1
|
Riha RL. Update on the genetic basis of obstructive sleep apnoea - hype or hope? Curr Opin Pulm Med 2023; 29:533-538. [PMID: 37789770 DOI: 10.1097/mcp.0000000000001011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
PURPOSE OF REVIEW The obstructive sleep apnoea syndrome (OSAS) is a chronic, common condition in western societies which can lead to adverse cardiometabolic effects if left untreated and is one of the commonest causes of excessive daytime somnolence. RECENT FINDINGS The presentation of OSAS is diverse and is thought to comprise of different intermediate phenotypes and endotypes in varying proportions in each individual. Unfortunately, due to its heterogeneity and the changing definitions of the disorder by workers in the field, attempts at revealing the genetic basis of OSAS has been fraught with difficulty. SUMMARY This brief review presents a short update on the achievements of the past three decades in this understudied and underfunded area of endeavour in respiratory sleep medicine. The genetic underpinnings of OSAS remain elusive.
Collapse
Affiliation(s)
- Renata L Riha
- Department of Sleep Medicine, Royal Infirmary of Edinburgh
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Liang J, Wang H, Cade BE, Kurniansyah N, He KY, Lee J, Sands SA, A. Brody J, Chen H, Gottlieb DJ, Evans DS, Guo X, Gharib SA, Hale L, Hillman DR, Lutsey PL, Mukherjee S, Ochs-Balcom HM, Palmer LJ, Purcell S, Saxena R, Patel SR, Stone KL, Tranah GJ, Boerwinkle E, Lin X, Liu Y, Psaty BM, Vasan RS, Manichaikul A, Rich SS, Rotter JI, Sofer T, Redline S, Zhu X. Targeted Genome Sequencing Identifies Multiple Rare Variants in Caveolin-1 Associated with Obstructive Sleep Apnea. Am J Respir Crit Care Med 2022; 206:1271-1280. [PMID: 35822943 PMCID: PMC9746833 DOI: 10.1164/rccm.202203-0618oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/06/2022] [Indexed: 01/04/2023] Open
Abstract
Rationale: Obstructive sleep apnea (OSA) is a common disorder associated with increased risk for cardiovascular disease, diabetes, and premature mortality. There is strong clinical and epidemiologic evidence supporting the importance of genetic factors influencing OSA but limited data implicating specific genes. Objectives: To search for rare variants contributing to OSA severity. Methods: Leveraging high-depth genomic sequencing data from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program and imputed genotype data from multiple population-based studies, we performed linkage analysis in the CFS (Cleveland Family Study), followed by multistage gene-based association analyses in independent cohorts for apnea-hypopnea index (AHI) in a total of 7,708 individuals of European ancestry. Measurements and Main Results: Linkage analysis in the CFS identified a suggestive linkage peak on chromosome 7q31 (LOD = 2.31). Gene-based analysis identified 21 noncoding rare variants in CAV1 (Caveolin-1) associated with lower AHI after accounting for multiple comparisons (P = 7.4 × 10-8). These noncoding variants together significantly contributed to the linkage evidence (P < 10-3). Follow-up analysis revealed significant associations between these variants and increased CAV1 expression, and increased CAV1 expression in peripheral monocytes was associated with lower AHI (P = 0.024) and higher minimum overnight oxygen saturation (P = 0.007). Conclusions: Rare variants in CAV1, a membrane-scaffolding protein essential in multiple cellular and metabolic functions, are associated with higher CAV1 gene expression and lower OSA severity, suggesting a novel target for modulating OSA severity.
Collapse
Affiliation(s)
- Jingjing Liang
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, and
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Brian E. Cade
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, and
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Nuzulul Kurniansyah
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Karen Y. He
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jiwon Lee
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Scott A. Sands
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, and
| | | | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, and
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Daniel J. Gottlieb
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, and
- VA Boston Healthcare System, Boston, Massachusetts
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences and
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Sina A. Gharib
- Computational Medicine Core, Center for Lung Biology, University of Washington Medicine Sleep Center, Department of Medicine
| | - Lauren Hale
- Family, Population, and Preventive Medicine, Program in Public Health, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - David R. Hillman
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Pamela L. Lutsey
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Sutapa Mukherjee
- Sleep Health Service, Respiratory and Sleep Service, Southern Adelaide Local Health Network, Adelaide, South Australia, Australia
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, College Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Heather M. Ochs-Balcom
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| | - Lyle J. Palmer
- School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Shaun Purcell
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, and
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Richa Saxena
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, and
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
- Center for Genomic Medicine and
- Department of Anesthesia, Pain and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Sanjay R. Patel
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Katie L. Stone
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Gregory J. Tranah
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Eric Boerwinkle
- Cardiovascular Health Research Unit, Department of Medicine
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Xihong Lin
- Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Yongmei Liu
- Department of Medicine, Division of Cardiology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine
- Department of Epidemiology, and
- Department of Health Services and Population Health, University of Washington, Seattle, Washington
| | - Ramachandran S. Vasan
- Framingham Heart Study, Framingham, Massachusetts
- Section of Preventive Medicine and Epidemiology and
- Section of Cardiology, Department of Medicine, School of Medicine, and
- Department of Epidemiology, School of Public Health, Boston University, Boston, Massachusetts; and
| | - Ani Manichaikul
- Center for Public Health Genomics and
- Biostatistics Section, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | | | - Jerome I. Rotter
- California Pacific Medical Center Research Institute, San Francisco, California
- Institute for Translational Genomics and Population Sciences and
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, and
- Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, and
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - TOPMed Sleep Working Group
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, and
- Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
- Cardiovascular Health Research Unit, Department of Medicine
- Computational Medicine Core, Center for Lung Biology, University of Washington Medicine Sleep Center, Department of Medicine
- Department of Epidemiology, and
- Department of Health Services and Population Health, University of Washington, Seattle, Washington
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, and
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas
- VA Boston Healthcare System, Boston, Massachusetts
- California Pacific Medical Center Research Institute, San Francisco, California
- Institute for Translational Genomics and Population Sciences and
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
- Family, Population, and Preventive Medicine, Program in Public Health, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
- Sleep Health Service, Respiratory and Sleep Service, Southern Adelaide Local Health Network, Adelaide, South Australia, Australia
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, College Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
- School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
- Center for Genomic Medicine and
- Department of Anesthesia, Pain and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Division of Cardiology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina
- Framingham Heart Study, Framingham, Massachusetts
- Section of Preventive Medicine and Epidemiology and
- Section of Cardiology, Department of Medicine, School of Medicine, and
- Department of Epidemiology, School of Public Health, Boston University, Boston, Massachusetts; and
- Center for Public Health Genomics and
- Biostatistics Section, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
3
|
Yi M, Tan Y, Pi Y, Zhou Y, Fei Q, Zhao W, Zhang Y. Variants of candidate genes associated with the risk of obstructive sleep apnea. Eur J Clin Invest 2022; 52:e13673. [PMID: 34435353 DOI: 10.1111/eci.13673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND The researches on the associations between different candidate genes and obstructive sleep apnea (OSA) are inconsistent. Here, we performed a comprehensive qualitative and quantitative analysis to estimate the contribution of variants from candidate genes to the risk of OSA. METHODS Qualitative analysis was conducted to find the relationships for all included genes. Then, quantitative analysis of both allele models and genotype models was applied to evaluate the risk variants for OSA. Furthermore, a similar analysis was performed in different ethnic groups. RESULTS We included 152 publications containing 75 genes for qualitative analysis. Among them, we included 93 articles containing 28 variants from 16 genes for quantitative analysis. Through allele models, we found 10 risk variants for OSA (rs1801133 of MTHFR, ɛ4 of ApoE, -1438G/A of 5-HT2A, -308G/A of TNF-α, Pro1019Pro of LEPR, rs1130864 and rs2794521 of CRP, D/I of ACE, LPR and VNTR of 5-HTT) with the ORs of 1.21-2.07 in global population. We found that the variant of ɛ2 of ApoE could uniquely decrease the risk of OSA in the East Asian subgroup, while the other 6 variants, including ɛ4 in ApoE, -308G/A in TNF-α, Pro1019Pro in LEPR, D/I in ACE, LPR and VNTR in 5-HTT, could increase the risk of OSA. As for the European subpopulation, we only found that -308G/A in TNF-α could increase the risk for OSA. CONCLUSIONS Eleven variants from the candidate genes are associated with the risk of OSA, which also show ethnicity differences in East Asian and European subgroups.
Collapse
Affiliation(s)
- Minhan Yi
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China.,School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Tan
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China.,School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuze Pi
- School of Life Sciences, Central South University, Changsha, China
| | - Yicen Zhou
- School of Life Sciences, Central South University, Changsha, China
| | - Quanming Fei
- Xiangya Medical School, Central South University, Changsha, China
| | - Wangcheng Zhao
- Xiangya Medical School, Central South University, Changsha, China
| | - Yuan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Dashti HS, Ordovás JM. Genetics of Sleep and Insights into Its Relationship with Obesity. Annu Rev Nutr 2021; 41:223-252. [PMID: 34102077 DOI: 10.1146/annurev-nutr-082018-124258] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Considerable recent advancements in elucidating the genetic architecture of sleep traits and sleep disorders may provide insight into the relationship between sleep and obesity. Despite the considerable involvement of the circadian clock in sleep and metabolism, few shared genes, including FTO, were implicated in genome-wide association studies (GWASs) of sleep and obesity. Polygenic scores composed of signals from GWASs of sleep traits show largely null associations with obesity, suggesting lead variants are unique to sleep. Modest genome-wide genetic correlations are observed between many sleep traits and obesity and are largest for snoring.Notably, U-shaped positive genetic correlations with body mass index (BMI) exist for both short and long sleep durations. Findings from Mendelian randomization suggest robust causal effects of insomnia on higher BMI and, conversely, of higher BMI on snoring and daytime sleepiness. Bidirectional effects between sleep duration and daytime napping with obesity may also exist. Limited gene-sleep interaction studies suggest that achieving favorable sleep, as part of a healthy lifestyle, may attenuate genetic predisposition to obesity, but whether these improvements produce clinically meaningful reductions in obesity risk remains unclear. Investigations of the genetic link between sleep and obesity for sleep disorders other than insomnia and in populations of non-European ancestry are currently limited. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Hassan S Dashti
- Center for Genomic Medicine and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA; .,Broad Institute, Cambridge, Massachusetts 02142, USA
| | - José M Ordovás
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts 02111, USA.,Precision Nutrition and Obesity Program, IMDEA Alimentación, 28049 Madrid, Spain
| |
Collapse
|
5
|
Mukherjee S, Saxena R, Palmer LJ. The genetics of obstructive sleep apnoea. Respirology 2018; 23:18-27. [PMID: 29113020 PMCID: PMC7308164 DOI: 10.1111/resp.13212] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/11/2017] [Accepted: 09/29/2017] [Indexed: 12/19/2022]
Abstract
Obstructive sleep apnoea (OSA) is a common chronic disease and is associated with high social and economic costs. OSA is heritable, and there is evidence of both direct genetic contributions to OSA susceptibility and indirect contributions via 'intermediate' phenotypes such as obesity, craniofacial structure, neurological control of upper airway muscles and of sleep and circadian rhythm. Investigation of the genetics of OSA is an important research area and may lead to improved understanding of disease aetiology, pathogenesis, adverse health consequences and new preventive strategies and treatments. Genetic studies of OSA have lagged behind other chronic diseases; however recent gene discovery efforts have been successful in finding genetic loci contributing to OSA-associated intermediate phenotypes. Nevertheless, many of the seminal questions relating to the genetic epidemiology of OSA and associated factors remain unanswered. This paper reviews the current state of knowledge of the genetics of OSA, with a focus on genomic approaches to understanding sleep apnoea.
Collapse
Affiliation(s)
- Sutapa Mukherjee
- Sleep Health Service, Respiratory and Sleep Services, Southern Adelaide Local Health Network, Adelaide, South Australia, Australia
- Adelaide Institute for Sleep Health, Flinders University, Adelaide, South Australia, Australia
| | - Richa Saxena
- Center for Genomic Medicine and Department of Anesthesia, Pain, and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Lyle J Palmer
- School of Public Health, University of Adelaide, North Terrace, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
van der Spek A, Luik AI, Kocevska D, Liu C, Brouwer RWW, van Rooij JGJ, van den Hout MCGN, Kraaij R, Hofman A, Uitterlinden AG, van IJcken WFJ, Gottlieb DJ, Tiemeier H, van Duijn CM, Amin N. Exome-Wide Meta-Analysis Identifies Rare 3'-UTR Variant in ERCC1/CD3EAP Associated with Symptoms of Sleep Apnea. Front Genet 2017; 8:151. [PMID: 29093733 PMCID: PMC5651235 DOI: 10.3389/fgene.2017.00151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/28/2017] [Indexed: 12/30/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a common sleep breathing disorder associated with an increased risk of cardiovascular and cerebrovascular diseases and mortality. Although OSA is fairly heritable (~40%), there have been only few studies looking into the genetics of OSA. In the present study, we aimed to identify genetic variants associated with symptoms of sleep apnea by performing a whole-exome sequence meta-analysis of symptoms of sleep apnea in 1,475 individuals of European descent. We identified 17 rare genetic variants with at least suggestive evidence of significance. Replication in an independent dataset confirmed the association of a rare genetic variant (rs2229918; minor allele frequency = 0.3%) with symptoms of sleep apnea (p-valuemeta = 6.98 × 10−9, βmeta = 0.99). Rs2229918 overlaps with the 3′ untranslated regions of ERCC1 and CD3EAP genes on chromosome 19q13. Both genes are expressed in tissues in the neck area, such as the tongue, muscles, cartilage and the trachea. Further, CD3EAP is localized in the nucleus and mitochondria and involved in the tumor necrosis factor-alpha/nuclear factor kappa B signaling pathway. Our results and biological functions of CD3EAP/ERCC1 genes suggest that the 19q13 locus is interesting for further OSA research.
Collapse
Affiliation(s)
| | - Annemarie I Luik
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Desana Kocevska
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, Netherlands
| | - Chunyu Liu
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA, United States.,Population Sciences Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, United States.,Department of Biostatistics, School of Public Health, Boston University, Boston, MA, United States
| | | | - Jeroen G J van Rooij
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands.,Netherlands Consortium for Healthy Ageing, Rotterdam, Netherlands.,Department of Neurology, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Robert Kraaij
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands.,Netherlands Consortium for Healthy Ageing, Rotterdam, Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands.,Netherlands Consortium for Healthy Ageing, Rotterdam, Netherlands
| | | | - Daniel J Gottlieb
- VA Boston Healthcare System, Boston, MA, United States.,Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Henning Tiemeier
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Psychiatry, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
7
|
Liang J, Cade BE, Wang H, Chen H, Gleason KJ, Larkin EK, Saxena R, Lin X, Redline S, Zhu X. Comparison of Heritability Estimation and Linkage Analysis for Multiple Traits Using Principal Component Analyses. Genet Epidemiol 2016; 40:222-32. [PMID: 27027516 DOI: 10.1002/gepi.21957] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/30/2015] [Accepted: 12/14/2015] [Indexed: 12/16/2022]
Abstract
A disease trait often can be characterized by multiple phenotypic measurements that can provide complementary information on disease etiology, physiology, or clinical manifestations. Given that multiple phenotypes may be correlated and reflect common underlying genetic mechanisms, the use of multivariate analysis of multiple traits may improve statistical power to detect genes and variants underlying complex traits. The literature, however, has been unclear as to the optimal approach for analyzing multiple correlated traits. In this study, heritability and linkage analysis was performed for six obstructive sleep apnea hypopnea syndrome (OSAHS) related phenotypes, as well as principal components of the phenotypes and principal components of the heritability (PCHs) using the data from Cleveland Family Study, which include both African and European American families. Our study demonstrates that principal components generally result in higher heritability and linkage evidence than individual traits. Furthermore, the PCHs can be transferred across populations, strongly suggesting that these PCHs reflect traits with common underlying genetic mechanisms for OSAHS across populations. Thus, PCHs can provide useful traits for using data on multiple phenotypes and for genetic studies of trans-ethnic populations.
Collapse
Affiliation(s)
- Jingjing Liang
- Department of Epidemiology and Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, United States of America.,Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Heming Wang
- Department of Epidemiology and Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Han Chen
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Kevin J Gleason
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, United States of America.,Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Emma K Larkin
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Richa Saxena
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, United States of America.,Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America.,Center for Human Genetic Research and Department of Anesthesia, Pain, and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America.,Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, United States of America.,Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America.,Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Xiaofeng Zhu
- Department of Epidemiology and Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
8
|
Abstract
Sleep disorders are, in part, attributable to genetic variability across individuals. There has been considerable progress in understanding the role of genes for some sleep disorders, such as the identification of a human leukocyte antigen gene for narcolepsy. For other sleep disorders, such as insomnia, little work has been done. Optimizing phenotyping strategies is critical, as is the case for sleep apnea, for which intermediate traits such as obesity and craniofacial features may prove to be more tractable for genetic studies. Rapid advances in genotyping and statistical genetics are likely to lead to greater discoveries in the near future.
Collapse
Affiliation(s)
- Philip R Gehrman
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Suite 670, Philadelphia, PA 19104, USA.
| | - Brendan T Keenan
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, Suite 2100, Philadelphia, PA 19104-3403, USA
| | - Enda M Byrne
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, Suite 2100, Philadelphia, PA 19104-3403, USA; Queensland Brain Institute, Brisbane QLD 4072, Australia
| | - Allan I Pack
- Division of Sleep Medicine, Department of Medicine, Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, Suite 2100, Philadelphia, PA 19104-3403, USA
| |
Collapse
|
9
|
The CC genotype of the delta-sarcoglycan gene polymorphism rs13170573 is associated with obstructive sleep apnea in the Chinese population. PLoS One 2014; 9:e114160. [PMID: 25474115 PMCID: PMC4256229 DOI: 10.1371/journal.pone.0114160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/04/2014] [Indexed: 02/05/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a highly heterogeneous sleep disorder, and increasing evidence suggests that genetic factors play a role in the etiology of OSA. Airway muscle dysfunction might promote pharyngeal collapsibility, mutations or single nucleotide polymorphisms (SNPs) in the delta-sarcoglycan (SCGD) gene associated with muscle dysfunction. To evaluate if SCGD gene SNPs are associated with OSA, 101 individuals without OSA and 97 OSA patients were recruited randomly. The genotype distributions of SNPs (rs157350, rs7715464, rs32076, rs13170573 and rs1835919) in case and control populations were evaluated. The GG, GC and CC genotypes of rs13170573 in control and OSA groups were 51.5% and 37.1%, 36.6% and 35.1%, and 11.9% and 27.8%, respectively. Significantly fewer OSA patients possessed the GG genotype and significantly more possessed the CC genotype compared with controls. Further multivariate logistic regression analysis showed that the CC genotype was an independent risk factor for OSA, with an odds ratio (OR) of 2.17 (95% confidence interval [CI]: 1.19-6.01). Other factors, such as age ≥ 50 years, male gender, body mass index (BMI) ≥ 25 kg/m(2), low-density lipoprotein cholesterol (LDL-C) level ≥ 3.33 mg/dL, smoking and hypertension, were also independent risk factors for OSA in our multivariate logistic regression model.
Collapse
|
10
|
Sleiman P, Hakonarson H. Genetic underpinnings of obstructive sleep apnea: are we making progress? Sleep 2011; 34:1449-52. [PMID: 22043111 DOI: 10.5665/sleep.1366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Patrick Sleiman
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA 94104, USA
| | | |
Collapse
|
11
|
Pack AI. Genetics of Sleep Apnea. Sleep Med Clin 2011. [DOI: 10.1016/j.jsmc.2011.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Abstract
PURPOSE OF REVIEW Obstructive sleep apnoea syndrome (OSAS) is a highly prevalent disorder associated with reduced quality of life and adverse cardiovascular and metabolic sequelae. Recent years have seen an intensification of the research effort to establish the genetic contribution to the development of OSAS and its sequelae. This review explores emerging evidence in this field. RECENT FINDINGS A genetic basis for sleep-disordered breathing has been demonstrated for discrete disorders such as Treacher-Collins and Down syndromes, but the picture is less clear in so-called idiopathic OSAS. A degree of heritability appears likely in some of the intermediate phenotypes that lead to OSAS, particularly craniofacial morphology. However, only sparse and often contradictory evidence exists regarding the role of specific polymorphisms in causing OSAS in the general population. Similarly, investigations of the cardiovascular sequelae of OSAS have in general failed to consistently find single causative genetic mutations. Nonetheless, evidence suggests a role for tumour necrosis factor-α polymorphisms in particular, and large-scale family studies have suggested shared pathogenetic pathways for the development of obesity and OSAS. SUMMARY As with other common disorders, OSAS is likely to result from multiple gene-gene interactions occurring in a suitable environment. The application of modern genetic investigative techniques, such as genome-wide association studies, may facilitate new discoveries in this field.
Collapse
|
13
|
LIU YU, PATEL SANJAY, NIBBE ROD, MAXWELL SEAN, CHOWDHURY SALIMA, KOYUTURK MEHMET, ZHU XIAOFENG, LARKIN EMMAK, BUXBAUM SARAHG, PUNJABI NARESHM, GHARIB SINAA, REDLINE SUSAN, CHANCE MARKR. Systems biology analyses of gene expression and genome wide association study data in obstructive sleep apnea. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2011:14-25. [PMID: 21121029 PMCID: PMC4465214 DOI: 10.1142/9789814335058_0003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The precise molecular etiology of obstructive sleep apnea (OSA) is unknown; however recent research indicates that several interconnected aberrant pathways and molecular abnormalities are contributors to OSA. Identifying the genes and pathways associated with OSA can help to expand our understanding of the risk factors for the disease as well as provide new avenues for potential treatment. Towards these goals, we have integrated relevant high dimensional data from various sources, such as genome-wide expression data (microarray), protein-protein interaction (PPI) data and results from genome-wide association studies (GWAS) in order to define sub-network elements that connect some of the known pathways related to the disease as well as define novel regulatory modules related to OSA. Two distinct approaches are applied to identify sub-networks significantly associated with OSA. In the first case we used a biased approach based on sixty genes/proteins with known associations with sleep disorders and/or metabolic disease to seed a search using commercial software to discover networks associated with disease followed by information theoretic (mutual information) scoring of the sub-networks. In the second case we used an unbiased approach and generated an interactome constructed from publicly available gene expression profiles and PPI databases, followed by scoring of the network with p-values from GWAS data derived from OSA patients to uncover sub-networks significant for the disease phenotype. A comparison of the approaches reveals a number of proteins that have been previously known to be associated with OSA or sleep. In addition, our results indicate a novel association of Phosphoinositide 3-kinase, the STAT family of proteins and its related pathways with OSA.
Collapse
Affiliation(s)
- YU LIU
- Center for Proteomics & Bioinformatics, Case Western Reserve University (CWRU), Cleveland, Ohio, 44106, USA
| | - SANJAY PATEL
- Division of Pulmonary, Critical Care and Sleep Medicine, CWRU, Cleveland, Ohio, 44106, USA
| | - ROD NIBBE
- Center for Proteomics & Bioinformatics, CWRU, Cleveland, Ohio, 44106, USA
| | - SEAN MAXWELL
- Center for Proteomics & Bioinformatics, CWRU, Cleveland, Ohio, 44106, USA
| | - SALIM A. CHOWDHURY
- Department of Electrical Engineering & Computer Science, CWRU, Cleveland, Ohio, 44106, USA
| | - MEHMET KOYUTURK
- Department of Electrical Engineering & Computer Science, CWRU, Cleveland, Ohio, 44106, USA
| | - XIAOFENG ZHU
- Department of Epidemiology and Biostatistics, CWRU, Cleveland, Ohio, 44106, USA
| | - EMMA K. LARKIN
- Division of Allergy, Pulmonary and Critical Care, Vanderbilt University Medical Center, 1215 21st Ave S., Nashville, Tennessee, 37232, USA
| | - SARAH G BUXBAUM
- Jackson Heart Study, Jackson State University, Jackson, MS 39213, USA
| | - NARESH M. PUNJABI
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - SINA A. GHARIB
- Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA 98109, USA
| | - SUSAN REDLINE
- Department of Medicine, CWRU, Cleveland, Ohio, 44106, and Depart of Medicine, Brigham & Women’s Hospital and Beth Israel Deaconess Medical School, Harvard Medical School, Boston, MA, 02115
| | - MARK R. CHANCE
- Center for Proteomics & Bioinformatics, Department of Genetics, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| |
Collapse
|
14
|
Larkin EK, Patel SR, Goodloe RJ, Li Y, Zhu X, Gray-McGuire C, Adams MD, Redline S. A candidate gene study of obstructive sleep apnea in European Americans and African Americans. Am J Respir Crit Care Med 2010; 182:947-53. [PMID: 20538960 DOI: 10.1164/rccm.201002-0192oc] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
RATIONALE Obstructive sleep apnea (OSA) is hypothesized to be influenced by genes within pathways involved with obesity, craniofacial development, inflammation, and ventilatory control. OBJECTIVES We conducted the first candidate gene study of OSA using family data from European Americans and African Americans, selecting biologically plausible genes from within these pathways. METHODS A total of 1,080 single nucleotide polymorphisms (SNPs) were genotyped in 729 African Americans and 505 SNPs were genotyped in 694 European Americans. Coding for SNPs additively, association testing on the apnea-hypopnea index (AHI) as a continuous trait, and OSA as a dichotomous trait (AHI ≥15) was conducted using methods that account for familial correlations in models adjusted for age, age-squared, and sex, with and without body mass index. MEASUREMENTS AND MAIN RESULTS In European Americans, variants within C-reactive protein (CRP) and glial cell line-derived neurotrophic factor (GDNF) were associated with AHI (CRP: β = 4.6; SE = 1.1; P = 0.0000402) (GDNF: β = 4.3; SE = 1; P = 0.0000201) and with the dichotomous OSA trait (CRP: odds ratio = 2.4; 95% confidence interval, 1.5-3.9; P = 0.000170) (GDNF: odds ratio = 2; 95% confidence interval, 1.4-2.89; P = 0.0000433). In African Americans, rs9526240 within serotonin receptor 2a (HTR2A: odds ratio = 2.1; 95% confidence interval, 1.5-2.9; P = 0.00005233) was associated with OSA. CONCLUSIONS This candidate gene analysis identified the potential role of genes operating through intermediate disease pathways to influence sleep apnea phenotypes, providing a framework for focusing future replication studies.
Collapse
Affiliation(s)
- Emma K Larkin
- Division of Allergy, Pulmonary and Critical Care, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Relf BL, Larkin EK, De Torres C, Baur LA, Christodoulou J, Waters KA. Genome-wide linkage of obstructive sleep apnoea and high-density lipoprotein cholesterol in a Filipino family: bivariate linkage analysis of obstructive sleep apnoea. J Sleep Res 2010; 19:349-57. [PMID: 20149069 DOI: 10.1111/j.1365-2869.2009.00797.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Increasing evidence supports an association between obstructive sleep apnoea (OSA) and metabolic syndrome (MeS) in both children and adults, suggesting a genetic component. However, the genetic relationship between the diseases remains unclear. We performed a bivariate linkage scan on a single Filipino family with a high prevalence of OSA and MeS to explore the genetic pathways underlying these diseases. A large rural family (n = 50, 50% adults) underwent a 10-cM genome-wide scan. Fasting blood was used to measure insulin, triglycerides, total cholesterol and high density lipoprotein (HDL) cholesterol. Attended overnight polysomnography was used to quantify the respiratory disturbance index (RDI), a measure of sleep apnoea. Body mass index z-scores and insulin resistance scores were calculated. Bivariate multipoint linkage analyses were performed on RDI and MeS components. OSA prevalence was 46% (n = 23; nine adults, 14 children) in our participants. MeS phenotype was present in 40% of adults (n = 10) and 48% of children (n = 12). Linkage peaks with a logarithm of odds (LOD) score >3 were demonstrated on chromosome 19q13.4 (LOD = 3.04) for the trait pair RDI and HDL cholesterol. Candidate genes identified in this region include the killer cell immunoglobulin-like receptor genes. These genes are associated with modulating inflammatory responses in reaction to cellular stress and initiation of atherosclerotic plaque formation. We have identified a novel locus for genetic links between RDI and lipid factors associated with MeS in a chromosomal region containing genes associated with inflammatory responses.
Collapse
Affiliation(s)
- Bronwyn L Relf
- Discipline of Paediatrics and Child Health, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
16
|
Current World Literature. Curr Opin Pulm Med 2009; 15:638-44. [DOI: 10.1097/mcp.0b013e3283328a80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Decker MJ, Lin JMS, Tabassum H, Reeves WC. Hypersomnolence and sleep-related complaints in metropolitan, urban, and rural Georgia. Am J Epidemiol 2009; 169:435-43. [PMID: 19066308 PMCID: PMC2640164 DOI: 10.1093/aje/kwn365] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Persistent daytime hypersomnolence is associated with significant morbidity and mortality, but its prevalence in the population has been poorly documented. This study sought to characterize the prevalence of persistent daytime hypersomnolence, difficulties initiating and maintaining sleep, unrefreshing sleep, snoring, and the presence of physician-diagnosed sleep disorders in metropolitan, urban, and rural US Georgia populations. Between September 2004 and July 2005, a total of 6,530 randomly selected well and unwell adults, identified by screening interviews of 10,837 households (contacted by random digit dialing), completed a detailed phone interview. Sixteen percent reported persistent problems staying awake during the day; 26% reported persistent problems falling asleep at night; 31% experienced problems sleeping through the night; 34% were bothered by unrefreshing sleep; and 33% reported that they snored. In spite of the high occurrence of reported persistent sleep problems, only 10% of the survey participants reported having been diagnosed with a sleep disorder. These study findings highlight the need for increased public and clinician awareness with respect to proactively indentifying signs and symptoms of sleep disorders, a better understanding of their adverse impact upon morbidity and mortality, and their negative impact upon socioeconomic and academic potential.
Collapse
Affiliation(s)
- Michael J Decker
- Chronic Viral Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | |
Collapse
|