1
|
Su CK. Modulation of synchronous sympathetic firing behaviors by endogenous GABA(A) and glycine receptor-mediated activities in the neonatal rat spinal cord in vitro. Neuroscience 2016; 312:227-46. [PMID: 26598070 DOI: 10.1016/j.neuroscience.2015.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/05/2015] [Accepted: 11/12/2015] [Indexed: 11/28/2022]
Abstract
Delivering effective commands in the nervous systems require a temporal integration of neural activities such as synchronous firing. Although sympathetic nerve discharges are characterized by synchronous firing, its temporal structures and how it is modulated are largely unknown. This study used a collagenase-dissociated splanchnic sympathetic nerve-thoracic spinal cord preparation of neonatal rats in vitro as an experimental model. Several single-fiber activities were recorded simultaneously and verified by rigorous computational algorithms. Among 3763 fiber pairs that had spontaneous fiber activities, 382 fiber pairs had firing positively correlated. Their temporal relationship was quantitatively evaluated by cross-correlogram. On average, correlated firing in a fiber pair occurred in scales of ∼40ms lasting for ∼11ms. The relative frequency distribution curves of correlogram parametrical values pertinent to the temporal features were best described by trimodal Gaussians, suggesting a correlated firing originated from three or less sources. Applications of bicuculline or gabazine (noncompetitive or competitive GABA(A) receptor antagonist) and/or strychnine (noncompetitive glycine receptor antagonist) increased, decreased, or did not change individual fiber activities. Antagonist-induced enhancement and attenuation of correlated firing were demonstrated by a respective increase and decrease of the peak probability of the cross-correlograms. Heterogeneity in antagonistic responses suggests that the inhibitory neurotransmission mediated by GABA(A) and glycine receptors is not essential for but can serve as a neural substrate to modulate synchronous firing behaviors. Plausible neural mechanisms were proposed to explain the temporal structures of correlated firing between sympathetic fibers.
Collapse
Affiliation(s)
- C-K Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
2
|
Deuchars SA, Lall VK. Sympathetic preganglionic neurons: properties and inputs. Compr Physiol 2016; 5:829-69. [PMID: 25880515 DOI: 10.1002/cphy.c140020] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The sympathetic nervous system comprises one half of the autonomic nervous system and participates in maintaining homeostasis and enabling organisms to respond in an appropriate manner to perturbations in their environment, either internal or external. The sympathetic preganglionic neurons (SPNs) lie within the spinal cord and their axons traverse the ventral horn to exit in ventral roots where they form synapses onto postganglionic neurons. Thus, these neurons are the last point at which the central nervous system can exert an effect to enable changes in sympathetic outflow. This review considers the degree of complexity of sympathetic control occurring at the level of the spinal cord. The morphology and targets of SPNs illustrate the diversity within this group, as do their diverse intrinsic properties which reveal some functional significance of these properties. SPNs show high degrees of coupled activity, mediated through gap junctions, that enables rapid and coordinated responses; these gap junctions contribute to the rhythmic activity so critical to sympathetic outflow. The main inputs onto SPNs are considered; these comprise afferent, descending, and interneuronal influences that themselves enable functionally appropriate changes in SPN activity. The complexity of inputs is further demonstrated by the plethora of receptors that mediate the different responses in SPNs; their origins and effects are plentiful and diverse. Together these different inputs and the intrinsic and coupled activity of SPNs result in the rhythmic nature of sympathetic outflow from the spinal cord, which has a variety of frequencies that can be altered in different conditions.
Collapse
Affiliation(s)
- Susan A Deuchars
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
3
|
Briant LJB, Stalbovskiy AO, Nolan MF, Champneys AR, Pickering AE. Increased intrinsic excitability of muscle vasoconstrictor preganglionic neurons may contribute to the elevated sympathetic activity in hypertensive rats. J Neurophysiol 2014; 112:2756-78. [PMID: 25122704 PMCID: PMC4254885 DOI: 10.1152/jn.00350.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hypertension is associated with pathologically increased sympathetic drive to the vasculature. This has been attributed to increased excitatory drive to sympathetic preganglionic neurons (SPN) from brainstem cardiovascular control centers. However, there is also evidence supporting increased intrinsic excitability of SPN. To test this hypothesis, we made whole cell recordings of muscle vasoconstrictor-like (MVClike) SPN in the working-heart brainstem preparation of spontaneously hypertensive (SH) and normotensive Wistar-Kyoto (WKY) rats. The MVClike SPN have a higher spontaneous firing frequency in the SH rat (3.85 ± 0.4 vs. 2.44 ± 0.4 Hz in WKY; P = 0.011) with greater respiratory modulation of their activity. The action potentials of SH SPN had smaller, shorter afterhyperpolarizations (AHPs) and showed diminished transient rectification indicating suppression of an A-type potassium conductance (IA). We developed mathematical models of the SPN to establish if changes in their intrinsic properties in SH rats could account for their altered firing. Reduction of the maximal conductance density of IA by 15–30% changed the excitability and output of the model from the WKY to a SH profile, with increased firing frequency, amplified respiratory modulation, and smaller AHPs. This change in output is predominantly a consequence of altered synaptic integration. Consistent with these in silico predictions, we found that intrathecal 4-aminopyridine (4-AP) increased sympathetic nerve activity, elevated perfusion pressure, and augmented Traube-Hering waves. Our findings indicate that IA acts as a powerful filter on incoming synaptic drive to SPN and that its diminution in the SH rat is potentially sufficient to account for the increased sympathetic output underlying hypertension.
Collapse
Affiliation(s)
- Linford J B Briant
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom; Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom; and
| | - Alexey O Stalbovskiy
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Matthew F Nolan
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Alan R Champneys
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom; and
| | - Anthony E Pickering
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom; Department of Anaesthesia, University Hospitals Bristol, Bristol, United Kingdom;
| |
Collapse
|
4
|
Lado WE, Spanswick DC, Lewis JE, Trudeau VL. Electrophysiological characterization of male goldfish (Carassius auratus) ventral preoptic area neurons receiving olfactory inputs. Front Neurosci 2014; 8:185. [PMID: 25071430 PMCID: PMC4074913 DOI: 10.3389/fnins.2014.00185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/11/2014] [Indexed: 01/28/2023] Open
Abstract
Chemical communication via sex pheromones is critical for successful reproduction but the underlying neural mechanisms are not well-understood. The goldfish is a tractable model because sex pheromones have been well-characterized in this species. We used male goldfish forebrain explants in vitro and performed whole-cell current clamp recordings from single neurons in the ventral preoptic area (vPOA) to characterize their membrane properties and synaptic inputs from the olfactory bulbs (OB). Principle component and cluster analyses based on intrinsic membrane properties of vPOA neurons (N = 107) revealed five (I–V) distinct cell groups. These cells displayed differences in their input resistance (Rinput: I < II < IV < III = V), time constant (TC: I = II < IV < III = V), and threshold current (Ithreshold: I > II = IV > III = V). Evidence from electrical stimulation of the OB and application of receptor antagonists suggests that vPOA neurons receive monosynaptic glutamatergic inputs via the medial olfactory tract, with connectivity varying among neuronal groups [I (24%), II (40%), III (0%), IV (34%), and V (2%)].
Collapse
Affiliation(s)
- Wudu E Lado
- Department of Biology, University of Ottawa Ottawa, ON, Canada ; Department of Cell and Systems Biology, University of Toronto Toronto, ON, Canada
| | - David C Spanswick
- Warwick Medical School, University of Warwick Coventry, UK ; Department of Physiology, Monash University Clayton, VIC, Australia
| | - John E Lewis
- Department of Biology, University of Ottawa Ottawa, ON, Canada
| | - Vance L Trudeau
- Department of Biology, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
5
|
Effects of corticotropin-releasing factor on intermediolateral cell column neurons of newborn rats. Auton Neurosci 2012; 171:36-40. [PMID: 23151516 DOI: 10.1016/j.autneu.2012.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/12/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
Corticotropin-releasing factor (CRF) is a neuropeptide that mediates neuroendocrine, autonomic, and behavioral processes associated with the stress response. CRF-containing fibers and receptors are found in various regions of the central nervous system including the spinal cord. Here, we report excitatory effects of CRF on sympathetic preganglionic neurons in the intermediolateral cell column (IML) of in vitro spinal cord preparations from newborn rats. We also examine the receptor subtypes that are involved in the CRF effects. Application of CRF significantly depolarized the IML neurons and increased the frequency of excitatory postsynaptic potentials (EPSPs) in the IML neurons. These effects were blocked by the CRF receptor 1 antagonist, antalarmin. Menthol, a transient receptor potential channel M8 agonist, depressed EPSPs enhanced by CRF. Our findings suggested that CRF depolarized the IML neurons via direct postsynaptic action and CRF-affected interneurons located in the spinal cord send EPSPs to IML neurons. These excitatory effects of CRF may be caused through CRF1 receptors but not CRF2 receptors.
Collapse
|
6
|
Whyment AD, Coderre E, Wilson JMM, Renaud LP, O'Hare E, Spanswick D. Electrophysiological, pharmacological and molecular profile of the transient outward rectifying conductance in rat sympathetic preganglionic neurons in vitro. Neuroscience 2011; 178:68-81. [PMID: 21211550 DOI: 10.1016/j.neuroscience.2010.12.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 12/27/2010] [Accepted: 12/30/2010] [Indexed: 01/13/2023]
Abstract
Transient outward rectifying conductances or A-like conductances in sympathetic preganglionic neurons (SPN) are prolonged, lasting for hundreds of milliseconds to seconds and are thought to play a key role in the regulation of SPN firing frequency. Here, a multidisciplinary electrophysiological, pharmacological and molecular single-cell rt-PCR approach was used to investigate the kinetics, pharmacological profile and putative K+ channel subunits underlying the transient outward rectifying conductance expressed in SPN. SPN expressed a 4-aminopyridine (4-AP) sensitive transient outward rectification with significantly longer decay kinetics than reported for many other central neurons. The conductance and corresponding current in voltage-clamp conditions was also sensitive to the Kv4.2 and Kv4.3 blocker phrixotoxin-2 (1-10 μM) and the blocker of rapidly inactivating Kv channels, pandinotoxin-Kα (50 nM). The conductance and corresponding current was only weakly sensitive to the Kv1 channel blocker tityustoxin-Kα and insensitive to dendrotoxin I (200 nM) and the Kv3.4 channel blocker BDS-II (1 μM). Single-cell RT-PCR revealed mRNA expression for the α-subunits Kv4.1 and Kv4.3 in the majority and Kv1.5 in less than half of SPN. mRNA for accessory β-subunits was detected for Kvβ2 in all SPN with differential expression of mRNA for KChIP1, Kvβ1 and Kvβ3 and the peptidase homologue DPP6. These data together suggest that the transient outwardly rectifying conductance in SPN is mediated by members of the Kv4 subfamily (Kv4.1 and Kv4.3) in association with the β-subunit Kvβ2. Differential expression of the accessory β subunits, which may act to modulate channel density and kinetics in SPN, may underlie the prolonged and variable time-course of this conductance in these neurons.
Collapse
Affiliation(s)
- A D Whyment
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | | | | | | | | | | |
Collapse
|
7
|
Proline-rich synapse-associated protein-1 and 2 (ProSAP1/Shank2 and ProSAP2/Shank3)-scaffolding proteins are also present in postsynaptic specializations of the peripheral nervous system. Neuroscience 2010; 171:421-33. [PMID: 20800661 DOI: 10.1016/j.neuroscience.2010.08.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/16/2010] [Accepted: 08/18/2010] [Indexed: 12/17/2022]
Abstract
Proline-rich synapse-associated protein-1 and 2 (ProSAP1/Shank2 and ProSAP2/Shank3) were originally found as synapse-associated protein 90/postsynaptic density protein-95-associated protein (SAPAP)/guanylate-kinase-associated protein (GKAP) interaction partners and also isolated from synaptic junctional protein preparations of rat brain. They are essential components of the postsynaptic density (PSD) and are specifically targeted to excitatory asymmetric type 1 synapses. Functionally, the members of the ProSAP/Shank family are one of the postsynaptic key elements since they link and attach the postsynaptic signaling apparatus, for example N-methyl-d-aspartic acid (NMDA)-receptors via direct and indirect protein interactions to the actin-based cytoskeleton. The functional significance of ProSAP1/2 for synaptic transmission and the paucity of data with respect to the molecular composition of PSDs of the peripheral nervous system (PNS) stimulated us to investigate neuromuscular junctions (NMJs), synapses of the superior cervical ganglion (SCG), and synapses in myenteric ganglia as representative synaptic junctions of the PNS. Confocal imaging revealed ProSAP1/2-immunoreactivity (-iry) in NMJs of rat and mouse sternomastoid and tibialis anterior muscles. In contrast, ProSAP1/2-iry was only negligibly found in motor endplates of striated esophageal muscle probably caused by antigen masking or a different postsynaptic molecular anatomy at these synapses. ProSAP1/2-iry was furthermore detected in cell bodies and dendrites of superior cervical ganglion neurons and myenteric neurons in esophagus and stomach. Ultrastructural analysis of ProSAP1/2 expression in myenteric ganglia demonstrated that ProSAP1 and ProSAP2 antibodies specifically labelled PSDs of myenteric neurons. Thus, scaffolding proteins ProSAP1/2 were found within the postsynaptic specializations of synapses within the PNS, indicating a similar molecular assembly of central and peripheral postsynapses.
Collapse
|
8
|
Norepinephrine can act via alpha(2)-adrenoceptors to reduce the hyper-excitability of spinal dorsal horn neurons following chronic nerve injury. J Formos Med Assoc 2010; 109:438-45. [PMID: 20610145 DOI: 10.1016/s0929-6646(10)60075-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/08/2009] [Accepted: 08/11/2009] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/PURPOSE Rats display behavioral signs of neuropathic pain lasting for months in the chronic constriction injury (CCI) model. During intrathecal anesthesia, the administered drugs mainly diffuse directly into the superficial neurons in the spinal dorsal horn. This study aimed to investigate the effect of bath application of norepinephrine on whole cell patch clamp recordings from spinal cord slices of CCI rats with allodynia. METHODS An assessment of paw withdrawal threshold in response to mechanical stimulation was performed on the operated side on the day before surgery and was repeated after recovery from anesthesia and on the 7(th) and 14(th) days after surgery. Spinal cord slice preparations containing dorsal horn neurons were obtained from both sham-operated rats and CCI rats (after the 14(th) postoperative day behavior test). RESULTS Compared with normal controls, CCI rats had significantly lower levels of both hyperpolarization and spike threshold in single action potentials recorded from lamina I and II neurons of the spinal dorsal horn. In contrast, a series of action potential recordings showed that the percentage of spiking neurons of the spinal dorsal horn of CCI rats were significantly higher than those of normal controls. The CCI-induced reduction in hyperpolarization, as well as the increased numbers of spinal dorsal horn spiking neurons could be significantly reduced by norepinephrine application. The norepinephrine-induced increased hyperpolarization and input resistance could be abolished by the application of an alpha(2)-adrenoceptor antagonist (idazoxan; 200 nM). CONCLUSION The results suggest that chronic nerve injury may induce neuropathic pain by increasing the excitability of spinal dorsal horn neurons. This excitability can be reduced by norepinephrine.
Collapse
|
9
|
Llewellyn-Smith IJ. Anatomy of synaptic circuits controlling the activity of sympathetic preganglionic neurons. J Chem Neuroanat 2009; 38:231-9. [DOI: 10.1016/j.jchemneu.2009.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 06/01/2009] [Accepted: 06/02/2009] [Indexed: 01/17/2023]
|
10
|
McCarthy KM, Tank DW, Enquist LW. Pseudorabies virus infection alters neuronal activity and connectivity in vitro. PLoS Pathog 2009; 5:e1000640. [PMID: 19876391 PMCID: PMC2763221 DOI: 10.1371/journal.ppat.1000640] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 09/30/2009] [Indexed: 11/18/2022] Open
Abstract
Alpha-herpesviruses, including human herpes simplex virus 1 & 2, varicella zoster virus and the swine pseudorabies virus (PRV), infect the peripheral nervous system of their hosts. Symptoms of infection often include itching, numbness, or pain indicative of altered neurological function. To determine if there is an in vitro electrophysiological correlate to these characteristic in vivo symptoms, we infected cultured rat sympathetic neurons with well-characterized strains of PRV known to produce virulent or attenuated symptoms in animals. Whole-cell patch clamp recordings were made at various times after infection. By 8 hours of infection with virulent PRV, action potential (AP) firing rates increased substantially and were accompanied by hyperpolarized resting membrane potentials and spikelet-like events. Coincident with the increase in AP firing rate, adjacent neurons exhibited coupled firing events, first with AP-spikelets and later with near identical resting membrane potentials and AP firing. Small fusion pores between adjacent cell bodies formed early after infection as demonstrated by transfer of the low molecular weight dye, Lucifer Yellow. Later, larger pores formed as demonstrated by transfer of high molecular weight Texas red-dextran conjugates between infected cells. Further evidence for viral-induced fusion pores was obtained by infecting neurons with a viral mutant defective for glycoprotein B, a component of the viral membrane fusion complex. These infected neurons were essentially identical to mock infected neurons: no increased AP firing, no spikelet-like events, and no electrical or dye transfer. Infection with PRV Bartha, an attenuated circuit-tracing strain delayed, but did not eliminate the increased neuronal activity and coupling events. We suggest that formation of fusion pores between infected neurons results in electrical coupling and elevated firing rates, and that these processes may contribute to the altered neural function seen in PRV-infected animals.
Collapse
Affiliation(s)
- Kelly M. McCarthy
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - David W. Tank
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Lynn W. Enquist
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
11
|
Whyment AD, Blanks AM, Lee K, Renaud LP, Spanswick D. Histamine Excites Neonatal Rat Sympathetic Preganglionic Neurons In Vitro Via Activation of H1 Receptors. J Neurophysiol 2006; 95:2492-500. [PMID: 16354729 DOI: 10.1152/jn.01135.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of histamine in regulating excitability of sympathetic preganglionic neurons (SPNs) and the expression of histamine receptor mRNA in SPNs was investigated using whole-cell patch-clamp electrophysiological recording techniques combined with single-cell reverse transcriptase polymerase chain reaction (RT-PCR) in transverse neonatal rat spinal cord slices. Bath application of histamine (100 μM) or the H1 receptor agonist histamine trifluoromethyl toluidide dimaleate (HTMT; 10 μM) induced membrane depolarization associated with a decrease in membrane conductance in the majority (70%) of SPNs tested, via activation of postsynaptic H1 receptors negatively coupled to one or more unidentified K+ conductances. Histamine and HTMT application also induced or increased the amplitude and/or frequency of membrane potential oscillations in electrotonically coupled SPNs. The H2 receptor agonist dimaprit (10 μM) or the H3 receptor agonist imetit (100 nM) were without significant effect on the membrane properties of SPNs. Histamine responses were sensitive to the H1 receptor antagonist triprolidine (10 μM) and the nonselective potassium channel blocker barium (1 mM) but were unaffected by the H2 receptor antagonist tiotidine (10 μM) and the H3 receptor antagonist, clobenpropit (5 μM). Single cell RT-PCR revealed mRNA expression for H1 receptors in 75% of SPNs tested, with no expression of mRNA for H2, H3, or H4 receptors. These data represent the first demonstration of H1 receptor expression in SPNs and suggest that histamine acts to regulate excitability of these neurons via a direct postsynaptic effect on H1 receptors.
Collapse
MESH Headings
- Action Potentials/drug effects
- Action Potentials/physiology
- Animals
- Animals, Newborn
- Autonomic Fibers, Preganglionic/chemistry
- Autonomic Fibers, Preganglionic/drug effects
- Autonomic Fibers, Preganglionic/physiology
- Barium/pharmacology
- Dimaprit/pharmacology
- Female
- Ganglia, Sympathetic/chemistry
- Ganglia, Sympathetic/drug effects
- Ganglia, Sympathetic/physiology
- Histamine/analogs & derivatives
- Histamine/pharmacology
- Histamine/physiology
- Histamine Agonists/pharmacology
- Histamine H1 Antagonists/pharmacology
- Imidazoles/pharmacology
- In Vitro Techniques
- Male
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Neurons/chemistry
- Neurons/drug effects
- Neurons/physiology
- Patch-Clamp Techniques
- Potassium/physiology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Rats
- Rats, Inbred WKY
- Receptors, Histamine H1/genetics
- Receptors, Histamine H1/physiology
- Receptors, Histamine H2/physiology
- Receptors, Histamine H3/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Thiourea/analogs & derivatives
- Thiourea/pharmacology
- Triprolidine/pharmacology
Collapse
Affiliation(s)
- Andrew D Whyment
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | | | | | | | | |
Collapse
|
12
|
Marina N, Taheri M, Gilbey MP. Generation of a physiological sympathetic motor rhythm in the rat following spinal application of 5-HT. J Physiol 2006; 571:441-50. [PMID: 16396930 PMCID: PMC1796786 DOI: 10.1113/jphysiol.2005.100677] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 01/04/2006] [Indexed: 11/08/2022] Open
Abstract
When applied in vitro to various CNS structures 5-HT and/or NMDA have been observed to generate rhythmic nervous activity. In contrast, reports of similar in vivo actions are relatively rare. Here we describe a physiological sympathetic motor rhythm regulating the thermoregulatory circulation of the rat tail (T-rhythm; 0.40-1.20 Hz) that can be elicited following intrathecal (i.t.) application of 5-HT to an in situ'isolated' spinal cord preparation (anaesthetized rats spinalized at T10-T11 and cauda equina cut). i.t. injections were delivered to L1 as sympathetic neuronal activity to the tail (SNAT) arises from preganglionic neurones at T11-L2. SNAT was abolished after spinal transection (n = 18) and it did not return spontaneously. The administration of 5-HT (250 nmol) generated rhythmic sympathetic discharges (n = 6). The mean frequency of the T-like rhythm during the highest level of activity was 0.88 +/- 0.04 Hz which was not significantly different from the T-rhythm frequency observed in intact animals (0.77 +/- 0.02 Hz; P > 0.05 n = 16). In contrast, NMDA (1 micromol) generated an irregular tonic activity, but it failed to generate a T-like rhythm (n = 9), even though the mean levels of activity were not significantly different to those produced by 5-HT. However, 5-HT (250 nmol) applied after NMDA generated a T-like rhythm (0.95 +/- 0.11 Hz, n = 6). Our observations support the idea that 5-HT released from rostral ventromedial medullary neurones, known to innervate sympathetic preganglionic neurones, can induce sympathetic rhythmic activity.
Collapse
Affiliation(s)
- Nephtali Marina
- Department of Physiology, University College London, Hampstead Campus, London NW3 2PF, UK
| | | | | |
Collapse
|
13
|
Whyment AD, Wilson JMM, Renaud LP, Spanswick D. Activation and integration of bilateral GABA-mediated synaptic inputs in neonatal rat sympathetic preganglionic neurones in vitro. J Physiol 2004; 555:189-203. [PMID: 14673187 PMCID: PMC1664830 DOI: 10.1113/jphysiol.2003.055665] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Accepted: 12/09/2003] [Indexed: 01/05/2023] Open
Abstract
The role of GABA receptors in synaptic transmission to neonatal rat sympathetic preganglionic neurones (SPNs) was investigated utilizing whole-cell patch clamp recording techniques in longitudinal and transverse spinal cord slice preparations. In the presence of glutamate receptor antagonists (NBQX, 5 microm and D-APV, 10 microm), electrical stimulation of the ipsilateral or contralateral lateral funiculi (iLF and cLF, respectively) revealed monosynaptic inhibitory postsynaptic potentials (IPSPs) in 75% and 65% of SPNs, respectively. IPSPs were sensitive to bicuculline (10 microM) in all neurones tested and reversed polarity around -55 mV, the latter indicating mediation via chloride conductances. In three neurones IPSPs evoked by stimulation of the iLF (n = 1) or cLF (n = 2) were partly sensitive to strychnine (2 microM). The expression of postsynaptic GABA(A) and GABA(B) receptors were confirmed by the sensitivity of SPNs to agonists, GABA (2 mm), muscimol (10-100 microM) or baclofen (10-100 microM), in the presence of TTX, each of which produced membrane hyperpolarization in all SPNs tested. Muscimol-induced responses were sensitive to bicuculline (1-10 microM) and SR95531 (10 microM) and baclofen-induced responses were sensitive to 2-hydroxy-saclofen (100-200 microM) and CGP55845 (200 nM). The GABA(C) receptor agonist CACA (200 microM) was without significant effect on SPNs. These results suggest that SPNs possess postsynaptic GABA(A) and GABA(B) receptors and that subsets of SPNs receive bilateral GABAergic inputs which activate GABA(A) receptors, coupled to a chloride conductance. At resting or holding potentials close to threshold either single or bursts (10-100 Hz) of IPSPs gave rise to a rebound excitation and action potential firing at the termination of the burst. This effect was mimicked by injection of small (10-20 pA) rectangular-wave current pulses, which revealed a time-dependent, Cs(+)-sensitive inward rectification and rebound excitation at the termination of the response to current injection. Synaptic activation of a rebound excitation mediated by a time-dependent inward rectification expressed intrinsically by SPNs may provide a novel mechanism enabling SPNs to be entrained to rhythms driven from the brainstem or higher centres.
Collapse
Affiliation(s)
- Andrew D Whyment
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | |
Collapse
|
14
|
Lin HH, Chen CH, Hsieh WK, Chiu TH, Lai CC. Hydrogen peroxide increases the activity of rat sympathetic preganglionic neurons in vivo and in vitro. Neuroscience 2003; 121:641-7. [PMID: 14568024 DOI: 10.1016/s0306-4522(03)00517-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Reactive oxygen species (ROS) have been shown to modulate neuronal synaptic transmission and have also been implicated in cardiovascular diseases such as hypertension. The hypothesis that H(2)O(2) acting on sympathetic preganglionic neurons (SPNs) affects spinal sympathetic outflow was tested in the present study. H(2)O(2) was applied intrathecally via an implanted cannula to the T7-T9 segments of urethane-anesthetized rats. Blood pressure and heart rate were used as indices to evaluate the spinal sympathetic effects of H(2)O(2) in vivo. Intrathecal H(2)O(2) (100-1000 nmol) dose-dependently increased both the mean arterial pressure and heart rate. Reproducible pressor effects of H(2)O(2) (1000 nmol) applied consecutively at intervals of 30 min were observed. The pressor effects of intrathecal H(2)O(2) (1000 nmol) were attenuated by pretreatment with intrathecal administration of catalase (500 units), or N-acetyl-cysteine (1000 nmol). The pressor effects of intrathecal H(2)O(2) (1000 nmol) were also antagonized dose-dependently by prior intrathecal injection of AP-5 (DL-2-amino-5- phosphonovaleric acid, 10 and 30 nmol), or 6-cyano-7- nitroquinoxaline-2,3-dione, 10 and 30 nmol. In vitro electrophysiological study in spinal cord slices showed that superfusion of 1 mM H(2)O(2) for 3 min, which had no effect on membrane potential, caused an increase in amplitude of excitatory postsynaptic potentials in SPNs, but had little effect on that of inhibitory postsynaptic potentials. Taken together, these results demonstrated that oxidative stress in spinal cord may cause an increase in spinal sympathetic tone by acting on SPNs, which may contribute to ROS-induced cardiovascular dysfunction.
Collapse
Affiliation(s)
- H H Lin
- Department of Nursing, Tzu Chi College of Technology, 880 Section 2, Chien-Kuo Road, 970 Hualien, Taiwan
| | | | | | | | | |
Collapse
|
15
|
Shin DSH, Buck LT. Effect of anoxia and pharmacological anoxia on whole-cell NMDA receptor currents in cortical neurons from the western painted turtle. Physiol Biochem Zool 2003; 76:41-51. [PMID: 12695985 DOI: 10.1086/374274] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2002] [Indexed: 11/04/2022]
Abstract
The mammalian brain undergoes rapid cell death during anoxia that is characterized by uncontrolled Ca(2+) entry via N-methyl-D-aspartate receptors (NMDARs). In contrast, the western painted turtle is extremely anoxia tolerant and maintains close-to-normal [Ca(2+)](i) during periods of anoxia lasting from days to months. A plausible mechanism of anoxic survival in turtle neurons is the regulation of NMDARs to prevent excitotoxic Ca(2+) injury. However, studies using metabolic inhibitors such as cyanide (NaCN) as a convenient method to induce anoxia may not represent a true anoxic stress. This study was undertaken to determine whether turtle cortical neuron whole-cell NMDAR currents respond similarly to true anoxia with N(2) and to NaCN-induced anoxia. Whole-cell NMDAR currents were measured during a control N(2)-induced anoxic transition and a control NaCN-induced transition. During anoxia with N(2) normalized, NMDAR currents decreased to 35.3%+/-10.8% of control values. Two different NMDAR current responses were observed during NaCN-induced anoxia: one resulted in a 172%+/-51% increase in NMDAR currents, and the other was a decrease to 48%+/-14% of control. When responses were correlated to the two major neuronal subtypes under study, we found that stellate neurons responded to NaCN treatment with a decrease in NMDAR current, while pyramidal neurons exhibited both increases and decreases. Our results show that whole-cell NMDAR currents respond differently to NaCN-induced anoxia than to the more physiologically relevant anoxia with N(2).
Collapse
Affiliation(s)
- Damian Seung-Ho Shin
- Department of Zoology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| | | |
Collapse
|
16
|
Wilson JMM, Coderre E, Renaud LP, Spanswick D. Active and passive membrane properties of rat sympathetic preganglionic neurones innervating the adrenal medulla. J Physiol 2002; 545:945-60. [PMID: 12482898 PMCID: PMC2290734 DOI: 10.1113/jphysiol.2002.023390] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The intravascular release of adrenal catecholamines is a fundamental homeostatic process mediated via thoracolumbar spinal sympathetic preganglionic neurones (AD-SPN). To understand mechanisms regulating their excitability, whole-cell patch-clamp recordings were obtained from 54 retrogradely labelled neonatal rat AD-SPN. Passive membrane properties included a mean resting membrane potential, input resistance and time constant of -62 +/- 6 mV, 410 +/- 241 MOmega and 104 +/- 53 ms, respectively. AD-SPN were homogeneous with respect to their active membrane properties. These active conductances included transient outward rectification, observed as a delayed return to rest at the offset of the membrane response to hyperpolarising current pulses, with two components: a fast 4-AP-sensitive component (A-type conductance), contributing to the after-hyperpolarisation (AHP) and spike repolarisation; a slower prolonged Ba(2+)-sensitive component (D-like conductance). All AD-SPN expressed a Ba(2+)-sensitive instantaneous inwardly rectifying conductance activated at membrane potentials more negative than around -80 mV. A potassium-mediated, voltage-dependent sustained outward rectification activated at membrane potentials between -35 and -15 mV featured an atypical pharmacology with a component blocked by quinine, reduced by low extracellular pH and arachidonic acid, but lacking sensitivity to Ba(2+), TEA and intracellular Cs(+). This quinine-sensitive outward rectification contributes to spike repolarisation. Following block of potassium conductances by Cs(+) loading, AD-SPN revealed the capability for autorhythmicity and burst firing, mediated by a T-type Ca(2+) conductance. These data suggest the output capability is dynamic and diverse, and that the range of intrinsic membrane conductances expressed endow AD-SPN with the ability to generate differential and complex patterns of activity. The diversity of intrinsic membrane properties expressed by AD-SPN may be key determinants of neurotransmitter release from SPN innervating the adrenal medulla. However, factors other than active membrane conductances of AD-SPN must ultimately regulate the differential ratio of noradrenaline (NA) versus adrenaline (A) release secreted in response to various physiological and environmental demands.
Collapse
Affiliation(s)
- Jennifer M M Wilson
- Neurosciences, Ottawa Health Research Institute, University of Ottawa, Ontario, Canada K1Y 4E9, UK
| | | | | | | |
Collapse
|
17
|
Jiang MC, Alheid GF, Nunzi MG, Houk JC. Cerebellar input to magnocellular neurons in the red nucleus of the mouse: synaptic analysis in horizontal brain slices incorporating cerebello-rubral pathways. Neuroscience 2002; 110:105-21. [PMID: 11882376 DOI: 10.1016/s0306-4522(01)00544-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We studied the synaptic input from the nucleus interpositus of the cerebellum to the magnocellular division of the red nucleus (RNm) in the mouse using combined electrophysiological and neuroanatomical methods. Whole-cell patch-clamp recordings were made from brain slices (125-150 microm) cut in a horizontal plane oriented to pass through both red nucleus and nucleus interpositus. Large cells that were visually selected and patched were injected with Lucifer Yellow and identified as RNm neurons. Using anterograde tracing from nucleus interpositus in vitro, we examined the course of interposito-rubral axons which are dispersed in the superior cerebellar peduncle. In vitro monosynaptic responses in RNm were elicited by an electrode array placed contralaterally in this pathway but near the midline. Mixed excitatory post-synaptic potentials (EPSPs)/inhibitory post-synaptic potentials (IPSPs) were observed in 48 RNm neurons. Excitatory components of the evoked potentials were studied after blocking inhibitory components with picrotoxin (100 microM) and strychnine (5 microM). All RNm neurons examined continued to show monosynaptic EPSPs after non-N-methyl-D-aspartate (NMDA) glutamate receptor components were blocked with 10 microM 6,7-dinitroquinoxaline-2,3-dione or 5 microM 2,3-dihydro-6-nitro-7-sulfamoyl-benzo(f)-quinoxaline (NBQX; n=12). The residual potentials were identified as NMDA receptor components since they (i) were blocked by the addition of the NMDA receptor antagonist, D,L-2-amino-5-phosphonovaleric acid (APV), (ii) were voltage-dependent, and (iii) were enhanced by Mg(2+) removal. Inhibitory components of the evoked potentials were studied after blocking excitatory components with NBQX and APV. Under these conditions, all RNm neurons studied continued to show IPSPs. Blockade of GABA(A) receptors reduced but did not eliminate the IPSPs. These were eliminated when GABA(A) receptor blockade was combined with strychnine to eliminate glycine components of the IPSPs. Thus, IPSPs evoked by midline stimulation of the superior cerebellar peduncle, while blocking alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and NMDA receptors, raise the possibility of direct inhibitory inputs to RNm from the cerebellum. In summary we propose that the special properties of the NMDA receptor components are considered important for the generation of RNm motor commands: their slow time course will contribute a steady driving force for sustained discharge and their voltage dependency will facilitate abrupt transitions from a resting state of quiescence to an active state of intense motor command generation.
Collapse
|
18
|
Santer RM, Dering MA, Ranson RN, Waboso HN, Watson AHD. Differential susceptibility to ageing of rat preganglionic neurones projecting to the major pelvic ganglion and of their afferent inputs. Auton Neurosci 2002; 96:73-81. [PMID: 11926170 DOI: 10.1016/s1566-0702(01)00366-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have analysed age-related changes in the morphology of preganglionic neurones in the lumbosacral spinal cord, labelled following injection of retrograde tracers into the major pelvic ganglion of young adult and aged male rats. We have also examined changes in neurotransmitter-characterised spinal afferent inputs to these neurones, or to the nuclei in which they lie, using light and electron microscope immunohistochemistry. In previous investigations of the major pelvic ganglion, the sympathetic, but not parasympathetic, postganglionic neurones were seen to exhibit age-related changes and the same pattern is seen in the preganglionic neurones. This included an apparent reduction in the numbers of sympathetic preganglionic neurones, and a reduction in the length of their dendrites and the complexity of their branches. Ultrastructural immunohistochemical studies described here reveal significant reductions in the area of synaptic contact made by glutamate-immunoreactive boutons onto the dendrites of sympathetic (but not parasympathetic) preganglionic neurones, while contacts from boutons immunoreactive for glycine or gamma-aminobutyric acid (GABA) were unchanged. There is also a reduction in synaptic contacts received by sympathetic somata from boutons immunoreactive for none of these amino acids. Serotonin-immunoreactive terminals are closely associated with preganglionic autonomic neurones, and these are reduced in number in sympathetic, but not parasympathetic, spinal nuclei of aged rats. However, serial section electron microscopy has so far failed to demonstrate conventional synaptic contacts between serotonergic terminals and the dendrites or somata of the preganglionic autonomic neurones. In young animals, axon terminals immunoreactive for thyrotropin-releasing hormone (TRH) are abundant in all spinal laminae including area X, but in aged animals, such terminals are significantly reduced in number in regions containing preganglionic sympathetic, but not parasympathetic, neurones. These results indicate that the sympathetic preganglionic neuron populations that project to the major pelvic ganglion, and the spinal inputs they receive, show a number of degenerative changes in aged rats which are not seen parasympathetic preganglionic neuronal populations.
Collapse
|
19
|
Song Z, Levin BE, McArdle JJ, Bakhos N, Routh VH. Convergence of pre- and postsynaptic influences on glucosensing neurons in the ventromedial hypothalamic nucleus. Diabetes 2001; 50:2673-81. [PMID: 11723049 DOI: 10.2337/diabetes.50.12.2673] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glucosensing neurons in the ventromedial hypothalamic nucleus (VMN) were studied using visually guided slice-patch recording techniques in brain slices from 14- to 21-day-old male Sprague-Dawley rats. Whole-cell current-clamp recordings were made as extracellular glucose levels were increased (from 2.5 to 5 or 10 mmol/l) or decreased (from 2.5 to 0.1 mmol/l). Using these physiological conditions to define glucosensing neurons, two subtypes of VMN glucosensing neurons were directly responsive to alterations in extracellular glucose levels. Another three subtypes were not directly glucose-sensing themselves, but rather were presynaptically modulated by changes in extracellular glucose. Of the VMN neurons, 14% were directly inhibited by decreases in extracellular glucose (glucose-excited [GE]), and 3% were directly excited by decreases in extracellular glucose (glucose-inhibited [GI]). An additional 14% were presynaptically excited by decreased glucose (PED neurons). The other two subtypes of glucosensing neurons were either presynaptically inhibited (PIR; 11%) or excited (PER; 8%) when extracellular glucose was raised to > 2.5 mmol/l. GE neurons sensed decreased glucose via an ATP-sensitive K(+) (K(ATP)) channel. The inhibitory effect of increased glucose on PIR neurons appears to be mediated by a presynaptic gamma-aminobutyric acid-ergic glucosensing neuron that probably originates outside the VMN. Finally, all types of glucosensing neurons were both fewer in number and showed abnormal responses to glucose in a rodent model of diet-induced obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Z Song
- Department of Pharmacology and Physiology, New Jersey Medical School (UMDNJ), Newark, New Jersey 07103, USA
| | | | | | | | | |
Collapse
|
20
|
Llewellyn-Smith IJ, Weaver LC. Changes in synaptic inputs to sympathetic preganglionic neurons after spinal cord injury. J Comp Neurol 2001; 435:226-40. [PMID: 11391643 DOI: 10.1002/cne.1204] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Spinal cord injury (SCI) leads to plastic changes in organization that impact significantly on central nervous control of arterial pressure. SCI causes hypotension and autonomic dysreflexia, an episodic hypertension induced by spinal reflexes. Sympathetic preganglionic neurons (SPNs) respond to SCI by retracting and then regrowing their dendrites within 2 weeks of injury. We examined changes in synaptic input to SPNs during this time by comparing the density and amino acid content of synaptic input to choline acetyltransferase (ChAT)-immunoreactive SPNs in the eighth thoracic spinal cord segment (T8) in unoperated rats and in rats at 3 days or at 14 days after spinal cord transection at T4. Postembedding immunogold labeling demonstrated immunoreactivity for glutamate or gamma-aminobutyric acid (GABA) within presynaptic profiles. We counted the number of presynaptic inputs to measured lengths of SPN somatic and dendritic membrane and identified the amino acid in each input. We also assessed gross changes in the morphology of SPNs using retrograde labeling with cholera toxin B and light microscopy to determine the structural changes that were present at the time of evaluation of synaptic density and amino acid content. At 3 days after SCI, we found that retrogradely labeled SPNs had shrunken somata and greatly shortened dendrites. Synaptic density (inputs per 10-microm membrane) decreased on ChAT-immunoreactive somata by 34% but increased on dendrites by 66%. Almost half of the inputs to SPNs lacked amino acids. By 14 days, the density of synaptic inputs to dendrites and somata decreased by 50% and 70%, respectively, concurrent with dendrite regrowth. The proportion of glutamatergic inputs to SPNs in spinal cord-transected rats ( approximately 40%) was less than that in unoperated rats, whereas the GABAergic proportion (60-68%) increased. In summary, SPNs participate in vasomotor control after SCI despite profound denervation. An altered balance of excitatory and inhibitory inputs may explain injury-induced hypotension.
Collapse
Affiliation(s)
- I J Llewellyn-Smith
- Cardiovascular Neuroscience Group, Cardiovascular Medicine and Centre for Neuroscience, Flinders University, Bedford Park, South Australia 5042, Australia.
| | | |
Collapse
|
21
|
Abstract
This review focuses on the nervous control of the caudal ventral artery of the rat tail, and aims to convince the reader that sympathetic control of the vasculature can be mediated via neural oscillators intrinsic to the sympathetic nervous system. The definitive functional significance of these oscillators is unknown at present. However, it is expected that through dynamic relationships with modulating and driving inputs, such oscillators would permit graded vascular responses.
Collapse
Affiliation(s)
- J E Smith
- Department of Physiology, St. George's Hospital Medical School, Tooting, London, UK.
| |
Collapse
|
22
|
Barrett-Jolley R, Pyner S, Coote JH. Measurement of voltage-gated potassium currents in identified spinally-projecting sympathetic neurones of the paraventricular nucleus. J Neurosci Methods 2000; 102:25-33. [PMID: 11000408 DOI: 10.1016/s0165-0270(00)00271-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The paraventricular nucleus (PVN) of the hypothalamus modulates cardiovascular function via a sub-population of neurones which project directly to sympathetic centres of the spinal cord. Identification and patch-clamp recording from these neurones is difficult, however, because of the complex organisation and neuronal heterogeneity of the PVN. We report here on methods for the in vitro recording of voltage-gated potassium channel (K(V)) currents from those neurones within the PVN which project to the intermediolateral column of the rat spinal cord, and are believed to directly modulate cardiovascular function. We show K(V) channel currents of spinally projecting neurones to be slowly inactivating (tau >> 100 ms) and weakly sensitive to TEA (K(d)>10 mM). These methods will be useful for the study of K(V) and other ion channel modulation in spinally projecting neurones of the PVN.
Collapse
Affiliation(s)
- R Barrett-Jolley
- Department of Physiology, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | |
Collapse
|
23
|
Smith JE, Gilbey MP. Coherent rhythmic discharges in sympathetic nerves supplying thermoregulatory circulations in the rat. J Physiol 2000; 523 Pt 2:449-57. [PMID: 10699088 PMCID: PMC2269801 DOI: 10.1111/j.1469-7793.2000.00449.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. In anaesthetised rats, activity recorded from sympathetic postganglionic neurones innervating the tail circulation has characteristic rhythmicity (0.4-1.2 Hz). At the population level this rhythmicity can be seen as a peak (T-peak) in autospectra of sympathetic activity recorded from ventral collector nerves (VCNs). 2. Here we investigated whether nerves supplying thermoregulatory circulations share common rhythmic discharges at T-peak frequency. Activity was recorded from nerve pairs consisting of left ventral collector nerve (LVCN) and one of the following: right ventral collector nerve (RVCN), left dorsal collector nerve (DCN), left saphenous nerve (SN) or left renal nerve (RN). 3. During central apnoea, T-peak frequencies in RVCN autospectra were similar to those of simultaneously recorded LVCN and these activities were coherent. Similar observations were made for nerve pairs involving LVCN-DCN and LVCN-SN. In contrast, autospectra of RN activity did not contain T-peaks. 4. In comparison to the peaks in autospectra of RN activity, when the frequency of rhythmic phrenic nerve activity was manipulated T-peaks in VCN, DCN and SN autospectra did not show obligatory 1:1 locking. 5. We conclude that T-peaks are a robust feature of autospectra of sympathetic discharges supplying thermoregulatory circulation but not those influencing the kidney. The high coherence demonstrated between the T-peak discharges is consistent with the view that common/coupled oscillators located within the CNS influence cutaneous vasoconstrictor sympathetic activity.
Collapse
Affiliation(s)
- J E Smith
- Autonomic Neuroscience Institute, Department of Physiology, Royal Free and University College Medical School, University College London, London NW3 2PF, UK
| | | |
Collapse
|
24
|
Nolan MF, Logan SD, Spanswick D. Electrophysiological properties of electrical synapses between rat sympathetic preganglionic neurones in vitro. J Physiol 1999; 519 Pt 3:753-64. [PMID: 10457088 PMCID: PMC2269542 DOI: 10.1111/j.1469-7793.1999.0753n.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/1999] [Accepted: 06/29/1999] [Indexed: 11/30/2022] Open
Abstract
1. The electrophysiological properties of electrical synaptic transmission between sympathetic preganglionic neurones (SPNs) in slices of rat spinal cord were investigated using simultaneous dual-electrode patch-clamp recordings. Electrotonic coupling was directly demonstrated between 21 pairs of SPNs. 2. Coupling coefficients determined from the steady-state response of both neurones to current steps injected into either neurone ranged from 0. 02 to 0.48 (0.18 +/- 0.02, mean +/- s.e.m.). Synapses were bidirectional and symmetrical for the majority of connections with coupling coefficients similar in either direction. Asymmetrical coupling between a minority of cell pairs was due to differences in passive neuronal properties rather than rectification of the synaptic conductances. 3. Action potentials were manifest in adjoining cells as biphasic electrical postsynaptic potentials (ePSPs), composed of a rapid depolarising component followed by a more prolonged hyperpolarisation with amplitudes of 1.2 +/- 0.2 and 2.1 +/- 0.6 mV, respectively. 4. Postsynaptic potentials resembled low-pass filtered presynaptic spikes with frequency dependence determined by the junctional conductance and postsynaptic membrane properties. Increases in presynaptic action potential frequency caused attenuation of the hyperpolarising component of the ePSP that was attributed to shorter duration presynaptic spikes being more markedly filtered. 5. Synchronisation of spontaneous action potentials between electrotonically coupled neurones was driven by subthreshold membrane potential activity resembling repetitive ePSPs. Synchronous spike firing in previously silent neurones could be driven by suprathreshold ePSPs induced by suprathreshold depolarisation of a single adjoining neurone. 6. These data characterise reliable communication of sub- and suprathreshold activity by electrical synapses enabling synchronised SPN firing which may contribute to generation of coherent sympathetic rhythms and promote summation of inputs to postganglionic neurones.
Collapse
Affiliation(s)
- M F Nolan
- Department of Biomedical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | |
Collapse
|
25
|
Kolaj M, Renaud LP. Vasopressin-induced currents in rat neonatal spinal lateral horn neurons are G-protein mediated and involve two conductances. J Neurophysiol 1998; 80:1900-10. [PMID: 9772248 DOI: 10.1152/jn.1998.80.4.1900] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Arginine vasopressin (AVP) receptors are expressed early in the developing spinal cord. To characterize AVP-induced conductances in lower thoracic sympathetic preganglionic (SPN) and other lateral horn neurons, we used patch-clamp recording techniques in neonatal (11-21 days) rat spinal cord slices. Most (90%) of 273 neurons, including all 68 SPNs, responded to AVP with membrane depolarization and/or a V1 receptor-mediated, dose-dependent (0.01-1.0 microM) and tetrodotoxin (TTX)-resistant inward current. A role for G-proteins was indicated by persistence of this inward current after intracellular dialysis with GTP-gamma-S or GMP-PNP, its marked reduction with GDP-beta-S, and significant reduction, but not abolition, after preincubation with pertussis toxin or in the presence of N-ethylmaleimide. Analysis of individual current-voltage (I-V) relationships in 57 cells indicated the presence of two different membrane conductances. In 21 cells, net AVP-induced currents reversed around -103 mV, reflecting reduction in one or more barium-sensitive potassium conductances; in 12 cells, net AVP-induced current reversed around -40 mV and was not significantly sensitive to several potassium channel blockers including barium, tetraethylammonium chloride (TEA), 4-aminopyridine (4AP), cesium, or glibenclamide, suggesting increase in a nonselective cationic conductance that was separate from Ih; in 24 cells where I-V lines shifted in parallel, AVP-induced inward currents were significantly greater and probably involved both conductances. These data indicate that SPNs and a majority of unidentified neonatal lateral horn neurons possess functional G-protein-coupled V1-type vasopressin receptors. The wide distribution of AVP receptors in neonatal spinal lateral column cells suggests a role that may extend beyond involvement in regulation of autonomic nervous system function.
Collapse
Affiliation(s)
- M Kolaj
- Neuroscience, Loeb Research Institute, Ottawa Civic Hospital and University of Ottawa, Ottawa, Ontario K1Y 4E9, Canada
| | | |
Collapse
|