1
|
Gavello D, Carbone E, Carabelli V. Leptin-mediated ion channel regulation: PI3K pathways, physiological role, and therapeutic potential. Channels (Austin) 2016; 10:282-96. [PMID: 27018500 DOI: 10.1080/19336950.2016.1164373] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Leptin is produced by adipose tissue and identified as a "satiety signal," informing the brain when the body has consumed enough food. Specific areas of the hypothalamus express leptin receptors (LEPRs) and are the primary site of leptin action for body weight regulation. In response to leptin, appetite is suppressed and energy expenditure allowed. Beside this hypothalamic action, leptin targets other brain areas in addition to neuroendocrine cells. LEPRs are expressed also in the hippocampus, neocortex, cerebellum, substantia nigra, pancreatic β-cells, and chromaffin cells of the adrenal gland. It is intriguing how leptin is able to activate different ionic conductances, thus affecting excitability, synaptic plasticity and neurotransmitter release, depending on the target cell. Most of the intracellular pathways activated by leptin and directed to ion channels involve PI3K, which in turn phosphorylates different downstream substrates, although parallel pathways involve AMPK and MAPK. In this review we will describe the effects of leptin on BK, KATP, KV, CaV, TRPC, NMDAR and AMPAR channels and clarify the landscape of pathways involved. Given the ability of leptin to influence neuronal excitability and synaptic plasticity by modulating ion channels activity, we also provide a short overview of the growing potentiality of leptin as therapeutic agent for treating neurological disorders.
Collapse
Affiliation(s)
- Daniela Gavello
- a Department of Drug Science , Lab of Cellular Physiology and Molecular Neuroscience, NIS Center of Excellence, University of Torino , Torino , Italy
| | - Emilio Carbone
- a Department of Drug Science , Lab of Cellular Physiology and Molecular Neuroscience, NIS Center of Excellence, University of Torino , Torino , Italy
| | - Valentina Carabelli
- a Department of Drug Science , Lab of Cellular Physiology and Molecular Neuroscience, NIS Center of Excellence, University of Torino , Torino , Italy
| |
Collapse
|
2
|
Wu Y, Shyng SL, Chen PC. Concerted Trafficking Regulation of Kv2.1 and KATP Channels by Leptin in Pancreatic β-Cells. J Biol Chem 2015; 290:29676-90. [PMID: 26453299 DOI: 10.1074/jbc.m115.670877] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Indexed: 11/06/2022] Open
Abstract
In pancreatic β-cells, voltage-gated potassium 2.1 (Kv2.1) channels are the dominant delayed rectifier potassium channels responsible for action potential repolarization. Here, we report that leptin, a hormone secreted by adipocytes known to inhibit insulin secretion, causes a transient increase in surface expression of Kv2.1 channels in rodent and human β-cells. The effect of leptin on Kv2.1 surface expression is mediated by the AMP-activated protein kinase (AMPK). Activation of AMPK mimics whereas inhibition of AMPK occludes the effect of leptin. Inhibition of Ca(2+)/calmodulin-dependent protein kinase kinase β, a known upstream kinase of AMPK, also blocks the effect of leptin. In addition, the cAMP-dependent protein kinase (PKA) is involved in Kv2.1 channel trafficking regulation. Inhibition of PKA prevents leptin or AMPK activators from increasing Kv2.1 channel density, whereas stimulation of PKA is sufficient to promote Kv2.1 channel surface expression. The increased Kv2.1 surface expression by leptin is dependent on actin depolymerization, and pharmacologically induced actin depolymerization is sufficient to enhance Kv2.1 surface expression. The signaling and cellular mechanisms underlying Kv2.1 channel trafficking regulation by leptin mirror those reported recently for ATP-sensitive potassium (KATP) channels, which are critical for coupling glucose stimulation with membrane depolarization. We show that the leptin-induced increase in surface KATP channels results in more hyperpolarized membrane potentials than control cells at stimulating glucose concentrations, and the increase in Kv2.1 channels leads to a more rapid repolarization of membrane potential in cells firing action potentials. This study supports a model in which leptin exerts concerted trafficking regulation of KATP and Kv2.1 channels to coordinately inhibit insulin secretion.
Collapse
Affiliation(s)
- Yi Wu
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239 and
| | - Show-Ling Shyng
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239 and
| | - Pei-Chun Chen
- the Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
3
|
Chen PC, Kryukova YN, Shyng SL. Leptin regulates KATP channel trafficking in pancreatic β-cells by a signaling mechanism involving AMP-activated protein kinase (AMPK) and cAMP-dependent protein kinase (PKA). J Biol Chem 2013; 288:34098-34109. [PMID: 24100028 DOI: 10.1074/jbc.m113.516880] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pancreatic β-cells secrete insulin in response to metabolic and hormonal signals to maintain glucose homeostasis. Insulin secretion is under the control of ATP-sensitive potassium (KATP) channels that play key roles in setting β-cell membrane potential. Leptin, a hormone secreted by adipocytes, inhibits insulin secretion by increasing KATP channel conductance in β-cells. We investigated the mechanism by which leptin increases KATP channel conductance. We show that leptin causes a transient increase in surface expression of KATP channels without affecting channel gating properties. This increase results primarily from increased channel trafficking to the plasma membrane rather than reduced endocytosis of surface channels. The effect of leptin on KATP channels is dependent on the protein kinases AMP-activated protein kinase (AMPK) and PKA. Activation of AMPK or PKA mimics and inhibition of AMPK or PKA abrogates the effect of leptin. Leptin activates AMPK directly by increasing AMPK phosphorylation at threonine 172. Activation of PKA leads to increased channel surface expression even in the presence of AMPK inhibitors, suggesting AMPK lies upstream of PKA in the leptin signaling pathway. Leptin signaling also leads to F-actin depolymerization. Stabilization of F-actin pharmacologically occludes, whereas destabilization of F-actin simulates, the effect of leptin on KATP channel trafficking, indicating that leptin-induced actin reorganization underlies enhanced channel trafficking to the plasma membrane. Our study uncovers the signaling and cellular mechanism by which leptin regulates KATP channel trafficking to modulate β-cell function and insulin secretion.
Collapse
Affiliation(s)
- Pei-Chun Chen
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Yelena N Kryukova
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239.
| |
Collapse
|
4
|
Abstract
Proper nutrition, avoidance of ingesting substances that are harmful to the whole organism, and maintenance of energy homeostasis are crucial for living organisms. Additionally, mammals possess a sophisticated system to control the types and content of food that we swallow. Gustation is a vital sensory skill for determining which food stuffs to ingest and which to avoid, and for maintaining metabolic homeostasis. It is becoming apparent that there is a strong link between metabolic control and flavor perception. Although the gustatory system critically influences food preference, food intake, and metabolic homeostasis, the mechanisms for modulating taste sensitivity by metabolic hormones are just now being explored. It is likely that hormones produced in the tongue influence the amounts and types of food that we eat: the hormones that we associate with appetite control, glucose homeostasis and satiety, such as glucagon-like peptide-1, cholecystokinin, and neuropeptide Y are also produced locally in taste buds. In this report, we will provide an overview of the peptidergic endocrine hormone factors that are present or are known to have effects within the gustatory system, and we will discuss their roles, where known, in taste signaling.
Collapse
Affiliation(s)
- Yu-Kyong Shin
- Diabetes Section/NIA/NIH, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | | |
Collapse
|
5
|
Okumura N, Imai S, Toyoda F, Isoya E, Kumagai K, Matsuura H, Matsusue Y. Regulatory role of tyrosine phosphorylation in the swelling-activated chloride current in isolated rabbit articular chondrocytes. J Physiol 2009; 587:3761-76. [PMID: 19528252 DOI: 10.1113/jphysiol.2009.174177] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Articular chondrocytes are exposed in vivo to the continually changing osmotic environment and thus require volume regulatory mechanisms. The present study was designed to investigate (i) the functional role of the swelling-activated Cl(-) current (I(Cl,swell)) in the regulatory volume decrease (RVD) and (ii) the regulatory role of tyrosine phosphorylation in I(Cl,swell), in isolated rabbit articular chondrocytes. Whole-cell membrane currents were recorded from chondrocytes in isosmotic, hyposmotic and hyperosmotic external solutions under conditions where Na(+), K(+) and Ca(2+) currents were minimized. The cell surface area was also measured using microscope images from a separate set of chondrocytes and was used as an index of cell volume. The isolated chondrocytes exhibited a RVD during sustained exposure to hyposmotic solution, which was mostly inhibited by the I(Cl,swell) blocker 4-(2-butyl-6,7-dichloro-2-cyclopentyl-indan-1-on-5-yl)oxobutyric acid (DCPIB) at 20 microM. Exposure to a hyposmotic solution activated I(Cl,swell), which was also largely inhibited by 20 microM DCPIB. I(Cl,swell) in rabbit articular chondrocytes had a relative taurine permeability (P(tau)/P(Cl)) of 0.21. Activation of I(Cl,swell) was significantly reduced by the protein tyrosine kinase (PTK) inhibitor genistein (30 microM) but was only weakly affected by its inactive analogue daidzein (30 microM). Intracellular application of protein tyrosine phosphatase (PTP) inhibitor sodium orthovanadate (250 and 500 microM) resulted in a gradual activation of a Cl(-) current even in isosmotic solutions. This Cl(-) current was almost completely inhibited by 4,4-diisothiocyanatostilbene-2,2-disulfonate (DIDS, 500 microM) and was also largely suppressed by exposure to hyperosmotic solution, thus indicating a close similarity to I(Cl,swell). Pretreatment of chondrocytes with genistein significantly prevented the activation of the Cl(-) current by sodium orthovanadate, suggesting that the basal activity of endogenous PTK is required for the activation of this Cl(-) current. Our results provide evidence to indicate that activation of I(Cl,swell) is involved in RVD in isolated rabbit articular chondrocytes and is facilitated by tyrosine phosphorylation.
Collapse
Affiliation(s)
- Noriaki Okumura
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Torres N, Noriega L, Tovar AR. Nutrient modulation of insulin secretion. VITAMINS AND HORMONES 2009; 80:217-44. [PMID: 19251040 DOI: 10.1016/s0083-6729(08)00609-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The presence of different nutrients regulates the beta-cell response to secrete insulin to maintain glucose in the physiological range and appropriate levels of fuels in different organs and tissues. Glucose is the only nutrient secretagogue capable of promoting alone the release of insulin release. The mechanisms of Insulin secretion are dependent or independent of the closure of ATP-sensitive K(+) channels. In addition, insulin secretion in response to glucose and other nutrients is modulated by several hormones as incretins, glucagon, and leptin. Fatty acids (FAs), amino acids, and keto acids influence secretion as well. The exact mechanism for which nutrients induce insulin secretion is complicated because nutrient signaling shows one of the most complex transduction systems, which exists for the reason that nutrient have to be metabolized. FAs in the absence of glucose induce FA oxidation and insulin secretion in a lesser extent. However, FAs in the presence of glucose produce high concentration of malonyl-CoA that repress FA oxidation and increase the formation of LC-CoA amplifying the insulin release. Long-term exposure to fatty acids and glucose results in glucolipotoxicity and decreases in insulin release. The amino acid pattern produced after the consumption of a dietary protein regulates insulin secretion by generating anaplerotic substrates that stimulates ATP synthesis or by activating specific signal transduction mediated by mTOR, AMPK, and SIRT4 or modulating the expression of genes involved in insulin secretion. Finally, dietary bioactive compounds such as isoflavones play an important role in the regulation of insulin secretion.
Collapse
Affiliation(s)
- Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Vasco de Quiroga, Mexico DF 14000, Mexico
| | | | | |
Collapse
|
7
|
Mizuta E, Kokubo Y, Yamanaka I, Miyamoto Y, Okayama A, Yoshimasa Y, Tomoike H, Morisaki H, Morisaki T. Leptin gene and leptin receptor gene polymorphisms are associated with sweet preference and obesity. Hypertens Res 2008; 31:1069-77. [PMID: 18716353 DOI: 10.1291/hypres.31.1069] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Leptin is an adipocyte-secreted hormone that regulates food intake and body weight, and that was recently reported to suppress sweet sensitivity in an animal model. We investigated the associations among sweet preference, obesity, and polymorphisms of the leptin gene (LEP) or leptin receptor gene (LEPR). A total of 3,653 residents randomly selected from among the citizens of Suita City, Osaka, Japan were enlisted as subjects, in whom we investigated sweet preference, clinical characteristics, including obesity and serum leptin level, and the polymorphisms of LEP and LEPR (G-2548A and A19G for LEP; R109K, R223Q, and rs3790439 for LEPR). We determined the associations among the parameters using logistic regression analysis, in order to consider potential confounding factors for sweet preference and/or obesity. The LEP A19G and LEPR R109K polymorphisms were associated with sweet preference, whereas the serum leptin level was not. Further, the LEPR 109KK genotype was found to be associated with obesity along with sweet preference. In conclusion, our results are the first to show associations of LEP and LEPR polymorphisms with sweet preference, and may provide useful information for diagnosis and treatment of lifestyle-related diseases.
Collapse
Affiliation(s)
- Einosuke Mizuta
- Department of Bioscience, National Cardiovascular Center Research Institute, Suita, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Missan S, Zhabyeyev P, Linsdell P, McDonald TF. Insensitivity of cardiac delayed-rectifier I(Kr) to tyrosine phosphorylation inhibitors and stimulators. Br J Pharmacol 2006; 148:724-31. [PMID: 16715119 PMCID: PMC1751861 DOI: 10.1038/sj.bjp.0706776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The rapidly activating delayed-rectifying K+ current (I(Kr)) in heart cells is an important determinant of repolarisation, and decreases in its density are implicated in acquired and inherited long QT syndromes. The objective of the present study on I(Kr) in guinea-pig ventricular myocytes was to evaluate whether the current is acutely regulated by tyrosine phosphorylation. 2. Myocytes configured for ruptured-patch or perforated-patch voltage-clamp were depolarised with 200-ms steps to 0 mV for measurement of I(Kr) tail amplitude on repolarisations to -40 mV. 3. I(Kr) in both ruptured-patch and perforated-patch myocytes was only moderately (14-20%) decreased by 100 microM concentrations of protein tyrosine kinase (PTK) inhibitors tyrphostin A23, tyrphostin A25, and genistein. However, similar-sized decreases were induced by PTK-inactive analogues tyrphostin A1 and daidzein, suggesting that they were unrelated to inhibition of PTK. 4. Ruptured-patch and perforated-patch myocytes were also treated with promoters of tyrosine phosphorylation, including phosphotyrosyl phosphatase (PTP) inhibitor orthovanadate, exogenous c-Src PTK, and four receptor PTK activators (insulin, insulin-like growth factor-1, epidermal growth factor, and basic fibroblast growth factor). None of these treatments had a significant effect on the amplitude of I(Kr). 5. We conclude that Kr channels in guinea-pig ventricular myocytes are unlikely to be regulated by PTK and PTP.
Collapse
Affiliation(s)
- Sergey Missan
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | - Pavel Zhabyeyev
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | - Paul Linsdell
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | - Terence F McDonald
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
- Author for correspondence:
| |
Collapse
|
9
|
Zhao YF, Feng DD, Chen C. Contribution of adipocyte-derived factors to beta-cell dysfunction in diabetes. Int J Biochem Cell Biol 2006; 38:804-19. [PMID: 16378747 DOI: 10.1016/j.biocel.2005.11.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 11/11/2005] [Accepted: 11/16/2005] [Indexed: 11/30/2022]
Abstract
In addition to serving as an energy reservoir, the adipocyte has been characterized as an endocrine cell, secreting many bioactive factors which influence energy homeostasis. Being overweight, with excessive adipose tissue, is considered to be part of the pathogenesis of type 2 diabetes. Insulin resistance and beta-cell dysfunction are two major pathophysiological changes seen in type 2 diabetes. In addition to inducing insulin resistance in insulin-responsive tissues, adipocyte-derived factors play an important role in the pathogenesis of beta-cell dysfunction. Leptin, free fatty acids, adiponectin, tumor necrosis factor-alpha and interleukin-6 are all produced and secreted by adipocytes, and may directly influence aspects of beta-cell function, including insulin synthesis and secretion, insulin cell survival and apoptosis. During the progression from normal weight to obesity and on to overt diabetes, the adipocyte-derived factors contribute to the occurrence and development of beta-cell dysfunction and type 2 diabetes.
Collapse
Affiliation(s)
- Yu-Feng Zhao
- Department of Physiology, The Fourth Military Medical University, Xi'an, China
| | | | | |
Collapse
|
10
|
Abstract
The hormone leptin is secreted from white adipocytes, and serum levels of leptin correlate with adipose tissue mass. Leptin was first described to act on the satiety center in the hypothalamus through specific receptors (leptin receptor [ObR]) to restrict food intake and enhance energy expenditure. Important peripheral actions of leptin involve inhibition of insulin biosynthesis and secretion in pancreatic beta-cells. In turn, insulin stimulates leptin secretion from adipose tissue, establishing a hormonal regulatory feedback loop-the so-called "adipo-insular axis." Multiple signal transduction pathways are involved in leptin signaling in pancreatic beta-cells. We have identified the proinsulin gene and protein phosphatase 1 gene as leptin repressed genes and the gene for the suppressor of cytokine signaling 3 protein as a leptin-induced gene in pancreatic beta-cells. The molecular effects of leptin culminate to restrict insulin secretion and biosynthesis to adapt glucose homeostasis to the amount of body fat. In most overweight individuals, however, physiological regulation of body weight by leptin seems to be disturbed, representing "leptin resistance." This leptin resistance at the level of the pancreatic beta-cell may contribute to dysregulation of the adipo-insular axis and promote the development of hyperinsulinemia and manifest type 2 diabetes in overweight patients.
Collapse
Affiliation(s)
- Jochen Seufert
- Division of Metabolism, Medizinische Poliklinik, University of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
11
|
Cowley MA, Cone RD, Enriori P, Louiselle I, Williams SM, Evans AE. Electrophysiological actions of peripheral hormones on melanocortin neurons. Ann N Y Acad Sci 2003; 994:175-86. [PMID: 12851314 DOI: 10.1111/j.1749-6632.2003.tb03178.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neurons of the arcuate nucleus of the hypothalamus (ARH) appear to be sites of convergence of central and peripheral signals of energy stores, and profoundly modulate the activity of the melanocortin circuits, providing a strong rationale for pursuing these circuits as therapeutic targets for disorders of energy homeostasis. Recently, tremendous advances have been made in identifying genes and pathways important to regulating energy homeostasis, particularly the hormone leptin and its receptor. This hormone/receptor pair is expressed at high levels in the so-called satiety centers in the hypothalamus, and at lower levels elsewhere in the body. Recent studies in our lab and those of our collaborators have shown that leptin modulates different populations of hypothalamic cells in different ways, rapidly activating POMC neurons and inhibiting NPY/AgRP neurons. In this report, we outline an integrated model of leptin's action in the arcuate nucleus of the hypothalamus, derived from our electrophysiological studies of brain slice preparations taken from transgenic mice that have been bred to express a variety of fluorescent proteins in specific cell types. We also discuss the recently withdrawn obesity drug fenfluramine, which appears to act on POMC neurons via the serotonin 2C receptor. Nutrient-sensing serotonin neurons may project from the raphe nuclei in the brainstem to the hypothalamus; within the arcuate nucleus, serotonin signals are integrated with others such as leptin, ghrelin, and peptide YY(3-36) from the gut, to produce a coordinated response to nutrient state. Finally, we review the current inquiries into the ability of the hormone ghrelin to stimulate appetite by its action of NPY neurons and inhibition of POMC neurons.
Collapse
Affiliation(s)
- Michael A Cowley
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon 97006, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Levin BE, Dunn-Meynell AA, Routh VH. CNS sensing and regulation of peripheral glucose levels. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 51:219-58. [PMID: 12420361 DOI: 10.1016/s0074-7742(02)51007-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is clear that the brain has evolved a mechanism for sensing levels of ambient glucose. Teleologically, this is likely to be a function of its requirement for glucose as a primary metabolic substrate. There is no question that the brain can sense and mount a counterregulatory response to restore very low levels of plasma and brain glucose. But it is less clear that the changes in glucose associated with normal diurnal rhythms and feeding cycles are sufficient to influence either ingestive behavior or the physiologic responses involved in regulating plasma glucose levels. Glucosensing neurons are clearly a distinct class of metabolic sensors with the capacity to respond to a variety of intero- and exteroceptive stimuli. This makes it likely that these glucosensing neurons do participate in physiologically relevant homeostatic mechanisms involving energy balance and the regulation of peripheral glucose levels. It is our challenge to identify the mechanisms by which these neurons sense and respond to these metabolic cues.
Collapse
Affiliation(s)
- Barry E Levin
- Neurology Service, VA Medical Center, East Orange, New Jersey 07018, USA
| | | | | |
Collapse
|
13
|
Lee JW, Romsos DR. Leptin administration normalizes insulin secretion from islets of Lep(ob)/Lep(ob) mice by food intake-dependent and -independent mechanisms. Exp Biol Med (Maywood) 2003; 228:183-7. [PMID: 12563025 DOI: 10.1177/153537020322800208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Leptin-deficient Lep(ob)/Lep(ob) mice exhibit elevations in plasma insulin early in development. The present study tested the hypothesis that absence of leptin during neonatal development permanently programs islets from these mice to hypersecrete insulin. Administration of leptin for 8 days to young adult Lep(ob)/Lep(ob) mice normalized their food intake, plasma insulin concentration, and insulin secretion in response to glucose, acetylcholine, and leptin. Restriction of food intake per se of Lep(ob)/Lep(ob) mice lowered, but did not normalize, plasma insulin concentrations. Food-restricted Lep(ob)/Lep(ob) mice continued to hypersecrete insulin in response to glucose, but islets from these mice did not hyperrespond to acetylcholine or respond to leptin as occurs in ad libitum-fed Lep(ob)/Lep(ob) mice. We conclude that neonatal leptin deficiency does not permanently program islets from mice to hypersecrete insulin. The hyperphagia associated with leptin deficiency contributes substantially to the hypersecretion of insulin, but leptin also appears to have more direct effects on regulation of insulin secretion.
Collapse
Affiliation(s)
- Joo-Won Lee
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824-1224, USA
| | | |
Collapse
|
14
|
Lee JW, Swick AG, Romsos DR. Leptin constrains phospholipase C-protein kinase C-induced insulin secretion via a phosphatidylinositol 3-kinase-dependent pathway. Exp Biol Med (Maywood) 2003; 228:175-82. [PMID: 12563024 DOI: 10.1177/153537020322800207] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Leptin-deficient Lep(ob)/Lep(ob)mice hypersecrete insulin in response to acetylcholine stimulation of the phospholipase C-protein kinase C (PLC-PKC) pathway, and leptin constrains this hypersecretion. Leptin has been reported to activate phosphatidylinositol 3-kinase (PI 3-K) and subsequently phosphodiesterase (PDE) to impair protein kinase A (PKA)-induced insulin secretion from cultured islets of neonatal rats. We determined if PKA-induced insulin secretion was also hyperresponsive in islets from Lep(ob)/Lep(ob)mice, and if leptin impaired this pathway in islets from these mice. Additionally, the possible role for PI 3-K and PDE in leptin-induced control of acetylcholine-induced insulin secretion was examined. Stimulation of insulin secretion with GLP-1, forskolin (an activator of adenylyl cyclase), or IBMX (an inhibitor of PDE) did not cause hypersecretion of insulin from islets of young Lep(ob)/Lep(ob)mice, and leptin did not inhibit GLP-1-induced insulin secretion from islets of these mice. Inhibition of PDE with IBMX also did not block leptin-induced inhibition of acetylcholine-mediated insulin secretion from islets of Lep(ob)/Lep(ob)mice. But, preincubation of islets with wortmannin, an inhibitor of PI 3-K activity, blocked the ability of leptin to constrain acetylcholine-induced insulin secretion from islets of Lep(ob)/Lep(ob)mice. We conclude that the capacity of the PKA pathway to stimulate insulin secretion is not increased in islets from young Lep(ob)/Lep(ob)mice, and that leptin does not regulate this pathway in islets from mice. Leptin may stimulate PI 3-K to constrain PLC-PKC-induced insulin secretion from islets of Lep(ob)/Lep(ob)mice.
Collapse
Affiliation(s)
- Joo-Won Lee
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824-1224, USA
| | | | | |
Collapse
|
15
|
Ninomiya Y, Shigemura N, Yasumatsu K, Ohta R, Sugimoto K, Nakashima K, Lindemann B. Leptin and sweet taste. VITAMINS AND HORMONES 2002; 64:221-48. [PMID: 11898393 DOI: 10.1016/s0083-6729(02)64007-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Leptin, the product of the obese (ob) gene, is a hormone primarily produced in adipose cells, and also at smaller amounts in some other peripheral organs. It regulates food intake, energy expenditure, and body weight. Leptin is thought to promote weight loss, at least in rodents, by suppressing appetite and stimulating metabolism. Mutant mice that lack either leptin or functional leptin receptors, such as ob/ob and db/db mice, are hyperphagic, massively obese, and diabetic. Central hypothalamic targets are mainly responsible for the effects of leptin on food intake and weight loss. However, there are also direct effects on peripheral tissues. Recently, the taste organ was found to be one of the peripheral targets for leptin. The hormone specifically inhibits sweet taste responses in lean mice and not in db/db mice. Thus leptin appears to act as a modulator of sweet taste, provided a functional leptin receptor is expressed by the taste cells. This chapter reviews the genetics and molecular biology of leptin and its receptors, the receptor mechanisms for sweet taste, the modulating action of leptin on taste receptor cells, and the consequences for the regulation of food intake.
Collapse
Affiliation(s)
- Yuzo Ninomiya
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Kimura S, Kawasaki S, Takashima K, Sasaki K. Physiological and pharmacological characteristics of quisqualic acid-induced K(+)-current response in the ganglion cells of Aplysia. THE JAPANESE JOURNAL OF PHYSIOLOGY 2001; 51:511-21. [PMID: 11564288 DOI: 10.2170/jjphysiol.51.511] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The extracellular application of either quisqualic acid (QA) or Phe-Met-Arg-Phe-NH2 (FMRFamide) induces an outward current in identified neurons of Aplysia ganglion under voltage clamp. The time course of the QA-induced response is significantly slower than that induced by FMRFamide. The reversal potential for both responses was -92 mV and was shifted 17 mV in a positive direction for a twofold increase in the extracellular K(+) concentration. The QA-induced response was markedly depressed in the presence of Ba(2+), a blocker of inward rectifier K(+)-channel, whereas TEA, a Ca(2+)-activated K(+)-channel (BK(Ca)) blocker, or 4-AP, a transient K(+) (A)-channel blocker, had no effect on the response. The QA-induced K(+)-current was significantly suppressed by CNQX and GYKI52466, antagonists of non-NMDA receptors. However, the application of either kainate or AMPA, agonists for non-NMDA receptors, produced no type of response in the same neurons. The QA-induced K(+)-current response was not depressed at all by an intracellular injection of either guanosine 5'-O-(2-thiodiphosphate) (GDP-betaS) or guanosine 5'-O-(3-thiotriphosphate) (GTP-gammaS), but the FMRFamide-induced response was markedly blocked by both GDP-betaS and GTP-gammaS in the same cell. Furthermore, the QA- and FMRFamide-induced K(+)-current responses were both decreased markedly when the temperature was lowered to 15 degrees C, from 23 degrees C. These results suggested that the QA-induced K(+)-current response is produced by an activation of a novel type of QA-receptor and that this response is not produced by an activation of the G protein.
Collapse
Affiliation(s)
- S Kimura
- Department of Physiology and Advanced Medical Science Research Center, School of Medicine, Iwate Medical University, Morioka, 020-8505, Japan.
| | | | | | | |
Collapse
|
17
|
Müller G. The Molecular Mechanism of the Insulin-mimetic/sensitizing Activity of the Antidiabetic Sulfonylurea Drug Amaryl. Mol Med 2000. [DOI: 10.1007/bf03401827] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
18
|
Baukrowitz T, Fakler B. KATP channels gated by intracellular nucleotides and phospholipids. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5842-8. [PMID: 10998043 DOI: 10.1046/j.1432-1327.2000.01672.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The KATP channel is a heterooctamer composed of two different subunits, four inwardly rectifying K+ channel subunits, either Kir6. 1 or Kir6.2, and four sulfonylurea receptors (SUR), which belong to the family of ABC transporters. This unusual molecular architecture is related to the complex gating behaviour of these channels. Intracellular ATP inhibits KATP channels by binding to the Kir6.x subunits, whereas Mg-ADP increases channel activity by a hydrolysis reaction at the SUR. This ATP/ADP dependence allows KATP channels to link metabolism to excitability, which is important for many physiological functions, such as insulin secretion and cell protection during periods of ischemic stress. Recent work has uncovered a new class of regulatory molecules for KATP channel gating. Membrane phospholipids such as phosphoinositol 4, 5-bisphosphate and phosphatidylinositiol 4-monophosphate were found to interact with KATP channels resulting in increased open probability and markedly reduced ATP sensitivity. The membrane concentration of these phospholipids is regulated by a set of enzymes comprising phospholipases, phospholipid phosphatases and phospholipid kinases providing a possible mechanism for control of cell excitability through signal transduction pathways that modulate activity of these enzymes. This review discusses the mechanisms and molecular determinants that underlie gating of KATP channel by nucleotides and phospholipids and their physiological implications.
Collapse
|
19
|
Kawai K, Sugimoto K, Nakashima K, Miura H, Ninomiya Y. Leptin as a modulator of sweet taste sensitivities in mice. Proc Natl Acad Sci U S A 2000; 97:11044-9. [PMID: 10995460 PMCID: PMC27145 DOI: 10.1073/pnas.190066697] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2000] [Indexed: 11/18/2022] Open
Abstract
Leptin acts as a potent inhibitory factor against obesity by regulating energy expenditure, food intake, and adiposity. The obese diabetic db/db mouse, which has defects in leptin receptor, displays enhanced neural responses and elevated behavioral preference to sweet stimuli. Here, we show the effects of leptin on the peripheral taste system. An administration of leptin into lean mice suppressed responses of peripheral taste nerves (chorda tympani and glossopharyngeal) to sweet substances (sucrose and saccharin) without affecting responses to sour, salty, and bitter substances. Whole-cell patch-clamp recordings of activities of taste receptor cells isolated from circumvallate papillae (innervated by the glossopharyngeal nerve) demonstrated that leptin activated outward K(+) currents, which resulted in hyperpolarization of taste cells. The db/db mouse with impaired leptin receptors showed no such leptin suppression. Taste tissue (circumvallate papilla) of lean mice expressed leptin-receptor mRNA and some of the taste cells exhibited immunoreactivities to antibodies of the leptin receptor. Taken together, these observations suggest that the taste organ is a peripheral target for leptin, and that leptin may be a sweet-sensing modulator (suppressor) that may take part in regulation of food intake. Defects in this leptin suppression system in db/db mice may lead to their enhanced peripheral neural responses and enhanced behavioral preferences for sweet substances.
Collapse
Affiliation(s)
- K Kawai
- Section of Molecular Neurobiology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | | | | | | | | |
Collapse
|
20
|
Baukrowitz T, Fakler B. K(ATP) channels: linker between phospholipid metabolism and excitability. Biochem Pharmacol 2000; 60:735-40. [PMID: 10930527 DOI: 10.1016/s0006-2952(00)00267-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ATP-sensitive potassium (K(ATP)) channels couple electrical activity to cellular metabolism via their inhibition by intracellular ATP. When examined in excised patches, ATP concentrations required for half-maximal inhibition (IC(50)) varied among tissues and were reported to be as low as 10 microM. This set up a puzzling question on how activation of K(ATP) channels can occur under physiological conditions, where the cytoplasmic concentration of ATP is much higher than that required for channel inhibition. A new twist was added to this puzzle when two recent reports showed that phospholipids such as phosphatidylinositol-4,5-bisphosphate (PIP(2)) and phosphatidyl-4-phosphate (PIP) are able to shift ATP-sensitivity of K(ATP) channels from the micro- into the millimolar range and thus provide a mechanism for physiological activation of the channels. This commentary describes how phospholipids control ATP inhibition of K(ATP) channels and how this mechanism is regulated effectively by receptor-mediated stimulation of phospholipase C.
Collapse
Affiliation(s)
- T Baukrowitz
- Department of Physiology II, University of Tübingen, Germany
| | | |
Collapse
|
21
|
Matsushita Y, Henmi S, Muraki K, Imaizumi Y, Watanabe M. Cromakalim-induced membrane current in guinea-pig tracheal smooth muscle cells. Eur J Pharmacol 2000; 389:51-8. [PMID: 10686295 DOI: 10.1016/s0014-2999(99)00872-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The characteristics of the cromakalim-induced membrane current were examined in single tracheal myocytes of the guinea-pig under voltage-clamp conditions. When K(+) concentrations in the pipette and bathing solutions were approximately 140 mM, cromakalim activated a membrane current (I(crom)) which was inward at -60 mV and reversed at -2 mV. I(crom) was blocked by 10 microM glibenclamide and potentiated when the ATP concentration in the pipette solution was decreased. The K(d) and Hill coefficient of glibenclamide for I(crom) block were 200 nM and 1.05, respectively. Application of the tyrosine kinase inhibitors, genistein and alpha-cyano-3-ethoxy-4-hydroxy-5-phenylthiomethylcinnamamid (ST638), reduced I(crom) in a concentration-dependent manner. Daidzein, which does not inhibit tyrosine kinase, was about 10 times less effective than genistein. Herbimycin A had no effect on I(crom). Internal application of these inhibitors from the pipette did not affect I(crom). In conclusion, cromakalim is a potent activator of the ATP-sensitive K(+) channel (K(ATP) channel) in guinea-pig tracheal myocytes. The inhibition of I(crom) by genistein and ST638 may be due to the direct block of the channel from outside.
Collapse
Affiliation(s)
- Y Matsushita
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuhoku, Nagoya, Japan
| | | | | | | | | |
Collapse
|
22
|
Abstract
The prevalence of obesity and related diabetes mellitus is increasing worldwide. Here we review evidence for the existence of an adipoinsular axis, a dual hormonal feedback loop involving the hormones insulin and leptin produced by pancreatic beta-cells and adipose tissue, respectively. Insulin is adipogenic, increases body fat mass, and stimulates the production and secretion of leptin, the satiety hormone that acts centrally to reduce food intake and increase energy expenditure. Leptin in turn suppresses insulin secretion by both central actions and direct actions on beta-cells. Because plasma levels of leptin are directly proportional to body fat mass, an increase of adiposity increases plasma leptin, thereby curtailing insulin production and further increasing fat mass. We propose that the adipoinsular axis is designed to maintain nutrient balance and that dysregulation of this axis may contribute to obesity and the development of hyperinsulinemia associated with diabetes.
Collapse
Affiliation(s)
- T J Kieffer
- Departments of Medicine and Physiology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | |
Collapse
|
23
|
Identification and characterization of glucoresponsive neurons in the enteric nervous system. J Neurosci 1999. [PMID: 10575028 DOI: 10.1523/jneurosci.19-23-10305.1999] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We tested the hypothesis that a subset of enteric neurons is glucoresponsive and expresses ATP-sensitive K(+) (K(ATP)) channels. The immunoreactivities of the inwardly rectifying K(+) channel 6.2 (Kir6.2) and the sulfonylurea receptor (SUR), now renamed SUR1, subunits of pancreatic beta-cell K(ATP) channels, were detected on cholinergic neurons in the guinea pig ileum, many of which were identified as sensory by their costorage of substance P and/or calbindin. Glucoresponsive neurons were distinguished in the myenteric plexus because of the hyperpolarization and decrease in membrane input resistance that were observed in response to removal of extracellular glucose. The effects of no-glucose were reversed on the reintroduction of glucose or by the K(ATP) channel inhibitor tolbutamide. No reversal of the hyperpolarization was observed when D- mannoheptulose, a hexokinase inhibitor, was present on the reintroduction of glucose. Application of the K(ATP) channel opener diazoxide or the ob gene product leptin mimicked the effect of glucose removal in a reversible manner; moreover, hyperpolarizations evoked by either agent were inhibited by tolbutamide. Glucoresponsive neurons displayed leptin receptor immunoreactivity, which was widespread in both enteric plexuses. Superfusion of diazoxide inhibited fast synaptic activity in myenteric neurons, via activation of presynaptic K(ATP) channels. Diazoxide also produced a decrease in colonic motility. These experiments demonstrate for the first time the presence of glucoresponsive neurons in the gut. We propose that the glucose-induced excitation of these neurons be mediated by inhibition of K(ATP) channels. The results support the idea that enteric K(ATP) channels play a role in glucose-evoked reflexes.
Collapse
|
24
|
Liu M, Seino S, Kirchgessner AL. Identification and characterization of glucoresponsive neurons in the enteric nervous system. J Neurosci 1999; 19:10305-17. [PMID: 10575028 PMCID: PMC6782413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
We tested the hypothesis that a subset of enteric neurons is glucoresponsive and expresses ATP-sensitive K(+) (K(ATP)) channels. The immunoreactivities of the inwardly rectifying K(+) channel 6.2 (Kir6.2) and the sulfonylurea receptor (SUR), now renamed SUR1, subunits of pancreatic beta-cell K(ATP) channels, were detected on cholinergic neurons in the guinea pig ileum, many of which were identified as sensory by their costorage of substance P and/or calbindin. Glucoresponsive neurons were distinguished in the myenteric plexus because of the hyperpolarization and decrease in membrane input resistance that were observed in response to removal of extracellular glucose. The effects of no-glucose were reversed on the reintroduction of glucose or by the K(ATP) channel inhibitor tolbutamide. No reversal of the hyperpolarization was observed when D- mannoheptulose, a hexokinase inhibitor, was present on the reintroduction of glucose. Application of the K(ATP) channel opener diazoxide or the ob gene product leptin mimicked the effect of glucose removal in a reversible manner; moreover, hyperpolarizations evoked by either agent were inhibited by tolbutamide. Glucoresponsive neurons displayed leptin receptor immunoreactivity, which was widespread in both enteric plexuses. Superfusion of diazoxide inhibited fast synaptic activity in myenteric neurons, via activation of presynaptic K(ATP) channels. Diazoxide also produced a decrease in colonic motility. These experiments demonstrate for the first time the presence of glucoresponsive neurons in the gut. We propose that the glucose-induced excitation of these neurons be mediated by inhibition of K(ATP) channels. The results support the idea that enteric K(ATP) channels play a role in glucose-evoked reflexes.
Collapse
Affiliation(s)
- M Liu
- Department of Physiology, State University of New York Health Science Center at Brooklyn, Brooklyn, New York 11203, USA
| | | | | |
Collapse
|
25
|
Benes C, Poitout V, Marie JC, Martin-Perez J, Roisin MP, Fagard R. Mode of regulation of the extracellular signal-regulated kinases in the pancreatic beta-cell line MIN6 and their implication in the regulation of insulin gene transcription. Biochem J 1999; 340 ( Pt 1):219-25. [PMID: 10229678 PMCID: PMC1220241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Physiological concentrations of glucose that lead to Ca2+ entry and insulin secretion activate extracellular signal-regulated protein kinases (ERK1 and ERK2) in the MIN6 pancreatic beta-cell line. Here we show that this activation is inhibited by the down-regulation of protein kinase C (PKC) and by genistein, an inhibitor of protein tyrosine kinases. In contrast with results obtained in other cell types, neither the epidermal growth factor activity nor the Src family protein tyrosine kinases seem to be involved in the Ca2+-dependent activation of ERKs. inhibition of tyrosine phosphatases by vanadate leads to the activation of ERKs. As observed in the response to glucose, this activation is dependent on Ca2+ entry through L-type voltage-dependent Ca2+ channels. Thus the activation of ERKs in response to glucose depends on PKC and possibly on a tyrosine kinase/tyrosine phosphatase couple. To define the role of ERK activation by glucose we studied the regulation of transcription of the insulin gene. We found that this transcription is regulated in the MIN6 cells in the same range of glucose concentration as in primary islets, and that specific inhibition of mitogen-activated protein kinase kinase, the direct activator of ERK, impaired the response of the insulin gene to glucose. This was observed by analysis of the transfected rat insulin I gene promoter activity and a Northern blot of endogenous insulin mRNA.
Collapse
Affiliation(s)
- C Benes
- Equipe d'Accueil Signalisation Cellulaire et Parasites, UFR Cochin Université René Descartes, Pavillon Gustave Roussy (6ème étage), 27 rue du Faubourg Saint Jacques, 75674 Paris cedex 14, France
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
KATP channels are a newly defined class of potassium channels based on the physical association of an ABC protein, the sulfonylurea receptor, and a K+ inward rectifier subunit. The beta-cell KATP channel is composed of SUR1, the high-affinity sulfonylurea receptor with multiple TMDs and two NBFs, and KIR6.2, a weak inward rectifier, in a 1:1 stoichiometry. The pore of the channel is formed by KIR6.2 in a tetrameric arrangement; the overall stoichiometry of active channels is (SUR1/KIR6.2)4. The two subunits form a tightly integrated whole. KIR6.2 can be expressed in the plasma membrane either by deletion of an ER retention signal at its C-terminal end or by high-level expression to overwhelm the retention mechanism. The single-channel conductance of the homomeric KIR6.2 channels is equivalent to SUR/KIR6.2 channels, but they differ in all other respects, including bursting behavior, pharmacological properties, sensitivity to ATP and ADP, and trafficking to the plasma membrane. Coexpression with SUR restores the normal channel properties. The key role KATP channel play in the regulation of insulin secretion in response to changes in glucose metabolism is underscored by the finding that a recessive form of persistent hyperinsulinemic hypoglycemia of infancy (PHHI) is caused by mutations in KATP channel subunits that result in the loss of channel activity. KATP channels set the resting membrane potential of beta-cells, and their loss results in a constitutive depolarization that allows voltage-gated Ca2+ channels to open spontaneously, increasing the cytosolic Ca2+ levels enough to trigger continuous release of insulin. The loss of KATP channels, in effect, uncouples the electrical activity of beta-cells from their metabolic activity. PHHI mutations have been informative on the function of SUR1 and regulation of KATP channels by adenine nucleotides. The results indicate that SUR1 is important in sensing nucleotide changes, as implied by its sequence similarity to other ABC proteins, in addition to being the drug sensor. An unexpected finding is that the inhibitory action of ATP appears to be through a site located on KIR6.2, whose affinity for ATP is modified by SUR1. A PHHI mutation, G1479R, in the second NBF of SUR1 forms active KATP channels that respond normally to ATP, but fail to activate with MgADP. The result implies that ATP tonically inhibits KATP channels, but that the ADP level in a fasting beta-cell antagonizes this inhibition. Decreases in the ADP level as glucose is metabolized result in KATP channel closure. Although KATP channels are the target for sulfonylureas used in the treatment of NIDDM, the available data suggest that the identified KATP channel mutations do not play a major role in diabetes. Understanding how KATP channels fit into the overall scheme of glucose homeostasis, on the other hand, promises insight into diabetes and other disorders of glucose metabolism, while understanding the structure and regulation of these channels offers potential for development of novel compounds to regulate cellular electrical activity.
Collapse
Affiliation(s)
- L Aguilar-Bryan
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
27
|
Leptin suppression of insulin secretion and gene expression in human pancreatic islets: implications for the development of adipogenic diabetes mellitus. J Clin Endocrinol Metab 1999. [PMID: 10022436 DOI: 10.1210/jc.84.2.670] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previously we demonstrated the expression of the long form of the leptin receptor in rodent pancreatic beta-cells and an inhibition of insulin secretion by leptin via activation of ATP-sensitive potassium channels. Here we examine pancreatic islets isolated from pancreata of human donors for their responses to leptin. The presence of leptin receptors on islet beta-cells was demonstrated by double fluorescence confocal microscopy after binding of a fluorescent derivative of human leptin (Cy3-leptin). Leptin (6.25 nM) suppressed insulin secretion of normal islets by 20% at 5.6 mM glucose. Intracellular calcium responses to 16.7 mM glucose were rapidly reduced by leptin. Proinsulin messenger ribonucleic acid expression in islets was inhibited by leptin at 11.1 mM, but not at 5.6 mM glucose. Leptin also reduced proinsulin messenger ribonucleic acid levels that were increased in islets by treatment with 10 nM glucagon-like peptide-1 in the presence of either 5.6 or 11.1 mM glucose. These findings demonstrate direct suppressive effects of leptin on insulin-producing beta-cells in human islets at the levels of both stimulus-secretion coupling and gene expression. The findings also further indicate the existence of an adipoinsular axis in humans in which insulin stimulates leptin production in adipocytes and leptin inhibits the production of insulin in beta-cells. We suggest that dysregulation of the adipoinsular axis in obese individuals due to defective leptin reception by beta-cells may result in chronic hyperinsulinemia and may contribute to the pathogenesis of adipogenic diabetes.
Collapse
|
28
|
Seufert J, Kieffer TJ, Leech CA, Holz GG, Moritz W, Ricordi C, Habener JF. Leptin suppression of insulin secretion and gene expression in human pancreatic islets: implications for the development of adipogenic diabetes mellitus. J Clin Endocrinol Metab 1999; 84:670-6. [PMID: 10022436 PMCID: PMC2927866 DOI: 10.1210/jcem.84.2.5460] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Previously we demonstrated the expression of the long form of the leptin receptor in rodent pancreatic beta-cells and an inhibition of insulin secretion by leptin via activation of ATP-sensitive potassium channels. Here we examine pancreatic islets isolated from pancreata of human donors for their responses to leptin. The presence of leptin receptors on islet beta-cells was demonstrated by double fluorescence confocal microscopy after binding of a fluorescent derivative of human leptin (Cy3-leptin). Leptin (6.25 nM) suppressed insulin secretion of normal islets by 20% at 5.6 mM glucose. Intracellular calcium responses to 16.7 mM glucose were rapidly reduced by leptin. Proinsulin messenger ribonucleic acid expression in islets was inhibited by leptin at 11.1 mM, but not at 5.6 mM glucose. Leptin also reduced proinsulin messenger ribonucleic acid levels that were increased in islets by treatment with 10 nM glucagon-like peptide-1 in the presence of either 5.6 or 11.1 mM glucose. These findings demonstrate direct suppressive effects of leptin on insulin-producing beta-cells in human islets at the levels of both stimulus-secretion coupling and gene expression. The findings also further indicate the existence of an adipoinsular axis in humans in which insulin stimulates leptin production in adipocytes and leptin inhibits the production of insulin in beta-cells. We suggest that dysregulation of the adipoinsular axis in obese individuals due to defective leptin reception by beta-cells may result in chronic hyperinsulinemia and may contribute to the pathogenesis of adipogenic diabetes.
Collapse
Affiliation(s)
- J Seufert
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston 02114, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Harvey J, Ashford ML. Diazoxide- and leptin-activated K(ATP) currents exhibit differential sensitivity to englitazone and ciclazindol in the rat CRI-G1 insulin-secreting cell line. Br J Pharmacol 1998; 124:1557-65. [PMID: 9723971 PMCID: PMC1565548 DOI: 10.1038/sj.bjp.0702000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The effects of the antidiabetic agent englitazone and the anorectic drug ciclazindol on ATP-sensitive K+ (K(ATP)) channels activated by diazoxide and leptin were examined in the CRI-G1 insulin-secreting cell line using whole cell and single channel recording techniques. 2. In whole cell current clamp mode, the hyperglycaemic agent diazoxide (200 microM) and the ob gene product leptin (10 nM) hyperpolarised CRI-G1 cells by activation of K(ATP) currents. K(ATP) currents activated by either agent were inhibited by tolbutamide, with an IC50 for leptin-activated currents of 9.0 microM. 3. Application of englitazone produced a concentration-dependent inhibition of K(ATP) currents activated by diazoxide (200 microM) with an IC50 value of 7.7 microM and a Hill coefficient of 0.87. In inside-out patches englitazone (30 microM) also inhibited K(ATP) channel currents activated by diazoxide by 90.8+/-4.1%. 4. In contrast, englitazone (1-30 microM) failed to inhibit K(ATP) channels activated by leptin, although higher concentrations (> 30 microM) did inhibit leptin actions. The englitazone concentration inhibition curve in the presence of leptin resulted in an IC50 value and Hill coefficient of 52 microM and 3.2, respectively. Similarly, in inside-out patches englitazone (30 microM) failed to inhibit the activity of K(ATP) channels in the presence of leptin. 5. Ciclazindol also inhibited K(ATP) currents activated by diazoxide (200 microM) in a concentration-dependent manner, with an IC50 and Hill coefficient of 127 nM and 0.33, respectively. Furthermore, application of ciclazindol (1 microM) to the intracellular surface of inside-out patches inhibited K(ATP) channel currents activated by diazoxide (200 microM) by 86.6+/-8.1%. 6. However, ciclazindol was much less effective at inhibiting KATP currents activated by leptin (10 nM). Ciclazindol (0.1-10 microM) had no effect on K(ATP) currents activated by leptin, whereas higher concentrations (> 10 microM) did cause inhibition with an IC50 value of 40 microM and an associated Hill coefficient of 2.7. Similarly, ciclazindol (1 microM) had no significant effect on K(ATP) channel activity following leptin addition in excised inside-out patches. 7. In conclusion, K(ATP) currents activated by diazoxide and leptin show different sensitivity to englitazone and ciclazindol. This may be due to differences in the mechanism of activation of K(ATP) channels by diazoxide and leptin.
Collapse
Affiliation(s)
- J Harvey
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill
| | | |
Collapse
|