1
|
Rostamzadeh Mahdabi E, Esmailizadeh A, Han J, Wang M. Comparative Analysis of Runs of Homozygosity Islands in Indigenous and Commercial Chickens Revealed Candidate Loci for Disease Resistance and Production Traits. Vet Med Sci 2025; 11:e70074. [PMID: 39655377 PMCID: PMC11629026 DOI: 10.1002/vms3.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/08/2024] [Accepted: 09/20/2024] [Indexed: 12/13/2024] Open
Abstract
Runs of homozygosity (ROH) are contiguous stretches of identical genomic regions inherited from both parents. Assessment of ROH in livestock species contributes significantly to our understanding of genetic health, population genetic structure, selective pressure and conservation efforts. In this study, whole genome re-sequencing data from 140 birds of 10 Iranian indigenous chicken ecotypes, 3 commercial chicken breeds and 1 red junglefowl (RJF) population were used to investigate their population genetic structure, ROH characteristics (length and frequency) and genomic inbreeding coefficients (FROH). Additionally, we examined ROH islands for selection footprints in the indigenous chicken populations. Our results revealed distinct genetic backgrounds, among which the White Leghorn breed exhibited the greatest genetic distance from other populations, while the gamecock populations formed a separate cluster. We observed significant differences in ROH characteristics, in which the commercial breeds showed a higher number of ROH compared to indigenous chickens and red junglefowls. Short ROH ranging from 0.1 to 1 Mb were dominant among the populations. The Arian line had the highest mean length of ROH, while the White Leghorn breed showed the highest number of ROH. Among indigenous chickens, the Lari-Afghani ecotype exhibited the highest FROH, but the Sari inherited the richest genetic diversity. Interestingly, GGA16 carried no ROH in the red junglefowls, whereas GGA22 had the highest FROH across all populations, except in the Isfahan ecotype. We also identified ROH islands associated with genetic adaptations in indigenous ecotypes. These islands harboured immune-related genes contributing to disease resistance (TLR2, TICAM1, IL22RA1, NOS2, CCL20 and IFNLR1), heat tolerance and oxidative stress response (NFKB1, HSF4, OSGIN1 and BDNF), and muscle development, lipid metabolism and reproduction (MEOX2, CEBPB, CDS2 and GnRH-I). Overall, this study highlights the genetic potential of indigenous chickens to survive and adapt to their respective environments.
Collapse
Affiliation(s)
| | - Ali Esmailizadeh
- Department of Animal ScienceFaculty of AgricultureShahid Bahonar University of KermanKermanIran
- Key Laboratory of Genetic Evolution & Animal ModelsState Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Jianlin Han
- CAAS‐ILRI Joint Laboratory on Livestock and Forage Genetic ResourcesInstitute of Animal ScienceChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Ming‐Shan Wang
- Key Laboratory of Genetic Evolution & Animal ModelsState Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| |
Collapse
|
2
|
Barani S, Nejati-Javaremi A, Moradi MH, Moradi-Sharbabak M, Gholizadeh M, Esfandyari H. Genome-wide study of linkage disequilibrium, population structure, and inbreeding in Iranian indigenous sheep breeds. PLoS One 2023; 18:e0286463. [PMID: 37267244 DOI: 10.1371/journal.pone.0286463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/16/2023] [Indexed: 06/04/2023] Open
Abstract
Knowledge of linkage disequilibrium (LD), genetic structure and genetic diversity are some key parameters to study the breeding history of indigenous small ruminants. In this study, the OvineSNP50 Bead Chip array was used to estimate and compare LD, genetic diversity, effective population size (Ne) and genomic inbreeding in 186 individuals, from three Iranian indigenous sheep breeds consisting of Baluchi (n = 96), Lori-Bakhtiari (n = 47) and Zel (n = 47). The results of principal component analysis (PCA) revealed that all animals were allocated to the groups that they sampled and the admixture analysis revealed that the structure within the populations is best explained when separated into three groups (K = 3). The average r2 values estimated between adjacent single nucleotide polymorphisms (SNPs) at distances up to 10Kb, were 0.388±0.324, 0.353±0.311, and 0.333±0.309 for Baluchi, Lori-Bakhtiari and Zel, respectively. Estimation of genetic diversity and effective population size (Ne) showed that the Zel breed had the highest heterozygosity and Ne, whereas the lowest value was found in Baluchi breed. Estimation of genomic inbreeding using FROH (based on the long stretches of consecutive homozygous genotypes) showed the highest inbreeding coefficient in Baluchi and the lowest in Zel breed that could be due to higher pressure of artificial selection on Baluchi breed. The results of genomic inbreeding and Ne showed an increase in sharing haplotypes in Baluchi, leading to the enlargement of LD and the consequences of linkage disequilibrium and haplotype blocks confirmed this point. Also, the persistence of the LD phase between Zel and Lori-Bakhtiari was highest indicating that these two breeds would be combined in a multi-breed training population in genomic selection studies.
Collapse
Affiliation(s)
- S Barani
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - A Nejati-Javaremi
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - M H Moradi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| | - M Moradi-Sharbabak
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - M Gholizadeh
- Department of Animal Science, Sari Agricultural Sciences and Natural Resources University, Sari, Mazandaran, Iran
| | | |
Collapse
|
3
|
Lu L, Yao QY, Ruan SS, Hu JW, Long WJ, Dai WZ, Ma T, Zhu XC. Explore the role of CR1 genetic variants in late-onset Alzheimer's disease susceptibility. Psychiatr Genet 2021; 31:216-229. [PMID: 34347684 DOI: 10.1097/ypg.0000000000000291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Complement component (3b/4b) receptor 1 (CR1) is an interesting candidate gene which has a close connection with Alzheimer's disease, and its polymorphisms have been reported to link to the late-onset Alzheimer's disease (LOAD) susceptibility. However, the findings of these related studies are inconsistent. Objective To explore the effect of CR1 genetic variants in LOAD susceptibility. MethodsWe searched relevant studies for the period up to 1 November 2020. And odds ratios (ORs) and their 95% confidence intervals (CIs) were utilized to assess the strength of the association. In addition, we carried out a case-control association study to assess their genetic association. RESULTS Finally, a total of 30 articles with 30108 LOAD cases and 37895 controls were included. Significant allele frequency between LOAD patients and controls was observed in rs3818361 and rs6656401 (rs3818361, T vs. C: OR,1.18; 95% CI, 1.13-1.23; rs6656401, A vs. G: OR, 1.23; 95% CI, 1.10-1.36). Moreover, these results remain significant in subgroup of rs3818361 in Asia or America (OR,1.26; 95% CI,1.06-1.45; OR, 1.18; 95% CI, 1.13-1.24, respectively) and rs6656401 in Europe (OR = 1.26; 95% CI, 1.09-1.42). In addition, the two single nucleotide polymorphisms were proved to significantly increase LOAD risk in the overall population under the dominant model (OR = 1.12; 95% CI, 1.02-1.21; OR = 1.18, 95% CI, 1.15-1.22, respectively). Our case-control study showed that the distribution of rs6656401 genotype was significant (P = 0.000; OR, 6.889; 95% CI, 2.709-17.520), suggesting the A allele of rs6656401 is the risk allele. CONCLUSION These available data indicate that rs6656401 in CR1 is significant to increase LOAD risk.
Collapse
Affiliation(s)
- Liu Lu
- Department of Neurology, The Affiliated WuXi NO.2 People's Hospital of Nanjing Medical University
| | - Qing-Yu Yao
- Department of Neurology, The Affiliated WuXi NO.2 People's Hospital of Nanjing Medical University
| | - Sha-Sha Ruan
- Department of Neurology, The Affiliated WuXi NO.2 People's Hospital of Nanjing Medical University
| | - Jia-Wei Hu
- Department of Neurology, The Affiliated WuXi NO.2 People's Hospital of Nanjing Medical University
| | - Wen-Jun Long
- Department of Neurology, The Affiliated WuXi NO.2 People's Hospital of Nanjing Medical University
| | - Wen-Zhuo Dai
- Department of Neurology, The Affiliated WuXi NO.2 People's Hospital of Nanjing Medical University
| | - Tao Ma
- Department of Neurology, The Affiliated WuXi NO.2 People's Hospital of Nanjing Medical University
- Department of Neurology, The WuXi NO.2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu, China
| | - Xi-Chen Zhu
- Department of Neurology, The Affiliated WuXi NO.2 People's Hospital of Nanjing Medical University
- Department of Neurology, The WuXi NO.2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Graffelman J, Ortoleva L. A network algorithm for the X chromosomal exact test for Hardy-Weinberg equilibrium with multiple alleles. Mol Ecol Resour 2021; 21:1547-1557. [PMID: 33687797 PMCID: PMC8251783 DOI: 10.1111/1755-0998.13373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 11/27/2022]
Abstract
Statistical methodology for testing the Hardy–Weinberg equilibrium at X chromosomal variants has recently experienced considerable development. Up to a few years ago, testing X chromosomal variants for equilibrium was basically done by applying autosomal test procedures to females only. At present, male alleles can be taken into account in asymptotic and exact test procedures for both the bi‐ and multiallelic case. However, current X chromosomal exact procedures for multiple alleles rely on a classical full enumeration algorithm and are computationally expensive, and in practice not feasible for more than three alleles. In this article, we extend the autosomal network algorithm for exact Hardy–Weinberg testing with multiple alleles to the X chromosome, achieving considerable reduction in computation times for multiallelic variants with up to five alleles. The performance of the X chromosomal network algorithm is assessed in a simulation study. Beyond four alleles, a permutation test is, in general, the more feasible approach. A detailed description of the algorithm is given, and examples of X chromosomal indels and microsatellites are discussed.
Collapse
Affiliation(s)
- Jan Graffelman
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya, Barcelona, Spain.,Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Leonardo Ortoleva
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya, Barcelona, Spain.,Department of Control and Computer Engineering, Politecnico di Torino, Torino, Italy
| |
Collapse
|
5
|
Dayan DI, Du X, Baris TZ, Wagner DN, Crawford DL, Oleksiak MF. Population genomics of rapid evolution in natural populations: polygenic selection in response to power station thermal effluents. BMC Evol Biol 2019; 19:61. [PMID: 30808292 PMCID: PMC6390305 DOI: 10.1186/s12862-019-1392-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 02/14/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Examples of rapid evolution are common in nature but difficult to account for with the standard population genetic model of adaptation. Instead, selection from the standing genetic variation permits rapid adaptation via soft sweeps or polygenic adaptation. Empirical evidence of this process in nature is currently limited but accumulating. RESULTS We provide genome-wide analyses of rapid evolution in Fundulus heteroclitus populations subjected to recently elevated temperatures due to coastal power station thermal effluents using 5449 SNPs across two effluent-affected and four reference populations. Bayesian and multivariate analyses of population genomic structure reveal a substantial portion of genetic variation that is most parsimoniously explained by selection at the site of thermal effluents. An FST outlier approach in conjunction with additional conservative requirements identify significant allele frequency differentiation that exceeds neutral expectations among exposed and closely related reference populations. Genomic variation patterns near these candidate loci reveal that individuals living near thermal effluents have rapidly evolved from the standing genetic variation through small allele frequency changes at many loci in a pattern consistent with polygenic selection on the standing genetic variation. CONCLUSIONS While the ultimate trajectory of selection in these populations is unknown and we survey only a minority of genomic loci, our findings suggest that polygenic models of adaptation may play important roles in large, natural populations experiencing recent selection due to environmental changes that cause broad physiological impacts.
Collapse
Affiliation(s)
- David I. Dayan
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149 USA
| | - Xiao Du
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149 USA
| | - Tara Z. Baris
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149 USA
| | - Dominique N. Wagner
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149 USA
| | - Douglas L. Crawford
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149 USA
| | - Marjorie F. Oleksiak
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149 USA
| |
Collapse
|
6
|
Kosch TA, Silva CNS, Brannelly LA, Roberts AA, Lau Q, Marantelli G, Berger L, Skerratt LF. Genetic potential for disease resistance in critically endangered amphibians decimated by chytridiomycosis. Anim Conserv 2018. [DOI: 10.1111/acv.12459] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- T. A. Kosch
- One Health Research Group College of Public Health, Medical and Veterinary Sciences James Cook University Townsville Qld Australia
| | - C. N. S. Silva
- Centre for Sustainable Tropical Fisheries and Aquaculture College of Science and Engineering James Cook University Townsville Qld Australia
| | - L. A. Brannelly
- One Health Research Group College of Public Health, Medical and Veterinary Sciences James Cook University Townsville Qld Australia
- Department of Biological Sciences University of Pittsburgh Pittsburgh PA USA
| | - A. A. Roberts
- One Health Research Group College of Public Health, Medical and Veterinary Sciences James Cook University Townsville Qld Australia
| | - Q. Lau
- Department of Evolutionary Studies of Biosystems Sokendai (The Graduate University for Advanced Studies) Hayama Japan
| | | | - L. Berger
- One Health Research Group College of Public Health, Medical and Veterinary Sciences James Cook University Townsville Qld Australia
| | - L. F. Skerratt
- One Health Research Group College of Public Health, Medical and Veterinary Sciences James Cook University Townsville Qld Australia
| |
Collapse
|
7
|
Broeckx BJG, Derrien T, Mottier S, Wucher V, Cadieu E, Hédan B, Le Béguec C, Botherel N, Lindblad-Toh K, Saunders JH, Deforce D, André C, Peelman L, Hitte C. An exome sequencing based approach for genome-wide association studies in the dog. Sci Rep 2017; 7:15680. [PMID: 29142306 PMCID: PMC5688105 DOI: 10.1038/s41598-017-15947-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/04/2017] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies (GWAS) are widely used to identify loci associated with phenotypic traits in the domestic dog that has emerged as a model for Mendelian and complex traits. However, a disadvantage of GWAS is that it always requires subsequent fine-mapping or sequencing to pinpoint causal mutations. Here, we performed whole exome sequencing (WES) and canine high-density (cHD) SNP genotyping of 28 dogs from 3 breeds to compare the SNP and linkage disequilibrium characteristics together with the power and mapping precision of exome-guided GWAS (EG-GWAS) versus cHD-based GWAS. Using simulated phenotypes, we showed that EG-GWAS has a higher power than cHD to detect associations within target regions and less power outside target regions, with power being influenced further by sample size and SNP density. We analyzed two real phenotypes (hair length and furnishing), that are fixed in certain breeds to characterize mapping precision of the known causal mutations. EG-GWAS identified the associated exonic and 3'UTR variants within the FGF5 and RSPO2 genes, respectively, with only a few samples per breed. In conclusion, we demonstrated that EG-GWAS can identify loci associated with Mendelian phenotypes both within and across breeds.
Collapse
Affiliation(s)
- Bart J G Broeckx
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Thomas Derrien
- Institut de Génétique et Développement de Rennes, CNRS-URM6290, Université Rennes1, Rennes, France
| | - Stéphanie Mottier
- Institut de Génétique et Développement de Rennes, CNRS-URM6290, Université Rennes1, Rennes, France
| | - Valentin Wucher
- Institut de Génétique et Développement de Rennes, CNRS-URM6290, Université Rennes1, Rennes, France
| | - Edouard Cadieu
- Institut de Génétique et Développement de Rennes, CNRS-URM6290, Université Rennes1, Rennes, France
| | - Benoît Hédan
- Institut de Génétique et Développement de Rennes, CNRS-URM6290, Université Rennes1, Rennes, France
| | - Céline Le Béguec
- Institut de Génétique et Développement de Rennes, CNRS-URM6290, Université Rennes1, Rennes, France
| | - Nadine Botherel
- Institut de Génétique et Développement de Rennes, CNRS-URM6290, Université Rennes1, Rennes, France
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jimmy H Saunders
- Department of Medical Imaging and Orthopedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Catherine André
- Institut de Génétique et Développement de Rennes, CNRS-URM6290, Université Rennes1, Rennes, France
| | - Luc Peelman
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Christophe Hitte
- Institut de Génétique et Développement de Rennes, CNRS-URM6290, Université Rennes1, Rennes, France.
| |
Collapse
|
8
|
Picq S, Keena M, Havill N, Stewart D, Pouliot E, Boyle B, Levesque RC, Hamelin RC, Cusson M. Assessing the potential of genotyping-by-sequencing-derived single nucleotide polymorphisms to identify the geographic origins of intercepted gypsy moth (Lymantria dispar) specimens: A proof-of-concept study. Evol Appl 2017. [DOI: 10.1111/eva.12559] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Sandrine Picq
- Laurentian Forestry Centre; Natural Resources Canada; Quebec City QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec City QC Canada
| | - Melody Keena
- USDA Forest Service; Northern Research Station; Northeastern Center for Forest Health Research; Hamden CT USA
| | - Nathan Havill
- USDA Forest Service; Northern Research Station; Northeastern Center for Forest Health Research; Hamden CT USA
| | - Don Stewart
- Laurentian Forestry Centre; Natural Resources Canada; Quebec City QC Canada
| | - Esther Pouliot
- Laurentian Forestry Centre; Natural Resources Canada; Quebec City QC Canada
| | - Brian Boyle
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec City QC Canada
| | - Roger C. Levesque
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec City QC Canada
| | - Richard C. Hamelin
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec City QC Canada
- Department of Forest Sciences; Faculty of Forestry; The University of British Columbia; Vancouver BC Canada
| | - Michel Cusson
- Laurentian Forestry Centre; Natural Resources Canada; Quebec City QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec City QC Canada
| |
Collapse
|
9
|
Wendt FR, Pathak G, Sajantila A, Chakraborty R, Budowle B. Global genetic variation of select opiate metabolism genes in self-reported healthy individuals. THE PHARMACOGENOMICS JOURNAL 2017; 18:281-294. [PMID: 28398354 DOI: 10.1038/tpj.2017.13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 12/26/2022]
Abstract
CYP2D6 is a key pharmacogene encoding an enzyme impacting poor, intermediate, extensive and ultrarapid phase I metabolism of many marketed drugs. The pharmacogenetics of opiate drug metabolism is particularly interesting due to the relatively high incidence of addiction and overdose. Recently, trans-acting opiate metabolism and analgesic response enzymes (UGT2B7, ABCB1, OPRM1 and COMT) have been incorporated into pharmacogenetic studies to generate more comprehensive metabolic profiles of patients. With use of massively parallel sequencing, it is possible to identify additional polymorphisms that fine tune, or redefine, previous pharmacogenetic findings, which typically rely on targeted approaches. The 1000 Genomes Project data were analyzed to describe population genetic variation and statistics for these five genes in self-reported healthy individuals in five global super- and 26 sub-populations. Findings on the variation of these genes in various populations expand baseline understanding of pharmacogenetically relevant polymorphisms for future studies of affected cohorts.
Collapse
Affiliation(s)
- F R Wendt
- Institute for Molecular Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - G Pathak
- Institute for Molecular Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - A Sajantila
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
| | - R Chakraborty
- Institute for Molecular Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - B Budowle
- Institute for Molecular Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA.,Center for Human Identification, University of North Texas Health Science Center, Fort Worth, TX USA.,Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Graffelman J, Jain D, Weir B. A genome-wide study of Hardy-Weinberg equilibrium with next generation sequence data. Hum Genet 2017; 136:727-741. [PMID: 28374190 PMCID: PMC5429372 DOI: 10.1007/s00439-017-1786-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/22/2017] [Indexed: 12/03/2022]
Abstract
Statistical tests for Hardy–Weinberg equilibrium have been an important tool for detecting genotyping errors in the past, and remain important in the quality control of next generation sequence data. In this paper, we analyze complete chromosomes of the 1000 genomes project by using exact test procedures for autosomal and X-chromosomal variants. We find that the rate of disequilibrium largely exceeds what might be expected by chance alone for all chromosomes. Observed disequilibrium is, in about 60% of the cases, due to heterozygote excess. We suggest that most excess disequilibrium can be explained by sequencing problems, and hypothesize mechanisms that can explain exceptional heterozygosities. We report higher rates of disequilibrium for the MHC region on chromosome 6, regions flanking centromeres and p-arms of acrocentric chromosomes. We also detected long-range haplotypes and areas with incidental high disequilibrium. We report disequilibrium to be related to read depth, with variants having extreme read depths being more likely to be out of equilibrium. Disequilibrium rates were found to be 11 times higher in segmental duplications and simple tandem repeat regions. The variants with significant disequilibrium are seen to be concentrated in these areas. For next generation sequence data, Hardy–Weinberg disequilibrium seems to be a major indicator for copy number variation.
Collapse
Affiliation(s)
- Jan Graffelman
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya, Avinguda Diagonal 647, 08028, Barcelona, Spain. .,Department of Biostatistics, University of Washington, University Tower, 15th Floor, 4333 Brooklyn Avenue, Seattle, WA, 98105-9461, USA.
| | - Deepti Jain
- Department of Biostatistics, University of Washington, University Tower, 15th Floor, 4333 Brooklyn Avenue, Seattle, WA, 98105-9461, USA
| | - Bruce Weir
- Department of Biostatistics, University of Washington, University Tower, 15th Floor, 4333 Brooklyn Avenue, Seattle, WA, 98105-9461, USA
| |
Collapse
|
11
|
Abstract
The Hardy-Weinberg principle, one of the most important principles in population genetics, was originally developed for the study of allele frequency changes in a population over generations. It is now, however, widely used in studies of human diseases to detect inbreeding, population stratification, and genotyping errors. For assessment of deviation from Hardy-Weinberg proportions in data, the most popular approaches include the asymptotic Pearson's chi-squared goodness-of-fit test and the exact test. Pearson's chi-squared goodness-of-fit test is simple and straightforward, but is very sensitive to a small sample size or rare allele frequency. The exact test of Hardy-Weinberg proportions is preferable in these situations. The exact test can be performed through complete enumeration of heterozygote genotypes or on the basis of the Markov chain Monte Carlo procedure. In this chapter, we describe the Hardy-Weinberg principle and the commonly used Hardy-Weinberg proportion tests and their applications, and we demonstrate how the chi-squared test and exact test of Hardy-Weinberg proportions can be performed step-by-step using the popular software programs SAS, R, and PLINK, which have been widely used in genetic association studies, along with numerical examples. We also discuss approaches for testing Hardy-Weinberg proportions in case-control study designs that are better than traditional approaches for testing Hardy-Weinberg proportions in controls only. Finally, we note that deviation from the Hardy-Weinberg proportions in affected individuals can provide evidence for an association between genetic variants and diseases.
Collapse
Affiliation(s)
- Jian Wang
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sanjay Shete
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Zhao YF, Luo YM, Xiong W, Wu XL. Genetic variation in ORMDL3 gene may contribute to the risk of asthma: a meta-analysis. Hum Immunol 2014; 75:960-7. [PMID: 25167772 DOI: 10.1016/j.humimm.2014.08.202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND Since the first genome-wide association study report of an association between the ORMDL3 rs7216389 polymorphism and asthma, many studies have been carried out to establish its role in asthma susceptibility among different ethnic groups. However, results have not been consistent across all studies, compelling us to conduct the present meta-analysis. METHODS A literature search for eligible studies published before January 20, 2014 was conducted in the MEDLINE, EMBASE, and CNKI databases. The association was assessed using pooled crude odds ratios (ORs) with their corresponding 95% confidence intervals (CIs). RESULTS A total of 18 individual studies in 15 publications (total 7904 asthma patients and 10,874 healthy controls) were included in the meta-analysis. A meta-analysis of all included studies suggested that there was a highly significant risk effect conferred by the rs7216389*T allele on asthma susceptibility. In addition, we performed stratified analyses to evaluate ethnicity-specific and age-specific effects. Our subgroup analyses based on ethnicity and age-of-onset confirmed the role of the ORMDL3 rs7216389 polymorphism in conferring susceptibility to both childhood- and adult-onset asthma, especially in Caucasians and Asians. CONCLUSIONS The results of this meta-analysis firmly established that genetic variation at the rs7216389 locus, which controls the expression of the ORMDL3, may be a major, independent predisposing factor for asthma in ethnically diverse populations. However, further systematic studies are needed to determine the underlying mechanisms of this association.
Collapse
Affiliation(s)
- Yun-Feng Zhao
- Department of Respiratory Medicine, Pudong New Area Gongli Hospital, Shanghai, China
| | - Yi-Min Luo
- Diagnostics Teaching and Research Section, Southeast University Medical College, Nanjing 210009, China
| | - Wei Xiong
- Department of Respiratory Medicine, Pudong New Area Gongli Hospital, Shanghai, China
| | - Xue-Ling Wu
- Institute of Respiratory Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
13
|
McRae KM, McEwan JC, Dodds KG, Gemmell NJ. Signatures of selection in sheep bred for resistance or susceptibility to gastrointestinal nematodes. BMC Genomics 2014; 15:637. [PMID: 25074012 PMCID: PMC4124167 DOI: 10.1186/1471-2164-15-637] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 07/17/2014] [Indexed: 01/01/2023] Open
Abstract
Background Gastrointestinal nematodes are one of the most serious causes of disease in domestic ruminants worldwide. There is considerable variation in resistance to gastrointestinal nematodes within and between sheep breeds, which appears to be due to underlying genetic diversity. Through selection of resistant animals, rapid genetic progress has been demonstrated in both research and commercial flocks. Recent advances in genome sequencing and genomic technologies provide new opportunities to understand the ovine host response to gastrointestinal nematodes at the molecular level, and to identify polymorphisms conferring nematode resistance. Results Divergent lines of Romney and Perendale sheep, selectively bred for high and low faecal nematode egg count, were genotyped using the Illumina® Ovine SNP50 BeadChip. The resulting genome-wide SNP data were analysed for selective sweeps on loci associated with resistance or susceptibility to gastrointestinal nematode infection. Population differentiation using FST and Peddrift revealed sixteen regions, which included candidate genes involved in chitinase activity and the cytokine response. Two of the sixteen regions identified were contained within previously identified QTLs associated with nematode resistance. Conclusions In this study we identified fourteen novel regions associated with resistance or susceptibility to gastrointestinal nematodes. Results from this study support the hypothesis that host resistance to internal nematode parasites is likely to be controlled by a number of loci of moderate to small effects. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-637) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - John C McEwan
- AgResearch, Invermay Agricultural Research Centre, Mosgiel, New Zealand.
| | | | | |
Collapse
|
14
|
Chang Z, Zhou H, Liu Y. Promoter methylation and polymorphism of E-cadherin gene may confer a risk to prostate cancer: a meta-analysis based on 22 studies. Tumour Biol 2014; 35:10503-13. [PMID: 25056535 DOI: 10.1007/s13277-014-2323-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/07/2014] [Indexed: 01/06/2023] Open
Abstract
Emerging evidence has suggested that -160C/A polymorphism and promoter methylation of E-cadherin gene may contribute to the risk of prostate cancer. However, the results are still conflicting. We aim to systematically evaluate the potential of promoter methylation and polymorphism in E-cadherin gene to confer a risk to prostate cancer through meta-analysis. PubMed, Embase, Web of Science, Cochrane Library, and Chinese National Knowledge Infrastructure (CNKI) databases were searched to identify eligible studies published before April 1, 2014. Pooled odds ratios (ORs) with their 95 % confidence intervals (95 % CIs) were calculated by using the random-effect model or the fixed-effect model, according to heterogeneity test. Subgroup analyses were also performed to explore the potential sources of heterogeneity. Sensitivity and publication bias analyses were used to test the robustness of our results. We performed a meta-analysis of 22 included studies, with 11 on -160C/A polymorphism and another 11 on promoter methylation of E-cadherin gene. Our meta-analysis results suggested that E-cadherin -160C/A polymorphism may be a potential risk factor for prostate cancer. Furthermore, we observed that the frequencies of promoter methylation of E-cadherin gene in the prostate cancer tissues were significantly higher than those of normal tissues, indicating that promoter methylation of E-cadherin gene may play an important role in prostate carcinogenesis. In conclusion, the present meta-analysis provides further evidence that promoter methylation and -160C/A polymorphism of E-cadherin gene may confer a risk to prostate cancer. Identifying these risk factors for prostate cancer will improve early detection, allow for selective chemoprevention, and provide further insights into its disease mechanisms.
Collapse
Affiliation(s)
- Zheng Chang
- Department of Urology, General Hospital of Jinan Military Command, 25 Shifan Road, Jinan, 250031, People's Republic of China
| | | | | |
Collapse
|
15
|
Apinjoh TO, Anchang-Kimbi JK, Njua-Yafi C, Ngwai AN, Mugri RN, Clark TG, Rockett KA, Kwiatkowski DP, Achidi EA. Association of candidate gene polymorphisms and TGF-beta/IL-10 levels with malaria in three regions of Cameroon: a case-control study. Malar J 2014; 13:236. [PMID: 24934404 PMCID: PMC4077225 DOI: 10.1186/1475-2875-13-236] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/07/2014] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Plasmodium falciparum malaria is one of the most widespread and deadliest infectious diseases in children under five years in endemic areas. The disease has been a strong force for evolutionary selection in the human genome, and uncovering the critical host genetic factors that confer resistance to the disease would provide clues to the molecular basis of protective immunity and improve vaccine development initiatives. METHODS The effect of single nucleotide polymorphisms (SNPs) and plasma transforming growth factor beta (TGF-β) and interleukin 10 (IL-10) levels on malaria pathology was investigated in a case-control study of 1862 individuals from two major ethnic groups in three regions with intense perennial P. falciparum transmission in Cameroon. Thirty-four malaria candidate polymorphisms, including the sickle cell trait (HbS), were assayed on the Sequenom iPLEX platform while plasma TGF-β and IL-10 levels were measured by sandwich ELISA. RESULTS The study confirms the known protective effect of HbS against severe malaria and also reveals a protective effect of SNPs in the nitrogen oxide synthase 2 (NOS2) gene against malaria infection, anaemia and uncomplicated malaria. Furthermore, ADCY9 rs10775349 (additive G) and ABO rs8176746 AC individuals were associated with protection from hyperpyrexia and hyperparasitaemia, respectively. Meanwhile, individuals with the EMR1 rs373533 GT, EMR1 rs461645 CT and RTN3 rs542998 (additive C) genotypes were more susceptible to hyperpyrexia while both females and males with the rs1050828 and rs1050829 SNPs of G6PD, respectively, were more vulnerable to anaemia. Plasma TGF-β levels were strongly correlated with heterozygosity for the ADCY9 rs2230739 and HBB rs334 SNPs while individuals with the ABO rs8176746 AC genotype had lower IL-10 levels. CONCLUSION Taken together, this study suggests that some rare polymorphisms in candidate genes may have important implications for the susceptibility of Cameroonians to severe malaria. Moreover using the uncomplicated malaria phenotype may permit the identification of novel pathways in the early development of the disease.
Collapse
Affiliation(s)
- Tobias O Apinjoh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | | | - Clarisse Njua-Yafi
- Department of Animal Biology and Physiology, University of Yaounde I, Yaounde, Cameroon
| | - André N Ngwai
- Department of Medical Laboratory Science, University of Buea, Buea, Cameroon
| | - Regina N Mugri
- Department of Medical Laboratory Science, University of Buea, Buea, Cameroon
| | - Taane G Clark
- London School of Hygiene and Tropical Medicine, London, UK
| | - Kirk A Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Eric A Achidi
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
- Department of Medical Laboratory Science, University of Buea, Buea, Cameroon
| |
Collapse
|
16
|
Complex association between ERCC2 gene polymorphisms, gender, smoking and the susceptibility to bladder cancer: a meta-analysis. Tumour Biol 2014; 35:5245-57. [DOI: 10.1007/s13277-014-1682-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 01/22/2014] [Indexed: 01/25/2023] Open
|
17
|
Zhang L, Jiang Y, Wu Q, Li Q, Chen D, Xu L, Zhang C, Zhang M, Ye L. Gene–environment interactions on the risk of esophageal cancer among Asian populations with the G48A polymorphism in the alcohol dehydrogenase-2 gene: a meta-analysis. Tumour Biol 2014; 35:4705-17. [DOI: 10.1007/s13277-014-1616-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/03/2014] [Indexed: 12/18/2022] Open
|
18
|
Apinjoh TO, Anchang-Kimbi JK, Njua-Yafi C, Mugri RN, Ngwai AN, Rockett KA, Mbunwe E, Besingi RN, Clark TG, Kwiatkowski DP, Achidi EA. Association of cytokine and Toll-like receptor gene polymorphisms with severe malaria in three regions of Cameroon. PLoS One 2013; 8:e81071. [PMID: 24312262 PMCID: PMC3842328 DOI: 10.1371/journal.pone.0081071] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/08/2013] [Indexed: 11/23/2022] Open
Abstract
P. falciparum malaria is one of the most widespread and deadliest infectious diseases in children under five years in endemic areas. The disease has been a strong force for evolutionary selection in the human genome, and uncovering the critical human genetic factors that confer resistance to the disease would provide clues to the molecular basis of protective immunity that would be invaluable for vaccine development. We investigated the effect of single nucleotide polymorphisms (SNPs) on malaria pathology in a case- control study of 1862 individuals from two major ethnic groups in three regions with intense perennial P. falciparum transmission in Cameroon. Twenty nine polymorphisms in cytokine and toll-like receptor (TLR) genes as well as the sickle cell trait (HbS) were assayed on the Sequenom iPLEX platform. Our results confirm the known protective effect of HbS against severe malaria and also reveal a protective effect of SNPs in interleukin-10 (IL10) cerebral malaria and hyperpyrexia. Furthermore, IL17RE rs708567 GA and hHbS rs334 AT individuals were associated with protection from uncomplicated malaria and anaemia respectively in this study. Meanwhile, individuals with the hHbS rs334 TT, IL10 rs3024500 AA, and IL17RD rs6780995 GA genotypes were more susceptible to severe malarial anaemia, cerebral malaria, and hyperpyrexia respectively. Taken together, our results suggest that polymorphisms in some immune response genes may have important implications for the susceptibility to severe malaria in Cameroonians. Moreover using uncomplicated malaria may allow us to identify novel pathways in the early development of the disease.
Collapse
Affiliation(s)
- Tobias O. Apinjoh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
- * E-mail:
| | | | - Clarisse Njua-Yafi
- Department of Animal Biology and Physiology, University of Yaounde I, Yaounde, Cameroon
| | - Regina N. Mugri
- Department of Medical Laboratory Sciences, University of Buea, Buea, Cameroon
| | - Andre N. Ngwai
- Department of Medical Laboratory Sciences, University of Buea, Buea, Cameroon
| | - Kirk A. Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Eric Mbunwe
- Department of Medical Laboratory Sciences, University of Buea, Buea, Cameroon
- Diabetes Research Center, Brussels Free University, Brussels, Belgium
| | - Richard N. Besingi
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
| | - Taane G. Clark
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dominic P. Kwiatkowski
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Eric A. Achidi
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
- Department of Medical Laboratory Sciences, University of Buea, Buea, Cameroon
| | | |
Collapse
|
19
|
Torres SM, Luo L, Lilyquist J, Stidley CA, Flores K, White KAM, Erdei E, Gonzales M, Paine S, Vogel RI, Lazovich D, Berwick M. DNA repair variants, indoor tanning, and risk of melanoma. Pigment Cell Melanoma Res 2013; 26:677-84. [PMID: 23659246 DOI: 10.1111/pcmr.12117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 05/08/2013] [Indexed: 12/23/2022]
Abstract
Although ultraviolet radiation (UV) exposure from indoor tanning has been linked to an increased risk of melanoma, the role of DNA repair genes in this process is unknown. We evaluated the association of 92 single nucleotide polymorphisms (SNPs) in 20 DNA repair genes with the risk of melanoma and indoor tanning among 929 patients with melanoma and 817 controls from the Minnesota Skin Health Study. Significant associations with melanoma risk were identified for SNPs in ERCC4, ERCC6, RFC1, XPC, MGMT, and FBRSL1 genes; with a cutoff of P < 0.05. ERCC6 and FBRSL1 gene variants and haplotypes interacted with indoor tanning. However, none of the 92 SNPs tested met the correction criteria for multiple comparisons. This study, based on an a priori interest in investigating the role of DNA repair capacity using variants in base excision and nucleotide excision repair, identified several genes that may play a role in resolving UV-induced DNA damage.
Collapse
Affiliation(s)
- Salina M Torres
- Division of Epidemiology and Biostatistics, University of New Mexico, Albuquerque, NM, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Meyer NJ, Feng R, Li M, Zhao Y, Sheu CC, Tejera P, Gallop R, Bellamy S, Rushefski M, Lanken PN, Aplenc R, O'Keefe GE, Wurfel MM, Christiani DC, Christie JD. IL1RN coding variant is associated with lower risk of acute respiratory distress syndrome and increased plasma IL-1 receptor antagonist. Am J Respir Crit Care Med 2013; 187:950-9. [PMID: 23449693 PMCID: PMC3707367 DOI: 10.1164/rccm.201208-1501oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 03/01/2013] [Indexed: 12/21/2022] Open
Abstract
RATIONALE Acute respiratory distress syndrome (ARDS) behaves as a complex genetic trait, yet knowledge of genetic susceptibility factors remains incomplete. OBJECTIVES To identify genetic risk variants for ARDS using large scale genotyping. METHODS A multistage genetic association study was conducted of three critically ill populations phenotyped for ARDS. Stage I, a trauma cohort study (n = 224), was genotyped with a 50K gene-centric single-nucleotide polymorphism (SNP) array. We tested SNPs associated with ARDS at P < 5 × 10(-4) for replication in stage II, a trauma case-control population (n = 778). SNPs replicating their association in stage II (P < 0.005) were tested in a stage III nested case-control population of mixed subjects in the intensive care unit (n = 2,063). Logistic regression was used to adjust for potential clinical confounders. We performed ELISA to test for an association between ARDS-associated genotype and plasma protein levels. MEASUREMENTS AND MAIN RESULTS A total of 12 SNPs met the stage I threshold for an association with ARDS. rs315952 in the IL1RN gene encoding IL-1 receptor antagonist (IL1RA) replicated its association with reduced ARDS risk in stages II (P < 0.004) and III (P < 0.02), and was robust to clinical adjustment (combined odds ratio = 0.81; P = 4.2 × 10(-5)). Plasma IL1RA level was associated with rs315952C in a subset of critically ill subjects. The effect of rs315952 was independent from the tandem repeat variant in IL1RN. CONCLUSIONS The IL1RN SNP rs315952C is associated with decreased risk of ARDS in three populations with heterogeneous ARDS risk factors, and with increased plasma IL1RA response. IL1RA may attenuate ARDS risk.
Collapse
Affiliation(s)
- Nuala J Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Moradi MH, Nejati-Javaremi A, Moradi-Shahrbabak M, Dodds KG, McEwan JC. Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genet 2012; 13:10. [PMID: 22364287 PMCID: PMC3351017 DOI: 10.1186/1471-2156-13-10] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 02/26/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identification of genomic regions that have been targets of selection for phenotypic traits is one of the most important and challenging areas of research in animal genetics. However, currently there are relatively few genomic regions identified that have been subject to positive selection. In this study, a genome-wide scan using ~50,000 Single Nucleotide Polymorphisms (SNPs) was performed in an attempt to identify genomic regions associated with fat deposition in fat-tail breeds. This trait and its modification are very important in those countries grazing these breeds. RESULTS Two independent experiments using either Iranian or Ovine HapMap genotyping data contrasted thin and fat tail breeds. Population differentiation using FST in Iranian thin and fat tail breeds revealed seven genomic regions. Almost all of these regions overlapped with QTLs that had previously been identified as affecting fat and carcass yield traits in beef and dairy cattle. Study of selection sweep signatures using FST in thin and fat tail breeds sampled from the Ovine HapMap project confirmed three of these regions located on Chromosomes 5, 7 and X. We found increased homozygosity in these regions in favour of fat tail breeds on chromosome 5 and X and in favour of thin tail breeds on chromosome 7. CONCLUSIONS In this study, we were able to identify three novel regions associated with fat deposition in thin and fat tail sheep breeds. Two of these were associated with an increase of homozygosity in the fat tail breeds which would be consistent with selection for mutations affecting fat tail size several thousand years after domestication.
Collapse
Affiliation(s)
- Mohammad Hossein Moradi
- Department of Animal Science-Excellent centre for improving sheep carcass quality and quantity, University of Tehran, PO Box 3158711167-4111, Karaj, Iran.
| | | | | | | | | |
Collapse
|
22
|
Abstract
The Hardy-Weinberg principle, one of the most important principles in population genetics, was originally developed for the study of allele frequency changes in a population over generations. It is now, however, widely used in studies of human diseases to detect inbreeding, populations stratification, and genotyping errors. For assessment of deviation from the Hardy-Weinberg proportions in data, the most popular approaches include the asymptotic Pearson's chi-square goodness-of-fit test and the exact test. The Pearson's chi-square goodness-of-fit test is simple and straightforward, but it is very sensitive to small sample size or rare allele frequency. The exact test of Hardy-Weinberg proportions is preferable in these situations. The exact test can be performed through complete enumeration of heterozygote genotypes or on the basis of the Markov chain Monte Carlo procedure. In this chapter, we describe the Hardy-Weinberg principle and the commonly used Hardy-Weinberg proportions tests and their applications, and we demonstrate how the chi-square test and exact test of Hardy-Weinberg proportions can be performed step-by-step using the popular software programs SAS, R, and PLINK, which have been widely used in genetic association studies, along with numerical examples. We also discuss recent approaches for testing Hardy-Weinberg proportions in case-control study designs that are better than traditional approaches for testing Hardy-Weinberg proportions in controls only. Finally, we note that deviation from the Hardy-Weinberg proportions in affected individuals can provide evidence for an association between genetic variants and diseases.
Collapse
Affiliation(s)
- Jian Wang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
23
|
Abstract
Genome-wide association studies have been made possible because of advancements in the design of genotyping technologies to assay a million or more single nucleotide polymorphisms (SNPs) simultaneously. This has resulted in the introduction of automated and unsupervised statistical approaches for translating the probe hybridization intensities into the actual genotype calls. This chapter aims to provide an introduction to this process of genotype calling, highlighting in particular the design and approach used for the Illumina BeadArray platforms that are commonly used in large-scale genetic studies. The chapter also provides detailed instructions for preparing the input files required as well as the actual Linux commands and options to execute the ILLUMINUS software. Finally, it concludes with a brief exposition on the different outcomes from genotype calling and the use of perturbation analysis for identifying SNPs with erroneous genotype calls.
Collapse
Affiliation(s)
- Yik Ying Teo
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
24
|
Sebro R, Lange C, Laird NM, Rogus JJ, Risch NJ. Differentiating Population Stratification from Genotyping Error Using Family Data. Ann Hum Genet 2011; 76:42-52. [DOI: 10.1111/j.1469-1809.2011.00689.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Pongpanich M, Sullivan PF, Tzeng JY. A quality control algorithm for filtering SNPs in genome-wide association studies. ACTA ACUST UNITED AC 2010; 26:1731-7. [PMID: 20501555 DOI: 10.1093/bioinformatics/btq272] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION The quality control (QC) filtering of single nucleotide polymorphisms (SNPs) is an important step in genome-wide association studies to minimize potential false findings. SNP QC commonly uses expert-guided filters based on QC variables [e.g. Hardy-Weinberg equilibrium, missing proportion (MSP) and minor allele frequency (MAF)] to remove SNPs with insufficient genotyping quality. The rationale of the expert filters is sensible and concrete, but its implementation requires arbitrary thresholds and does not jointly consider all QC features. RESULTS We propose an algorithm that is based on principal component analysis and clustering analysis to identify low-quality SNPs. The method minimizes the use of arbitrary cutoff values, allows a collective consideration of the QC features and provides conditional thresholds contingent on other QC variables (e.g. different MSP thresholds for different MAFs). We apply our method to the seven studies from the Wellcome Trust Case Control Consortium and the major depressive disorder study from the Genetic Association Information Network. We measured the performance of our method compared to the expert filters based on the following criteria: (i) percentage of SNPs excluded due to low quality; (ii) inflation factor of the test statistics (lambda); (iii) number of false associations found in the filtered dataset; and (iv) number of true associations missed in the filtered dataset. The results suggest that with the same or fewer SNPs excluded, the proposed algorithm tends to give a similar or lower value of lambda, a reduced number of false associations, and retains all true associations. AVAILABILITY The algorithm is available at http://www4.stat.ncsu.edu/jytzeng/software.php
Collapse
Affiliation(s)
- Monnat Pongpanich
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695-7566, USA
| | | | | |
Collapse
|
26
|
Wang J, Shete S. Using both cases and controls for testing hardy-weinberg proportions in a genetic association study. Hum Hered 2010; 69:212-8. [PMID: 20203526 DOI: 10.1159/000289597] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 01/04/2010] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Assessment of the Hardy-Weinberg proportion (HWP) in controls has been widely used as a quality control measure in case-control association studies. However, when the disease being studied is common, controls might not represent the general population, which could result in inaccurate HWP test results. Such results could lead investigators to discard important single-nucleotide polymorphisms (SNPs) that could potentially be causal. In this paper, we showed the inappropriateness of the HWP test in controls and proposed a mixture HWP (mHWP) exact test using a mixture sample that mimics the general population. METHODS The mHWP exact test estimates HWP in a mixture sample that is a combination of both cases and controls proportional to the prevalence of disease. We implemented a re-sampling procedure to construct mixture samples and then obtained the empirical p value of HWP in the general population. Simulation studies were performed to investigate the performance of the proposed mHWP exact test. The method was also applied to a genetic association study of obesity. RESULTS The results showed that the mHWP exact test is more likely than either the traditional HWP method in controls or the likelihood-based approach to keep causal SNPs for further analysis when the disease is more common. CONCLUSION The mHWP exact test using a mixture sample is a better HWP test for case-control genetic association studies than the traditional HWP in controls or the likelihood-based approach, and it will improve our ability to keep causal SNPs in the case-control genetic association studies.
Collapse
Affiliation(s)
- Jian Wang
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
27
|
Melum E, Franke A, Karlsen TH. Genome-wide association studies - A summary for the clinical gastroenterologist. World J Gastroenterol 2009; 15:5377-96. [PMID: 19916168 PMCID: PMC2778094 DOI: 10.3748/wjg.15.5377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Genome-wide association studies (GWAS) have been applied to various gastrointestinal and liver diseases in recent years. A large number of susceptibility genes and key biological pathways in disease development have been identified. So far, studies in inflammatory bowel diseases, and in particular Crohn’s disease, have been especially successful in defining new susceptibility loci using the GWAS design. The identification of associations related to autophagy as well as several genes involved in immunological response will be important to future research on Crohn’s disease. In this review, key methodological aspects of GWAS, the importance of proper cohort collection, genotyping issues and statistical methods are summarized. Ways of addressing the shortcomings of the GWAS design, when it comes to rare variants, are also discussed. For each of the relevant conditions, findings from the various GWAS are summarized with a focus on the affected biological systems.
Collapse
|
28
|
Chai L, Song YQ, Zee KY, Leung WK. Single nucleotide polymorphisms of complement component 5 and periodontitis. J Periodontal Res 2009; 45:301-8. [PMID: 19909405 DOI: 10.1111/j.1600-0765.2009.01234.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Polymorphisms of host defence genes might increase one's risks for periodontitis. This study investigated whether tagging single nucleotide polymorphisms (SNPs) of the gene encoding complement component 5 (C5) are associated with periodontitis in a Hong Kong Chinese population. MATERIAL AND METHODS Eleven tagging SNPs of 229 patients with at least moderate periodontitis and 207 control subjects without periodontitis were genotyped using an i-plexGOLD MassARRAY mass-spectrometry system. RESULTS Genotype AG of SNP rs17611 was more prevalent in the group of periodontitis patients than in the controls (54.6% vs. 41.7%, p = 0.007). The haplotype CGCA of the haplotype block consisting of rs1035029, rs17611, rs25681 and rs992670 was significantly associated with periodontitis in a dominant model (p = 0.001). The SNP rs17611 showed high linkage disequilibrium with rs1035029, rs25681 and rs992670. Smoking was also significantly associated with periodontitis (p = 0.006). CONCLUSION The tagging SNP rs17611 of the C5 gene and smoking may be associated with periodontitis among the Hong Kong Chinese population.
Collapse
Affiliation(s)
- L Chai
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | | | | | |
Collapse
|
29
|
Abstract
Genome-wide association studies (GWAS) have become the method of choice for investigating the genetic basis of common diseases and complex traits. The immense scale of these experiments is unprecedented, involving thousands of samples and up to a million variables. The careful execution of exploratory data analysis (EDA) prior to the actual genotype-phenotype association analysis is crucial as this identifies problematic samples and poorly assayed genetic polymorphisms that, if undetected, can compromise the outcome of the experiment. EDA of such large-scale genetic data sets thus requires specialized numerical and graphical strategies, and this article provides a review of the current exploratory tools commonly used in GWAS.
Collapse
Affiliation(s)
- Yik Y Teo
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
30
|
Recovering unused information in genome-wide association studies: the benefit of analyzing SNPs out of Hardy-Weinberg equilibrium. Eur J Hum Genet 2009; 17:1676-82. [PMID: 19491930 DOI: 10.1038/ejhg.2009.85] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Although the rapid advancements in high throughput genotyping technology have made genome-wide association studies possible, these studies remain an expensive undertaking, especially when considering the large sample sizes necessary to find the small to moderate effect sizes that define complex diseases. It is therefore prudent to utilize all possible information contained in a genome-wide scan. We propose a straightforward analytical approach that tests often unused SNP data without sacrificing statistical validity. We simulate genotype miscalls under a variety of models consistent with observed miscall rates and test for departures from HWE using the standard Pearson's chi(2)-test. We find that true disease susceptibility loci subjected to various patterns of genotype miscalls can be largely out of HWE and, thus, be candidates for removal before association testing. These loci, we demonstrate, can maintain sufficient statistical power even under extreme error models. We additionally show that random miscalls of null SNPs, independent of the phenotype, do not induce bias in case-control or cohort studies, and we suggest that a significant HWE test should not prevent a SNP from being tested when conducting genome-wide association studies in these scenarios. However, association findings for SNPs that are out of HWE must be treated more carefully than 'regular' findings, for example, by re-genotyping the SNP in the same study using a different genotyping technology.
Collapse
|
31
|
Diakite M, Clark TG, Auburn S, Campino SG, Fry AE, Green A, Morris AP, Richardson A, Jallow M, Sisay-Joof F, Pinder M, Kwiatkowski DP, Rockett KA. A genetic association study in the Gambia using tagging polymorphisms in the major histocompatibility complex class III region implicates a HLA-B associated transcript 2 polymorphism in severe malaria susceptibility. Hum Genet 2009; 125:105-9. [PMID: 19039607 PMCID: PMC2992315 DOI: 10.1007/s00439-008-0597-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 11/20/2008] [Indexed: 10/21/2022]
Abstract
The tumour necrosis factor (TNF) gene and other genes flanking it in the major histocompatibility complex (MHC) class III region are potentially important mediators of both immunity and pathogenesis of malaria. We investigated the association of severe malaria with 11 haplotype tagging-polymorphisms for 11 MHC class III candidate genes, including TNF, lymphotoxin alpha (LTA), allograft inflammatory factor 1 (AIF1), and HLA-B associated transcript 2 (BAT2). An analysis of 2,162 case-controls demonstrated the first evidence of association between a BAT2 polymorphism (rs1046089) and severe malaria.
Collapse
Affiliation(s)
- Mahamadou Diakite
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy and Odontostomatology, University of Bamako, BP 1805, Bamako, Mali
| | - Taane G. Clark
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK
| | - Sarah Auburn
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK
| | - Susana G Campino
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK
| | - Andrew E Fry
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Angela Green
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Andrew P. Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Anna Richardson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | | | | | | | - Dominic P. Kwiatkowski
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK
| | - Kirk A. Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| |
Collapse
|
32
|
Marquard V, Beckmann L, Heid IM, Lamina C, Chang-Claude J. Impact of genotyping errors on the type I error rate and the power of haplotype-based association methods. BMC Genet 2009; 10:3. [PMID: 19178712 PMCID: PMC2648998 DOI: 10.1186/1471-2156-10-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 01/29/2009] [Indexed: 11/14/2022] Open
Abstract
Background We investigated the influence of genotyping errors on the type I error rate and empirical power of two haplotype based association methods applied to candidate regions. We compared the performance of the Mantel Statistic Using Haplotype Sharing and the haplotype frequency based score test with that of the Armitage trend test. Our study is based on 1000 replication of simulated case-control data settings with 500 cases and 500 controls, respectively. One of the examined markers was set to be the disease locus with a simulated odds ratio of 3. Differential and non-differential genotyping errors were introduced following a misclassification model with varying mean error rates per locus in the range of 0.2% to 15.6%. Results We found that the type I error rate of all three test statistics hold the nominal significance level in the presence of nondifferential genotyping errors and low error rates. For high and differential error rates, the type I error rate of all three test statistics was inflated, even when genetic markers not in Hardy-Weinberg Equilibrium were removed. The empirical power of all three association test statistics remained high at around 89% to 94% when genotyping error rates were low, but decreased to 48% to 80% for high and nondifferential genotyping error rates. Conclusion Currently realistic genotyping error rates for candidate gene analysis (mean error rate per locus of 0.2%) pose no significant problem for the type I error rate as well as the power of all three investigated test statistics.
Collapse
Affiliation(s)
- Vivien Marquard
- Department of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
33
|
Mangano VD, Clark TG, Auburn S, Campino S, Diakite M, Fry AE, Green A, Richardson A, Jallow M, Sisay-Joof F, Pinder M, Griffiths MJ, Newton C, Peshu N, Williams TN, Marsh K, Molyneux ME, Taylor TE, Modiano D, Kwiatkowski DP, Rockett KA. Lack of association of interferon regulatory factor 1 with severe malaria in affected child-parental trio studies across three African populations. PLoS One 2009; 4:e4206. [PMID: 19145247 PMCID: PMC2621088 DOI: 10.1371/journal.pone.0004206] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 11/26/2008] [Indexed: 11/30/2022] Open
Abstract
Interferon Regulatory Factor 1 (IRF-1) is a member of the IRF family of transcription factors, which have key and diverse roles in the gene-regulatory networks of the immune system. IRF-1 has been described as a critical mediator of IFN-gamma signalling and as the major player in driving TH1 type responses. It is therefore likely to be crucial in both innate and adaptive responses against intracellular pathogens such as Plasmodium falciparum. Polymorphisms at the human IRF1 locus have been previously found to be associated with the ability to control P. falciparum infection in populations naturally exposed to malaria. In order to test whether genetic variation at the IRF1 locus also affects the risk of developing severe malaria, we performed a family-based test of association for 18 Single Nucleotide Polymorphisms (SNPs) across the gene in three African populations, using genotype data from 961 trios consisting of one affected child and his/her two parents (555 from The Gambia, 204 from Kenya and 202 from Malawi). No significant association with severe malaria or severe malaria subphenotypes (cerebral malaria and severe malaria anaemia) was observed for any of the SNPs/haplotypes tested in any of the study populations. Our results offer no evidence that the molecular pathways regulated by the transcription factor IRF-1 are involved in the immune-based pathogenesis of severe malaria.
Collapse
Affiliation(s)
- Valentina D Mangano
- Childhood Infection Group, The Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Deviations from Hardy-Weinberg proportions for multiple alleles under viability selection. Genet Res (Camb) 2008; 90:209-16. [PMID: 18426624 DOI: 10.1017/s0016672307009068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Departures of genotype frequencies from Hardy-Weinberg proportions (HWP) for a single autosomal locus due to viability selection in a random mating population have been studied only for the two-allele case. In this article, the analysis of deviations from HWP due to constant viability selection is extended to multiple alleles. The deviations for an autosomal locus with k alleles are measured by means of k fii fixation indices for homozygotes and k(k-1)/2 fij fixation indices for heterozygotes, and expressions are obtained for these indices (FIS statistics) under the multiallele viability model. Furthermore, expressions for fii and fij when the multiallele polymorphism is at stable equilibrium are also derived and it is demonstrated that the pattern of multiallele Hardy-Weinberg deviations at equilibrium is characterized by a global heterozygote excess and a deficiency of each of the homozygotes. This pattern may be useful for detecting whether a given multiallelic polymorphism is at stable equilibrium in the population due to viability selection. An analysis of Hardy-Weinberg deviations from published data for the three-allele polymorphism at the beta-globin locus in human populations from West Africa is presented for illustration.
Collapse
|
35
|
Teo YY, Small KS, Clark TG, Kwiatkowski DP. Perturbation analysis: a simple method for filtering SNPs with erroneous genotyping in genome-wide association studies. Ann Hum Genet 2008; 72:368-74. [PMID: 18261185 PMCID: PMC2997476 DOI: 10.1111/j.1469-1809.2007.00422.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We introduce a simple and yet scientifically objective criterion for identifying SNPs with genotyping errors due to poor clustering. This yields a metric for assessing the stability of the assigned genotypes by evaluating the extent of discordance between the calls made with the unperturbed and perturbed intensities. The efficacy of the metric is evaluated by: (1) estimating the extent of over-dispersion of the Hardy-Weinberg equilibrium chi-square test statistics; (2) an interim case-control study, where we investigated the efficacy of the introduced metric and standard quality control filters in reducing the number of SNPs with evidence of phenotypic association which are attributed to genotyping errors; (3) investigating the call and concordance rates of SNPs identified by perturbation analysis which have been genotyped on both Affymetrix and Illumina platforms. Removing SNPs identified by the extent of discordance can reduce the degree of over-dispersion of the HWE test statistic. Sensible use of perturbation analysis in an association study can correctly identify SNPs with problematic genotyping, reducing the number required for visual inspection. SNPs identified by perturbation analysis had lower call and concordance rates, and removal of these SNPs significantly improved the performance for the remaining SNPs.
Collapse
Affiliation(s)
- Y Y Teo
- Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom.
| | | | | | | |
Collapse
|
36
|
Teo YY. Common statistical issues in genome-wide association studies: a review on power, data quality control, genotype calling and population structure. Curr Opin Lipidol 2008; 19:133-43. [PMID: 18388693 DOI: 10.1097/mol.0b013e3282f5dd77] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW Genetic association studies which survey the entire genome have become a common design for uncovering the genetic basis of common diseases, including lipid-related traits. Such studies have identified several novel loci which influence blood lipids. The present review highlights the statistical challenges associated with such large-scale genetic studies and discusses the available methodological strategies for handling these issues. RECENT FINDINGS The successful analysis of genome-wide data assayed on commercial genotyping arrays depends on careful exploration of the data. Unaccounted sample failures, genotyping errors and population structure can introduce misleading signals that mimic genuine association. Careful interpretation of useful summary statistics and graphical data displays can minimize the extent of false associations that need to be followed up in replication or fine-mapping experiments. SUMMARY Recently published genome-wide studies are beginning to yield valuable insights into the importance of well designed methodological and statistical techniques for sensible interpretation of the plethora of genetic data generated.
Collapse
Affiliation(s)
- Yik Y Teo
- Wellcome Trust Centre for Human Genetics, University of Oxford, UK.
| |
Collapse
|