analytic approach, depending on the heterogeneity of the studies. EXPECTED RESULTS It is expected that this systematic review will provide a comprehensive and up-to-date overview of the state-of-the-art of PJP in non-HIV patients. Furthermore, the study will highlight possible gaps in knowledge that should be addressed through new research. CONCLUSIONS Here, we present the protocol for a systematic review which will consider all existing evidence from peer-reviewed publication sources relevant to the primary and secondary outcomes related to diagnosing and managing PJP in non-HIV patients.
Collapse
Affiliation(s)
- Mauricio Ernesto Orozco-Ugarriza
- Grupo de Investigación en Microbiología y Ambiente (GIMA), Universidad de San Buenaventura, Cartagena, Colombia
- Grupo de Investigación Traslacional en Biomedicina y Biotecnología (GITB&B), Corporación para el Desarrollo de la Investigación en Biomedicina & Biotecnología, Cartagena, Colombia
| | - Yenifer Olivo-Martínez
- Grupo de Investigación en Microbiología y Ambiente (GIMA), Universidad de San Buenaventura, Cartagena, Colombia
- Biochemistry and Diseases Research Group, Facultad de Medicina, Universidad de Cartagena, Cartagena, Colombia
| | - Yuranis E. Rodger-Cervantes
- Graduated from the Bacteriology and Clinical Laboratory Program, Faculty of Health Sciences, Universidad de San Buenaventura Cartagena, Cartagena, Colombia
| |
Collapse
|
5
|
McDonald EG, Afshar A, Assiri B, Boyles T, Hsu JM, Khuong N, Prosty C, So M, Sohani ZN, Butler-Laporte G, Lee TC. Pneumocystis jirovecii pneumonia in people living with HIV: a review. Clin Microbiol Rev 2024; 37:e0010122. [PMID: 38235979 PMCID: PMC10938896 DOI: 10.1128/cmr.00101-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Pneumocystis jirovecii is a ubiquitous opportunistic fungus that can cause life-threatening pneumonia. People with HIV (PWH) who have low CD4 counts are one of the populations at the greatest risk of Pneumocystis jirovecii pneumonia (PCP). While guidelines have approached the diagnosis, prophylaxis, and management of PCP, the numerous studies of PCP in PWH are dominated by the 1980s and 1990s. As such, most studies have included younger male populations, despite PCP affecting both sexes and a broad age range. Many studies have been small and observational in nature, with an overall lack of randomized controlled trials. In many jurisdictions, and especially in low- and middle-income countries, the diagnosis can be challenging due to lack of access to advanced and/or invasive diagnostics. Worldwide, most patients will be treated with 21 days of high-dose trimethoprim sulfamethoxazole, although both the dose and the duration are primarily based on historical practice. Whether treatment with a lower dose is as effective and less toxic is gaining interest based on observational studies. Similarly, a 21-day tapering regimen of prednisone is used for patients with more severe disease, yet other doses, other steroids, or shorter durations of treatment with corticosteroids have not been evaluated. Now with the widespread availability of antiretroviral therapy, improved and less invasive PCP diagnostic techniques, and interest in novel treatment strategies, this review consolidates the scientific body of literature on the diagnosis and management of PCP in PWH, as well as identifies areas in need of more study and thoughtfully designed clinical trials.
Collapse
Affiliation(s)
- Emily G. McDonald
- Division of General Internal Medicine, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
- Canadian Medication Appropriateness and Deprescribing Network, Montreal, Quebec, Canada
| | - Avideh Afshar
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Bander Assiri
- Division of Experimental Medicine, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Tom Boyles
- Right to Care, NPC, Centurion, South Africa
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jimmy M. Hsu
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Ninh Khuong
- Canadian Medication Appropriateness and Deprescribing Network, Montreal, Quebec, Canada
| | - Connor Prosty
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Miranda So
- Sinai Health System-University Health Network Antimicrobial Stewardship Program, University of Toronto, Toronto, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Zahra N. Sohani
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Guillaume Butler-Laporte
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Todd C. Lee
- Division of Experimental Medicine, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Azoulay E, Maertens J, Lemiale V. How I manage acute respiratory failure in patients with hematological malignancies. Blood 2024; 143:971-982. [PMID: 38232056 DOI: 10.1182/blood.2023021414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
ABSTRACT Acute respiratory failure (ARF) is common in patients with hematological malignancies notably those with acute leukemia, myelodysplastic syndrome, or allogeneic stem cell transplantation. ARF is the leading reason for intensive care unit (ICU) admission, with a 35% case fatality rate. Failure to identify the ARF cause is associated with mortality. A prompt, well-designed diagnostic workup is crucial. The investigations are chosen according to pretest diagnostic probabilities, estimated by the DIRECT approach: D stands for delay, or time since diagnosis; I for pattern of immune deficiency; R and T for radiological evaluation; E refers to clinical experience, and C to the clinical picture. Thorough familiarity with rapid diagnostic tests helps to decrease the use of bronchoscopy with bronchoalveolar lavage, which can cause respiratory status deterioration in those patients with hypoxemia. A prompt etiological diagnosis shortens the time on unnecessary empirical treatments, decreasing iatrogenic harm and costs. High-quality collaboration between intensivists and hematologists and all crossdisciplinary health care workers is paramount. All oxygen delivery systems should be considered to minimize invasive mechanical ventilation. Treatment of the malignancy is started or continued in the ICU under the guidance of the hematologists. The goal is to use the ICU as a bridge to recovery, with the patient returning to the hematology ward in sufficiently good clinical condition to receive optimal anticancer treatment.
Collapse
Affiliation(s)
- Elie Azoulay
- Intensive Care Department, Saint-Louis University Hospital, Paris-Cité University, Paris, France
| | - Johan Maertens
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Virginie Lemiale
- Intensive Care Department, Saint-Louis University Hospital, Paris-Cité University, Paris, France
| |
Collapse
|
7
|
Bian W, Shang Y, Zhao L, Wang K, Li R, Chen Y, Ma X, He Y, Yu W, Chen X, Liu C, Ni W, Gao Z. Clinical performance of BALF droplet digital PCR for differential diagnosis of Pneumocystis jirovecii pneumonia and Pneumocystis jirovecii colonization. Diagn Microbiol Infect Dis 2024; 108:116168. [PMID: 38184984 DOI: 10.1016/j.diagmicrobio.2023.116168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/24/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Accurate differentiation between Pneumocystis jirovecii (Pj) infection and colonization is crucial for effective treatment. METHODS From September 2016 to June 2022, 89 immunocompromised patients with unexplained lung infiltrates and clinical suspicion of Pj pneumonia were enrolled at Peking University People's Hospital. Bronchoalveolar lavage fluid (BALF) of these patients were detected by quantitative PCR (qPCR) and droplet digital PCR (ddPCR). RESULTS The performance of ddPCR was superior to qPCR in detecting Pj infection. Area under the curve was 0.97 (95 %CI: 0.94-1) for ddPCR of the BALF in all patients. The optimal threshold value for discriminating Pj infection from colonization by ddPCR was 13.98 copies/test, with a sensitivity of 97.96 %, specificity of 85.71 %. No obvious correlation between ddPCR copy number and disease severity was observed. CONCLUSION BALF ddPCR exhibits robust potential in detecting Pj and effectively discriminating colonization and infection.
Collapse
Affiliation(s)
- Wenjie Bian
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Beijing, China
| | - Ying Shang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Beijing, China
| | - Lili Zhao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Beijing, China
| | - Keqiang Wang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Beijing, China
| | - Ran Li
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Beijing, China
| | - Yanwen Chen
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Beijing, China
| | - Xinqian Ma
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Beijing, China
| | - Yukun He
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Beijing, China
| | - Wenyi Yu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Beijing, China
| | - Xi Chen
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Beijing, China
| | - Chunyu Liu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Beijing, China
| | - Wentao Ni
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Beijing, China
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Beijing, China.
| |
Collapse
|
8
|
Gudisa R, Harchand R, Rudramurthy SM. Nucleic-Acid-Based Molecular Fungal Diagnostics: A Way to a Better Future. Diagnostics (Basel) 2024; 14:520. [PMID: 38472992 DOI: 10.3390/diagnostics14050520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The world has seen a tremendous increase in the number of fungal infections during the past two decades. Recently, the World Health Organisation released the pathogen priority list for fungal infections, signifying the importance of these infections in the fields of research and public health. Microbiology laboratories demand an upgrade in the diagnostic system to keep up with the increased burden of these infections. Diagnosis of fungal infections using conventional techniques has always faced limitations in terms of specificity, sensitivity, and turnaround time. Although these methods are the core pillars of the diagnosis, there is an increased need for molecular approaches. Molecular techniques have revolutionised the field of fungal diagnostics. The diverse array of molecular techniques, including techniques like Polymerase Chain Reaction (PCR), have emerged as a cornerstone in fungal diagnostics. Molecular techniques have transformed fungal diagnostics, providing powerful tools for the rapid and accurate identification of pathogens. As these technologies continue to evolve, their integration into routine clinical practice holds the promise of improving patient outcomes through timely and targeted antifungal interventions. This review will cover the molecular approaches involved in fungal diagnostics, moving from the basic techniques to the advanced-level nucleic-acid-based molecular approaches providing a high throughput and decreased turnaround time for the diagnosis of serious fungal infections.
Collapse
Affiliation(s)
- Rajendra Gudisa
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Ritika Harchand
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
9
|
Robin C, Cordonnier C, Tridello G, Knelange N, Xhaard A, Chantepie S, Tanguy-Schmidt A, Schouten HC, Yeshurun M, Rocha V, Srour M, Kröger N, Ledoux MP, Dalgaard J, Thiebaut A, Giardino S, Calore E, Zuckerman T, Groll AH, Raida L, Avcin S, Vicent MG, Kaare A, Drozd-Sokolowska J, Turlure P, Bretagne S, Mikulska M, Camara RDL, Cesaro S, Styczynski J. Pneumocystis Pneumonia After Allogeneic Hematopoietic Cell Transplantation: A Case-Control Study on Epidemiology and Risk Factors on Behalf of the Infectious Diseases Working Party of the European Society for Blood and Marrow Transplantation. Transplant Cell Ther 2024; 30:235.e1-235.e10. [PMID: 38007092 DOI: 10.1016/j.jtct.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
Pneumocystis pneumonia (PCP) is a life-threatening complication after allogeneic hematopoietic cell transplantation (allo-HCT). However, allo-HCT procedures have evolved toward older patients, unrelated donors, and reduced-intensity conditioning, possibly modifying the risks. Polymerase chain reaction (PCR), widely used nowadays, is more sensitive than microscopy diagnostic methods. This study aimed to assess the factors associated with PCP in allo-HCT recipients within 2 years of HCT and managed according to current procedures. This multicenter, nested case-control study included PCP cases diagnosed by PCR, cytology, or immunofluorescence on bronchoalveolar lavage fluid between 2016 and 2018. Two controls per case were selected from the ProMISe registry and matched for the center, transplant date, and underlying disease. Fifty-two cases and 104 controls were included among the 5452 patients who underwent allo-HCT in the participating centers. PCP occurred at a median of 11.5 months after transplantation. The mortality rate was 24% on day 30 after the PCP diagnosis and 37% on day 90. The clinical presentation and mortality rates of the 24 patients diagnosed using only PCR were not different from those diagnosed with microscopy methods. Our study demonstrates a substantial incidence of, and mortality from, PCP, after allogeneic HCT despite well-established prophylactic approaches. In our experience, PCP nowadays occurs later after transplant than previously reported, justifying the prolongation of prophylaxis after six months in many cases. Allo-HCT recipients diagnosed with PCR as the only PCP marker should benefit from specific treatment as for other patients.
Collapse
Affiliation(s)
- Christine Robin
- Department of Haematology, Henri Mondor University Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Créteil, France.
| | - Catherine Cordonnier
- Department of Haematology, Henri Mondor University Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Créteil, France
| | - Gloria Tridello
- Department of Mother and Child, Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | | | - Alienor Xhaard
- Haematology Transplant Unit, APHP, Saint-Louis Hospital, Paris, France
| | - Sylvain Chantepie
- Basse-Normandie Haematology Institute, Caen University Hospital, Caen, France
| | - Aline Tanguy-Schmidt
- Blood Diseases Department, France Federation University Hospital "Grand Ouest against Leukemia", Angers France; CRCI2NA, Angers, France
| | | | - Moshe Yeshurun
- Institute of Hematology, Rabin Medical Center, Petach Tikva, Israel
| | - Vanderson Rocha
- Hematology Bone Marrow Transplant Unit, Hospital Sirio-Libanes, Sao Paulo, Brazil
| | - Micha Srour
- Department of Haematology, Lille University Hospital, Lille, France
| | - Nicolaus Kröger
- Department of Stem cell Transplantation, University Hospital Eppendorf, Hamburg, Germany
| | - Marie-Pierre Ledoux
- Department of Haematology, Cancer Institute of Strasburg, Strasbourg, France
| | - Jakob Dalgaard
- Department of Haematology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Anne Thiebaut
- Department of Haematology, Grenoble Alpes University Hospital, Grenoble, France
| | - Stefano Giardino
- Haematopoietic Stem Cell Transplantation Unit IRCCS Istituto Giannina Gaslini, Pediatric Haematology and Oncology, Genova, Italy
| | - Elisabetta Calore
- Clinica di Oncoematologia Pediatrica, Azienda Ospedaliera-Università di Padova, Padova, Italy
| | - Tsila Zuckerman
- Department of Haematology and Bone Marrow Transplantation, Rambam Medical Center, Haifa, Israel
| | - Andreas H Groll
- Center for Bone Marrow Transplantation and Department of Pediatric Haematology/Oncology, University Children's Hospital, Infectious Disease Research Program, Munster, Germany
| | - Ludek Raida
- Department of Haemato-Oncology, Olomouc University Hospital, Olomouc, Czech Republic
| | | | | | - Ain Kaare
- Clinic of Haematology and Oncology, Tartu University Hospital, Tartu, Estonia
| | - Joanna Drozd-Sokolowska
- Department of Haematology, Transplantation and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Pascal Turlure
- Department of Haematology, Limoges University Hospital, Limoges, France
| | | | - Malgorzata Mikulska
- Division of Infectious Diseases, University of Genova (DISSAL), Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Rafael de la Camara
- Department of Haematology, Hospital Universitario de La Princesa, Madrid, Spain
| | - Simone Cesaro
- Department of Mother and Child, Pediatric Haematology Oncology, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Jan Styczynski
- Pediatric Haematology and Oncology, University Hospital, Collegium Medicum UMK, Bydgoszcz, Poland
| |
Collapse
|
10
|
Perret A, Le Marechal M, Germi R, Maubon D, Garnaud C, Noble J, Boignard A, Falque L, Meunier M, Gerster T, Epaulard O. Cytomegalovirus detection is associated with ICU admission in non-AIDS and AIDS patients with Pneumocystis jirovecii pneumonia. PLoS One 2024; 19:e0296758. [PMID: 38198473 PMCID: PMC10781113 DOI: 10.1371/journal.pone.0296758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
OBJECTIVES Cytomegalovirus (CMV) is frequently detected in lung and/or blood samples of patients with Pneumocystis jirovecii pneumonia (PJP), although this co-detection is not precisely understood. We aimed to determine whether PJP was more severe in case of CMV detection. METHODS We retrospectively included all patients with a diagnosis of PJP between 2009 and 2020 in our centre and with a measure of CMV viral load in blood and/or bronchoalveolar lavage (BAL). PJP severity was assessed by the requirement for intensive care unit (ICU) admission. RESULTS The median age of the 249 patients was 63 [IQR: 53-73] years. The main conditions were haematological malignancies (44.2%), solid organ transplantations (16.5%), and solid organ cancers (8.8%). Overall, 36.5% patients were admitted to ICU. CMV was detected in BAL in 57/227 patients; the 37 patients with viral load ≥3 log copies/mL were more frequently admitted to ICU (78.4% vs 28.4%, p<0.001). CMV was also detected in blood in 57/194 patients; the 48 patients with viral load ≥3 log copies/mL were more frequently admitted to ICU (68.7% vs 29.4%, p<0.001). ICU admission rate was found to increase with each log of BAL CMV viral load and each log of blood CMV viral load. CONCLUSIONS PJP is more severe in the case of concomitant CMV detection. This may reflect either the deleterious role of CMV itself, which may require antiviral therapy, or the fact that patients with CMV reactivation are even more immunocompromised.
Collapse
Affiliation(s)
- Alexandre Perret
- Infectious Disease Unit, Grenoble-Alpes University Hospital, Grenoble, France
- GRIC, CIC1408 INSERM-UGA-CHUGA, Bouliac, France
| | - Marion Le Marechal
- Infectious Disease Unit, Grenoble-Alpes University Hospital, Grenoble, France
- GRIC, CIC1408 INSERM-UGA-CHUGA, Bouliac, France
| | - Raphaele Germi
- GRIC, CIC1408 INSERM-UGA-CHUGA, Bouliac, France
- Virology, Grenoble-Alpes University Hospital, Grenoble, France
| | - Daniele Maubon
- GRIC, CIC1408 INSERM-UGA-CHUGA, Bouliac, France
- Mycology, Grenoble-Alpes University Hospital, Grenoble, France
| | - Cécile Garnaud
- GRIC, CIC1408 INSERM-UGA-CHUGA, Bouliac, France
- Mycology, Grenoble-Alpes University Hospital, Grenoble, France
| | - Johan Noble
- Nephrology, Grenoble-Alpes University Hospital, Grenoble, France
| | - Aude Boignard
- Cardiology, Grenoble-Alpes University Hospital, Grenoble, France
| | - Loïc Falque
- Pneumology, Grenoble-Alpes University Hospital, Grenoble, France
| | - Mathieu Meunier
- Haematology, Grenoble-Alpes University Hospital, Grenoble, France
| | - Théophile Gerster
- Hepato-Gastro-Enterology, Grenoble-Alpes University Hospital, Grenoble, France
| | - Olivier Epaulard
- Infectious Disease Unit, Grenoble-Alpes University Hospital, Grenoble, France
- GRIC, CIC1408 INSERM-UGA-CHUGA, Bouliac, France
- IBS UMR 5075 CNRS-CEA-UGA, Grenoble, France
| |
Collapse
|
11
|
Watson AL, Woodford J, Britton S, Gupta R, Whiley D, McCarthy K. Determining Pneumocystis jirovecii Colonisation from Infection Using PCR-Based Diagnostics in HIV-Negative Individuals. Diagnostics (Basel) 2024; 14:114. [PMID: 38201422 PMCID: PMC10802892 DOI: 10.3390/diagnostics14010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Pneumocystis jirovecii pneumonia is increasingly diagnosed with highly sensitive PCR diagnostics in immunocompromised, HIV-negative individuals. We assessed the performance of our in-house quantitative PCR with the aim to optimise interpretation. METHODS Retrospective audit of all positive P. jirovecii qPCRs on induced sputum or BAL fluid at a single centre from 2012 to 2023. Medical and laboratory records were analysed and people with HIV were excluded. Cases were categorised as colonisation, high-probability PCP or uncertain PCP infection against a clinical gold standard incorporating clinico-radiological data. Quantitative PCR assay targeting the 5s gene was utilised throughout the time period. RESULTS Of the 82 positive qPCRs, 28 were categorised as high-probability PCP infection, 30 as uncertain PCP and 24 as colonisation. There was a significant difference in qPCR values stratified by clinical category but not respiratory sample type. Current assay performance with a cutoff of 2.5 × 105 copies/mL had a sensitivity of 50% (95% CI, 30.65-69.35%) and specificity of 83.33% (95% CI, 62.62-95.26%). Youden Index calculated at 6.5 × 104 copies/mL had a sensitivity of 75% (56.64-87.32%, 95% CI) and specificity of 66.67% (46.71-82.03%, 95% CI). High and low cutoffs were explored. Significant variables associated with infection were age > 70 years old, the presence of fever, hypoxia or ground glass changes. CONCLUSIONS A single qPCR cutoff cannot reliably determine P. jirovecii infection from colonisation. Low and high cutoffs are useful, however, a large "possible infection" cohort will remain where interpretation of clinic-radiological factors remains essential. Standardisation of assays with prospective validation in specific immunocompromised groups will allow greater generalisability and allow large-scale prospective assay validation to be performed.
Collapse
Affiliation(s)
- Anna Louise Watson
- Infectious Diseases, Royal Brisbane & Women’s Hospital, Metro North Health, Herston, QLD 4006, Australia
- Herston Infectious Diseases Institute, Herston, QLD 4006, Australia
| | - John Woodford
- Infectious Diseases, Ipswich Hospital, Ipswich, QLD 4305, Australia
| | - Sumudu Britton
- Infectious Diseases, Royal Brisbane & Women’s Hospital, Metro North Health, Herston, QLD 4006, Australia
| | - Rita Gupta
- Pathology Queensland, Herston, QLD 4006, Australia
| | - David Whiley
- Pathology Queensland, Herston, QLD 4006, Australia
- The University of Queensland, Herston, QLD 4006, Australia
| | - Kate McCarthy
- Infectious Diseases, Royal Brisbane & Women’s Hospital, Metro North Health, Herston, QLD 4006, Australia
| |
Collapse
|
12
|
Dellière S, Amar Y, Hamane S, Aissaoui N, Denis B, Bergeron A, Tazi A, Alanio A. Bronchial aspirate obtained during bronchoscopy yields increased fungal load compared to bronchoalveolar lavage fluid in patients at risk of invasive aspergillosis and Pneumocystis pneumonia. Med Mycol 2023; 61:myad120. [PMID: 37996394 DOI: 10.1093/mmy/myad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023] Open
Abstract
Bronchoalveolar lavage fluid (BALF) is a standard respiratory sample for diagnosing invasive fungal diseases like Pneumocystis pneumonia (PCP) and invasive pulmonary aspergillosis (IPA). However, procedural variations exist across medical centers and wards. This study aimed to compare the diagnostic potential of BALF and bronchial aspirate (BA) obtained during bronchoscopy in 173 patients suspected of fungal infections. A prospective observational study was conducted from April 2020 to November 2021. BALF and BA were collected during bronchoscopy and subjected to direct examination, fungal culture, Aspergillus fumigatus qPCR (AfqPCR), and Pneumocystis jirovecii qPCR (PjqPCR). Galactomannan detection was performed on BALF. Patients were classified based on established European Organization for Research and Treatment of Cancer (EORTC) criteria. Out of 173 patients, 75 tested positive for at least one test in BA or BALF. For Aspergillus, proportion of positive AfqPCR (14.5% vs. 9.2%; P < 0.0001) and fungal loads (Cq of 31.3 vs. 32.8; P = 0.0018) were significantly higher in BA compared to BALF. For Pneumocystis, fungal loads by PjqPCR was also higher in BA compared to BALF (Cq of 34.2 vs. 35.7; P = 0.003). BA only detected A. fumigatus and P. jirovecii in 12 (42.9%) and 8 (19.5%) patients, respectively. BA obtained during a BAL procedure can be a suitable sample type for increased detection of P. jirovecii and A. fumigatus by qPCR. The use of BA in diagnostic algorithms requires further investigation in prospective studies.
Collapse
Affiliation(s)
- Sarah Dellière
- Laboratoire de parasitologie-mycologie, AP-HP, Hôpital Saint-Louis, Paris, France
- Institut Pasteur, Université de Paris Cité, Immunobiology d'Aspergillus, Paris, France
| | - Yaël Amar
- Service de pneumologie, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Samia Hamane
- Laboratoire de parasitologie-mycologie, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Nesrine Aissaoui
- Laboratoire de parasitologie-mycologie, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Blandine Denis
- Service d'infectiologie, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Anne Bergeron
- Hôpitaux Universitaire de Genève, University of Geneva, Genève, Switzerland
| | - Abdellatif Tazi
- Service de pneumologie, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Alexandre Alanio
- Laboratoire de parasitologie-mycologie, AP-HP, Hôpital Saint-Louis, Paris, France
- Institut Pasteur, Université Paris Cité, National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology research group, Mycology Department, Paris, France
| |
Collapse
|
13
|
Friedman DZP, Schwartz IS. Emerging Diagnostics and Therapeutics for Invasive Fungal Infections. Infect Dis Clin North Am 2023; 37:593-616. [PMID: 37532392 DOI: 10.1016/j.idc.2023.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Recently, there have been significant advances in the diagnosis and management of invasive fungal infections. Compared with traditional fungal diagnostics, molecular assays promise improved sensitivity and specificity, the ability to test a range of samples (including noninvasive samples, ie, blood), the detection of genetic mutations associated with antifungal resistance, and the potential for a faster turnaround time. Antifungals in late-stage clinical development include agents with novel mechanisms of action (olorofim and fosmanogepix) and new members of existing classes with distinct advantages over existing antifungals in toxicity, drug-drug interactions, and dosing convenience (oteseconazole, opelconazole, rezafungin, ibrexafungerp, encochleated amphotericin B).
Collapse
Affiliation(s)
- Daniel Z P Friedman
- Section of Infectious Diseases and Global Health, The University of Chicago, 5841 South Maryland Avenue, MC5065, Chicago, IL 60637, USA
| | - Ilan S Schwartz
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, 315 Trent Drive, Durham, NC 27705, USA.
| |
Collapse
|
14
|
Trubin PA, Azar MM. Current Concepts in the Diagnosis and Management of Pneumocystis Pneumonia in Solid Organ Transplantation. Infect Dis Clin North Am 2023:S0891-5520(23)00026-0. [PMID: 37142510 DOI: 10.1016/j.idc.2023.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pneumocystis infection manifests predominantly as an interstitial pneumonia in immunocompromised patients. Diagnostic testing in the appropriate clinical context can be highly sensitive and specific and involves radiographic imaging, fungal biomarkers, nucleic acid amplification, histopathology, and lung fluid or tissue sampling. Trimethoprim-sulfamethoxazole remains the first-choice agent for treatment and prophylaxis. Investigation continues to promote a deeper understanding of the pathogen's ecology, epidemiology, host susceptibility, and optimal treatment and prevention strategies in solid organ transplant recipients.
Collapse
Affiliation(s)
- Paul A Trubin
- Department of Medicine, Section of Infectious Diseases, Yale School of Medicine, 135 College Street, New Haven, CT 06510, USA.
| | - Marwan M Azar
- Department of Medicine, Section of Infectious Diseases; Department of Laboratory Medicine; Yale School of Medicine, 135 College Street, New Haven, CT 06510, USA
| |
Collapse
|
15
|
Hänsel L, Schumacher J, Denis B, Hamane S, Cornely OA, Koehler P. How to diagnose and treat a non-HIV patient with Pneumocystis jirovecii pneumonia (PCP)? Clin Microbiol Infect 2023:S1198-743X(23)00186-6. [PMID: 37086781 DOI: 10.1016/j.cmi.2023.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023]
Abstract
BACKGROUND Pneumocystis jirovecii Pneumonia (PCP) incidence is increasing in non-HIV infected patients. In contrast to PCP in patients infected with HIV, diagnosis is often delayed, and illness is associated with an increased mortality. OBJECTIVE To provide a comprehensive review of clinical presentation, risk factors, diagnostic strategies, and treatment options of PCP in non-HIV-infected patients. SOURCES Web-based literature review on PCP for trials, meta-analyses and systematic reviews using PubMed. Restriction to English language was applied. CONTENT Common underlying conditions in non-HIV-infected patients with PCP are haematological malignancies, autoimmune and inflammatory diseases, solid organ or haematopoietic stem cell transplant and prior exposure to corticosteroids. New risk groups include patients receiving monoclonal antibodies and immunomodulating therapies. Non-HIV-infected patients with PCP present with rapid onset and progression of pneumonia, increased duration of hospitalization and a significantly higher mortality rate than patients infected with HIV. PCP is diagnosed by a combination of clinical symptoms, radiological and mycological features. Immunofluorescence microscopy from bronchoalveolar lavage (BAL) or PCR testing CT imaging and evaluation of the clinical presentation are required. The established treatment regime consists of trimethoprim and sulfamethoxazole. IMPLICATIONS While the number of patients immunosuppressed for other causes than HIV is increasing, a simultaneous rise in PCP incidence is observed. In the group of non-HIV-infected patients, a rapid onset of symptoms, a more complex course, and a higher mortality rate are recorded. Therefore, time to diagnosis must be as short as possible to initiate effective therapy promptly. This review aims to raise awareness of PCP in an increasingly affected at-risk group and provide clinicians with a practical guide for efficient diagnosis and targeted therapy. Furthermore, it intends to display current inadequacies in research on the topic of PCP.
Collapse
Affiliation(s)
- Luise Hänsel
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany
| | - Jana Schumacher
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany
| | - Blandine Denis
- Department of infectious diseases, Saint Louis and Lariboisière Hospitals, APHP, Paris, France, Excellence Centre for Medical Mycology (ECMM), Paris, France
| | - Samia Hamane
- Department of infectious diseases, Saint Louis and Lariboisière Hospitals, APHP, Paris, France, Excellence Centre for Medical Mycology (ECMM), Paris, France
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany
| | - Philipp Koehler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany.
| |
Collapse
|
16
|
Veintimilla C, Álvarez-Uría A, Martín-Rabadán P, Valerio M, Machado M, Padilla B, Alonso R, Diez C, Muñoz P, Marín M. Pneumocystis jirovecii Pneumonia Diagnostic Approach: Real-Life Experience in a Tertiary Centre. J Fungi (Basel) 2023; 9:jof9040414. [PMID: 37108869 PMCID: PMC10142180 DOI: 10.3390/jof9040414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Pneumocystis jirovecii pneumonia (PJP) in immunocompromised patients entails high mortality and requires adequate laboratory diagnosis. We compared the performance of a real time-PCR assay against the immunofluorescence assay (IFA) in the routine of a large microbiology laboratory. Different respiratory samples from HIV and non-HIV-infected patients were included. The retrospective analysis used data from September 2015 to April 2018, which included all samples for which a P. jirovecii test was requested. A total of 299 respiratory samples were tested (bronchoalveolar lavage fluid (n = 181), tracheal aspirate (n = 53) and sputum (n = 65)). Forty-eight (16.1%) patients fulfilled the criteria for PJP. Five positive samples (10%) had only colonization. The PCR test was found to have a sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 96%, 98%, 90% and 99%, compared to 27%, 100%, 100% and 87%, for the IFA, respectively. PJ-PCR sensitivity and specificity were >80% and >90% for all tested respiratory samples. Median cycle threshold values in definite PJP cases were 30 versus 37 in colonized cases (p < 0.05). Thus, the PCR assay is a robust and reliable test for the diagnosis PJP in all respiratory sample types. Ct values of ≥36 could help to exclude PJP diagnosis.
Collapse
|
17
|
Abdulwhhab MT, Holmes CW, Mutuyimana J, Koo SSF, Wisniewska A, Auty J, Perera N, Barer MR. Exhaled Pneumocystis jirovecii output and detection of asymptomatic exhalation by facemask sampling in HIV-uninfected, immunocompromised patients. J Hosp Infect 2023; 132:20-27. [PMID: 36521583 DOI: 10.1016/j.jhin.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Pneumocystis jirovecii pneumonia (PJP) transmission is poorly defined. Previous studies have sampled air of rooms occupied by HIV-infected patients with PJP, while natural and direct exhalations of HIV-uninfected subjects remain under-investigated. Here, clinical facemasks were used to examine and quantify potential P. jirovecii exhalations from HIV-uninfected patients with suspected PJP and to determine whether pathogen exhalation was definable clinically or radiologically. METHODS Forty-five patients in Leicester (England), highly suspected of having PJP based on European Conference on Infections in Leukaemia (ECIL-5) guidelines, each wore one facemask carrying a gelatine/PVA sampling matrix for 1 h while respiring normally. Mask contamination with P. jirovecii was assessed using a modified quantitative polymerase chain reaction targeting mitochondrial large subunit (MtLSU). Radiological findings on chest X-ray (CXR) and computed tomography (CT) were graded and analysed for correlation with P. jirovecii signals alongside relevant clinical and laboratory findings. RESULTS P. jirovecii was detected in seven of 20 patients diagnosed with PJP and three of 19 patients with suspected but undiagnosed PJP. The median captured signal was 8.59 × 104 MtLSU copies/mask (interquartile range (IQR) = 3.01 × 105-1.81 × 104). Blood β-D-glucan test results correlated with the mask detection data (r = 0.65; P<0.0001) but other clinical indices and radiological features did not. Five of the 10 P. jirovecii-exhalers exhibited normal CXR with a median exhalation burden 1.28 × 105 copies/mask (IQR = 1.51 × 105-2.27 × 104). Two P. jirovecii-exhalers (7.64 × 104 copies/mask) were asymptomatic. CONCLUSION P. jirovecii was exhaled sufficiently during normal respiration to be detectable in facemasks worn by HIV-uninfected patients. Neither clinical nor radiological features correlated with P. jirovecii exhalation.
Collapse
Affiliation(s)
- M T Abdulwhhab
- Department of Respiratory Sciences, University of Leicester, Leicester, UK; Leicester Tuberculosis Research Group (LTBRG), Leicester, UK.
| | - C W Holmes
- Department of Respiratory Sciences, University of Leicester, Leicester, UK; Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - J Mutuyimana
- Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - S S F Koo
- Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - A Wisniewska
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - J Auty
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - N Perera
- Leicester Tuberculosis Research Group (LTBRG), Leicester, UK; Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - M R Barer
- Department of Respiratory Sciences, University of Leicester, Leicester, UK; Leicester Tuberculosis Research Group (LTBRG), Leicester, UK; Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
18
|
Lussac-Sorton F, Fleur T, Voisin T, Issa N, Blanchard É, Charpentier É, Delhaes L. Interest of a Commercialized Pneumocystis jirovecii Quantitative PCR to Discriminate Colonization from Pneumocystis Pneumonia according to the Revised EORTC/MSGERC Criteria. J Clin Med 2022; 12:jcm12010316. [PMID: 36615116 PMCID: PMC9821677 DOI: 10.3390/jcm12010316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Quantitative PCR (qPCR) is highly sensitive to diagnose Pneumocystis jirovecii (Pj) pneumonia (PCP). However, differentiating PCP and colonization remains difficult. This study aimed to establish the performances of the commercialized qPCR MycoGENIE® Pj kit (Ademtech) to distinguish PCP and Pj colonization. Patients with a positive Pj qPCR on bronchoalveolar lavage (BAL) or upper respiratory tract (URT) samples were prospectively included between May 2019 and December 2020 at Bordeaux University Hospital. They were classified in “PCP” or “Pj colonization” groups based on the revised EORTC/MSGERC criteria. The two groups’ results were compared; ROC curves were produced to determine the best thresholds. Excluding the low number of HIV-positive subjects, there were 100 PCP (32 BAL, 68 URT) and 70 Pj colonization (34 BAL, 36 URT). Pj loads were significantly higher in PCP compared to Pj colonization group (p ≤ 0.01). The best cut-offs for PCP diagnosis were 31.45 Cq/8275 copies/mL for BAL and 32.33 Cq/8130 copies/mL for URT (sensitivity = 59.4%, 63.3%, specificity = 82.4%, 88.9%, respectively). Fungal load quantification using MycoGENIE® Pj qPCR helps discriminating PCP from colonization, high fungal loads being indicative of probable PCP. Low load results should be interpreted with caution, in accordance with clinical and radiological signs.
Collapse
Affiliation(s)
- Florian Lussac-Sorton
- Service de Parasitologie-Mycologie, Groupe Hospitalier Pellegrin, CHU de Bordeaux, 33000 Bordeaux, France
- Correspondence:
| | - Tara Fleur
- Service de Parasitologie-Mycologie, Groupe Hospitalier Pellegrin, CHU de Bordeaux, 33000 Bordeaux, France
| | - Thibault Voisin
- Service de Parasitologie-Mycologie, Groupe Hospitalier Pellegrin, CHU de Bordeaux, 33000 Bordeaux, France
- Eurofins, Polyclinique Bordeaux Nord, 18 Rue Henri Guillemin, 33300 Bordeaux, France
| | - Nahéma Issa
- Réanimation Médicale, Groupe Hospitalier Saint-André, CHU de Bordeaux, 33000 Bordeaux, France
| | - Élodie Blanchard
- Service de Pneumologie, Hôpital Haut-Lévêque, Groupe Hospitalier Sud, CHU de Bordeaux, 33600 Pessac, France
| | - Éléna Charpentier
- Service de Parasitologie-Mycologie, Groupe Hospitalier Pellegrin, CHU de Bordeaux, 33000 Bordeaux, France
| | - Laurence Delhaes
- Service de Parasitologie-Mycologie, Groupe Hospitalier Pellegrin, CHU de Bordeaux, 33000 Bordeaux, France
| |
Collapse
|
19
|
Apostolopoulou A, Fishman JA. The Pathogenesis and Diagnosis of Pneumocystis jiroveci Pneumonia. J Fungi (Basel) 2022; 8:1167. [PMID: 36354934 PMCID: PMC9696632 DOI: 10.3390/jof8111167] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 07/29/2023] Open
Abstract
Pneumocystis jiroveci remains an important fungal pathogen in immunocompromised hosts. The environmental reservoir remains unknown. Pneumonia (PJP) results from airborne transmission, including in nosocomial clusters, or with reactivation after an inadequately treated infection. Pneumocystis pneumonia most often occurs within 6 months of organ transplantation, with intensified or prolonged immunosuppression, notably with corticosteroids and following cytomegalovirus (CMV) infections. Infection may be recognized during recovery from neutropenia and lymphopenia. Invasive procedures may be required for early diagnosis and therapy. Despite being a well-established entity, aspects of the pathogenesis of PJP remain poorly understood. The goal of this review is to summarize the data on the pathogenesis of PJP, review the strengths and weaknesses of the pertinent diagnostic modalities, and discuss areas for future research.
Collapse
Affiliation(s)
- Anna Apostolopoulou
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jay A. Fishman
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- MGH Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
20
|
Alsayed AR, Al-Dulaimi A, Alkhatib M, Al Maqbali M, Al-Najjar MAA, Al-Rshaidat MMD. A comprehensive clinical guide for Pneumocystis jirovecii pneumonia: a missing therapeutic target in HIV-uninfected patients. Expert Rev Respir Med 2022; 16:1167-1190. [PMID: 36440485 DOI: 10.1080/17476348.2022.2152332] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Pneumocystis jirovecii is an opportunistic, human-specific fungus that causes Pneumocystis pneumonia (PCP). PCP symptoms are nonspecific. A patient with P. jirovecii and another lung infection faces a diagnostic challenge. It may be difficult to determine which of these agents is responsible for the clinical symptoms, preventing effective treatment. Diagnostic and treatment efforts have been made more difficult by the rising frequency with which coronavirus 2019 (COVID-19) and PCP co-occur. AREAS COVERED Herein, we provide a comprehensive review of clinical and pharmacological recommendations along with a literature review of PCP in immunocompromised patients focusing on HIV-uninfected patients. EXPERT OPINION PCP may be masked by identifying co-existing pathogens that are not necessarily responsible for the observed infection. Patients with severe form COVID-19 should be examined for underlying immunodeficiency, and co-infections must be considered as co-infection with P. jirovecii may worsen COVID-19's severity and fatality. PCP should be investigated in patients with PCP risk factors who come with pneumonia and suggestive radiographic symptoms but have not previously received PCP prophylaxis. PCP prophylaxis should be explored in individuals with various conditions that impair the immune system, depending on their PCP risk.
Collapse
Affiliation(s)
- Ahmad R Alsayed
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Abdullah Al-Dulaimi
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Mohammad Alkhatib
- Department of Experimental Medicine, University of Rome "Tor Vergata", Roma, Italy
| | - Mohammed Al Maqbali
- Department of Nursing Midwifery and Health, Northumbria University, Newcastle-Upon-Tyne, UK
| | - Mohammad A A Al-Najjar
- Department of Pharmaceutical Sciences and Pharmaceutics, Applied Science Private University, Amman, Kingdom of Jordan
| | - Mamoon M D Al-Rshaidat
- Laboratory for Molecular and Microbial Ecology (LaMME), Department of Biological Sciences, School of Sciences, The University of Jordan, Amman, Jordan
| |
Collapse
|
21
|
Yun KS, Anh B, Choi SH, Hong KT, Choi JY, Yun KW, Kang HJ, Choi EH. Clinical Characteristics and Prognosis of the Modified Probable Pneumocystis jirovecii Pneumonia in Korean Children, 2001-2021. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9101596. [PMID: 36291531 PMCID: PMC9599991 DOI: 10.3390/children9101596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/02/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022]
Abstract
There are few data about Pneumocystis jirovecii pneumonia (PCP) in children, particularly in developed countries. This study investigated the clinical characteristics and prognosis of the clinical PCP in non-HIV-infected Korean children. Children with positive results for the staining and/or polymerase chain reaction (PCR) for P. jirovecii between 2001 and 2021 were identified. Patients were grouped into clinical PCP, which comprised proven and modified probable cases, and non-PCP groups. Modified probable PCP (mp-PCP) indicate the case which P. jirovecii was detected by conventional PCR rather than real-time PCR test. The differences in demographic and clinical characteristics were analyzed between the groups. A total of 110 pneumonia cases with positive results for P. jirovecii PCR and/or stain were identified from 107 children. Of these, 28.2% were classified as non-PCP, 12.7% of proven PCP, and 59.1% of mp-PCP. Compared with the non-PCP group, the mp-PCP group had a significantly higher rate of solid organ transplantation (3.2% vs. 24.6%), fever (58.1% vs. 76.9%), tachypnea (25.8% vs. 66.2%), dyspnea (48.4% vs. 83.1%), desaturation (48.4% vs. 80.0%), and bilateral ground-glass opacity on chest radiograph (19.4% vs. 73.8%). However, when the mp-PCP group was compared with the proven PCP group, there was no statistically significant difference. For children with clinical PCP, age under 5 years of age (odds ratio [OR] 10.7), hospital-onset (OR 6.9), and desaturation as initial symptom (OR 63.5) were significant risk factors for death in multivariable analysis. Modified probable PCP might reliably reflect true PCP in terms of patient's demographic, clinical features, treatment response, and prognosis. Immunocompromised children with hospital-onset pneumonia who are younger than 5 years of age and have desaturation would be more cautiously and aggressively managed for survival through the screening for P. jirovecii by conventional PCR on appropriate lower respiratory specimens.
Collapse
Affiliation(s)
- Kyoung Sung Yun
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
| | - Bin Anh
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sung Hwan Choi
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
| | - Kyung Taek Hong
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
| | - Jung Yoon Choi
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
| | - Ki Wook Yun
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence:
| | - Hyoung Jin Kang
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea
- Seoul National University Cancer Research Institute, Seoul 03080, Korea
| | - Eun Hwa Choi
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
22
|
Liu W, Li M, Xu Y, Wang F, Wang J, Wang H, Xu X, Wang Y, Sun H. Evaluation of the Performance of a Multiplex Real-Time PCR Assay for the Identification of Aspergillus, Cryptococcus neoformans, and Pneumocystis jirovecii Simultaneously from Sputum in Multicenter. Infect Drug Resist 2022; 15:6009-6017. [PMID: 36267265 PMCID: PMC9576602 DOI: 10.2147/idr.s379043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To evaluate the performance of a multiplex real-time polymerase chain reaction (PCR) assay for the simultaneous identification of Aspergillus, Cryptococcus neoformans, and Pneumocystis jirovecii from sputum. Patients and Methods Sputum samples (n=537) from patients with suspected invasive fungal infection (IFI) were collected from four centers; they were tested by both multiplex real-time PCR assay and DNA sequencing. DNA sequencing was considered as the reference method, and the performance of the multiplex real-time assay was evaluated by determining the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). The interference experiment, repeatability, reproducibility, and stability of the multiplex real-time PCR assay were also evaluated. Results The detection performance of the multiplex real-time assay, compared with that of DNA sequencing, for the three pathogens was as follows: sensitivity, specificity, PPV, and NPV for Aspergillus, Cryptococcus neoformans, and Pneumocystis jirovecii were 99.40%, 98.64%, 97.09%, and 99.73%; 100%, 99.59%, 96.36%, and 100.00%; and 99.28%, 98.50%, 95.80%, and 99.75%, respectively. The consistency of the two methods was almost perfect: the kappa value was between 0.97 and 0.98. The minimum detection limit of the multiplex real-time assay for each of the three pathogens was 1250 copies/mL. Interference experiment showed that blood and normally used antifungal drugs had no effect on the results. No cross-reactivity was detected for any bacteria or fungi. In 40 patients, mixed infections by Aspergillus and/or Cryptococcus neoformans and/or Pneumocystis jirovecii were detected by the multiplex real-time assay. Among these patients, those with acquired immune deficiency syndrome (AIDS) ranked first, with Aspergillus and Pneumocystis mixed infection accounting for 75%. Conclusion The multiplex real-time PCR assay is fast, sensitive, and specific and has good clinical application prospects.
Collapse
Affiliation(s)
- Wenjing Liu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, 100730, People’s Republic of China
| | - Min Li
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Yingchun Xu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, 100730, People’s Republic of China
| | - Fengchao Wang
- The First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, People’s Republic of China
| | - Jing Wang
- Chongqing Public Health Medical Center, Chongqing, 400036, People’s Republic of China
| | - Huizhu Wang
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Xinmin Xu
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Yajie Wang
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China,Yajie Wang, Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China, Tel +86-13611269270, Email
| | - Hongli Sun
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, 100730, People’s Republic of China,Correspondence: Hongli Sun, Peking Union Medical College Hospital (Dongdan Campus), No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, People’s Republic of China, Tel +86-1069159788, Fax +86-1069159766, Email
| |
Collapse
|
23
|
Usefulness of ß-d-Glucan Assay for the First-Line Diagnosis of Pneumocystis Pneumonia and for Discriminating between Pneumocystis Colonization and Pneumocystis Pneumonia. J Fungi (Basel) 2022; 8:jof8070663. [PMID: 35887420 PMCID: PMC9318034 DOI: 10.3390/jof8070663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
According to the immunodepression status, the diagnosis of Pneumocystis jirovecii pneumonia (PjP) may be difficult. Molecular methods appear very sensitive, but they lack specificity because Pj DNA can be detected in Pneumocystis-colonized patients. The aim of this study was to evaluate the value of a serum ß-d-Glucan (BDG) assay for the diagnosis of PjP in a large cohort of HIV-negative and HIV-positive patients, either as a first-line diagnostic test for PjP or as a tool to distinguish between colonization and PjP in cases of low fungal load. Data of Pj qPCR performed on bronchopulmonary specimens over a 3-year period were retrieved retrospectively. For each result, we searched for a BDG serum assay performed within ±5 days. Among the 69 episodes that occurred in HIV-positive patients and the 609 episodes that occurred in immunocompromised HIV-negative patients, we find an equivalent sensitivity of BDG assays compared with molecular methods to diagnose probable/proven PjP, in a first-line strategy. Furthermore, BDG assay can be used confidently to distinguish between infected and colonized patients using a 80 pg/mL cut-off. Finally, it is necessary to search for causes of false positivity to increase BDG assay performance. BDG assay represents a valuable adjunctive tool to distinguish between colonization and infection.
Collapse
|
24
|
Zhan Y, Gao X, Li S, Si Y, Li Y, Han X, Sun W, Li Z, Ye F. Development and Evaluation of Rapid and Accurate CRISPR/Cas13-Based RNA Diagnostics for Pneumocystis jirovecii Pneumonia. Front Cell Infect Microbiol 2022; 12:904485. [PMID: 35782118 PMCID: PMC9240425 DOI: 10.3389/fcimb.2022.904485] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 12/01/2022] Open
Abstract
Background Pneumocystis jirovecii can result in a serious pulmonary infection, Pneumocystis jirovecii pneumonia, in immunocompetent hosts. The diagnosis of Pneumocystis jirovecii pneumonia has long been a major clinical concern, and there are limitations with the currently utilized immunostaining and polymerase chain reaction diagnosis/detection technologies (e.g., insufficient sensitivity and accuracy). Hence, we sought to establish a rapid and RNA-specific transcription mediated amplification and CRISPR/Cas13a-based diagnostics targeted P. jirovecii-mitochondrial large subunit ribosomal RNA. Methods The procedure of the diagnostics included amplification of the extracted RNA samples by transcription mediated amplification, followed by CRISPR/Cas13 detection, and ultimately, the judgment of the results after 30 minutes of fluorescence signal. Later, the diagnostic performance of the CRISPR/Cas13-based diagnostics were tested on the 62 surplus clinical samples. Results This CRISPR/Cas13-based diagnostics achieved limits of detection of approximately 2 copies/µL transcribed RNA templates, with no cross reaction to other respiratory pathogens, including bacteria and fungi. Similar to in-house quantitative real-time polymerase chain reaction, CRISPR/Cas13-based diagnostics was still positive in 243-fold diluted bronchial alveolar lavage fluid. A preliminary evaluation of 62 surplus bronchial alveolar lavage fluid samples from patients suspected of Pneumocystis jirovecii pneumonia showed that CRISPR/Cas13-based diagnostics achieved a 78.9% sensitivity and a 97.7% specificity in the diagnosis of Pneumocystis jirovecii pneumonia. Conclusion Our study demonstrates that the CRISPR/Cas13-based diagnostics technique has good performance for the accurate and specific diagnosis of Pneumocystis jirovecii pneumonia.
Collapse
Affiliation(s)
- Yangqing Zhan
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Xiaoqing Gao
- R&D Department, Hangzhou MatriDx Biotechnology Co., Ltd., Hanzhou, China
| | - Shaoqiang Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Yeqi Si
- R&D Department, Hangzhou MatriDx Biotechnology Co., Ltd., Hanzhou, China
| | - Yuanxiang Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Xu Han
- R&D Department, Hangzhou MatriDx Biotechnology Co., Ltd., Hanzhou, China
| | - Wenjun Sun
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Zhengtu Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Feng Ye
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
- *Correspondence: Feng Ye,
| |
Collapse
|
25
|
Franconi I, Leonildi A, Erra G, Fais R, Falcone M, Ghelardi E, Lupetti A. Comparison of different microbiological procedures for the diagnosis of Pneumocystis jirovecii pneumonia on bronchoalveolar-lavage fluid. BMC Microbiol 2022; 22:143. [PMID: 35597925 PMCID: PMC9123786 DOI: 10.1186/s12866-022-02559-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The current diagnostic gold standard for Pneumocystis jirovecii is represented by microscopic visualization of the fungus from clinical respiratory samples, as bronchoalveolar-lavage fluid, defining "proven" P. jirovecii pneumonia, whereas qPCR allows defining "probable" diagnosis, as it is unable to discriminate infection from colonization. However, molecular methods, such as end-point PCR and qPCR, are faster, easier to perform and interpret, thus allowing the laboratory to give back the clinician useful microbiological data in a shorter time. The present study aims at comparing microscopy with molecular assays and beta-D-glucan diagnostic performance on bronchoalveolar-lavage fluids from patients with suspected Pneumocystis jirovecii pneumonia. Bronchoalveolar-lavage fluid from eighteen high-risk and four negative control subjects underwent Grocott-Gomori's methenamine silver-staining, end-point PCR, RT-PCR, and beta-D-glucan assay. RESULTS All the microscopically positive bronchoalveolar-lavage samples (50%) also resulted positive by end-point and real time PCR and all, but two, resulted positive also by beta-D-glucan quantification. End-point PCR and RT-PCR detected 10 (55%) and 11 (61%) out of the 18 samples, respectively, thus showing an enhanced sensitivity in comparison to microscopy. All RT-PCR with a Ct < 27 were confirmed microscopically, whereas samples with a Ct ≥ 27 were not. CONCLUSIONS Our work highlights the need of reshaping and redefining the role of molecular diagnostics in a peculiar clinical setting, like P. jirovecii infection, which is a rare but also severe and rapidly progressive clinical condition affecting immunocompromised hosts that would largely benefit from a faster diagnosis. Strictly selected patients, according to the inclusion criteria, resulting negative by molecular methods could be ruled out for P. jirovecii pneumonia.
Collapse
Affiliation(s)
- Iacopo Franconi
- Department of Traslational Research and of New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56127, Pisa, Italy
| | - Alessandro Leonildi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gianluca Erra
- Department of Traslational Research and of New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56127, Pisa, Italy
| | - Roberta Fais
- Department of Traslational Research and of New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56127, Pisa, Italy
| | - Marco Falcone
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Emilia Ghelardi
- Department of Traslational Research and of New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56127, Pisa, Italy
| | - Antonella Lupetti
- Department of Traslational Research and of New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56127, Pisa, Italy.
| |
Collapse
|
26
|
Lu X, Zhang J, Ma W, Xing L, Ning H, Yao M. Pneumocystis Jirovecii Pneumonia Diagnosis via Metagenomic Next-Generation Sequencing. Front Med (Lausanne) 2022; 9:812005. [PMID: 35372422 PMCID: PMC8965517 DOI: 10.3389/fmed.2022.812005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/04/2022] [Indexed: 02/06/2023] Open
Abstract
The incidence of non-HIV-infected Pneumocystis Jirovecii Pneumonia (PJP) is increasing. The prognosis for non-HIV PJP is poor and diagnostic tests are of lower sensitivity in non-HIV patients. Metagenomic next-generation sequencing (mNGS) was compared with routine detection assays, including Gomori methenamine silver (GMS) stain and polymerase chain reaction (PCR) technique. Specimens of 4 bronchoalveolar lavages (BAL) and 1 lung tissue samples were obtained from 4 non-HIV patients from our hospitals. Although both GMS and mNGS were positive for P. jirovecii with PCR as positive control, the testing time of mNGS was obviously shorter than GMS. Compared with the traditional GMS method, mNGS has absolute advantages. However, the issue with PJP presentations having atypical symptoms and ambiguous imaging features persists. Hence, the disease can easily be ignored. Secondly, PJP progresses rapidly in non-HIV-infected patients and can cause severe respiratory failure with unfavorable prognosis. This study affirms that mNGS can be used to quickly and accurately diagnose PJP, but a combination of clinical judgement of symptoms, laboratory testing, and imaging examination is required to make a comprehensive judgment along with mNGS test results.
Collapse
Affiliation(s)
- Xiaoxiao Lu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhui Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wentao Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lihua Xing
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hanbing Ning
- Department of Digestive Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengying Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Wu HH, Fang SY, Chen YX, Feng LF. Treatment of Pneumocystis jirovecii pneumonia in non-human immunodeficiency virus-infected patients using a combination of trimethoprim-sulfamethoxazole and caspofungin. World J Clin Cases 2022; 10:2743-2750. [PMID: 35434110 PMCID: PMC8968794 DOI: 10.12998/wjcc.v10.i9.2743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/19/2021] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pneumocystis jirovecii pneumonia (PJP) is an infectious disease common in immunocompromised hosts. However, the currently, the clinical characteristics of non-HIV patients with PJP infection have not been fully elucidated.
AIM To explore efficacy of trimethoprim–sulfamethoxazole (TMP-SMX) and caspofungin for treatment of non-human immunodeficiency virus (HIV)-infected PJP patients.
METHODS A retrospective study enrolled 22 patients with non-HIV-infected PJP treated with TMP-SMX and caspofungin from 2019 to 2021. Clinical manifestations, treatment and prognosis of the patients were analyzed.
RESULTS Five patients presented with comorbidity of autoimmune diseases, seven with lung cancer, four with lymphoma, two with organ transplantation and four with membranous nephropathy associated with use of immunosuppressive agents. The main clinical manifestations of patients were fever, dry cough, and progressive dyspnea. All patients presented with acute onset and respiratory failure. The most common imaging manifestation was ground glass opacity around the hilar, mainly in the upper lobe. All patients were diagnosed using next-generation sequencing, and were treated with a combination of TMP-SMX and caspofungin. Among them, 17 patients received short-term adjuvant glucocorticoid therapy. All patients recovered well and were discharged from hospital.
CONCLUSION Non-HIV-infected PJP have rapid disease progression, high risk of respiratory failure, and high mortality. Combination of TMP-SMX and caspofungin can effectively treat severe non-HIV-infected PJP patients with respiratory failure.
Collapse
Affiliation(s)
- Huan-Huan Wu
- Department of Respiratory Medicine, Dongyang Hospital Affiliated to Wenzhou Medical University, Dongyang 322100, Zhejiang Province, China
| | - Shuang-Yan Fang
- Department of Respiratory Medicine, Dongyang Hospital Affiliated to Wenzhou Medical University, Dongyang 322100, Zhejiang Province, China
| | - Yan-Xiao Chen
- Department of Respiratory Medicine, Dongyang Hospital Affiliated to Wenzhou Medical University, Dongyang 322100, Zhejiang Province, China
| | - Lan-Fang Feng
- Department of Respiratory Medicine, Dongyang Hospital Affiliated to Wenzhou Medical University, Dongyang 322100, Zhejiang Province, China
| |
Collapse
|
28
|
Performance of a Real Time PCR for Pneumocystis jirovecii Identification in Induced Sputum of AIDS Patients: Differentiation between Pneumonia and Colonization. J Fungi (Basel) 2022; 8:jof8030222. [PMID: 35330224 PMCID: PMC8950466 DOI: 10.3390/jof8030222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/23/2022] Open
Abstract
Pneumocystis jirovecii pneumonia (PcP) remains an important cause of morbimortality worldwide and a diagnostic challenge. Conventional methods have low accuracy, hardly discriminating colonization from infection, while some new high-cost or broncho-alveolar lavage-based methods have limited usefulness in developing countries. Quantitative PCR (qPCR) tests may overcome these limitations due to their high accuracy, possibility of automation, and decreasing cost. We evaluated an in-house qPCR targeting the fungus mtSSU gene using induced sputum. Sensitivity of the assay (ten target gene copies/assay) was determined using recombinant plasmids. We prospectively studied 86 AIDS patients with subacute respiratory symptoms in whom PcP was suspected. qPCR results were determined as quantification cycles (Cq) and compared with a qualitative PCR performed in the same IS, serum 1,3-β-D-Glucan assay, and a clinical/laboratory/radiology index for PcP. The qPCR clustered the patients in three groups: 32 with Cq ≤ 31 (qPCR+), 45 with Cq ≥ 33 (qPCR-), and nine with Cq between 31-33 (intermediary), which, combined with the other three analyses, enabled us to classify the groups as having PcP, not P. jirovecii-infected, and P. jirovecii-colonized, respectively. This molecular assay may contribute to improve PcP management, avoiding unnecessary treatments, and our knowledge of the natural history of this infection.
Collapse
|
29
|
Ruiz-Ruiz S, Ponce CA, Pesantes N, Bustamante R, Gatti G, San Martin V, Gutierrez M, Bórquez P, Vargas SL, Magne F, Calderón EJ, Pérez-Brocal V, Moya A. A Real-Time PCR Assay for Detection of Low Pneumocystis jirovecii Levels. Front Microbiol 2022; 12:787554. [PMID: 35087490 PMCID: PMC8787145 DOI: 10.3389/fmicb.2021.787554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Here we report a new real-time PCR assay using SYBR Green which provides higher sensitivity for the specific detection of low levels of Pneumocystis jirovecii. To do so, two primer sets were designed, targeting the family of genes that code for the most abundant surface protein of Pneumocystis spp., namely the major surface glycoproteins (Msg), and the mitochondrial large subunit rRNA (mtLSUrRNA) multicopy gene, simultaneously detecting two regions. PCR methods are instrumental in detecting these low levels; however, current nested-PCR methods are time-consuming and complex. To validate our new real-time Msg-A/mtLSUrRNA PCR protocol, we compared it with nested-PCR based on the detection of Pneumocystis mitochondrial large subunit rRNA (mtLSUrRNA), one of the main targets used to detect this pathogen. All samples identified as positive by the nested-PCR method were found positive using our new real-time PCR protocol, which also detected P. jirovecii in three nasal aspirate samples that were negative for both rounds of nested-PCR. Furthermore, we read both rounds of the nested-PCR results for comparison and found that some samples with no PCR amplification, or with a feeble band in the first round, correlated with higher Ct values in our real-time Msg-A/mtLSUrRNA PCR. This finding demonstrates the ability of this new single-round protocol to detect low Pneumocystis levels. This new assay provides a valuable alternative for P. jirovecii detection, as it is both rapid and sensitive.
Collapse
Affiliation(s)
- Susana Ruiz-Ruiz
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)-Salud Pública, València, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBEResp), Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina A Ponce
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Nicole Pesantes
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)-Salud Pública, València, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBEResp), Instituto de Salud Carlos III, Madrid, Spain
| | - Rebeca Bustamante
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Gianna Gatti
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | | | | | | | - Sergio L Vargas
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Fabien Magne
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Enrique J Calderón
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBEResp), Instituto de Salud Carlos III, Madrid, Spain.,Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), and Universidad de Sevilla, Seville, Spain
| | - Vicente Pérez-Brocal
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)-Salud Pública, València, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBEResp), Instituto de Salud Carlos III, Madrid, Spain
| | - Andrés Moya
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)-Salud Pública, València, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBEResp), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biología Integrativa de Sistemas (I2Sysbio), Universitat de València and Consejo Superior de Investigaciones Científicas (CSIC), València, Spain
| |
Collapse
|
30
|
Li J, Li J, Yu Y, Wang R, Zhou M, Lu L. Pneumocystis pneumonia and rheumatic disease: diagnostic potential of circulating microbial cell-free DNA sequencing. Rheumatol Adv Pract 2022; 6:rkab105. [PMID: 35028498 PMCID: PMC8752118 DOI: 10.1093/rap/rkab105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/11/2021] [Indexed: 02/05/2023] Open
Abstract
Objectives The aim of this study was to explore the clinical utility of circulating microbial cell-free DNA (cfDNA) sequencing as a non-invasive approach for diagnosis of Pneumocystis jirovecii pneumonia (PJP) in immunocompromised patients with rheumatic disease (RD). Methods The study included 72 RD patients with suspected lung infections admitted to Renji hospital. Eighteen individuals were diagnosed with PJP, and 54 patients without PJP were enrolled as the control group. All patients had undergone pulmonary CT scans, and blood and respiratory tract specimens had been subjected to metagenomic next-generation sequencing (mNGS) and conventional microbiological tests. The clinical and laboratory parameters were collected, and the efficacy of circulating microbial cfDNA of P. jirovecii was evaluated. Results Of the 18 patients with PJP, the average age was 53.0 years, and the median time between RD diagnosis and PJP presentation was 126.0 days (interquartile range 84.0–176.3 days). Low circulating CD4+ cell counts and a lack of PJP prophylaxis were observed in the patients. Metagenomic NGS of circulating microbial cfDNA was performed in 69 patients, including 15 cases with PJP and 54 controls. Twelve (80%) of 15 analysed blood samples contained P. jirovecii sequences in the PJP group, with P. jirovecii not detected among controls. There was a significant difference between PJP and non-PJP groups (P < 0.001), with a sensitivity of 83.3% and specificity of 100% when using plasma cfDNA sequencing. Higher β-D-glucan levels were found in patients with positive results for P. jirovecii in plasma cfDNA sequencing. Conclusion Metagenomic NGS of circulating microbial cfDNA is a potential tool for diagnosis of PJP in RD patients.
Collapse
Affiliation(s)
- Jia Li
- Department of Rheumatology
| | - Jun Li
- Department of Rheumatology
| | - Yuetian Yu
- Department of Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine
| | - Rongsheng Wang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | | | | |
Collapse
|
31
|
Damhorst GL, Broder KJ, Overton EC, Rara R, Busch LM, Burd EM, Webster AS, Kraft CS, Babiker A. Clinical Utilization of DiaSorin Molecular Polymerase Chain Reaction in Pneumocystis Pneumonia. Open Forum Infect Dis 2022; 9:ofab634. [PMID: 35036467 PMCID: PMC8754379 DOI: 10.1093/ofid/ofab634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pneumocystis jirovecii polymerase chain reaction (PCR) testing is a sensitive diagnostic tool but does not distinguish infection from colonization. Cycle threshold (CT) may correlate with fungal burden and could be considered in clinical decision making. Clinical use of PCR and significance of CT values have not previously been examined with the DiaSorin Molecular platform. METHODS Retrospective review of P jirovecii PCR, CT values and clinical data from 18 months in a multihospital academic health system. The diagnostic performance of PCR with respect to pathology and correlation of CT with severity were examined. RESULTS Ninety-nine of 1006 (9.8%) assays from 786 patients in 919 encounters were positive. Among 91 (9.9%) encounters in which P jirovecii pneumonia (PJP) was treated, 41 (45%) were influenced by positive PCR. Negative PCR influenced discontinuation of therapy in 35 cases. Sensitivity and specificity of PCR were 93% (95% CI, 68%-100%) and 94% (95% CI, 91%-96%) with respect to pathology. CT values from deep respiratory specimens were significantly different among treated patients (P = .04) and those with positive pathology results (P < .0001) compared to patients not treated and those with negative pathology, respectively, and was highly predictive of positive pathology results (area under the curve = 0.92). No significant difference was observed in comparisons based on indicators of disease severity. CONCLUSIONS Pneumocystis jirovecii PCR was a highly impactful tool in the diagnosis and management of PJP, and use of CT values may have value in the treatment decision process in select cases. Further investigation in a prospective manner is needed.
Collapse
Affiliation(s)
- Gregory L Damhorst
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kari J Broder
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | - Lindsay M Busch
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Eileen M Burd
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Andrew S Webster
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Colleen S Kraft
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ahmed Babiker
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
32
|
Wu Y, Wang F, Wang C, Tang X, Liu X, Li S, Waterfield NR, Wang W, Suo X, Yang G. Detection of Pneumocystis jirovecii and Toxoplasma gondii in patients with lung infections by a duplex qPCR assay. PLoS Negl Trop Dis 2021; 15:e0010025. [PMID: 34919557 PMCID: PMC8682901 DOI: 10.1371/journal.pntd.0010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/25/2021] [Indexed: 12/02/2022] Open
Abstract
Pneumocystis pneumonia (PCP) and pulmonary toxoplasmosis (PT) are caused by Pneumocystis jirovecii and Toxoplasma gondii. The clinical symptoms and imaging of PCP and PT are indistinguishable. A duplex qPCR was developed to differentiate between these two pathogens. In testing 92 clinical samples to validate the performance of this method for P. jirovecii detection, it identified 31 positive samples for P. jirovecii infection, consistent with clinical diagnosis. Among the remainder of the 61 clinical samples with suspected PCP, yet showing as negative by the conventional PCR diagnosis approach, 6 of them proved positive using our new assay. Our new approach also produced similar results in identification of T. gondii infections, giving a result of 2 positive and 20 negative in clinical samples. An investigation was undertaken on the prevalence of P. jirovecii and T. gondii infections using 113 samples from lung infection patients. 9% (10/113) were shown to be positive with infections of P. jirovecii, 2% with T. gondii (2/113) and 5% (6/113) were co-infected with both pathogens. Although this duplex qPCR can detect individual P. jirovecii and T. gondii infection, and co-infection of both pathogens, further large-scale investigations are needed to validate its performance, especially in T. gondii detection. Our assay provides a rapid and accurate tool for PCP and PT diagnosis in immunocompromised population and clinical surveillance of these infections in patients with no immune defects. Pneumocystis jirovecii and Toxoplasma gondii are opportunistic pathogens that can cause pneumocystis pneumonia (PCP) and pulmonary toxoplasmosis (PT) in immunocompromised patients. Due to the non-specific clinical symptoms and similar imaging of lung pathology, these two deadly diseases are difficult to be clinically differential diagnosed. Early diagnosis of these infections would reduce medical costs, morbidity and mortality. A duplex qPCR method was developed for the detection of both P. jirovecii and T. gondii infection simultaneously. This new assay provides a potential application for diagnosis and surveillance of both PCP and PT. Further investigation for the prevalence of P. jirovecii and T. gondii infections indicated that P. jirovecii and T. gondii involvement in lung infection has been seriously underestimated.
Collapse
Affiliation(s)
- Yun Wu
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fei Wang
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chaoyue Wang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinming Tang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianyong Liu
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shaogang Li
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | | | - Wei Wang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- * E-mail: (WW); (XS); (GY)
| | - Xun Suo
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
- * E-mail: (WW); (XS); (GY)
| | - Guowei Yang
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- * E-mail: (WW); (XS); (GY)
| |
Collapse
|
33
|
Gantois N, Lesaffre A, Durand-Joly I, Bautin N, Le Rouzic O, Nseir S, Reboux G, Scherer E, Aliouat EM, Fry S, Gosset P, Fréalle E. Factors associated with Pneumocystis colonization and circulating genotypes in chronic obstructive pulmonary disease patients with acute exacerbation or at stable state and their homes. Med Mycol 2021; 60:6420247. [PMID: 34734270 DOI: 10.1093/mmy/myab070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/20/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Pneumocystis jirovecii colonization is frequent during chronic obstructive pulmonary disease (COPD) and patients constitute potential contributors to its interhuman circulation. However, the existence of an environmental reservoir cannot be excluded. We assessed the prevalence and factors associated with Pneumocystis colonization during COPD, and studied circulation between patients and their domestic environment. Pneumocystis molecular detection and mtLSU genotyping were performed in oro-pharyngeal washes (OPW) sampled in 58 patients with COPD acute exacerbation, and in indoor dust, sampled in patients' homes using electrostatic dust collectors (EDCs). Lung and systemic inflammation was assessed. Pneumocystis carriage was evaluated in 28 patients after 18 months at stable state. Pneumocystis was detected in 11/58 OPWs during exacerbation (19.0%). Colonized patients presented a significantly lower body mass index, and higher serum IL-17 and CD62P. One patient presented positive detection of typable isolates in both OPW and EDC, with both isolates harboring mtLSU genotype 3. Pneumocystis genotype 1 was further detected in EDCs from three non-colonized patients and one colonized patient with non-typable isolate. Genotypes 1 and 2 were predominant in clinical isolates (both 42%), with genotype 3 representing 16% of isolates. Pneumocystis was detected in 3/28 patients at stable state (10.7%). These data suggest that Pneumocystis colonization could be facilitated by a lower BMI and be related to acute alteration of lung function during COPD exacerbation. It also suggests Th17 pathway and platelet activation could be involved in the anti-Pneumocystis response during colonization. Last, Pneumocystis detection in EDCs supports its potential persistence in indoor dust. LAY SUMMARY Chronic obstructive pulmonary disease patients tend to be more frequently colonized by Pneumocystis during exacerbation (19.0%) than at stable state (10.7%). Factors associated with colonization include lower BMI, higher IL-17, and CD62P. Pneumocystis detection in patients' dwellings suggests potential persistence in indoor dust.
Collapse
Affiliation(s)
- Nausicaa Gantois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Aymerick Lesaffre
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | | | - Nathalie Bautin
- CHU Lille, Clinique des Maladies Respiratoires, F-59000 Lille, France
| | - Olivier Le Rouzic
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.,CHU Lille, Clinique des Maladies Respiratoires, F-59000 Lille, France
| | - Saad Nseir
- CHU Lille, Pôle de Réanimation, F-59000 Lille, France
| | - Gabriel Reboux
- Chrono-Environnement UMR 6249 CNRS, Université de Bourgogne Franche-Comté & Service de Parasitologie-Mycologie, CHU de Besançon, F-25030 Besançon, France
| | - Emeline Scherer
- Chrono-Environnement UMR 6249 CNRS, Université de Bourgogne Franche-Comté & Service de Parasitologie-Mycologie, CHU de Besançon, F-25030 Besançon, France
| | - El Moukhtar Aliouat
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Stéphanie Fry
- CHU Lille, Clinique des Maladies Respiratoires, F-59000 Lille, France
| | - Philippe Gosset
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Emilie Fréalle
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.,CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| |
Collapse
|
34
|
Is It Possible to Differentiate Pneumocystis jirovecii Pneumonia and Colonization in the Immunocompromised Patients with Pneumonia? J Fungi (Basel) 2021; 7:jof7121036. [PMID: 34947017 PMCID: PMC8707387 DOI: 10.3390/jof7121036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022] Open
Abstract
Respiratory sample staining is a standard tool used to diagnose Pneumocystis jirovecii pneumonia (PjP). Although molecular tests are more sensitive, their interpretation can be difficult due to the potential of colonization. We aimed to validate a Pneumocystis jirovecii (Pj) real-time PCR (qPCR) assay in bronchoscopic bronchoalveolar lavage (BAL) and oropharyngeal washes (OW). We included 158 immunosuppressed patients with pneumonia, 35 lung cancer patients who underwent BAL, and 20 healthy individuals. We used a SYBR green qPCR assay to look for a 103 bp fragment of the Pj mtLSU rRNA gene in BAL and OW. We calculated the qPCR cut-off as well as the analytical and diagnostic characteristics. The qPCR was positive in 67.8% of BAL samples from the immunocompromised patients. The established cut-off for discriminating between disease and colonization was Ct 24.53 for BAL samples. In the immunosuppressed group, qPCR detected all 25 microscopy-positive PjP cases, plus three additional cases. Pj colonization in the immunocompromised group was 66.2%, while in the cancer group, colonization rates were 48%. qPCR was ineffective at diagnosing PjP in the OW samples. This new qPCR allowed for reliable diagnosis of PjP, and differentiation between PjP disease and colonization in BAL of immunocompromised patients with pneumonia.
Collapse
|
35
|
Sarasombath PT, Thongpiya J, Chulanetra M, Wijit S, Chinabut P, Ongrotchanakun J, Jitmuang A, Wanachiwanawin D. Quantitative PCR to Discriminate Between Pneumocystis Pneumonia and Colonization in HIV and Non-HIV Immunocompromised Patients. Front Microbiol 2021; 12:729193. [PMID: 34745031 PMCID: PMC8564139 DOI: 10.3389/fmicb.2021.729193] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/22/2021] [Indexed: 12/31/2022] Open
Abstract
Pneumocystis pneumonia (PCP) is an opportunistic infection that commonly occurs in immunocompromised individuals. A definite diagnosis of PCP can be made only when the organism is identified in a respiratory specimen. It remains unclear whether qPCR can differentiate patients with PCP from those with Pneumocystis jirovecii colonization. In this study, we retrospectively collected data from HIV and non-HIV patients during 2013-2019. A diagnosis of definite, probable PCP, or PCP excluded was made based on clinical criteria, radiological reports, and three standard laboratory staining methods with blinding to qPCR data. Data from qPCR that was performed to determine the fungal burden (DNA copies/μl) in the BAL specimens of 69 HIV and 286 non-HIV patients were then obtained and reviewed. Receiver Operating Characteristic (ROC) curve analysis was performed to determine the upper and lower cut-off values for PCP diagnosis in HIV and non-HIV groups. In the non-HIV group, the lower cut-off value of 1,480 DNA copies/μl yielded a sensitivity of 100% (95% confidence interval [CI], 91.0-100), specificity of 72.9% (95% CI, 64.0-80.7), a positive predictive value (PPV) of 54.9% (95% CI, 47.6-62.1), and a negative predictive value (NPV) of 100% with Youden index of 0.73 for PCP diagnosis. In this group, the upper cut-off value of 9,655 DNA copies/μl showed the sensitivity of 100% (95% CI, 91.0-100) and specificity of 95.8% (95% CI, 90.4-98.6) with PPV of 88.6% (95% CI, 76.8-94.8) and a NPV of 100% with Youden index of 0.96 for PCP diagnosis. Regarding the HIV group, the lower cut-off value of 1,480 DNA copies/μl showed the sensitivity of 100% (95% CI, 92.5-100%) and specificity of 91.7% (95% CI, 61.5-99.8) with PPV of 97.9% (95% CI, 87.8-99.7) and a NPV of 100% with Youden index of 0.92 for PCP diagnosis. The sensitivity and specificity of the upper cut-off value of 12,718 DNA copies/μl in this group were 97.9% (95%CI, 88.7-100) and 100% (95%CI, 73.5-100), respectively. The values above the upper cut-off point had a PPV of 100% (95% CI, N/A) and a NPV of 92.3% (95% CI, 63.3-98.8) with Youden index of 0.98 for PCP diagnosis in the HIV group.
Collapse
Affiliation(s)
| | - Jerapas Thongpiya
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Monrat Chulanetra
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sirirat Wijit
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pisith Chinabut
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jeerawan Ongrotchanakun
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Anupop Jitmuang
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Darawan Wanachiwanawin
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
36
|
Jitmuang A, Nititammaluk A, Boonsong T, Sarasombath PT, Sompradeekul S, Chayakulkeeree M. A novel droplet digital polymerase chain reaction for diagnosis of Pneumocystis pneumonia (PCP)-a clinical performance study and survey of sulfamethoxazole-trimethoprim resistant mutations. J Infect 2021; 83:701-708. [PMID: 34562541 DOI: 10.1016/j.jinf.2021.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
Objectives To determine the performance of droplet digital polymerase chain reaction (ddPCR) assays in diagnosing Pneumocystis pneumonia (PCP), and to survey the sulfamethoxazole-trimethoprim (SMX-TMP) resistant mutations in our PCP cohort. Methods A prospective study was conducted from January 2017 to June 2018. Adult immunocompromised subjects with pneumonia were enrolled. Bronchoalveolar lavage fluid samples were obtained for standard microscopic testing and ddPCR to quantify the Pneumocystis MSG gene. DHPS and DHFR gene sequencings were performed to detect SMX-TMP resistance. Results Of 54 subjects, 12 had definite PCP, 7 had probable PCP, and 35 were non-PCP. In the PCP cohort, 10 (53%) had HIV infections. Using a cutoff value of ≥ 1.94 copies/µL, the ddPCR exhibited an overall sensitivity of 91.7% (61.5-99.8%) and specificity of 88.1% (74.4-96%). It showed a better performance when different cutoff values were used in subjects with HIV (≥ 1.80 copies/µL) and non-HIV (≥ 4.5 copies/µL). ROC curves demonstrated an AUC of 0.80 (95% CI, 0.56-1.0) for the HIV group, and 0.99 (95% CI, 0.95-1.0) for the non-HIV group. Of 16 PCP samples tested for DHPS- and DHFR-mutations, only DHPS mutations were detected (2). Most of the subjects, including those with DHPS mutations, demonstrated favorable outcomes. Conclusions The ddPCR exhibited a satisfactory diagnostic performance for PCP. Based on very limited data, the treatment outcomes of PCP did not seem to be affected by the DHPS mutations.
Collapse
Affiliation(s)
- Anupop Jitmuang
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand
| | - Anapat Nititammaluk
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand
| | - Thitaya Boonsong
- Department of Internal Medicine, Hatyai Hospital, Songkhla, Thailand
| | | | - Suree Sompradeekul
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand
| | - Methee Chayakulkeeree
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand.
| |
Collapse
|
37
|
Grønseth S, Rogne T, Hannula R, Åsvold BO, Afset JE, Damås JK. Semiquantitative Real-Time PCR to Distinguish Pneumocystis Pneumonia from Colonization in a Heterogeneous Population of HIV-Negative Immunocompromised Patients. Microbiol Spectr 2021; 9:e0002621. [PMID: 34346746 PMCID: PMC8552647 DOI: 10.1128/spectrum.00026-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022] Open
Abstract
Pneumocystis jirovecii is a threat to iatrogenically immunosuppressed individuals, a heterogeneous population at rapid growth. We assessed the ability of an in-house semiquantitative real-time PCR assay to discriminate Pneumocystis pneumonia (PCP) from colonization and identified risk factors for infection in these patients. Retrospectively, 242 PCR-positive patients were compared according to PCP status, including strata by immunosuppressive conditions, human immunodeficiency virus (HIV) infection excluded. Associations between host characteristics and cycle threshold (CT) values, semiquantitative real-time PCR correlates of fungal loads in lower respiratory tract specimens, were investigated. CT values differed significantly according to PCP status. Overall, a CT value of 36 allowed differentiation between PCP and colonization with sensitivity and specificity of 71.3% and 77.1%, respectively. A CT value of less than 31 confirmed PCP, whereas no CT value permitted exclusion. A considerable diversity was uncovered; solid organ transplant (SOT) recipients had significantly higher fungal loads than patients with hematological malignancies. In SOT recipients, a CT cutoff value of 36 resulted in sensitivity and specificity of 95.0% and 83.3%, respectively. In patients with hematological malignancies, a higher CT cutoff value of 37 improved sensitivity to 88.5% but reduced specificity to 66.7%. For other conditions, assay validity appeared inferior. Corticosteroid usage was an independent predictor of PCP in a multivariable analysis and was associated with higher fungal loads at PCP expression. Semiquantitative real-time PCR improves differentiation between PCP and colonization in immunocompromised HIV-negative individuals with acute respiratory syndromes. However, heterogeneity in disease evolution requires separate cutoff values across intrinsic and iatrogenic predisposition for predicting non-HIV PCP. IMPORTANCE Pneumocystis jirovecii is potentially life threatening to an increasing number of individuals with compromised immune systems. This microorganism can cause severe pneumonia in susceptible hosts, including patients with cancer and autoimmune diseases and people undergoing solid organ transplantation. Together, these patients constitute an ever-diverse population. In this paper, we demonstrate that the heterogeneity herein has important implications for how we diagnose and assess the risk of Pneumocystis pneumonia (PCP). Specifically, low loads of microorganisms are sufficient to cause infection in patients with blood cancer compared to those in solid organ recipients. With this new insight into host versus P. jirovecii biology, clinicians can manage patients at risk of PCP more accurately. As a result, we take a significant step toward offering precision medicine to a vulnerable patient population. One the one hand, these patients have propensity for adverse effects from antimicrobial treatment. On the other hand, this population is susceptible to life-threatening infections, including PCP.
Collapse
Affiliation(s)
- Stine Grønseth
- Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway
| | - Tormod Rogne
- Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
- Department of Chronic Disease Epidemiology, Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, Connecticut, USA
| | - Raisa Hannula
- Department of Infectious Diseases, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Bjørn Olav Åsvold
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Trondheim, Norway
- HUNT Research Center, Department of Public Health and Nursing, NTNU, Levanger, Norway
- Department of Endocrinology, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jan Egil Afset
- Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway
- Department of Medical Microbiology, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jan Kristian Damås
- Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway
- Department of Infectious Diseases, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
- Centre of Molecular Inflammation Research, NTNU, Trondheim, Norway
| |
Collapse
|
38
|
Salsé M, Mercier V, Carles MJ, Lechiche C, Sasso M. Performance of the RealStar ® Pneumocystis jirovecii PCR kit for the diagnosis of Pneumocystis pneumonia. Mycoses 2021; 64:1230-1237. [PMID: 34346113 DOI: 10.1111/myc.13354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Pneumonia due to Pneumocystis jirovecii (PCP) is a frequent infection in HIV-positive and also in immunocompromised HIV-negative patients. PCR analysis of pulmonary samples has become an essential element in PCP laboratory diagnosis. Currently, many commercially PCR-based tests are available for P jirovecii detection and need to be evaluated. OBJECTIVES We evaluated the performance of the RealStar® P jirovecii PCR kit for PCP diagnosis. METHODS We performed the RealStar® P jirovecii PCR and an in-house PCR in 219 pulmonary samples. We then assessed the performance of the RealStar® P jirovecii PCR kit by classifying patients in proven, probable, possible PCP or no final diagnosis, on the basis of the clinical and radiological signs and direct examination of bronchoalveolar lavage samples. RESULTS The results showed excellent concordance (96.8%) with another in-house PCR, previously used in the laboratory. The available clinical data allowed classifying 219 patients as having proven PCP (n = 6), probable PCP (n = 27), possible PCP (n = 29) and no final diagnosis of PCP (n = 157). The RealStar® P jirovecii PCR kit performed well with samples from patients with proven and probable PCP, as indicated by the detection of P jirovecii DNA in all these samples. The percentage of positive samples in the possible PCP category was 75.9%. In patients with no final diagnosis of PCP, P jirovecii DNA was detected in 13.4% of samples, indicating colonisation by this pathogen. CONCLUSIONS The RealStar® P jirovecii PCR kit shows excellent performance for PCP diagnosis.
Collapse
Affiliation(s)
- Margot Salsé
- Laboratoire de Microbiologie, CHU de Nîmes, Nîmes, France
| | - Victor Mercier
- MIVEGEC, Univ. Montpellier, CHU de Nîmes, CNRS, IRD, Montpellier, France
| | | | - Catherine Lechiche
- Service de Maladies infectieuses et tropicales, CHU de Nîmes, Nîmes, France
| | - Milène Sasso
- MIVEGEC, Univ. Montpellier, CHU de Nîmes, CNRS, IRD, Montpellier, France
| |
Collapse
|
39
|
Quantitative Pneumocystis jirovecii real-time PCR to differentiate disease from colonisation. Pathology 2021; 53:896-901. [PMID: 34217515 DOI: 10.1016/j.pathol.2021.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 01/12/2023]
Abstract
We studied a Pneumocystis jirovecii quantitative polymerase chain reaction (qPCR) for distinguishing P. jirovecii disease from colonisation. Eighty-two respiratory samples from 65 patients with qPCR results were analysed against a gold standard clinical diagnosis of Pneumocystis pneumonia. High inter-assay reproducibility using recombinant and clinical material was observed. Contemporaneous samples from the same patient displayed high variability (median difference 2.6 log10 copies/mL, IQR 2.1-3.1 log10 copies/mL). Despite this, area under the receiver operator characteristic curve was 0.8. An optimum cut-off of 2.8 log10 copies/mL (equivalent to CT of 34.0 cycles) had 59% sensitivity and 92% specificity. The median P. jirovecii load was 7.3 log10 copies/mL in HIV patients compared to 2.6 log10 copies/mL in non-HIV patients. Specificity was 100% in non-HIV patients with qPCR of >3.8 log10 copies/mL. qPCR was useful for distinguishing P. jirovecii disease from colonisation. A quantitative standard, standardisation of definitions and methods are required to improve the generalisability of results.
Collapse
|
40
|
Gits-Muselli M, White PL, Mengoli C, Chen S, Crowley B, Dingemans G, Fréalle E, L Gorton R, Guiver M, Hagen F, Halliday C, Johnson G, Lagrou K, Lengerova M, Melchers WJG, Novak-Frazer L, Rautemaa-Richardson R, Scherer E, Steinmann J, Cruciani M, Barnes R, Donnelly JP, Loeffler J, Bretagne S, Alanio A. The Fungal PCR Initiative's evaluation of in-house and commercial Pneumocystis jirovecii qPCR assays: Toward a standard for a diagnostics assay. Med Mycol 2021; 58:779-788. [PMID: 31758173 DOI: 10.1093/mmy/myz115] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 01/04/2023] Open
Abstract
Quantitative real-time PCR (qPCR) is increasingly used to detect Pneumocystis jirovecii for the diagnosis of Pneumocystis pneumonia (PCP), but there are differences in the nucleic acids targeted, DNA only versus whole nucleic acid (WNA), and also the target genes for amplification. Through the Fungal PCR Initiative, a working group of the International Society for Human and Animal Mycology, a multicenter and monocenter evaluation of PCP qPCR assays was performed. For the multicenter study, 16 reference laboratories from eight different countries, performing 20 assays analyzed a panel consisting of two negative and three PCP positive samples. Aliquots were prepared by pooling residual material from 20 negative or positive- P. jirovecii bronchoalveolar lavage fluids (BALFs). The positive pool was diluted to obtain three concentrations (pure 1:1; 1:100; and 1:1000 to mimic high, medium, and low fungal loads, respectively). The monocenter study compared five in-house and five commercial qPCR assays testing 19 individual BALFs on the same amplification platform. Across both evaluations and for all fungal loads, targeting WNA and the mitochondrial small sub-unit (mtSSU) provided the earliest Cq values, compared to only targeting DNA and the mitochondrial large subunit, the major surface glycoprotein or the beta-tubulin genes. Thus, reverse transcriptase-qPCR targeting the mtSSU gene could serve as a basis for standardizing the P. jirovecii load, which is essential if qPCR is to be incorporated into clinical care pathways as the reference method, accepting that additional parameters such as amplification platforms still need evaluation.
Collapse
Affiliation(s)
- Maud Gits-Muselli
- Institut Pasteur, Molecular Mycology Unit, CNRS UMR2000, Paris, France.,Laboratoire de Parasitologie-Mycologie, Hôpital Saint-Louis, Groupe Hospitalier Lariboisière, Saint-Louis, Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Université de Paris, Paris, France
| | - P Lewis White
- Public Health Wales, Microbiology Cardiff, UHW, Heath Park, Cardiff, UK
| | | | - Sharon Chen
- Clinical Mycology reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, and the University of Sydney, Australia
| | - Brendan Crowley
- Department of Virology, St James's Hospital, Dublin, Ireland
| | | | - Emilie Fréalle
- CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France & Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204-CIIL-Centre for Infection and Immunity of Lille, F-59000 Lille, France
| | - Rebecca L Gorton
- Regional UK Clinical Mycology Network (UK CMN) Laboratory, Dept. Infection Sciences, Health Services Laboratories (HSL) LLP, London, UK
| | - Malcom Guiver
- Public Health Laboratory, National Infection Service Public Health England, Manchester University NHS Foundation Trust, Manchester, UK
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, The Netherlands.,Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, China
| | - Catriona Halliday
- Clinical Mycology reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, and the University of Sydney, Australia
| | | | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, and Department of Laboratory Medicine and National Reference Centre for Mycosis, Excellence Centre for Medical Mycology (ECMM), University Hospitals Leuven, Leuven, Belgium
| | - Martina Lengerova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Willem J G Melchers
- Radboud University Medical Centre, Department of Medical Microbiology, Nijmegen, The Netherlands
| | - Lily Novak-Frazer
- Mycology Reference Centre Manchester, Manchester University NHS Foundation Trust; and Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Riina Rautemaa-Richardson
- Department of Infectious Diseases and the Mycology Reference Centre Manchester, Manchester University NHS Foundation Trust; and Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Emeline Scherer
- Department of Parasitology-Mycology, University Hospital of Besançon, Besançon, France
| | - Joerg Steinmann
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nürnberg, Paracelsus Medical University, Nuremberg, Germany.,Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mario Cruciani
- Infectious Diseases Unit, San Bonifacio Hospital, Verona, Italy
| | | | | | - Juergen Loeffler
- University Hospital Wuerzburg, Medical Hospital II, C11, Wuerzburg, Germany
| | - Stéphane Bretagne
- Institut Pasteur, Molecular Mycology Unit, CNRS UMR2000, Paris, France.,Laboratoire de Parasitologie-Mycologie, Hôpital Saint-Louis, Groupe Hospitalier Lariboisière, Saint-Louis, Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Université de Paris, Paris, France
| | - Alexandre Alanio
- Institut Pasteur, Molecular Mycology Unit, CNRS UMR2000, Paris, France.,Laboratoire de Parasitologie-Mycologie, Hôpital Saint-Louis, Groupe Hospitalier Lariboisière, Saint-Louis, Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Université de Paris, Paris, France
| |
Collapse
|
41
|
Dellière S, Hamane S, Aissaoui N, Gits-Muselli M, Bretagne S, Alanio A. Increased sensitivity of a new commercial reverse transcriptase-quantitative PCR for the detection of Pneumocystis jirovecii in respiratory specimens. Med Mycol 2021; 59:845-848. [PMID: 33983431 DOI: 10.1093/mmy/myab029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/21/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
Optimal sensitivity to detect low Pneumocystis loads is of importance to take individual and collective measures to avoid evolution towards Pneumocystis pneumonia and outbreaks in immunocompromised patients. This study compares two qPCR procedures, a new automated RTqPCR using the GeneLEAD VIII extractor/thermocycler (GLVIII; ∼2.2 h workflow) and a previously validated in-house qPCR assays (IH; ∼5 h workflow) both targeting mtSSU and mtLSU for detecting P. jirovecii in 213 respiratory samples. GLVIII was found to be more sensitive than IH, detecting eight more specimens. Bland-Altman analysis between the two procedures showed a Cq bias of 1.17 ± 0.07 in favor of GLVIII. LAY SUMMARY The fungus Pneumocystis needs to be detected early in respiratory samples to prevent pneumonia in immunocompromised hosts. We evaluated a new commercial RTqPCR on 213 respiratory samples to detect Pneumocystis and found it more sensitive and faster than our routine sensitive in-house qPCR assay.
Collapse
Affiliation(s)
- Sarah Dellière
- Université de Paris, Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), 75010, Paris, France.,Institut Pasteur, Molecular Mycology Unit, CNRS UMR2000, 75015, Paris, France
| | - Samia Hamane
- Université de Paris, Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), 75010, Paris, France
| | - Nesrine Aissaoui
- Université de Paris, Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), 75010, Paris, France
| | - Maud Gits-Muselli
- Université de Paris, Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), 75010, Paris, France.,Institut Pasteur, Molecular Mycology Unit, CNRS UMR2000, 75015, Paris, France
| | - Stéphane Bretagne
- Université de Paris, Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), 75010, Paris, France.,Institut Pasteur, Molecular Mycology Unit, CNRS UMR2000, 75015, Paris, France.,National Reference Center for Invasive Mycoses and Antifungals (NRCMA), Institut Pasteur, 75015, Paris, France
| | - Alexandre Alanio
- Université de Paris, Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), 75010, Paris, France.,Institut Pasteur, Molecular Mycology Unit, CNRS UMR2000, 75015, Paris, France.,National Reference Center for Invasive Mycoses and Antifungals (NRCMA), Institut Pasteur, 75015, Paris, France
| |
Collapse
|
42
|
Lagrou K, Chen S, Masur H, Viscoli C, Decker CF, Pagano L, Groll AH. Pneumocystis jirovecii Disease: Basis for the Revised EORTC/MSGERC Invasive Fungal Disease Definitions in Individuals Without Human Immunodeficiency Virus. Clin Infect Dis 2021; 72:S114-S120. [PMID: 33709126 DOI: 10.1093/cid/ciaa1805] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Pneumocystis jirovecii pneumonia (PCP) causes substantive morbidity in immunocompromised patients. The EORTC/MSGERC convened an expert group to elaborate consensus definitions for Pneumocystis disease for the purpose of interventional clinical trials and epidemiological studies and evaluation of diagnostic tests. METHODS Definitions were based on the triad of host factors, clinical-radiologic features, and mycologic tests with categorization into probable and proven Pneumocystis disease, and to be applicable to immunocompromised adults and children without human immunodeficiency virus (HIV). Definitions were formulated and their criteria debated and adjusted after public consultation. The definitions were published within the 2019 update of the EORTC/MSGERC Consensus Definitions of Invasive Fungal Disease. Here we detail the scientific rationale behind the disease definitions. RESULTS The diagnosis of proven PCP is based on clinical and radiologic criteria plus demonstration of P. jirovecii by microscopy using conventional or immunofluorescence staining in tissue or respiratory tract specimens. Probable PCP is defined by the presence of appropriate host factors and clinical-radiologic criteria, plus amplification of P. jirovecii DNA by quantitative real-time polymerase chain reaction (PCR) in respiratory specimens and/or detection of β-d-glucan in serum provided that another invasive fungal disease and a false-positive result can be ruled out. Extrapulmonary Pneumocystis disease requires demonstration of the organism in affected tissue by microscopy and, preferably, PCR. CONCLUSIONS These updated definitions of Pneumocystis diseases should prove applicable in clinical, diagnostic, and epidemiologic research in a broad range of immunocompromised patients without HIV.
Collapse
Affiliation(s)
- Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Laboratory Medicine and National Reference Centre for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital and the University of Sydney, Sydney, Australia
| | - Henry Masur
- Department of Critical Care Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Claudio Viscoli
- Division of Infectious Diseases, University of Genoa (DISSAL) and Ospedale Policlinico San Martino, Genoa, Italy
| | - Catherine F Decker
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Livio Pagano
- Istituto di Ematologia, Policlinico Universitario A. Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andreas H Groll
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| |
Collapse
|
43
|
Alanio A, Gits-Muselli M, Guigue N, Denis B, Bergeron A, Touratier S, Hamane S, Bretagne S. Prospective comparison of (1,3)-beta-D-glucan detection using colorimetric and turbidimetric assays for diagnosing invasive fungal disease. Med Mycol 2021; 59:882-889. [PMID: 33877326 DOI: 10.1093/mmy/myab016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/30/2022] Open
Abstract
Serum (1→3)-β-D-glucan (BDG), an pan fungal antigen, is detected in some invasive fungal diseases (IFDs). We compared two commercial kits, the Fungitell assay (FA) (colorimetric) and the Wako assay (WA) (turbidimetric) over a 4-month period to prospectively test 171 patients who mainly had hematological conditions (62%) and experienced episodes (n = 175) of suspected invasive fungal infection. Twenty-three episodes due to BDG-producing fungi were diagnosed (pneumocystosis, n = 12; invasive aspergillosis, n = 5; candidemia, n = 3; invasive fusariosis, n = 2; hepato-splenic candidiasis, n = 1).Both assays provided similar areas under the curves (AUC = 0.9). Using the optimized positivity thresholds (≥120 pg/ml for FA and ≥ 4 pg/ml for WA), the sensitivity and specificity were 81.8% (CI95: 61.5-92.7), 94.8% (90.1-97.3) for FA and 81.8% (61.5-92.7), 95.4% (90.9-97.8) for WA. Negative predictive value was 97.3% (93.3-99.0) for both tests. If the manufacturer's positivity threshold (≥11 pg/ml) was applied, the WA sensitivity decreased to 50%. Among 71 patients with bacterial infections, 21.1% were FA-positive and 5.6% were WA-positive (p < 10-2).The WA performed similarly as compared to the FA with an optimized cutoff value. The WA is a single sample test that is clinically relevant when a prompt therapeutic decision is required. LAY SUMMARY Serum (1→3)-β-D-glucan testing is dominated by two kits including Fungitell colorimetric assay (FA) and the Wako turbidimetric assay (WA). We compared them prospectively and observed that they both perform similarly when selecting their optimal threshold (≥120 pg/ml for FA and ≥ 4 pg/ml for WA).
Collapse
Affiliation(s)
- Alexandre Alanio
- Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Lariboisière, Saint-Louis, Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), 75010 Paris, France.,Université de Paris, 75006 Paris, France.,Institut Pasteur, Unité de Mycologie Moléculaire, CNRS UMR2000, 75724 Paris, France
| | - Maud Gits-Muselli
- Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Lariboisière, Saint-Louis, Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), 75010 Paris, France.,Université de Paris, 75006 Paris, France
| | - Nicolas Guigue
- Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Lariboisière, Saint-Louis, Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), 75010 Paris, France
| | - Blandine Denis
- Service de maladies infectieuses et tropicales, Groupe Hospitalier Lariboisière, Saint-Louis, Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), 75010 Paris, France
| | - Anne Bergeron
- Service de Pneumologie, Groupe Hospitalier Lariboisière, Saint-Louis, Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), 75010 Paris, France
| | - Sophie Touratier
- Pharmacie centrale, Groupe Hospitalier Lariboisière, Saint-Louis, Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), 75010 Paris, France
| | - Samia Hamane
- Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Lariboisière, Saint-Louis, Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), 75010 Paris, France
| | - Stéphane Bretagne
- Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Lariboisière, Saint-Louis, Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), 75010 Paris, France.,Université de Paris, 75006 Paris, France.,Institut Pasteur, Unité de Mycologie Moléculaire, CNRS UMR2000, 75724 Paris, France
| |
Collapse
|
44
|
Tang G, Tong S, Yuan X, Lin Q, Luo Y, Song H, Liu W, Wu S, Mao L, Liu W, Zhu Y, Sun Z, Wang F. Using Routine Laboratory Markers and Immunological Indicators for Predicting Pneumocystis jiroveci Pneumonia in Immunocompromised Patients. Front Immunol 2021; 12:652383. [PMID: 33912176 PMCID: PMC8071988 DOI: 10.3389/fimmu.2021.652383] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background Pneumocystis jiroveci pneumonia (PJP) is the most common opportunistic infection in immunocompromised patients. The accurate prediction of PJP development in patients undergoing immunosuppressive therapy remains challenge. Methods Patients undergoing immunosuppressive treatment and with confirmed pneumocystis jiroveci infection were enrolled. Another group of matched patients with immunosuppressant treatment but without signs of infectious diseases were enrolled to control group. Results A total of 80 (40 PJP, 40 non-PJP) participants were enrolled from Tongji Hospital. None of the patients were HIV positive. The routine laboratory indicators, such as LYM, MON, RBC, TP, and ALB, were significantly lower in PJP patients than in non-PJP patients. Conversely, LDH in PJP patients was significantly higher than in non-PJP controls. For immunological indicators, the numbers of T, B, and NK cells were all remarkably lower in PJP patients than in non-PJP controls, whereas the functional markers such as HLA-DR, CD45RO and CD28 expressed on CD4+ or CD8+ T cells had no statistical difference between these two groups. Cluster analysis showing that decrease of host immunity markers including CD3+, CD4+ and CD8+ T cells, and increase of tissue damage marker LDH were the most typical characteristics of PJP patients. A further established model based on combination of CD8+ T cells and LDH showed prominent value in distinguishing PJP from non-PJP, with AUC of 0.941 (95% CI, 0.892-0.990). Conclusions A model based on combination of routine laboratory and immunological indicators shows prominent value for predicting the development of PJP in HIV-negative patients undergoing immunosuppressive therapy.
Collapse
Affiliation(s)
- Guoxing Tang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shutao Tong
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Yuan
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Lin
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Luo
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huijuan Song
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiji Wu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liyan Mao
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiyong Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaowu Zhu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyong Sun
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Wills NK, Lawrence DS, Botsile E, Tenforde MW, Jarvis JN. The prevalence of laboratory-confirmed Pneumocystis jirovecii in HIV-infected adults in Africa: A systematic review and meta-analysis. Med Mycol 2021; 59:802-812. [PMID: 33578417 DOI: 10.1093/mmy/myab002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/30/2020] [Accepted: 01/08/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The epidemiology of Pneumocystis jirovecii, known to colonize the respiratory tract and cause a life-threatening HIV-associated pneumonia (PCP), is poorly described in Africa. We conducted a systematic review to evaluate P. jirovecii prevalence in African HIV-positive adults with or without respiratory symptoms. METHODS We searched Medline, Embase, Cochrane library, Africa-Wide, and Web of Science for studies employing PCR and/or microscopy for P. jirovecii detection in respiratory samples from HIV-positive adults in Africa between 1995 and 2020. Prevalence with respiratory symptoms was pooled using random-effect meta-analysis, and stratified by laboratory method, sample tested, study setting, CD4 count, and trimethoprim/sulfamethoxazole prophylaxis. Colonization prevalence in asymptomatic adults and in adults with non-PCP respiratory disease was described, and quantitative PCR (qPCR) thresholds to distinguish colonization from microscopy-confirmed PCP reviewed. RESULTS Thirty-two studies were included, with 27 studies (87%) at high risk of selection bias. P. jirovecii was detected in 19% [95% confidence interval (CI): 12-27%] of 3583 symptomatic and in 9% [95% CI: 0-45%] of 140 asymptomatic adults. Among symptomatic adults, prevalence was 22% [95% CI: 12-35%] by PCR and 15% [95% CI: 9-23%] by microscopy. Seven percent of 435 symptomatic adults had PCR-detected Pneumocystis colonization without evidence of PCP [95% CI: 5-10%, four studies]. One study established a qPCR cutoff of 78 copies/5μl of DNA in 305 induced sputum samples to distinguish Pneumocystis colonization from microscopy-confirmed PCP. CONCLUSION Despite widened access to HIV services, P. jirovecii remains common in Africa. Prevalence estimates and qPCR-based definitions of colonization are limited, and overall quality of studies is low.
Collapse
Affiliation(s)
- Nicola K Wills
- Welcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa.,Department of Clinical Research, Faculty of infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.,Department of Medicine, Groote Schuur Hospital University of Cape Town, Cape Town, 7925, South Africa
| | - David S Lawrence
- Department of Clinical Research, Faculty of infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.,Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Elizabeth Botsile
- Department of Medicine, Princess Marina Hospital, Gaborone, Botswana
| | - Mark W Tenforde
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA.,Department of Epidemiology, University of Washington School of Public Health, Seattle, 98195, WA, USA
| | - Joseph N Jarvis
- Department of Clinical Research, Faculty of infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.,Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| |
Collapse
|
46
|
Maartens G, Griesel R, Dube F, Nicol M, Mendelson M. Etiology of Pulmonary Infections in Human Immunodeficiency Virus-infected Inpatients Using Sputum Multiplex Real-time Polymerase Chain Reaction. Clin Infect Dis 2021; 70:1147-1152. [PMID: 31286137 PMCID: PMC7108142 DOI: 10.1093/cid/ciz332] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/22/2019] [Indexed: 12/12/2022] Open
Abstract
Background There are limited data on the etiology of respiratory infections in human immunodeficiency virus (HIV)–infected patients in resource-limited settings. Methods We performed quantitative multiplex real-time polymerase chain reaction (PCR) for Pneumocystis jirovecii and common bacterial and viral respiratory pathogens on sputum samples (spontaneous or induced) from a prospective cohort study of HIV-infected inpatients with World Health Organization danger signs and cough. Mycobacterial culture was done on 2 sputum samples, blood cultures, and relevant extrapulmonary samples. Results We enrolled 284 participants from 2 secondary-level hospitals in Cape Town, South Africa: median CD4 count was 97 cells/μL, 64% were women, and 38% were on antiretroviral therapy. One hundred forty-eight had culture-positive tuberculosis, 100 had community-acquired pneumonia (CAP), 26 had P. jirovecii pneumonia (PJP), and 64 had other diagnoses. Probable bacterial infection (>105 copies/mL) was detected in 133 participants; the prevalence was highest in those with CAP (52%). Haemophilus influenzae and Streptococcus pneumoniae were the commonest bacterial pathogens detected; atypical bacteria were uncommon. Viruses were detected in 203 participants; the prevalence was highest in those with PJP (85%). Human metapneumovirus was the commonest virus detected. Multiple coinfections were commonly detected. Conclusions Sputum multiplex PCR could become a useful diagnostic tool for bacterial respiratory infections in HIV-infected inpatients, but its value is limited as quantitative cutoffs have only been established for a few bacterial pathogens and validation has not been done in this patient population. We found a high prevalence of respiratory viruses, but it is unclear whether these viruses were causing infection as there are no accepted quantitative PCR cutoffs for diagnosing respiratory viral infections.
Collapse
Affiliation(s)
- Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - Rulan Griesel
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - Felix Dube
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, South Africa
| | - Mark Nicol
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, South Africa
| | - Marc Mendelson
- Division of Infectious Diseases and Human Immunodeficiency Virus Medicine, Department of Medicine, University of Cape Town, South Africa
| |
Collapse
|
47
|
Variable Correlation between Bronchoalveolar Lavage Fluid Fungal Load and Serum-(1,3)-β-d-Glucan in Patients with Pneumocystosis-A Multicenter ECMM Excellence Center Study. J Fungi (Basel) 2020; 6:jof6040327. [PMID: 33271743 PMCID: PMC7711754 DOI: 10.3390/jof6040327] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 11/16/2022] Open
Abstract
Pneumocystis jirovecii pneumonia is a difficult invasive infection to diagnose. Apart from microscopy of respiratory specimens, two diagnostic tests are increasingly used including real-time quantitative PCR (qPCR) of respiratory specimens, mainly in bronchoalveolar lavage fluids (BAL), and serum β-1,3-d-glucan (BDG). It is still unclear how these two biomarkers can be used and interpreted in various patient populations. Here we analyzed retrospectively and multicentrically the correlation between BAL qPCR and serum BDG in various patient population, including mainly non-HIV patients. It appeared that a good correlation can be obtained in HIV patients and solid organ transplant recipients but no correlation can be observed in patients with hematologic malignancies, solid cancer, and systemic diseases. This observation reinforces recent data suggesting that BDG is not the best marker of PCP in non-HIV patients, with potential false positives due to other IFI or bacterial infections and false-negatives due to low fungal load and low BDG release.
Collapse
|
48
|
Evaluation of the Amplex eazyplex Loop-Mediated Isothermal Amplification Assay for Rapid Diagnosis of Pneumocystis jirovecii Pneumonia. J Clin Microbiol 2020; 58:JCM.01739-20. [PMID: 32938732 DOI: 10.1128/jcm.01739-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/08/2020] [Indexed: 11/20/2022] Open
Abstract
Quantitative PCR (qPCR) assays are the gold standard for diagnosis of Pneumocystis jirovecii pneumonia (PCP). However, they are laborious and require skilled personnel. Therefore, execution outside regular working hours of the molecular biology laboratory is limited. The eazyplex P. jirovecii assay (PJA) uses loop-mediated isothermal amplification for detection of P. jirovecii It is performed directly with respiratory specimens, without the need for special skills, and delivers a result within 3 to 25 min. The goal of our study was to compare the performance of the eazyplex PJA with that of established P. jirovecii qPCR assays. All archived bronchoalveolar lavage fluid (BALF) samples that had previously tested positive for P. jirovecii by qPCR assay and 50 control samples (retrospective part), as well as all BALF samples received for P. jirovecii analysis over a period of 4 months (prospective part), were tested. Forty-nine patients with proven PCP and 126 patients without PCP were included. The sensitivity and specificity of the eazyplex PJA (95.7% and 96.5%, respectively) were comparable to those for three different P. jirovecii qPCR assays. The detection limit of the eazyplex PJA was analogous to 103 copies of the major surface glycoprotein gene per 25 μl of BALF, corresponding to 10 to 20 P. jirovecii cells. The eazyplex PJA reliably discriminated patients with PCP from patients with P. jirovecii colonization. It delivered a positive result within a mean of 9 min 38 s and required a hands-on time of 2 min 45 s. In summary, the eazyplex PJA showed identical performance for the diagnosis of PCP, compared to qPCR assays. However, in terms of time to result, practicability, and robustness, the eazyplex PJA is clearly superior and allows for around-the-clock molecular testing.
Collapse
|
49
|
Pla L, Aviñó A, Eritja R, Ruiz-Gaitán A, Pemán J, Friaza V, Calderón EJ, Aznar E, Martínez-Máñez R, Santiago-Felipe S. Triplex Hybridization-Based Nanosystem for the Rapid Screening of Pneumocystis Pneumonia in Clinical Samples. J Fungi (Basel) 2020; 6:E292. [PMID: 33213011 PMCID: PMC7712664 DOI: 10.3390/jof6040292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/07/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022] Open
Abstract
Pneumocystis pneumonia (PcP) is a disease produced by the opportunistic infection of the fungus Pneumocystis jirovecii. As delayed or unsuitable treatments increase the risk of mortality, the development of rapid and accurate diagnostic tools for PcP are of great importance. Unfortunately, current standard methods present severe limitations and are far from adequate. In this work, a time-competitive, sensitive and selective biosensor based on DNA-gated nanomaterials for the identification of P. jirovecii is presented. The biosensor consists of a nanoporous anodic alumina (NAA) scaffold which pores are filled with a dye reporter and capped with specific DNA oligonucleotides. In the presence of P. jirovecii genomic DNA, the gated biosensor is open, and the cargo is delivered to the solution where it is monitored through fluorescence spectroscopy. The use of capping oligonucleotides able to form duplex or triplex with P. jirovecii DNA is studied. The final diagnostic tool shows a limit of detection (LOD) of 1 nM of target complementary DNA and does not require previous amplification steps. The method was applied to identify DNA from P. jirovecii in unmodified bronchoalveolar lavage, nasopharyngeal aspirates, and sputum samples in 60 min. This is a promising alternative method for the routinely diagnosis of Pneumocystis pneumonia.
Collapse
Affiliation(s)
- Luis Pla
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (L.P.); (S.S.-F.)
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe, Universitat Politècnica de València, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; (A.A.); (R.E.)
| | - Anna Aviñó
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; (A.A.); (R.E.)
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Ramón Eritja
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; (A.A.); (R.E.)
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Alba Ruiz-Gaitán
- Grupo Acreditado de Infección Grave, Instituto de Investigación Sanitaria La Fe and Servicio de Microbiología, Hospital Universitari i Politècnic La Fe, Avenida Fernando Abril Martorell, 46026 Valencia, Spain; (A.R.-G.); (J.P.)
| | - Javier Pemán
- Grupo Acreditado de Infección Grave, Instituto de Investigación Sanitaria La Fe and Servicio de Microbiología, Hospital Universitari i Politècnic La Fe, Avenida Fernando Abril Martorell, 46026 Valencia, Spain; (A.R.-G.); (J.P.)
| | - Vicente Friaza
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain; (V.F.); (E.J.C.)
| | - Enrique J. Calderón
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain; (V.F.); (E.J.C.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (L.P.); (S.S.-F.)
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe, Universitat Politècnica de València, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; (A.A.); (R.E.)
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (L.P.); (S.S.-F.)
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe, Universitat Politècnica de València, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; (A.A.); (R.E.)
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Sara Santiago-Felipe
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (L.P.); (S.S.-F.)
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe, Universitat Politècnica de València, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; (A.A.); (R.E.)
| |
Collapse
|
50
|
Bateman M, Oladele R, Kolls JK. Diagnosing Pneumocystis jirovecii pneumonia: A review of current methods and novel approaches. Med Mycol 2020; 58:1015-1028. [PMID: 32400869 PMCID: PMC7657095 DOI: 10.1093/mmy/myaa024] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/13/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Pneumocystis jirovecii can cause life-threatening pneumonia in immunocompromised patients. Traditional diagnostic testing has relied on staining and direct visualization of the life-forms in bronchoalveolar lavage fluid. This method has proven insensitive, and invasive procedures may be needed to obtain adequate samples. Molecular methods of detection such as polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), and antibody-antigen assays have been developed in an effort to solve these problems. These techniques are very sensitive and have the potential to detect Pneumocystis life-forms in noninvasive samples such as sputum, oral washes, nasopharyngeal aspirates, and serum. This review evaluates 100 studies that compare use of various diagnostic tests for Pneumocystis jirovecii pneumonia (PCP) in patient samples. Novel diagnostic methods have been widely used in the research setting but have faced barriers to clinical implementation including: interpretation of low fungal burdens, standardization of techniques, integration into resource-poor settings, poor understanding of the impact of host factors, geographic variations in the organism, heterogeneity of studies, and limited clinician recognition of PCP. Addressing these barriers will require identification of phenotypes that progress to PCP and diagnostic cut-offs for colonization, generation of life-form specific markers, comparison of commercial PCR assays, investigation of cost-effective point of care options, evaluation of host factors such as HIV status that may impact diagnosis, and identification of markers of genetic diversity that may be useful in diagnostic panels. Performing high-quality studies and educating physicians will be crucial to improve the rates of diagnosis of PCP and ultimately to improve patient outcomes.
Collapse
Affiliation(s)
- Marjorie Bateman
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70122, USA
| | - Rita Oladele
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos, Nigeria
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70122, USA
| |
Collapse
|