1
|
Ozturk N, Uslu S, Ozdemir S. Diabetes-induced changes in cardiac voltage-gated ion channels. World J Diabetes 2021; 12:1-18. [PMID: 33520105 PMCID: PMC7807254 DOI: 10.4239/wjd.v12.i1.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus affects the heart through various mechanisms such as microvascular defects, metabolic abnormalities, autonomic dysfunction and incompatible immune response. Furthermore, it can also cause functional and structural changes in the myocardium by a disease known as diabetic cardiomyopathy (DCM) in the absence of coronary artery disease. As DCM progresses it causes electrical remodeling of the heart, left ventricular dysfunction and heart failure. Electrophysiological changes in the diabetic heart contribute significantly to the incidence of arrhythmias and sudden cardiac death in diabetes mellitus patients. In recent studies, significant changes in repolarizing K+ currents, Na+ currents and L-type Ca2+ currents along with impaired Ca2+ homeostasis and defective contractile function have been identified in the diabetic heart. In addition, insulin levels and other trophic factors change significantly to maintain the ionic channel expression in diabetic patients. There are many diagnostic tools and management options for DCM, but it is difficult to detect its development and to effectively prevent its progress. In this review, diabetes-associated alterations in voltage-sensitive cardiac ion channels are comprehensively assessed to understand their potential role in the pathophysiology and pathogenesis of DCM.
Collapse
Affiliation(s)
- Nihal Ozturk
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| | - Serkan Uslu
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| | - Semir Ozdemir
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| |
Collapse
|
2
|
Abstract
Hyperpolarization-activated cyclic nucleotide gated (HCN) channels pass a cationic current (I(h)/I(f)) that crucially contributes to the slow diastolic depolarization (SDD) of sinoatrial pacemaker cells and, hence, is a key determinant of cardiac automaticity and the generation of the heartbeat. However, there is growing evidence that HCN channels are not restricted to the spontaneously active cells of the sinoatrial node and the conduction system but are also present in ventricular cardiomyocytes that produce an action potential lacking SDD. This observation raises the question of the principal function(s) of HCN channels in working myocardium. Our recent analysis of an HCN3-deficient (HCN3-/-) mouse line has shed new light on this central question. We propose that HCN channels contribute to the ventricular action potential waveform, specifically during late repolarization. In this review, we outline this new concept.
Collapse
Affiliation(s)
- Stefanie Fenske
- Center for Integrated Protein Science CIPS-M and Zentrum für Pharmaforschung-Department Pharmazie, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | |
Collapse
|
3
|
N-acetylcysteine prevents electrical remodeling and attenuates cellular hypertrophy in epicardial myocytes of rats with ascending aortic stenosis. Basic Res Cardiol 2012; 107:290. [PMID: 22855324 DOI: 10.1007/s00395-012-0290-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 05/22/2012] [Accepted: 07/18/2012] [Indexed: 02/07/2023]
Abstract
Pressure overload is associated with cardiac hypertrophy and electrical remodeling. Here, we investigate the effects of the antioxidant N-acetylcysteine (NAC) on the cellular cardiac electrophysiology of female Sprague-Dawley rats with ascending aortic stenosis (AS). Rats were treated with NAC (1 g/kg body weight) or control solution 1 week before the intervention and in the week following AS or sham operation. Seven days after the operation, blood pressure and left ventricular pressure were measured before the heart was excised. Single cells were isolated from epicardial and endocardial layers of the left ventricular free wall and investigated using the whole-cell patch-clamp technique. Systolic blood pressure and left ventricular peak pressure were not significantly altered in the NAC group. NAC reduced the increase (p < 0.001) in the relative left ventricular weight (p < 0.05) as well as the increase (p < 0.001) in cell capacitance in epicardial (p < 0.05), but not in endocardial myocytes of AS animals. The L-type Ca(2+) current (I (CaL)) was significantly increased by AS in epicardial (+19 % at 0 mV, p < 0.01) but not in endocardial myocytes. NAC completely prevented this increase in I (CaL) (p < 0.01). The current density of the transient outward K(+) current (I (to)) was not affected by AS or NAC. Action potential duration to 90 % repolarization was significantly prolonged in epicardial (p < 0.01) as well as in endocardial (p < 0.001) cells of AS animals. NAC prevented the AP prolongation in epicardial myocytes only (p < 0.05). We conclude that reducing oxidative stress in pressure overload can prevent electrical remodeling and ameliorate hypertrophy in epicardial but not in endocardial myocytes.
Collapse
|
4
|
Fenske S, Mader R, Scharr A, Paparizos C, Cao-Ehlker X, Michalakis S, Shaltiel L, Weidinger M, Stieber J, Feil S, Feil R, Hofmann F, Wahl-Schott C, Biel M. HCN3 contributes to the ventricular action potential waveform in the murine heart. Circ Res 2011; 109:1015-23. [PMID: 21903939 DOI: 10.1161/circresaha.111.246173] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE The hyperpolarization-activated current I(h) that is generated by hyperpolarization-activated cyclic nucleotide-gated channels (HCNs) plays a key role in the control of pacemaker activity in sinoatrial node cells of the heart. By contrast, it is unclear whether I(h) is also relevant for normal function of cardiac ventricles. OBJECTIVE To study the role of the HCN3-mediated component of ventricular I(h) in normal ventricular function. METHODS AND RESULTS To test the hypothesis that HCN3 regulates the ventricular action potential waveform, we have generated and analyzed a HCN3-deficient mouse line. At basal heart rate, mice deficient for HCN3 displayed a profound increase in the T-wave amplitude in telemetric electrocardiographic measurements. Action potential recordings on isolated ventricular myocytes indicate that this effect was caused by an acceleration of the late repolarization phase in epicardial myocytes. Furthermore, the resting membrane potential was shifted to more hyperpolarized potentials in HCN3-deficient mice. Cardiomyocytes of HCN3-deficient mice displayed approximately 30% reduction of total I(h). At physiological ionic conditions, the HCN3-mediated current had a reversal potential of approximately -35 mV and displayed ultraslow deactivation kinetics. CONCLUSIONS We propose that HCN3 together with other members of the HCN channel family confer a depolarizing background current that regulates ventricular resting potential and counteracts the action of hyperpolarizing potassium currents in late repolarization. In conclusion, our data indicate that HCN3 plays an important role in shaping the cardiac action potential waveform.
Collapse
Affiliation(s)
- Stefanie Fenske
- Center for Integrated Protein Science CIPS-M, Department Pharmazie, Ludwig-Maximilians-Universität München, München, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Niwa N, Nerbonne JM. Molecular determinants of cardiac transient outward potassium current (I(to)) expression and regulation. J Mol Cell Cardiol 2009; 48:12-25. [PMID: 19619557 DOI: 10.1016/j.yjmcc.2009.07.013] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/25/2009] [Accepted: 07/10/2009] [Indexed: 12/21/2022]
Abstract
Rapidly activating and inactivating cardiac transient outward K(+) currents, I(to), are expressed in most mammalian cardiomyocytes, and contribute importantly to the early phase of action potential repolarization and to plateau potentials. The rapidly recovering (I(t)(o,f)) and slowly recovering (I(t)(o,s)) components are differentially expressed in the myocardium, contributing to regional heterogeneities in action potential waveforms. Consistent with the marked differences in biophysical properties, distinct pore-forming (alpha) subunits underlie the two I(t)(o) components: Kv4.3/Kv4.2 subunits encode I(t)(o,f), whereas Kv1.4 encodes I(t)(o,s), channels. It has also become increasingly clear that cardiac I(t)(o) channels function as components of macromolecular protein complexes, comprising (four) Kvalpha subunits and a variety of accessory subunits and regulatory proteins that influence channel expression, biophysical properties and interactions with the actin cytoskeleton, and contribute to the generation of normal cardiac rhythms. Derangements in the expression or the regulation of I(t)(o) channels in inherited or acquired cardiac diseases would be expected to increase the risk of potentially life-threatening cardiac arrhythmias. Indeed, a recently identified Brugada syndrome mutation in KCNE3 (MiRP2) has been suggested to result in increased I(t)(o,f) densities. Continued focus in this area seems certain to provide new and fundamentally important insights into the molecular determinants of functional I(t)(o) channels and into the molecular mechanisms involved in the dynamic regulation of I(t)(o) channel functioning in the normal and diseased myocardium.
Collapse
Affiliation(s)
- Noriko Niwa
- Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8103, St. Louis, MO 63110-1093, USA
| | | |
Collapse
|
6
|
Liang H, Li X, Li S, Zheng MQ, Rozanski GJ. Oxidoreductase regulation of Kv currents in rat ventricle. J Mol Cell Cardiol 2008; 44:1062-1071. [PMID: 18455732 PMCID: PMC2492761 DOI: 10.1016/j.yjmcc.2008.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 03/03/2008] [Accepted: 03/14/2008] [Indexed: 10/22/2022]
Abstract
Oxidative stress contributes to the arrhythmogenic substrate created by myocardial ischemia-reperfusion partly through a shift in cell redox state, a key modulator of protein function. The activity of many oxidation-sensitive proteins is controlled by oxidoreductase systems that regulate the redox state of cysteine thiol groups, but the impact of these systems on ion channel function is not well defined. Thus, we examined the roles of the thioredoxin and glutaredoxin systems in controlling K(+) channels in the ventricle. An oxidative shift in redox state was elicited in isolated rat ventricular myocytes by brief exposure to diamide, a thiol-specific, membrane-permeable oxidant. Voltage-clamp studies showed that diamide decreased peak outward K(+) current (I(peak)) evoked by depolarizing test pulses by 41% (+60 mV; p<0.05) while steady-state outward current (I(ss)) measured at the end of the test pulse was decreased by 45% (p<0.05). These electrophysiological effects were not prevented by protein kinase C blockers, but the tyrosine kinase inhibitors genistein or lavendustin A blocked the suppression of both K(+) currents by diamide. Moreover, inhibition of I(peak) and I(ss) by diamide was reversed by dichloroacetate and an insulin-mimetic. The effect of dichloroacetate to normalize I(peak) after diamide was blocked by the thioredoxin system inhibitors auranofin or 13-cis-retinoic acid, but I(ss) was not affected by either compound. A pan-specific inhibitor of glutaredoxin and thioredoxin systems, 1,3-bis-(2-chloroethyl)-1-nitrosourea, also blocked the dichloroacetate effect on I(peak) but only partially inhibited the recovery of I(ss). These data suggest that acute regulation of cardiac K(+) channels by oxidoreductase systems is mediated by redox-sensitive tyrosine kinase/phosphatase pathways. The pathways controlling I(peak) channels are targets of the thioredoxin system whereas those regulating I(ss) channels are likely controlled by the glutaredoxin system. Thus, cardiac oxidoreductase systems may be important regulators of ion channels affected by pathogenic oxidative stress.
Collapse
Affiliation(s)
- Huixu Liang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Xun Li
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA; Department of Cardiology, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Shumin Li
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ming-Qi Zheng
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - George J Rozanski
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA; Center for Redox Biology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| |
Collapse
|
7
|
Lengyel C, Virág L, Kovács PP, Kristóf A, Pacher P, Kocsis E, Koltay ZM, Nánási PP, Tóth M, Kecskeméti V, Papp JG, Varró A, Jost N. Role of slow delayed rectifier K+-current in QT prolongation in the alloxan-induced diabetic rabbit heart. Acta Physiol (Oxf) 2008; 192:359-68. [PMID: 17970826 DOI: 10.1111/j.1748-1716.2007.01753.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIM In diabetes mellitus, several cardiac electrophysiological parameters are known to be affected. In rodent experimental diabetes models, changes in these parameters were reported, but only limited relevant information is available in other species, having cardiac electrophysiological properties more resembling the human, including the rabbit. The present study was designed to analyse the effects of experimental type 1 diabetes on ventricular repolarization and the underlying transmembrane potassium currents in rabbit hearts. METHODS Diabetes was induced by a single injection of alloxan (145 mg kg(-1) i.v.). After the development of diabetes (3 weeks), electrophysiological studies were performed using whole cell voltage clamp and ECG measurements. RESULTS The QT(c) interval in diabetic rabbits was moderately but statistically significantly longer than measured in the control animals (155 +/- 1.8 ms vs. 145 +/- 2.8 ms, respectively, n = 9-10, P < 0.05). This QT(c)-lengthening effect of diabetes was accompanied by a significant reduction in the density of the slow delayed rectifier K(+) current, I(Ks) (from 1.48 +/- 0.35 to 0.86 +/- 0.17 pA pF(-1) at +50 mV, n = 19-21, P < 0.05) without changes in current kinetics. No differences were observed either in the density or in the kinetics of the inward rectifier K(+) current (I(K1)), the rapid delayed rectifier K(+) current (I(Kr)), the transient outward current (I(to)) and the L-type calcium current (I(CaL)) between the control and alloxan-treated rabbits. CONCLUSION It is concluded that type 1 diabetes mellitus, although only moderately, lengthens ventricular repolarization. Diabetes attenuates the repolarization reserve by decreasing the density of I(Ks) current, and thereby may enhance the risk of sudden cardiac death.
Collapse
Affiliation(s)
- Cs Lengyel
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Abstract
Experiments were designed to compare effects of dexamethasone on transient (Ipeak) and sustained (Isus) K+ currents in control and diabetic rat myocytes. Ventricular myocytes were isolated from control or type 1 streptozotocin (STZ)-induced diabetic male and female rats. Currents were measured using whole-cell voltage-clamp methods. Incubation of cells from control males or females with 100 nM dexamethasone (5-9 h) significantly (P<0.005) augmented Isus (by 28-31%). Ipeak was unchanged. Isus augmentation was abolished by cycloheximide or cytochalasin D, but not by inhibition of protein kinases A or C. Inhibition of tyrosine kinases by genistein (but not its inactive analog genistin) prevented the increase of Isus by dexamethasone. In marked contrast, dexamethasone had a significantly (P<0.015) smaller effect on Isus (11% increase) in cells from male STZ-diabetic rats, as compared to control cells. However, Isus augmentation in cells from female STZ-diabetic rats was normal (31% increase). In ovariectomized-diabetic rats, Isus was unchanged by dexamethasone. The reduced effect in diabetic males might be due to preactivation of tyrosine kinases linking dexamethasone to current modulation. In conclusion, type I diabetes is associated with gender-specific changes in sensitivity of K+ currents to glucocorticoids, linked to alterations in tyrosine-phosphorylated proteins.
Collapse
Affiliation(s)
- Yakhin Shimoni
- Cardiovascular Research Group, Department of Physiology and Biophysics, Health Sciences Centre, University of Calgary, 3330 Hospital Dr. N.W., Calgary, Alberta, Canada T2N 4N1.
| |
Collapse
|
10
|
Wang GL, Wang GX, Yamamoto S, Ye L, Baxter H, Hume JR, Duan D. Molecular mechanisms of regulation of fast-inactivating voltage-dependent transient outward K+ current in mouse heart by cell volume changes. J Physiol 2005; 568:423-43. [PMID: 16081489 PMCID: PMC1474744 DOI: 10.1113/jphysiol.2005.091264] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The K(v)4.2/4.3 channels are the primary subunits that contribute to the fast-inactivating, voltage-dependent transient outward K(+) current (I(to,fast)) in the heart. I(to,fast) is the critical determinant of the early repolarization of the cardiac action potential and plays an important role in the adaptive remodelling of cardiac myocytes, which usually causes cell volume changes, during myocardial ischaemia, hypertrophy and heart failure. It is not known, however, whether I(to,fast) is regulated by cell volume changes. In this study we investigated the molecular mechanism for cell volume regulation of I(to,fast) in native mouse left ventricular myocytes. Hyposmotic cell swelling caused a marked increase in densities of the peak I(to,fast) and a significant shortening in phase 1 repolarization of the action potential duration. The voltage-dependent gating properties of I(to,fast) were, however, not altered by changes in cell volume. In the presence of either protein kinase C (PKC) activator (12,13-dibutyrate) or phosphatase inhibitors (calyculin A and okadaic acid), hyposmotic cell swelling failed to further up-regulate I(to,fast). When expressed in NIH/3T3 cells, both K(v)4.2 and K(v)4.3 channels were also strongly regulated by cell volume in the same voltage-independent but PKC- and phosphatase-dependent manner as seen in I(to,fast) in the native cardiac myocytes. We conclude that K(v)4.2/4.3 channels in the heart are regulated by cell volume through a phosphorylation/dephosphorylation pathway mediated by PKC and serine/threonine phosphatase(s). These findings suggest a novel role of K(v)4.2/4.3 channels in the adaptive electrical and structural remodelling of cardiac myocytes in response to myocardial hypertrophy, ischaemia and reperfusion.
Collapse
Affiliation(s)
- Guan-Lei Wang
- Center of Biomedical Research Excellence, Department of Pharmacology, University of Nevada School of Medicine, Reno, 89557-0270, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
INTRODUCTION Electrophysiologic heterogeneity across the ventricular wall is a result of differential transmural expression of various ion channel proteins that underlie the different action potential waveforms observed in epicardial, midmyocardial, and endocardial regions. Cardiac connexins mediate cell-to-cell communication, are critical for normal impulse propagation, and play a role in electrophysiologic remodeling in disease states. However, little is known about the transmural distribution of cardiac gap junction proteins. METHODS AND RESULTS Connexin expression in epicardium, midmyocardium, and endocardium was assessed immunohistochemically in mouse and rat hearts. The total connexin protein content within different ventricular regions was measured by immunoblotting. Connexin43 is twice as abundant in midmyocardium and endocardium compared with epicardium in the mouse but not in the rat. Connexin45 is expressed equally across the left ventricular wall. CONCLUSION Epicardial myocytes express significantly less Cx43 and therefore may be less well coupled than midmyocardial and endocardial myocytes. A transmural gradient of connexin43 expression across the left ventricular free wall likely results in differences in the stoichiometry of connexins expressed in different regions of the heart.
Collapse
Affiliation(s)
- Kathryn A Yamada
- Department of Medicine(Cardiovascular Division), Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|