1
|
Zhuang H, Ouyang H, Peng Y, Gong S, Xiang K, Chen L, Chen J. Expression patterns and clinical value of key m6A RNA modification regulators in smoking patients with coronary artery disease. Epigenetics 2024; 19:2392400. [PMID: 39167728 PMCID: PMC11340747 DOI: 10.1080/15592294.2024.2392400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Even though N6-methyladenosine (m6A) RNA modifications are increasingly being implicated in human disease, their mechanisms are not fully understood in smokers with coronary artery disease (CAD). Thirty m6A-related regulators' expression (MRRE) in CAD individuals (smokers and non-smokers) were analyzed from GEO. Support Vector Machine, random forest, and nomogram models were constructed to assess its clinical value. Consensus clustering, principal component analysis, and ssGSEA were used to construct a full picture of m6A-related regulators in smokers with CAD. Oxygen-glucose deprivation (OGD) and qRT-PCR were used to validate hypoxia's effect on MRRE. A comparison between smokers with CAD and controls revealed lower expression levels of RBM15B, YTHDC2, and ZC3H13. Based on three key MRREs, all models showed good clinical value, and smokers with CAD were divided into two distinct molecular subgroups. The correlations were found between key MRRE and the degree of immune infiltration. Three key MRREs in HUVECs and FMC84 mouse cardiomyocytes were reduced in the OGD group. Through hypoxia, smoking might reduce the expression levels of RBM15B, YTHDC2, and ZC3H13 in smokers with CAD. Our findings provide an important theoretical basis for the treatment of smokers with CAD.
Collapse
Affiliation(s)
- Huanwei Zhuang
- Department of Cardiovascular Surgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hua Ouyang
- Department of Thoracic Surgery, ZhuJiang Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Yangfei Peng
- Department of Thoracic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuji Gong
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kun Xiang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Le Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinlan Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
2
|
Prostate Cancer Susceptibility Loci Identified in GATA2 and ZMIZ1 in Chinese Population. Int J Genomics 2022; 2022:8553530. [PMID: 35372566 PMCID: PMC8970932 DOI: 10.1155/2022/8553530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/04/2021] [Accepted: 12/01/2021] [Indexed: 12/26/2022] Open
Abstract
Background Common genetic risk variants for prostate cancer (PCa) have been identified at approximately 170 loci using genome-wide association studies (GWAS), most of which were identified in European populations. Recently, GWAS were applied to a large Japanese cohort and identified 12 novel susceptibility loci associated with PCa risk. In this study, we aim to investigate PCa susceptibility loci in the Chinese population. The study data will be used to promote PCa risk control in China. Methods A total of 235 PCa patients and 252 control subjects (all unrelated) were enrolled in this case-control PCa study. Nine single nucleotide polymorphisms (SNPs) were genotyped in GATA2 (rs73862213, rs2335052, and rs10934857), ZMIZ1 (rs704017, rs77911174, and rs3740259), and SUN2 (rs78397383, rs5750680, and rs138705) genes. The associations between the candidate SNPs and PCa were analyzed using multiple-factor logistic regression and haplotype analysis. Results The allele frequency distributions of rs73862213 and rs2335052 in the GATA2 gene and rs704017 and rs77911174 in the ZMIZ1 gene were found to be significantly different between PCa cases and controls. Haplotype analysis revealed that the G-C-A haplotype of the GATA2 gene (order of SNPs: rs73862213-rs2335052-rs10934857) and the G-G-G haplotype of the ZMIZ1 gene (order of SNPs: rs704017-rs77911174-rs3740259) were associated with increased PCa risk. None of the SUN2 haplotypes were associated with PCa. Conclusions Our study data indicates that the minor alleles of rs73862213 and rs2335052 in the GATA2 gene and rs704017 and rs77911174 in the ZMIZ1 gene were associated with increased PCa risk. These findings greatly extended our knowledge of the etiology of PCa.
Collapse
|
3
|
Fang F, Xu J, Kang Y, Ren H, Muyey DM, Chen X, Tan Y, Xu Z, Wang H. GATA2 rs2335052 and GATA2 rs78245253 single-nucleotide polymorphisms in Chinese patients with acute myelocytic leukemia. Int J Lab Hematol 2021; 43:1491-1500. [PMID: 34374210 DOI: 10.1111/ijlh.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/09/2021] [Accepted: 06/09/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION GATA binding protein 2 (GATA2) gene, involved in progression of hematologic malignancies and various solid tumors, is a susceptibility gene for inherited acute myeloid leukemia (AML). However, the influence of its single-nucleotide polymorphisms (SNPs) on AML remains unknown. METHODS We used allele-specific PCR to genotype GATA2 rs2335052 and rs78245253 in 159 newly diagnosed AML (non-M3) patients and 300 healthy volunteers, and all of participants came from China. And 34 common hematological tumor gene mutations in 159 AML patients were detected by next-generation sequencing. Kaplan-Meier survival analysis and Cox proportional hazard regression were used to analyze the association between the two SNPs and the prognosis of AML. RESULTS We found GATA2 rs2335052 C/T genotype, rs2335052 T/T genotype and rs78245253 G/C genotype in 51.6%, 13.8% and 11.3% AML patients. Our results demonstrated that GATA2 rs2335052 and rs78245253 were associated with certain laboratory features in AML patients, which had no effect on the pathogeny, chemotherapy response and recurrence of patients. Nevertheless, Kaplan-Meier survival analysis showed that, compared with rs78245253 G/G genotype, rs78245253 G/C genotype was significantly related to a decrease in overall survival (OS) (P = .020). Additionally, multivariate cox regression analysis showed that GATA2 rs78245253 was an independent risk factor for OS of AML patients in China. CONCLUSION GATA2 rs78245253 was an independent predictor for prognosis of AML patients in China and may be used as a potential indicator to predict the survival of AML patients in China. Further studies are needed to validate these findings and clarify the underlying mechanism.
Collapse
Affiliation(s)
- Fang Fang
- Institute of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jing Xu
- Institute of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yefang Kang
- Institute of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Huanying Ren
- Institute of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Daniel Muteb Muyey
- Institute of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiuhua Chen
- Institute of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanhong Tan
- Institute of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhifang Xu
- Institute of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Wang
- Institute of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Dungan JR, Qin X, Hurdle M, Haynes CS, Hauser ER, Kraus WE. Genome-Wide Variants Associated With Longitudinal Survival Outcomes Among Individuals With Coronary Artery Disease. Front Genet 2021; 12:661497. [PMID: 34140969 PMCID: PMC8204081 DOI: 10.3389/fgene.2021.661497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/04/2021] [Indexed: 11/30/2022] Open
Abstract
Objective Coronary artery disease (CAD) is an age-associated condition that greatly increases the risk of mortality. The purpose of this study was to identify gene variants associated with all-cause mortality among individuals with clinically phenotyped CAD using a genome-wide screening approach. Approach and Results We performed discovery (n = 684), replication (n = 1,088), and meta-analyses (N = 1,503) for association of genomic variants with survival outcome using secondary data from White participants with CAD from two GWAS sub-studies of the Duke Catheterization Genetics Biorepository. We modeled time from catheterization to death or last follow-up (median 7.1 years, max 12 years) using Cox multivariable regression analysis. Target statistical screening thresholds were p × 10–8 for the discovery phase and Bonferroni-calculated p-values for the replication (p < 5.3 × 10–4) and meta-analysis (p < 1.6 × 10–3) phases. Genome-wide analysis of 785,945 autosomal SNPs revealed two SNPs (rs13007553 and rs587936) that had the same direction of effect across all three phases of the analysis, with suggestive p-value association in discovery and replication and significant meta-analysis association in models adjusted for clinical covariates. The rs13007553 SNP variant, LINC01250, which resides between MYTIL and EIPR1, conferred increased risk for all-cause mortality even after controlling for clinical covariates [HR 1.47, 95% CI 1.17–1.86, p(adj) = 1.07 × 10–3 (discovery), p(adj) = 0.03 (replication), p(adj) = 9.53 × 10–5 (meta-analysis)]. MYT1L is involved in neuronal differentiation. TSSC1 is involved in endosomal recycling and is implicated in breast cancer. The rs587936 variant annotated to DAB2IP was associated with increased survival time [HR 0.65, 95% CI 0.51–0.83, p(adj) = 4.79 × 10–4 (discovery), p(adj) = 0.02 (replication), p(adj) = 2.25 × 10–5 (meta-analysis)]. DAB2IP is a ras/GAP tumor suppressor gene which is highly expressed in vascular tissue. DAB2IP has multiple lines of evidence for protection against atherosclerosis. Conclusion Replicated findings identified two candidate genes for further study regarding association with survival in high-risk CAD patients: novel loci LINC01250 (rs13007553) and biologically relevant candidate DAB2IP (rs587936). These candidates did not overlap with validated longevity candidate genes. Future research could further define the role of common variants in survival outcomes for people with CAD and, ultimately, improve longitudinal outcomes for these patients.
Collapse
Affiliation(s)
- Jennifer R Dungan
- Division of Healthcare in Adult Populations, School of Nursing, Duke University, Durham, NC, United States
| | - Xue Qin
- School of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, NC, United States
| | - Melissa Hurdle
- School of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, NC, United States
| | - Carol S Haynes
- School of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, NC, United States
| | - Elizabeth R Hauser
- School of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, NC, United States.,Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, United States.,Cooperative Studies Program Epidemiology Center, Durham VA Medical Center, Durham, NC, United States
| | - William E Kraus
- School of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, NC, United States.,Division of Cardiology, Department of Medicine, School of Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
5
|
Effect of metabolic genetic variants on long-term disease comorbidity in patients with type 2 diabetes. Sci Rep 2021; 11:2794. [PMID: 33531528 PMCID: PMC7854581 DOI: 10.1038/s41598-021-82276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 01/15/2021] [Indexed: 11/17/2022] Open
Abstract
Underlying genetic determinants contribute to developing type 2 diabetes (T2D) future diseases. The present study aimed to identify which genetic variants are associated with the incident of the major T2D co-morbid disease. First, we conducted a discovery study by investigating the genetic associations of comorbid diseases within the framework of the Utrecht Cardiovascular Pharmacogenetic studies by turning information of > 25 years follow-up data of 1237 subjects whom were genotyped and included in the discovery study. We performed Cox proportional-hazards regression to examine associations between genetic variants and comorbid diseases including cardiovascular diseases (CVD), chronic eye disease, cancer, neurologic diseases and chronic kidney disease. Secondly, we replicated our findings in two independent cohorts consisting of 1041 subjects. Finally, we performed a meta-analysis by combining the discovery and two replication cohorts. We ascertained 390 (39.7%) incident cases of CVD, 182 (16.2%) of chronic eye disease, 155 (13.8%) of cancer, 31 (2.7%) of neurologic disease and 13 (1.1%) of chronic kidney disease during a median follow-up of 10.2 years. In the discovery study, we identified a total of 39 Single Nucleotide Polymorphisms (SNPs) associated with comorbid diseases. The replication study, confirmed that rs1870849 and rs8051326 may play a role in the incidence of chronic eye disease in T2D patients. Half of patients developed at least one comorbid disease, with CVD occurring most often and earliest followed by chronic eye disease. Further research is needed to confirm the associations of two associated SNPs with chronic eye disease in T2D.
Collapse
|
6
|
Keene KL, Hyacinth HI, Bis JC, Kittner SJ, Mitchell BD, Cheng YC, Pare G, Chong M, O’Donnell M, Meschia JF, Chen WM, Sale MM, Rich SS, Nalls MA, Zonderman AB, Evans MK, Wilson JG, Correa A, Markus HS, Traylor M, Lewis CM, Carty CL, Reiner A, Haessler J, Langefeld CD, Gottesman R, Mosley TH, Woo D, Yaffe K, Liu Y, Longstreth WT, Psaty BM, Kooperberg C, Lange LA, Sacco R, Rundek T, Lee JM, Cruchaga C, Furie KL, Arnett DK, Benavente OR, Grewal RP, Peddareddygari LR, Dichgans M, Malik R, Worrall BB, Fornage M. Genome-Wide Association Study Meta-Analysis of Stroke in 22 000 Individuals of African Descent Identifies Novel Associations With Stroke. Stroke 2020; 51:2454-2463. [PMID: 32693751 PMCID: PMC7387190 DOI: 10.1161/strokeaha.120.029123] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/18/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Stroke is a complex disease with multiple genetic and environmental risk factors. Blacks endure a nearly 2-fold greater risk of stroke and are 2× to 3× more likely to die from stroke than European Americans. METHODS The COMPASS (Consortium of Minority Population Genome-Wide Association Studies of Stroke) has conducted a genome-wide association meta-analysis of stroke in >22 000 individuals of African ancestry (3734 cases, 18 317 controls) from 13 cohorts. RESULTS In meta-analyses, we identified one single nucleotide polymorphism (rs55931441) near the HNF1A gene that reached genome-wide significance (P=4.62×10-8) and an additional 29 variants with suggestive evidence of association (P<1×10-6), representing 24 unique loci. For validation, a look-up analysis for a 100 kb region flanking the COMPASS single nucleotide polymorphism was performed in SiGN (Stroke Genetics Network) Europeans, SiGN Hispanics, and METASTROKE (Europeans). Using a stringent Bonferroni correction P value of 2.08×10-3 (0.05/24 unique loci), we were able to validate associations at the HNF1A locus in both SiGN (P=8.18×10-4) and METASTROKE (P=1.72×10-3) European populations. Overall, 16 of 24 loci showed evidence for validation across multiple populations. Previous studies have reported associations between variants in the HNF1A gene and lipids, C-reactive protein, and risk of coronary artery disease and stroke. Suggestive associations with variants in the SFXN4 and TMEM108 genes represent potential novel ischemic stroke loci. CONCLUSIONS These findings represent the most thorough investigation of genetic determinants of stroke in individuals of African descent, to date.
Collapse
Affiliation(s)
- Keith L. Keene
- Department of Biology; Brody School of Medicine Center for Health Disparities, East Carolina University, Greenville, NC
| | - Hyacinth I. Hyacinth
- Aflac Cancer and Blood Disorder Center of Emory University and Children’s Healthcare of Atlanta University, Atlanta, GA
| | | | - Steven J. Kittner
- Baltimore Veterans Administration Medical Center and University of Maryland School of Medicine, Baltimore, MD
| | - Braxton D. Mitchell
- Baltimore Veterans Administration Medical Center and University of Maryland School of Medicine, Baltimore, MD
| | - Yu-Ching Cheng
- Baltimore Veterans Administration Medical Center and University of Maryland School of Medicine, Baltimore, MD
| | - Guillaume Pare
- McMaster University and Population Health Research Institute, Hamilton Ontario
| | - Michael Chong
- McMaster University and Population Health Research Institute, Hamilton Ontario
| | | | | | - Wei-Min Chen
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Michele M. Sale
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Mike A. Nalls
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD
- Data Tecnica International, Glen Echo, MD
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Science, National Institute on Aging, Baltimore, MD
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging, Baltimore, MD
| | | | - Adolfo Correa
- University of Mississippi Medical Center, Jackson, MS
| | | | - Matthew Traylor
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Cathryn M. Lewis
- Social, Genetic and Developmental Psychiatry Centre, King’s College London, London, United Kingdom
| | - Cara L. Carty
- Initiative for Research and Education to Advance Community Health, Washington State University, Seattle, WA
| | - Alexander Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jeff Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Carl D. Langefeld
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | | | | | - Daniel Woo
- Department of Neurology, University of Cincinnati, Cincinnati, OH
| | | | - YongMei Liu
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | | | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA; Kaiser Permanente Washington Health Research Institute, Seattle, WA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Ralph Sacco
- University of Miami, Miller School of Medicine, Miami, FL
| | - Tatjana Rundek
- University of Miami, Miller School of Medicine, Miami, FL
| | - Jin-Moo Lee
- Washington University School of Medicine, St. Louis, MO
| | | | - Karen L. Furie
- Brown University Warren Alpert Medical School, Providence, RI
| | - Donna K. Arnett
- University of Kentucky, College of Public Health, Lexington, KY
| | | | - Raji P. Grewal
- Neuroscience Institute, Saint Francis Medical Center, Trenton, NJ
| | | | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany
| | | | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
7
|
Izadpanah P, Khabbzi E, Erfanian S, Jafaripour S, Shojaie M. Case-control study on the association between the GATA2 gene and premature myocardial infarction in the Iranian population. Herz 2019; 46:71-75. [PMID: 31468074 DOI: 10.1007/s00059-019-04841-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/05/2019] [Accepted: 07/13/2019] [Indexed: 10/26/2022]
Abstract
In recent decades, due to the high prevalence of coronary artery disease (CAD) and myocardial infarction (MI), numerous studies have attempted to elucidate genetic contributing factors in these complex disorders. A very interesting gene in this regard is GATA-binding protein 2 (GATA2), an important regulator of various gene expressions in vascular endothelial cells. Accordingly, the association of different GATA2 polymorphisms with CAD and MI has already been evaluated. Rs2713604 is a genetic marker whose association with CAD has not been reproduced in previous studies. Considering the importance of replicating the initial association, the present case-control study aimed to examine the association of this intronic variant with premature MI in a sample of the Iranian population. In this study, 193 participants from Jahrom Hospital (Jahrom, Iran) were consecutively recruited during a 1.5-year period, and, following blood sampling, genomic DNA was extracted. We then proceeded to genotype rs2713604 using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method and statistically analyzed the data. After adjustment for hyperlipidemia, hypertension, and type 2 diabetes mellitus, the results of the multivariate regression analysis showed no significant association between rs2713604 and premature MI. Interestingly, the risk allele (A-allele) of rs2713604 displayed a slightly higher frequency among controls compared to cases.
Collapse
Affiliation(s)
- Peyman Izadpanah
- Cardiology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Khabbzi
- School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Saiedeh Erfanian
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran. .,Department of Advanced Medical Sciences and Technologies, School of Medicine, Jahrom University of Medical Sciences, Motahhari Street, 74148-46199, Jahrom, Iran.
| | - Simin Jafaripour
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Vakil abad Blv., 99191-91778, Mashhad, Iran.
| | - Mohammad Shojaie
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| |
Collapse
|
8
|
Russell TA, Grubisha MJ, Remmers CL, Kang SK, Forrest MP, Smith KR, Kopeikina KJ, Gao R, Sweet RA, Penzes P. A Schizophrenia-Linked KALRN Coding Variant Alters Neuron Morphology, Protein Function, and Transcript Stability. Biol Psychiatry 2018; 83:499-508. [PMID: 29241584 PMCID: PMC5809265 DOI: 10.1016/j.biopsych.2017.10.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/12/2017] [Accepted: 10/10/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Large-scale genetic studies have revealed that rare sequence variants, including single nucleotide variants (SNVs), in glutamatergic synaptic genes are enriched in schizophrenia patients. However, the majority are too rare to show any association with disease and have not been examined functionally. One such SNV, KALRN-P2255T, displays a penetrance that greatly exceeds that of previously identified schizophrenia-associated SNVs. Therefore, we sought to characterize its effects on the function of kalirin (Kal)-9, a dual Ras-related C3 botulinum toxin substrate 1 and Ras homologue gene family, member A (RhoA) guanine nucleotide exchange factor, upregulated in human schizophrenia brain tissue. METHODS Kal9 was overexpressed in primary rat cortical neurons or human embryonic kidney 293 (HEK293) cells. The effects of the P2255T variant on dendritic branching, dendritic spine morphology, protein and messenger RNA stability, and catalytic activity were examined. RESULTS Kal9-P2255T leads to diminished basal dendritic branching and dendritic spine size, compared with wild-type Kal9. The P2255T SNV directly affected Kal9 protein function, causing increased RhoA activation in HEK293 cells, but had no effect on Ras-related C3 botulinum toxin substrate 1 activation. Consistent with human postmortem findings, we found that Kal9-P2255T protein levels were higher than those of wild-type Kal9 in neurons. Increased messenger RNA stability was detected in HEK293 cells, indicating that this was the cause of the higher protein levels. When analyzed together, increased intrinsic RhoA guanine nucleotide exchange factor catalytic activity combined with increased messenger RNA expression led to net enhancement of RhoA activation, known to negatively impact neuronal morphology. CONCLUSIONS Taken together, our data reveal a novel mechanism for disease-associated SNVs and provide a platform for modeling morphological changes in mental disorders.
Collapse
Affiliation(s)
- Theron A. Russell
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Melanie J. Grubisha
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Christine L. Remmers
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Seok Kyu Kang
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Marc P. Forrest
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Katharine R. Smith
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Katherine J. Kopeikina
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Ruoqi Gao
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA,VISN 4 Mental Illness Research, Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
9
|
Barberio MD, Huffman KM, Giri M, Hoffman EP, Kraus WE, Hubal MJ. Pyruvate Dehydrogenase Phosphatase Regulatory Gene Expression Correlates with Exercise Training Insulin Sensitivity Changes. Med Sci Sports Exerc 2017; 48:2387-2397. [PMID: 27846149 DOI: 10.1249/mss.0000000000001041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Whole body insulin sensitivity (Si) typically improves after aerobic exercise training; however, individual responses can be highly variable. The purpose of this study was to use global gene expression to identify skeletal muscle genes that correlate with exercise-induced Si changes. METHODS Longitudinal cohorts from the Studies of Targeted Risk Reduction Intervention through Defined Exercise were used as Discovery (Affymetrix) and Confirmation (Illumina) of vastus lateralis gene expression profiles. Discovery (n = 39; 21 men) and Confirmation (n = 42; 19 men) cohorts were matched for age (52 ± 8 vs 51 ± 10 yr), body mass index (30.4 ± 2.8 vs 29.7 ± 2.8 kg·m), and V˙O2max (30.4 ± 2.8 vs 29.7 ± 2.8 mL·kg·min). Si was determined via intravenous glucose tolerance test pretraining and posttraining. Pearson product-moment correlation coefficients determined relationships between a) baseline and b) training-induced changes in gene expression and %ΔSi after training. RESULTS Expression of 2454 (Discovery) and 1778 genes (Confirmation) at baseline were significantly (P < 0.05) correlated to %ΔSi; 112 genes overlapped. Pathway analyses identified Ca signaling-related transcripts in this 112-gene list. Expression changes of 1384 (Discovery) and 1288 genes (Confirmation) after training were significantly (P < 0.05) correlated to %ΔSi; 33 genes overlapped, representing contractile apparatus of skeletal and smooth muscle genes. Pyruvate dehydrogenase phosphatase regulatory subunit expression at baseline (P = 0.01, r = 0.41) and posttraining (P = 0.01, r = 0.43) were both correlated with %ΔSi. CONCLUSIONS Exercise-induced adaptations in skeletal muscle Si are related to baseline levels of Ca-regulating transcripts, which may prime the muscle for adaptation. Relationships between %ΔSi and pyruvate dehydrogenase phosphatase regulatory, a regulatory subunit of the pyruvate dehydrogenase complex, indicate that the Si response is strongly related to key steps in metabolic regulation.
Collapse
Affiliation(s)
- Matthew D Barberio
- 1Research Center for Genetic Medicine, Children's National Medical Center, Durham, NC; 2Division of Rheumatology, Department of Medicine, Duke University School of Medicine, Durham, NC; 3Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC; 4Department of Exercise and Nutrition Sciences, George Washington University, WASHINGTON, DC; 5Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC; and 6Department of Integrative Systems Biology, George Washington University, Washington, DC
| | | | | | | | | | | |
Collapse
|
10
|
McCormack JJ, Bruche S, Ouadda ABD, Ishii H, Lu H, Garcia-Cattaneo A, Chávez-Olórtegui C, Lamarche-Vane N, Braga VMM. The scaffold protein Ajuba suppresses CdGAP activity in epithelia to maintain stable cell-cell contacts. Sci Rep 2017; 7:9249. [PMID: 28835688 PMCID: PMC5569031 DOI: 10.1038/s41598-017-09024-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/20/2017] [Indexed: 12/28/2022] Open
Abstract
Levels of active Rac1 at epithelial junctions are partially modulated via interaction with Ajuba, an actin binding and scaffolding protein. Here we demonstrate that Ajuba interacts with the Cdc42 GTPase activating protein CdGAP, a GAP for Rac1 and Cdc42, at cell-cell contacts. CdGAP recruitment to junctions does not require Ajuba; rather Ajuba seems to control CdGAP residence at sites of cell-cell adhesion. CdGAP expression potently perturbs junctions and Ajuba binding inhibits CdGAP activity. Ajuba interacts with Rac1 and CdGAP via distinct domains and can potentially bring them in close proximity at junctions to facilitate activity regulation. Functionally, CdGAP-Ajuba interaction maintains junctional integrity in homeostasis and diseases: (i) gain-of-function CdGAP mutants found in Adams-Oliver Syndrome patients strongly destabilize cell-cell contacts and (ii) CdGAP mRNA levels are inversely correlated with E-cadherin protein expression in different cancers. We present conceptual insights on how Ajuba can integrate CdGAP binding and inactivation with the spatio-temporal regulation of Rac1 activity at junctions. Ajuba provides a novel mechanism due to its ability to bind to CdGAP and Rac1 via distinct domains and influence the activation status of both proteins. This functional interplay may contribute towards conserving the epithelial tissue architecture at steady-state and in different pathologies.
Collapse
Affiliation(s)
- J J McCormack
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, SW7 2AZ, London, UK
| | - S Bruche
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, SW7 2AZ, London, UK
| | - A B D Ouadda
- Cancer Research Program, Research Institute-McGill University Hospital Centre and Department of Anatomy and Cell Biology, McGill University, H4A 3J1, Montreal, Quebec, Canada
| | - H Ishii
- Cancer Research Program, Research Institute-McGill University Hospital Centre and Department of Anatomy and Cell Biology, McGill University, H4A 3J1, Montreal, Quebec, Canada
| | - H Lu
- Cancer Division, Faculty of Medicine, Imperial College London, SW7 2AZ, London, UK
| | - A Garcia-Cattaneo
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, SW7 2AZ, London, UK
| | - C Chávez-Olórtegui
- Department of Biochemistry and Immunology, Institute of Cell Biology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - N Lamarche-Vane
- Cancer Research Program, Research Institute-McGill University Hospital Centre and Department of Anatomy and Cell Biology, McGill University, H4A 3J1, Montreal, Quebec, Canada
| | - V M M Braga
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, SW7 2AZ, London, UK.
| |
Collapse
|
11
|
Transcriptional Complexity and Distinct Expression Patterns of auts2 Paralogs in Danio rerio. G3-GENES GENOMES GENETICS 2017. [PMID: 28626003 PMCID: PMC5555464 DOI: 10.1534/g3.117.042622] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Several genes that have been implicated in autism spectrum disorders (ASDs) have multiple transcripts. Therefore, comprehensive transcript annotation is critical for determining the respective gene function. The autism susceptibility candidate 2 (AUTS2) gene is associated with various neurological disorders, including autism and brain malformation. AUTS2 is important for activation of transcription of neural specific genes, neuronal migration, and neurite outgrowth. Here, we present evidence for significant transcriptional complexity in the auts2 gene locus in the zebrafish genome, as well as in genomic loci of auts2 paralogous genes fbrsl1 and fbrs. Several genes that have been implicated in ASDs are large and have multiple transcripts. Neurons are especially enriched with longer transcripts compared to nonneural cell types. The human autism susceptibility candidate 2 (AUTS2) gene is ∼1.2 Mb long and is implicated in a number of neurological disorders including autism, intellectual disability, addiction, and developmental delay. Recent studies show AUTS2 to be important for activation of transcription of neural specific genes, neuronal migration, and neurite outgrowth. However, much remains to be understood regarding the transcriptional complexity and the functional roles of AUTS2 in neurodevelopment. Zebrafish provide an excellent model system for studying both these questions. We undertook genomic identification and characterization of auts2 and its paralogous genes in zebrafish. There are four auts2 family genes in zebrafish: auts2a, auts2b, fbrsl1, and fbrs. The absence of complete annotation of their structures hampers functional studies. We present evidence for transcriptional complexity of these four genes mediated by alternative splicing and alternative promoter usage. Furthermore, the expression of the various paralogs is tightly regulated both spatially and developmentally. Our findings suggest that auts2 paralogs serve distinct functions in the development and functioning of target tissues.
Collapse
|
12
|
Genetic Variant of Kalirin Gene Is Associated with Ischemic Stroke in a Chinese Han Population. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6594271. [PMID: 28706949 PMCID: PMC5494542 DOI: 10.1155/2017/6594271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/10/2017] [Accepted: 05/18/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Ischemic stroke is a complex disorder resulting from the interplay of genetic and environmental factors. Previous studies showed that kalirin gene variations were associated with cardiovascular disease. However, the association between this gene and ischemic stroke was unknown. We performed this study to confirm if kalirin gene variation was associated with ischemic stroke. METHODS We enrolled 385 ischemic stroke patients and 362 controls from China. Three SNPs of kalirin gene were genotyped by means of ligase detection reaction-PCR method. Data was processed with SPSS and SHEsis platform. RESULTS SNP rs7620580 (dominant model: OR = 1.590, p = 0.002 and adjusted OR = 1.662, p = 0.014; additive model: OR = 1.490, p = 0.002 and adjusted OR = 1.636, p = 0.005; recessive model: OR = 2.686, p = 0.039) and SNP rs1708303 (dominant model: OR = 1.523, p = 0.007 and adjusted OR = 1.604, p = 0.028; additive model: OR = 1.438, p = 0.01 and adjusted OR = 1.476, p = 0.039) were associated with ischemic stroke. The GG genotype and G allele of SNP rs7620580 were associated with a risk for ischemic stroke with an adjusted OR of 3.195 and an OR of 1.446, respectively. Haplotype analysis revealed that A-T-G,G-T-A, and A-T-A haplotypes were associated with ischemic stroke. CONCLUSIONS Our results provide evidence that kalirin gene variations were associated with ischemic stroke in the Chinese Han population.
Collapse
|
13
|
Association of KALRN, ADIPOQ, and FTO gene polymorphism in type 2 diabetic patients with coronary artery disease: possible predisposing markers. Coron Artery Dis 2017; 27:490-6. [PMID: 27218147 DOI: 10.1097/mca.0000000000000386] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Recently, several genes have been introduced as potential genetic markers for diabetes mellitus and coronary artery diseases (CAD). METHODS In this case-control study, the associations of rs2241766 T/G of ADIPOQ, rs9289231 T/G of KALRN, and rs9939609 A/T of FTO polymorphisms with genetic susceptibility to CAD in type 2 diabetic (T2D) patients were investigated. A total of 224 T2D patients undergoing coronary angiography were randomly recruited into the study. Of the total diabetic patients, 152 were also diagnosed with CAD, whereas the rest were control participants. Genotyping of single-nucleotide polymorphisms was performed by high-resolution melting analysis. RESULTS Genotype analysis showed that the minor allele (G) frequency of rs2241766 ADIPOQ was statistically significant in the CAD group compared with the control group [odds ratio (OR), 2.779; 95% confidence interval (CI), 1.403-5.504; P=0.003]. Also, it was found that the minor allele (G) frequency of rs9289231 KALRN was significantly associated with the risk of CAD (OR, 2.098; 95% CI, 1.096-4.017; P=0.025). In addition, no significant association was observed between the minor allele (A) of the FTO rs9939609 polymorphism and CAD (OR, 1.088; 95% CI, 0.578-2.015; P=0.788). It is speculated that the GG genotype and the G allele of the rs9289231 polymorphism of KALRN and the rs224766 polymorphism of ADIPOQ genes may be considered genetic risk factors for CAD in T2D patients and genetic variations of these genes may play a major role in the process of these disorders. CONCLUSION Our case-control study in the Iranian population suggested a possible association between the mentioned single-nucleotide polymorphisms and CAD in T2D patients. However, further replication studies and comprehensive meta-analyses are required.
Collapse
|
14
|
Miller MB, Yan Y, Wu Y, Hao B, Mains RE, Eipper BA. Alternate promoter usage generates two subpopulations of the neuronal RhoGEF Kalirin-7. J Neurochem 2016; 140:889-902. [PMID: 27465683 DOI: 10.1111/jnc.13749] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 07/15/2016] [Accepted: 07/25/2016] [Indexed: 11/28/2022]
Abstract
Kalirin (Kal), a dual Rho GDP/GTP exchange factor (GEF), plays essential roles within and outside the nervous system. Tissue-specific, developmentally regulated alternative splicing generates isoforms with one (Kal7) or two (Kal9, Kal12) GEF domains along with a kinase (Kal12) domain; while Kal9 and Kal12 are crucial for neurite outgrowth, Kal7 plays important roles in spine maintenance and synaptic plasticity. Tissue-specific usage of alternate Kalrn promoters (A, B, C, D) places four different peptides before the Sec14 domain. cSec14, with an amphipathic helix encoded by the C-promoter (Kal-C-helix), is the only variant known to interact with phosphoinositides. We sought to elucidate the biological significance of Kalirin promoter usage and lipid binding. While Ex1B expression was predominant early in development, Ex1C expression increased when synaptogenesis occurred. Kal-C-helix-containing Kal7 (cKal7) was enriched at the postsynaptic density, present in the microsomal fraction and absent from cytosol; no significant amount of cKal9 or cKal12 could be identified in mouse brain. Similarly, in primary hippocampal neurons, endogenous cKalirin colocalized with postsynaptic density 95 in dendritic spines, juxtaposed to Vglut1-positive puncta. When expressed in young neurons, bSec14-EGFP was diffusely distributed, while cSec14-EGFP localized to internal puncta. Transfected bKal7-EGFP and cKal7-EGFP localized to dendritic spines and increased spine density in more mature cultured neurons. Although promoter usage did not alter the Rac-GEF activity of Kal7, the synaptic puncta formed by cKal7-EGFP were smaller than those formed by bKal7-EGFP. Molecular modeling predicted a role for Kal-C-helix residue Arg15 in the interaction of cSec14 with phosphoinositides. Consistent with this prediction, mutation of Arg15 to Gln altered the localization of cSec14-EGFP and cKal7-EGFP. These data suggest that phosphoinositide-dependent interactions unique to cKal7 contribute to protein localization and function. Cover Image for this issue: doi. 10.1111/jnc.13791.
Collapse
Affiliation(s)
- Megan B Miller
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Yan Yan
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Yi Wu
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Bing Hao
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA.,Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
15
|
Dungan JR, Qin X, Horne BD, Carlquist JF, Singh A, Hurdle M, Grass E, Haynes C, Gregory SG, Shah SH, Hauser ER, Kraus WE. Case-Only Survival Analysis Reveals Unique Effects of Genotype, Sex, and Coronary Disease Severity on Survivorship. PLoS One 2016; 11:e0154856. [PMID: 27187494 PMCID: PMC4871369 DOI: 10.1371/journal.pone.0154856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/20/2016] [Indexed: 01/05/2023] Open
Abstract
Survival bias may unduly impact genetic association with complex diseases; gene-specific survival effects may further complicate such investigations. Coronary artery disease (CAD) is a complex phenotype for which little is understood about gene-specific survival effects; yet, such information can offer insight into refining genetic associations, improving replications, and can provide candidate genes for both mortality risk and improved survivorship in CAD. Building on our previous work, the purpose of this current study was to: evaluate LSAMP SNP-specific hazards for all-cause mortality post-catheterization in a larger cohort of our CAD cases; and, perform additional replication in an independent dataset. We examined two LSAMP SNPs—rs1462845 and rs6788787—using CAD case-only Cox proportional hazards regression for additive genetic effects, censored on time-to-all-cause mortality or last follow-up among Caucasian subjects from the Catheterization Genetics Study (CATHGEN; n = 2,224) and the Intermountain Heart Collaborative Study (IMHC; n = 3,008). Only after controlling for age, sex, body mass index, histories of smoking, type 2 diabetes, hyperlipidemia and hypertension (HR = 1.11, 95%CI = 1.01–1.22, p = 0.032), rs1462845 conferred significantly increased hazards of all-cause mortality among CAD cases. Even after controlling for multiple covariates, but in only the primary cohort, rs6788787 conferred significantly improved survival (HR = 0.80, 95% CI = 0.69–0.92, p = 0.002). Post-hoc analyses further stratifying by sex and disease severity revealed replicated effects for rs1462845: even after adjusting for aforementioned covariates and coronary interventional procedures, males with severe burden of CAD had significantly amplified hazards of death with the minor variant of rs1462845 in both cohorts (HR = 1.29, 95% CI = 1.08–1.55, p = 0.00456; replication HR = 1.25, 95% CI = 1.05–1.49, p = 0.013). Kaplan-Meier curves revealed unique cohort-specific genotype effects on survival. Additional analyses demonstrated that the homozygous risk genotype (‘A/A’) fully explained the increased hazard in both cohorts. None of the post-hoc analyses in control subjects were significant for any model. This suggests that genetic effects of rs1462845 on survival are unique to CAD presence. This represents formal, replicated evidence of genetic contribution of rs1462845 to increased risk for all-cause mortality; the contribution is unique to CAD case status and specific to males with severe burden of CAD.
Collapse
Affiliation(s)
- Jennifer R. Dungan
- Duke University School of Nursing, Durham, NC, United States of America
- * E-mail:
| | - Xuejun Qin
- Duke University Department of Medicine, Durham, NC, United States of America
| | - Benjamin D. Horne
- Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, UT, United States of America
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States of America
| | - John F. Carlquist
- Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, UT, United States of America
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States of America
| | - Abanish Singh
- Behavioral Medicine Research Center, Duke University Medical Center, Durham, NC, United States of America
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States of America
| | - Melissa Hurdle
- Duke University Department of Medicine, Durham, NC, United States of America
| | - Elizabeth Grass
- Duke University Department of Medicine, Durham, NC, United States of America
| | - Carol Haynes
- Duke University Department of Medicine, Durham, NC, United States of America
| | - Simon G. Gregory
- Duke University Department of Medicine, Durham, NC, United States of America
| | - Svati H. Shah
- Duke University Department of Medicine, Durham, NC, United States of America
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States of America
| | - Elizabeth R. Hauser
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States of America
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, United States of America
| | - William E. Kraus
- Duke University Department of Medicine, Durham, NC, United States of America
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
16
|
Boroumand M, Ziaee S, Zarghami N, Anvari MS, Cheraghi S, Abbasi SH, Jalali A, Pourgholi L. The Kalirin Gene rs9289231 Polymorphism as a Novel Predisposing Marker for Coronary Artery Disease. Lab Med 2016; 45:302-8. [PMID: 25316661 DOI: 10.1309/lmls813zdphrfluu] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Atherosclerosis is the leading cause of death and disability worldwide. Genetic variations play a major role in the process of atherosclerosis. Recently, rs9289231 genetic variations of the Kalirin gene (KALRN) on chromosome 3q21.2 have been introduced as potential genetic markers for coronary artery disease (CAD). OBJECTIVE In this case-control study, we investigated the association between genetic susceptibility to CAD and rs9289231 G/T polymorphism, located on the KALRN gene, in an Iranian population. METHODS Our cohort consisted of 1486 individuals undergoing coronary angiography. Of these, we considered the 1007 patients with CAD to be case individuals and the 479 individuals with normal coronary conditions to be control individuals. We performed single-nucleotide polymorphism (SNP) genotyping via the high resolution melting (HRM) technique. RESULTS Our data showed that the minor allele (G) frequency of rs9289231 SNP was higher in our CAD group than that in our control group (odds ratio, 1:37; confidence interval, 1.07-1.74; P = .01). The results of our data analysis highlighted a genetic association between rs9289231 polymorphism and severity and development of CAD. CONCLUSIONS We consider the GG genotype and the G allele of rs9289231 polymorphism of KALRN to be genetic risk factors for CAD in an Iranian population, especially in early-stage atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Mohammadali Boroumand
- Department of Pathology and Laboratory Medicine and Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayan Ziaee
- Department of Molecular Pathology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Tabriz University of Medical Science, Tabriz, Iran
| | - Maryam Sotudeh Anvari
- Department of Pathology and Laboratory Medicine and Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Cheraghi
- Department of Molecular Pathology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Arash Jalali
- Department of Molecular Pathology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Pourgholi
- Department of Molecular Pathology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Liu X, Jiang B, Wang A, Di J, Wang Z, Chen L, Su X. GATA2 rs2335052 Polymorphism Predicts the Survival of Patients with Colorectal Cancer. PLoS One 2015; 10:e0136020. [PMID: 26287967 PMCID: PMC4546112 DOI: 10.1371/journal.pone.0136020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 07/30/2015] [Indexed: 11/30/2022] Open
Abstract
Background GATA binding protein 2 (GATA2) is a transcription factor that has essential roles in hematologic malignancies and progression of various solid tumors. Our previous studies suggested that high GATA2 expression is associated with recurrence of colorectal cancer (CRC). However, the influence of GATA2 single nucleotide polymorphisms (SNPs) on the survival of CRC remains unknown. Methods We genotyped GATA2 SNP rs2335052 using Sanger sequencing after PCR amplification, and determined GATA2 expression by immunohistochemistry in a cohort of 180 CRC patients. Kaplan-Meier survival analysis and Cox proportional hazard regression were used to analyze the association between the GATA2 rs2335052 genotypes and the clinical outcome of CRC. Results We found that there was no significant correlation between the rs2335052 genotypes and the expression of GATA2. However, the Kaplan-Meier survival analysis suggested that the carriers of the A-allele of SNP rs2335052 were significantly associated with increased risk of recurrence and reduced disease-free survival (DFS), compared with those carrying the variant genotype of GG in rs2335052 (P = 0.021). Moreover, univariate and multivariate Cox regression analyses revealed that GATA2 SNP rs2335052 was an independent risk factor for the DFS of CRC patients. Conclusion Our results demonstrated that GATA2 SNP rs2335052 is an independent predictor for prognosis of CRC patients. This raised the possibility that SNP rs2335052 may serve as a potential indicator for predicting recurrence of CRC after curative colectomy.
Collapse
Affiliation(s)
- Xijuan Liu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Beihai Jiang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Aidong Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiabo Di
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zaozao Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lei Chen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiangqian Su
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
- * E-mail:
| |
Collapse
|
18
|
Kraus WE, Granger CB, Sketch MH, Donahue MP, Ginsburg GS, Hauser ER, Haynes C, Newby LK, Hurdle M, Dowdy ZE, Shah SH. A Guide for a Cardiovascular Genomics Biorepository: the CATHGEN Experience. J Cardiovasc Transl Res 2015; 8:449-57. [PMID: 26271459 DOI: 10.1007/s12265-015-9648-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/03/2015] [Indexed: 02/06/2023]
Abstract
The CATHeterization GENetics (CATHGEN) biorepository was assembled in four phases. First, project start-up began in 2000. Second, between 2001 and 2010, we collected clinical data and biological samples from 9334 individuals undergoing cardiac catheterization. Samples were matched at the individual level to clinical data collected at the time of catheterization and stored in the Duke Databank for Cardiovascular Diseases (DDCD). Clinical data included the following: subject demographics (birth date, race, gender, etc.); cardiometabolic history including symptoms; coronary anatomy and cardiac function at catheterization; and fasting chemistry data. Third, as part of the DDCD regular follow-up protocol, yearly evaluations included interim information: vital status (verified via National Death Index search and supplemented by Social Security Death Index search), myocardial infarction (MI), stroke, rehospitalization, coronary revascularization procedures, medication use, and lifestyle habits including smoking. Fourth, samples were used to generate molecular data. CATHGEN offers the opportunity to discover biomarkers and explore mechanisms of cardiovascular disease.
Collapse
Affiliation(s)
- William E Kraus
- Division of Cardiology, Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA. .,Duke Molecular Physiology Institute, School of Medicine, Duke University, 300 N. Duke Street, Durham, NC, 27710, USA.
| | - Christopher B Granger
- Division of Cardiology, Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA.,Duke Clinical Research Institute, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Michael H Sketch
- Division of Cardiology, Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Mark P Donahue
- Division of Cardiology, Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Geoffrey S Ginsburg
- Duke Center for Applied Genomics and Precision Medicine, Duke University, Durham, NC, 27710, USA
| | - Elizabeth R Hauser
- Division of Cardiology, Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA.,Duke Molecular Physiology Institute, School of Medicine, Duke University, 300 N. Duke Street, Durham, NC, 27710, USA
| | - Carol Haynes
- Duke Molecular Physiology Institute, School of Medicine, Duke University, 300 N. Duke Street, Durham, NC, 27710, USA
| | - L Kristin Newby
- Division of Cardiology, Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA.,Duke Clinical Research Institute, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Melissa Hurdle
- Duke Molecular Physiology Institute, School of Medicine, Duke University, 300 N. Duke Street, Durham, NC, 27710, USA
| | - Z Elaine Dowdy
- Duke Molecular Physiology Institute, School of Medicine, Duke University, 300 N. Duke Street, Durham, NC, 27710, USA
| | - Svati H Shah
- Division of Cardiology, Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA.,Duke Molecular Physiology Institute, School of Medicine, Duke University, 300 N. Duke Street, Durham, NC, 27710, USA
| |
Collapse
|
19
|
Wang L, Rundek T, Beecham A, Hudson B, Blanton SH, Zhao H, Sacco RL, Dong C. Genome-wide interaction study identifies RCBTB1 as a modifier for smoking effect on carotid intima-media thickness. Arterioscler Thromb Vasc Biol 2013; 34:219-25. [PMID: 24202307 DOI: 10.1161/atvbaha.113.302706] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Carotid intima-media thickness (cIMT), a marker for atherosclerosis, is affected by smoking and has substantial interindividual variation. We sought to identify the genetic moderators influencing the effect of smoking on cIMT. APPROACH AND RESULTS With a multistage design using 722 379 single nucleotide polymorphisms (SNP), a genome-wide interaction study was performed in a discovery sample of 669 Hispanics, followed by replication in 589 subjects (264 Hispanics, 172 non-Hispanic blacks, 153 non-Hispanic whites). Assuming an additive genetic model, regression analysis was performed to test for smoking-SNP interaction on cIMT while controlling for age, sex, and the top 3 principal components of ancestry. The strongest interaction in Hispanics was found with a synonymous splicing SNP (rs3751383) in exon 9 of RCBTB1 (P=2.5e(-6) in discovery sample; P=0.01 in the Hispanic replication sample; P<8.8e(-9) in the combined Hispanic sample). Stratification analysis in the combined Hispanic sample showed that smoking had no effect on cIMT among rs3751383 G homozygote (P=0.15), a moderate effect among rs3751383 heterozygote (P=0.01), and a strong effect among rs3751383 A homozygote (P=2.1e(-7)). A consistent trend was observed in the non-Hispanic white and black data sets, leading to an interaction effect of P<2.9e(-9) in the meta-analysis of all 1258 subjects. CONCLUSIONS Our study represents the first genome-wide smoking-SNP interaction study of cIMT and identifies RCBTB1 as a modifier of the smoking effect on cIMT. Testing for gene-environment interactions can help uncover genetic factors that contribute to the interindividual variation in response to the same environmental exposure.
Collapse
Affiliation(s)
- Liyong Wang
- From the John T. McDonald Department of Human Genetics, John P. Hussman Institute for Human Genomics (L.W., A.B., S.H.B., R.L.S.), Department of Neurology (T.R., S.H.B., R.L.S., C.D.), Department of Public Health Sciences (T.R., R.L.S.), and Department of Medicine (B.H.), Miller School of Medicine, University of Miami, FL; and Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT (H.Z.)
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Gene-smoking interactions in multiple Rho-GTPase pathway genes in an early-onset coronary artery disease cohort. Hum Genet 2013; 132:1371-82. [PMID: 23907653 DOI: 10.1007/s00439-013-1339-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/14/2013] [Indexed: 10/26/2022]
Abstract
We performed a gene-smoking interaction analysis using families from an early-onset coronary artery disease cohort (GENECARD). This analysis was focused on validating and expanding results from previous studies implicating single nucleotide polymorphisms (SNPs) on chromosome 3 in smoking-mediated coronary artery disease. We analyzed 430 SNPs on chromosome 3 and identified 16 SNPs that showed a gene-smoking interaction at P < 0.05 using association in the presence of linkage--ordered subset analysis, a method that uses permutations of the data to empirically estimate the strength of the association signal. Seven of the 16 SNPs were in the Rho-GTPase pathway indicating a 1.87-fold enrichment for this pathway. A meta-analysis of gene-smoking interactions in three independent studies revealed that rs9289231 in KALRN had a Fisher's combined P value of 0.0017 for the interaction with smoking. In a gene-based meta-analysis KALRN had a P value of 0.026. Finally, a pathway-based analysis of the association results using WebGestalt revealed several enriched pathways including the regulation of the actin cytoskeleton pathway as defined by the Kyoto Encyclopedia of Genes and Genomes.
Collapse
|
21
|
Wang KS, Liu X, Zhang Q, Aragam N, Pan Y. Parent-of-origin effects of FAS and PDLIM1 in attention-deficit/hyperactivity disorder. J Psychiatry Neurosci 2012; 37:46-52. [PMID: 21651830 PMCID: PMC3244498 DOI: 10.1503/jpn.100173] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Previous studies have suggested that there may be a parent-of-origin effect for attention-deficit/hyperactivity disorder(ADHD) candidate genes. The objective of the present study was to investigate parent-of-origin effects using a genome-wide association analysis of the International Multicentre ADHD Genetics (IMAGE) study sample. METHODS Family-based association analysis for ADHD using 846 ADHD probands and their parents was performed using the PLINK program, and parent-of-origin effects were studied using a Z score for the difference in paternal versus maternal odds ratios. RESULTS We identified 44 single nucleotide polymorphisms (SNPs) showing parent-of-origin effects at a significance level of p < 0.001. The most significant SNP, rs7614907, is at position 3q13.33 in the CDGAP gene (p = 0.000064 for parent-of-origin effect). Furthermore, 2 genes (FAS and PDLIM1) showed moderate parent-of-origin effects (p = 0.00086 for rs9658691 and p = 0.00077 for rs11188249) and strong maternal transmission (p = 0.000059 for rs9658691 and p = 0.0000068 for rs11188249). In addition, ZNF775 showed a moderate parent-of-origin effect (p = 0.00036 for rs7790549) and strong paternal transmission (p = 0.000041 for rs7790549). LIMITATIONS We only had 1 sample available for analysis. CONCLUSION These results suggest several genes or regions with moderate parent-of-origin effects, and these findings will serve as a resource for replication in other populations to elucidate the potential role of these genetic variants in ADHD.
Collapse
Affiliation(s)
- Ke-Sheng Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, PO Box 70259, Lamb Hall, Johnson City, TN 37614-1700, USA.
| | | | | | | | | |
Collapse
|
22
|
Rudock ME, Cox AJ, Ziegler JT, Lehtinen AB, Connelly JJ, Freedman BI, Carr JJ, Langefeld CD, Hauser ER, Horne BD, Bowden DW. Cigarette smoking status has a modifying effect on the association between polymorphisms in KALRN and measures of cardiovascular risk in the diabetes heart study. Genes Genomics 2011. [DOI: 10.1007/s13258-011-0069-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Muhlestein JB, Anderson JL. The 9p21.3 Genetic Region and Coronary Heart Disease. J Am Coll Cardiol 2011; 58:435-7. [DOI: 10.1016/j.jacc.2011.01.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 01/10/2011] [Indexed: 11/26/2022]
|
24
|
Olsson S, Jood K, Melander O, Sjögren M, Norrving B, Nilsson M, Lindgren A, Jern C. Lack of association between genetic variations in the KALRN region and ischemic stroke. Clin Biochem 2011; 44:1018-20. [PMID: 21664346 DOI: 10.1016/j.clinbiochem.2011.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/16/2011] [Accepted: 05/17/2011] [Indexed: 01/08/2023]
Abstract
OBJECTIVES To investigate whether KALRN gene variation is associated with ischemic stroke (IS). DESIGN AND METHODS Associations to overall IS and IS subtypes were investigated in SAHLSIS, which comprises 844 patients with IS and 668 controls. RESULTS Associations between KALRN SNPs and overall IS and cardioembolic stroke were detected. Associations for overall IS were investigated in two additional Swedish samples, but could not be replicated. CONCLUSION KALRN gene variation is not associated with overall IS.
Collapse
Affiliation(s)
- Sandra Olsson
- Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Mick E, McGough JJ, Middleton FA, Neale B, Faraone SV. Genome-wide association study of blood pressure response to methylphenidate treatment of attention-deficit/hyperactivity disorder. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:466-72. [PMID: 21130132 DOI: 10.1016/j.pnpbp.2010.11.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 11/23/2010] [Accepted: 11/23/2010] [Indexed: 12/31/2022]
Abstract
OBJECTIVE We conducted a genome-wide association study of blood pressure in an open-label study of the methylphenidate transdermal system (MTS) for the treatment of attention-deficit/hyperactivity disorder (ADHD). METHOD Genotyping was conducted with the Affymetrix Genome-Wide Human SNP Array 6.0. Multivariate association analyses were conducted using the software package PLINK. After data cleaning and quality control we tested 316,934 SNPs in 140 children with ADHD. RESULTS We observed no genome-wide statistically significant findings, but a SNP in a K(+)-dependent Na(+)/Ca(2+) exchanger expressed in vascular smooth muscle (SLC24A3) was included in our top associations at p<1E-04. Genetic enrichment analyses of genes with ≥1 SNP significant at p<0.01, implicated several functional categories (FERM domain, p=5.0E-07; immunoglobulin domain, p=8.1E-06; the transmembrane region, p=4.4E-05; channel activity, p=2.0E-04; and type-III fibronectins, p=2.7E-05) harboring genes previously associated with related cardiovascular phenotypes. CONCLUSIONS The hypothesis generating results from this study suggests that polymorphisms in several genes consistently associated with cardiovascular diseases may impact changes in blood pressure observed with methylphenidate pharmacotherapy in children with ADHD.
Collapse
Affiliation(s)
- Eric Mick
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States.
| | | | | | | | | |
Collapse
|
26
|
Mak S, Sun H, Acevedo F, Shimmin LC, Zhao L, Teng BB, Hixson JE. Differential expression of genes in the calcium-signaling pathway underlies lesion development in the LDb mouse model of atherosclerosis. Atherosclerosis 2010; 213:40-51. [PMID: 20667539 DOI: 10.1016/j.atherosclerosis.2010.06.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 06/16/2010] [Accepted: 06/23/2010] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Atherosclerosis is influenced by the interaction of environmental and genetic susceptibility risk factors. We used global microarray expression profiling to investigate differentially regulated genes in aorta during development of atherosclerosis in a susceptible genetically modified mouse model in response to the interaction between risk factors including hyperlipidemic genotype, shear stress, diet, and age. METHODS AND RESULTS In this study we investigated transcriptional changes in lesion-prone and lesion-resistant regions of aortas in genetically modified mice lacking both genes of the LDL receptor and the apolipoprotein B mRNA editing enzyme (LDb; Ldlr(-/-)Apobec1(-/-)). Risk factors including hyperlipidemic genotype (LDb vs. C57BL/6 wildtype), shear stress (lesion-prone vs. lesion resistant aortic regions), diet (chow vs. Western high-fat), and age (2- vs. 8-months) were studied. We hybridized aortic RNA samples with microarray chips containing probes for 45,000 mouse genes and expressed sequence tags (ESTs). Overall, the differentially expressed genes were components of 20 metabolic and physiological pathways. Notably, calcium signaling is the major pathway identified with differential regulation of 30 genes within this pathway. We also found differential expression of calcium-signaling genes in cultured primary endothelial cells from lesion-prone and lesion-resistant arterial regions (LDb mice vs. C57BL/6 controls), providing further support for involvement of calcium signaling in the pathogenesis of atherosclerosis. Moreover, we demonstrated protein expression of genes in the calcium-signaling pathway using Western blot analysis and immunofluorescence. CONCLUSIONS Our results suggest that calcium signaling may play an important role in regulation of genes expressed in aorta during development of atherosclerosis. Calcium signaling may act via mechanistic responses to genetic, mechanical, and environmental insults that trigger an imbalance of intracellular calcium homeostasis, resulting in altered biological processes leading to lesion development.
Collapse
Affiliation(s)
- Solida Mak
- The University of Texas Graduate School of Biomedical Science at Houston, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Dandona S, Chen L, Fan M, Alam MA, Assogba O, Belanger M, Williams K, Wells GA, Tang WHW, Ellis SG, Hazen SL, McPherson R, Roberts R, Stewart AFR. The transcription factor GATA-2 does not associate with angiographic coronary artery disease in the Ottawa Heart Genomics and Cleveland Clinic GeneBank Studies. Hum Genet 2009; 127:101-5. [PMID: 19885677 DOI: 10.1007/s00439-009-0761-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 10/23/2009] [Indexed: 11/30/2022]
Abstract
The transcription factor GATA2 was reported to associate with coronary artery disease (CAD) in the family-based Genecard sample (Connelly et al. in PLoS Genet 2:e139, 2006). We asked whether GATA2 associates with sporadic cases of CAD in the Ottawa Heart Genomics Study (OHGS) and Cleveland Clinic (CC) populations. We genotyped the lead single nucleotide polymorphism (SNP) from Genecard, rs2713604 which is located in intron 5-6 of GATA2 in 600 CAD cases and 625 controls, as well as a tag SNP rs1573949 (r (2) = 0.87 in Caucasians of European ancestry in Utah from HapMap) in 1,136 cases and 1,162 controls in the OHGS1 population. A further 1,838 CAD cases and 913 controls derived from an independent sample combining genotypes from CC and OHGS2 populations were genotyped for rs1573949. Neither of the genotyped SNPs associates with CAD in the OHGS1 or CC/OHGS2 populations. Our data suggest that GATA2 does not contribute to the development of angiographic CAD among sporadic cases.
Collapse
Affiliation(s)
- Sonny Dandona
- The John & Jennifer Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|