1
|
Yang J, Zhang Z, Li X, Guo L, Li C, Lai J, Han Y, Ye W, Miao Y, Deng M, Cao P, Zhang Y, Ding X, Zhang J, Yang J, Wang S. A gene cluster for polyamine transport and modification improves salt tolerance in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1706-1723. [PMID: 39401077 DOI: 10.1111/tpj.17074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/11/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
Polyamines act as protective compounds directly protecting plants from stress-related damage, while also acting as signaling molecules to participate in serious abiotic stresses. However, the molecular mechanisms underlying these effects are poorly understood. Here, we utilized metabolome genome-wide association study to investigate the polyamine content of wild and cultivated tomato accessions, and we discovered a new gene cluster that drove polyamine content during tomato domestication. The gene cluster contains two polyphenol oxidases (SlPPOE and SlPPOF), two BAHD acyltransferases (SlAT4 and SlAT5), a coumaroyl-CoA ligase (Sl4CL6), and a polyamine uptake transporter (SlPUT3). SlPUT3 mediates polyamine uptake and transport, while the five other genes are involved in polyamine modification. Further salt tolerance assays demonstrated that SlPPOE, SlPPOF, and SlAT5 overexpression lines showed greater phenolamide accumulation and salt tolerance as compared with wild-type (WT). Meanwhile, the exogenous application of Spm to SlPUT3-OE lines displayed salt tolerance compared with WT, while having the opposite effect in slput3 lines, confirms that the polyamine and phenolamide can play a protective role by alleviating cell damage. SlPUT3 interacted with SlPIP2;4, a H2O2 transport protein, to maintain H2O2 homeostasis. Polyamine-derived H2O2 linked Spm to stress responses, suggesting that Spm signaling activates stress response pathways. Collectively, our finding reveals that the H2O2-polyamine-phenolamide module coordinately enhanced tomato salt stress tolerance and provide a foundation for tomato stress-resistance breeding.
Collapse
Affiliation(s)
- Jie Yang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Zhonghui Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Xianggui Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Langchen Guo
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Chun Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Jun Lai
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Yige Han
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Weizhen Ye
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Yuanyuan Miao
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Meng Deng
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Peng Cao
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Yueran Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Xiangyu Ding
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Jianing Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Jun Yang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Shouchuang Wang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| |
Collapse
|
2
|
Wojtyla Ł, Wleklik K, Borek S, Garnczarska M. Polyamine Seed Priming: A Way to Enhance Stress Tolerance in Plants. Int J Mol Sci 2024; 25:12588. [PMID: 39684300 DOI: 10.3390/ijms252312588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Polyamines (PAs), such as putrescine, spermine, and spermidine, are bioactive molecules that play a vital role in plant responses to stresses. Although they are frequently applied to achieve higher levels of stress tolerance in plants, their function in seed biology is still not fully understood. PAs have been described in only a limited number of studies as seed priming agents, but most of the data report only the physiological and biochemical PA effects, and only a few reports concern the molecular mechanisms. In this review, we summarized PA seed priming effects on germination, seedling establishment, and young plant response to abiotic stresses, and tried to draw a general scheme of PA action during early developmental plant stages.
Collapse
Affiliation(s)
- Łukasz Wojtyla
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Karolina Wleklik
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Sławomir Borek
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Małgorzata Garnczarska
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
3
|
Jasso-Robles FI, Aucique-Perez CE, Zeljković SĆ, Saiz-Fernández I, Klimeš P, De Diego N. The loss-of-function of AtNATA2 enhances AtADC2-dependent putrescine biosynthesis and priming, improving growth and salinity tolerance in Arabidopsis. PHYSIOLOGIA PLANTARUM 2024; 176:e14603. [PMID: 39489618 DOI: 10.1111/ppl.14603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 11/05/2024]
Abstract
Putrescine (Put) is a promising small molecule-based biostimulant to enhance plant growth and resilience, though its mode of action remains unclear. This study investigated the Put priming effect on Arabidopsis mutant lines (Atadc1, Atadc2, Atnata1, and Atnata2) under control conditions and salinity to understand its role in regulating plant growth. The Atadc2 mutant, characterized by reduced endogenous Put levels, showed insensitivity to Put priming without growth enhancement, which was linked to significant imbalances in nitrogen metabolism, including a high Gln/Glu ratio. Contrarily, the Atnata2 mutant exhibited significant growth improvement and upregulated AtADC2 expression, particularly under Put priming, highlighting these genes' involvement in regulating plant development. Put priming enhanced plant growth by inducing the accumulation of specific polyamines (free, acetylated, conjugated, or bound form) and improving light-harvesting efficiency, particularly in the Atnata2 line. Our findings suggest that AtNATA2 may negatively regulate Put synthesis and accumulation via AtADC2 in the chloroplast, impacting light harvesting in photosystem II (PSII). Furthermore, the Atadc2 mutant line exhibited upregulated AtADC1 but reduced AcPut levels, pointing to a cross-regulation among these genes. The regulation by AtNATA2 on AtADC2 and AtADC2 on AtADC1 could be crucial for plant growth and overall stress tolerance by interacting with polyamine catabolism, which shapes the plant metabolic profile under different growth conditions. Understanding the regulatory mechanisms involving crosstalk between AtADC and AtNATA genes in polyamine metabolism and the connection with certain SMBBs like Put can lead to more effective agricultural practices, improving plant growth, nitrogen uptake, and resilience under challenging conditions.
Collapse
Affiliation(s)
| | | | - Sanja Ćavar Zeljković
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic
| | - Iñigo Saiz-Fernández
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic
| | - Pavel Klimeš
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic
| | - Nuria De Diego
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
4
|
Stolarska E, Tanwar UK, Guan Y, Grabsztunowicz M, Arasimowicz-Jelonek M, Phanstiel O, Sobieszczuk-Nowicka E. Genetic portrait of polyamine transporters in barley: insights in the regulation of leaf senescence. FRONTIERS IN PLANT SCIENCE 2023; 14:1194737. [PMID: 37332717 PMCID: PMC10272464 DOI: 10.3389/fpls.2023.1194737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/02/2023] [Indexed: 06/20/2023]
Abstract
Nitrogen (N) is one of the most expensive nutrients to supply, therefore, improving the efficiency of N use is essential to reduce the cost of commercial fertilization in plant production. Since cells cannot store reduced N as NH3 or NH4 +, polyamines (PAs), the low molecular weight aliphatic nitrogenous bases, are important N storage compounds in plants. Manipulating polyamines may provide a method to increase nitrogen remobilization efficiency. Homeostasis of PAs is maintained by intricate multiple feedback mechanisms at the level of biosynthesis, catabolism, efflux, and uptake. The molecular characterization of the PA uptake transporter (PUT) in most crop plants remains largely unknown, and knowledge of polyamine exporters in plants is lacking. Bi-directional amino acid transporters (BATs) have been recently suggested as possible PAs exporters for Arabidopsis and rice, however, detailed characterization of these genes in crops is missing. This report describes the first systematic study to comprehensively analyze PA transporters in barley (Hordeum vulgare, Hv), specifically the PUT and BAT gene families. Here, seven PUTs (HvPUT1-7) and six BATs (HvBAT1-6) genes were identified as PA transporters in the barley genome and the detailed characterization of these HvPUT and HvBAT genes and proteins is provided. Homology modeling of all studied PA transporters provided 3D structures prediction of the proteins of interest with high accuracy. Moreover, molecular docking studies provided insights into the PA-binding pockets of HvPUTs and HvBATs facilitating improved understanding of the mechanisms and interactions involved in HvPUT/HvBAT-mediated transport of PAs. We also examined the physiochemical characteristics of PA transporters and discuss the function of PA transporters in barley development, and how they help barley respond to stress, with a particular emphasis on leaf senescence. Insights gained here could lead to improved barley production via modulation of polyamine homeostasis.
Collapse
Affiliation(s)
- Ewelina Stolarska
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Umesh Kumar Tanwar
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Yufeng Guan
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Magda Grabsztunowicz
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | | - Otto Phanstiel
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
5
|
Yang L, Wang X, Zhao F, Zhang X, Li W, Huang J, Pei X, Ren X, Liu Y, He K, Zhang F, Ma X, Yang D. Roles of S-Adenosylmethionine and Its Derivatives in Salt Tolerance of Cotton. Int J Mol Sci 2023; 24:ijms24119517. [PMID: 37298464 DOI: 10.3390/ijms24119517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Salinity is a major abiotic stress that restricts cotton growth and affects fiber yield and quality. Although studies on salt tolerance have achieved great progress in cotton since the completion of cotton genome sequencing, knowledge about how cotton copes with salt stress is still scant. S-adenosylmethionine (SAM) plays important roles in many organelles with the help of the SAM transporter, and it is also a synthetic precursor for substances such as ethylene (ET), polyamines (PAs), betaine, and lignin, which often accumulate in plants in response to stresses. This review focused on the biosynthesis and signal transduction pathways of ET and PAs. The current progress of ET and PAs in regulating plant growth and development under salt stress has been summarized. Moreover, we verified the function of a cotton SAM transporter and suggested that it can regulate salt stress response in cotton. At last, an improved regulatory pathway of ET and PAs under salt stress in cotton is proposed for the breeding of salt-tolerant varieties.
Collapse
Affiliation(s)
- Li Yang
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Fuyong Zhao
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xianliang Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Wei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Junsen Huang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaoyu Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yangai Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Kunlun He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Daigang Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
6
|
Rahman A, Tajti J, Majláth I, Janda T, Prerostova S, Ahres M, Pál M. Influence of a phyA Mutation on Polyamine Metabolism in Arabidopsis Depends on Light Spectral Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:1689. [PMID: 37111912 PMCID: PMC10146636 DOI: 10.3390/plants12081689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
The aim of the study was to reveal the influence of phyA mutations on polyamine metabolism in Arabidopsis under different spectral compositions. Polyamine metabolism was also provoked with exogenous spermine. The polyamine metabolism-related gene expression of the wild type and phyA plants responded similarly under white and far-red light conditions but not at blue light. Blue light influences rather the synthesis side, while far red had more pronounced effects on the catabolism and back-conversion of the polyamines. The observed changes under elevated far-red light were less dependent on PhyA than the blue light responses. The polyamine contents were similar under all light conditions in the two genotypes without spermine application, suggesting that a stable polyamine pool is important for normal plant growth conditions even under different spectral conditions. However, after spermine treatment, the blue regime had more similar effects on synthesis/catabolism and back-conversion to the white light than the far-red light conditions. The additive effects of differences observed on the synthesis, back-conversion and catabolism side of metabolism may be responsible for the similar putrescine content pattern under all light conditions, even in the presence of an excess of spermine. Our results demonstrated that both light spectrum and phyA mutation influence polyamine metabolism.
Collapse
Affiliation(s)
- Altafur Rahman
- Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, 2462 Martonvásár, Hungary
| | - Judit Tajti
- Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, 2462 Martonvásár, Hungary
| | - Imre Majláth
- Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, 2462 Martonvásár, Hungary
| | - Tibor Janda
- Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, 2462 Martonvásár, Hungary
| | - Sylva Prerostova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 11720 Prague, Czech Republic
| | - Mohamed Ahres
- Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, 2462 Martonvásár, Hungary
| | - Magda Pál
- Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, 2462 Martonvásár, Hungary
| |
Collapse
|
7
|
Arginine Decarboxylase Gene ADC2 Regulates Fiber Elongation in Cotton. Genes (Basel) 2022; 13:genes13050784. [PMID: 35627169 PMCID: PMC9140970 DOI: 10.3390/genes13050784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/12/2022] [Accepted: 04/23/2022] [Indexed: 01/27/2023] Open
Abstract
Cotton is an important agro-industrial crop providing raw material for the textile industry. Fiber length is the key factor that directly affects fiber quality. ADC, arginine decarboxylase, is the key rate-limiting enzyme in the polyamine synthesis pathway; whereas, there is no experimental evidence that ADC is involved in fiber development in cotton yet. Our transcriptome analysis of the fiber initiation material of Gossypium arboreum L. showed that the expression profile of GaADC2 was induced significantly. Here, GhADC2, the allele of GaADC2 in tetraploid upland cotton Gossypium hirsutum L., exhibited up-regulated expression pattern during fiber elongation in cotton. Levels of polyamine are correlated with fiber elongation; especially, the amount of putrescine regulated by ADC was increased. Scanning electron microscopy showed that the fiber length was increased with exogenous addition of an ADC substrate or product putrescine; whereas, the fiber density was decreased with exogenous addition of an ADC specific inhibitor. Next, genome-wide transcriptome profiling of fiber elongation with exogenous putrescine addition was performed to determine the molecular basis in Gossypium hirsutum. A total of 3163 differentially expressed genes were detected, which mainly participated in phenylpropanoid biosynthesis, fatty acid elongation, and sesquiterpenoid and triterpenoid biosynthesis pathways. Genes encoding transcription factors MYB109, WRKY1, and TCP14 were enriched. Therefore, these results suggested the ADC2 and putrescine involvement in the development and fiber elongation of G. hirsutum, and provides a basis for cotton fiber development research in future.
Collapse
|
8
|
Putrescine: A Key Metabolite Involved in Plant Development, Tolerance and Resistance Responses to Stress. Int J Mol Sci 2022; 23:ijms23062971. [PMID: 35328394 PMCID: PMC8955586 DOI: 10.3390/ijms23062971] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
Putrescine (Put) is the starting point of the polyamines (PAs) pathway and the most common PA in higher plants. It is synthesized by two main pathways (from ornithine and arginine), but recently a third pathway from citrulline was reported in sesame plants. There is strong evidence that Put may play a crucial role not only in plant growth and development but also in the tolerance responses to the major stresses affecting crop production. The main strategies to investigate the involvement of PA in plant systems are based on the application of competitive inhibitors, exogenous PAs treatments, and the most efficient approaches based on mutant and transgenic plants. Thus, in this article, the recent advances in understanding the role of this metabolite in plant growth promotion and protection against abiotic and biotic stresses will be discussed to provide an overview for future research.
Collapse
|
9
|
González-Hernández AI, Scalschi L, Troncho P, García-Agustín P, Camañes G. Putrescine biosynthetic pathways modulate root growth differently in tomato seedlings grown under different N sources. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153560. [PMID: 34798464 DOI: 10.1016/j.jplph.2021.153560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
The biosynthesis of putrescine is mainly driven by arginine decarboxylase (ADC) and ornithine decarboxylase (ODC). Hence, in this study, we generated independent ADC and ODC transgenic silenced tomato lines (SilADC and SilODC, respectively) to test the effect of defective ADC and ODC gene expression on root development under nitrate (NN) or ammonium (NA) conditions. The results showed that SilODC seedlings displayed an increase in ADC expression that led to polyamine accumulation, suggesting a compensatory effect of ADC. However, this effect was not observed in SilADC seedlings. These pathways are involved in different growth processes. The SilADC seedlings showed an increase in fresh weight, shoot length, lateral root number and shoot:root ratio under the NN source and an enhancement in fresh weight, and shoot and root length under NA conditions. However, SilODC seedlings displayed greater weight and shoot length under the NN source, whereas a decrease in lateral root density was found under NA conditions. Moreover, two overexpressed ODC lines were generated to check the relevance of the compensatory effect of the ADC pathway when ODC was silenced. These overexpressed lines showed not only an enhancement of almost all the studied growth parameters under both N sources but also an amelioration of ammonium syndrome under NA conditions. Together, these results reflect the importance of both pathways in plant growth, particularly ODC silencing, which requires compensation by ADC induction.
Collapse
Affiliation(s)
- Ana Isabel González-Hernández
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y Del Medio Natural, ESTCE, Universitat Jaume I, 12071, Castellón, Spain
| | - Loredana Scalschi
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y Del Medio Natural, ESTCE, Universitat Jaume I, 12071, Castellón, Spain
| | - Pilar Troncho
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y Del Medio Natural, ESTCE, Universitat Jaume I, 12071, Castellón, Spain
| | - Pilar García-Agustín
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y Del Medio Natural, ESTCE, Universitat Jaume I, 12071, Castellón, Spain
| | - Gemma Camañes
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y Del Medio Natural, ESTCE, Universitat Jaume I, 12071, Castellón, Spain.
| |
Collapse
|
10
|
Guo H, Lyv Y, Zheng W, Yang C, Li Y, Wang X, Chen R, Wang C, Luo J, Qu L. Comparative Metabolomics Reveals Two Metabolic Modules Affecting Seed Germination in Rice ( Oryza sativa). Metabolites 2021; 11:metabo11120880. [PMID: 34940638 PMCID: PMC8707830 DOI: 10.3390/metabo11120880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
The process of seed germination is crucial not only for the completion of the plant life cycle but also for agricultural production and food chemistry; however, the underlying metabolic regulation mechanism involved in this process is still far from being clearly revealed. In this study, one indica variety (Zhenshan 97, with rapid germination) and one japonica variety (Nipponbare, with slow germination) in rice were used for in-depth analysis of the metabolome at different germination stages (0, 3, 6, 9, 12, 24, 36, and 48 h after imbibition, HAI) and exploration of key metabolites/metabolic pathways. In total, 380 annotated metabolites were analyzed by using a high-performance liquid chromatography (HPLC)-based targeted method combined with a nontargeted metabolic profiling method. By using bioinformatics and statistical methods, the dynamic changes in metabolites during germination in the two varieties were compared. Through correlation analysis, coefficient of variation analysis and differential accumulation analysis, 74 candidate metabolites that may be closely related to seed germination were finally screened. Among these candidates, 29 members belong to the ornithine–asparagine–polyamine module and the shikimic acid–tyrosine–tryptamine–phenylalanine–flavonoid module. As the core member of the second module, shikimic acid’s function in the promotion of seed germination was confirmed by exogenous treatment. These results told that nitrogen flow and antioxidation/defense responses are potentially crucial for germinating seeds and seedlings. It deepens our understanding of the metabolic regulation mechanism of seed germination and points out the direction for our future research.
Collapse
Affiliation(s)
- Hao Guo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Y.L.); (W.Z.); (C.Y.); (Y.L.); (X.W.); (J.L.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- College of Tropical Crops, Hainan University, Haikou 570228, China; (R.C.); (C.W.)
| | - Yuanyuan Lyv
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Y.L.); (W.Z.); (C.Y.); (Y.L.); (X.W.); (J.L.)
- College of Tropical Crops, Hainan University, Haikou 570228, China; (R.C.); (C.W.)
| | - Weikang Zheng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Y.L.); (W.Z.); (C.Y.); (Y.L.); (X.W.); (J.L.)
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Y.L.); (W.Z.); (C.Y.); (Y.L.); (X.W.); (J.L.)
| | - Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Y.L.); (W.Z.); (C.Y.); (Y.L.); (X.W.); (J.L.)
| | - Xuyang Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Y.L.); (W.Z.); (C.Y.); (Y.L.); (X.W.); (J.L.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ridong Chen
- College of Tropical Crops, Hainan University, Haikou 570228, China; (R.C.); (C.W.)
| | - Chao Wang
- College of Tropical Crops, Hainan University, Haikou 570228, China; (R.C.); (C.W.)
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Y.L.); (W.Z.); (C.Y.); (Y.L.); (X.W.); (J.L.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- College of Tropical Crops, Hainan University, Haikou 570228, China; (R.C.); (C.W.)
| | - Lianghuan Qu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Y.L.); (W.Z.); (C.Y.); (Y.L.); (X.W.); (J.L.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
11
|
Yariuchi Y, Okamoto T, Noutoshi Y, Takahashi T. Responses of Polyamine-Metabolic Genes to Polyamines and Plant Stress Hormones in Arabidopsis Seedlings. Cells 2021; 10:3283. [PMID: 34943791 PMCID: PMC8699553 DOI: 10.3390/cells10123283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
In plants, many of the enzymes in polyamine metabolism are encoded by multiple genes, whose expressions are differentially regulated under different physiological conditions. For comprehensive understanding of their regulation during the seedling growth stage, we examined the expression of polyamine metabolic genes in response to polyamines and stress-related plant hormones in Arabidopsis thaliana. While confirming previous findings such as induction of many of the genes by abscisic acid, induction of arginase genes and a copper amine oxidase gene, CuAOα3, by methyl jasmonate, that of an arginine decarboxylase gene, ADC2, and a spermine synthase gene, SPMS, by salicylic acid, and negative feedback regulation of thermospermine biosynthetic genes by thermospermine, our results showed that expressions of most of the genes are not responsive to exogenous polyamines. We thus examined expression of OsPAO6, which encodes an apoplastic polyamine oxidase and is strongly induced by polyamines in rice, by using the promoter-GUS fusion in transgenic Arabidopsis seedlings. The GUS activity was increased by treatment with methyl jasmonate but neither by polyamines nor by other plant hormones, suggesting a difference in the response to polyamines between Arabidopsis and rice. Our results provide a framework to study regulatory modules directing expression of each polyamine metabolic gene.
Collapse
Affiliation(s)
- Yusaku Yariuchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan; (Y.Y.); (T.O.)
| | - Takashi Okamoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan; (Y.Y.); (T.O.)
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan;
| | - Taku Takahashi
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan; (Y.Y.); (T.O.)
| |
Collapse
|
12
|
Rossi FR, Gárriz A, Marina M, Pieckenstain FL. Modulation of polyamine metabolism in Arabidopsis thaliana by salicylic acid. PHYSIOLOGIA PLANTARUM 2021; 173:843-855. [PMID: 34109645 DOI: 10.1111/ppl.13478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Polyamines (PAs) play important roles in plant defense against pathogens, but the regulation of PA metabolism by hormone-mediated defense signaling pathways has not been studied in depth. In this study, the modulation of PA metabolism by salicylic acid (SA) was analyzed in Arabidopsis by combining the exogenous application of this hormone with PA biosynthesis and SA synthesis/signaling mutants. SA induced notable modifications of PA metabolism, mainly consisting in putrescine (Put) accumulation both in whole-plant extracts and apoplastic fluids. Put was accumulated at the expense of increased biosynthesis by ARGININE DECARBOXYLASE 2 and decreased oxidation by copper amine oxidase. Enhancement of Put levels by SA was independent of the regulatory protein NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and the signaling kinases MKK4 and MPK3, but depended on MPK6. However, plant infection by Pseudomonas syringae pv. tomato DC3000 elicited Put accumulation in an SA-dependent way. The present study demonstrates a clear connection between SA signaling and plant PA metabolism in Arabidopsis and contributes to understanding the mechanisms by which SA modulates PA levels during plant-pathogen interactions.
Collapse
Affiliation(s)
- Franco R Rossi
- Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Andrés Gárriz
- Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - María Marina
- Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Fernando L Pieckenstain
- Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| |
Collapse
|
13
|
Li M, Wang C, Shi J, Zhang Y, Liu T, Qi H. Abscisic acid and putrescine synergistically regulate the cold tolerance of melon seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:1054-1064. [PMID: 34293605 DOI: 10.1016/j.plaphy.2021.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/29/2021] [Accepted: 07/10/2021] [Indexed: 05/18/2023]
Abstract
Low temperature in early spring severely endangers the growth and development of melon seedlings. Abscisic acid (ABA) and polyamines (PAs) are important signal molecules in plant response to stress. However, the issue of whether they interact to regulate melon cold tolerance remains largely uncharacterized. Here, we identified a total of 14 key genes related to ABA and PAs biosynthesis, including four CmNCEDs, and ten genes in PA pathway (one CmADC, one CmODC, four CmSAMDCs, two CmSPDSs, and two CmSPAMs). Two oriental melon cultivars (IVF571, cold-tolerant; IVF004, cold-sensitive) were selected to explore the difference of ABA and PAs biosynthesis under cold stress (15 °C/6 °C, day/night). Results showed that the expressions of CmNCED3, CmNCED3-2, CmADC, CmSAMDCs, CmSPDS2 and CmSPMS1 were significantly up-regulated. ABA and putrescine levels were significantly increased in IVF571 under cold stress. Inhibiting the biosynthesis of endogenous ABA with nordihydroguaiaretic acid (NDGA) or Put with D-Arginine (D-Arg) dramatically decreased the levels of each other and aggravated the cold injury of melon seedlings. In addition, spraying with exogenous 75 μM ABA or 1 mM Put improved the activities of superoxide dismutase, catalase and ascorbate peroxidase, and reduced the membrane lipid peroxidation damage of melon seedlings under cold stress. In all, the higher cold tolerance of IVF571 seedlings than that of IVF004 seedlings might be related to the increase in ABA and Put levels triggered by cold stress. ABA and Put could regulate the biosynthesis of each other and might act as signals to trigger the antioxidant system, thereby increasing melon cold tolerance.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National and Local Joint Engineering Research Centre of Northern Horticultural, Facilities Design and Application Technology (Liaoning), Shenyang, 110866, Liaoning, PR China
| | - Chenghui Wang
- Department of Life Science, Dezhou University, Dezhou, 253023, Shandong, PR China
| | - Jiali Shi
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National and Local Joint Engineering Research Centre of Northern Horticultural, Facilities Design and Application Technology (Liaoning), Shenyang, 110866, Liaoning, PR China
| | - Yujie Zhang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National and Local Joint Engineering Research Centre of Northern Horticultural, Facilities Design and Application Technology (Liaoning), Shenyang, 110866, Liaoning, PR China
| | - Tao Liu
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National and Local Joint Engineering Research Centre of Northern Horticultural, Facilities Design and Application Technology (Liaoning), Shenyang, 110866, Liaoning, PR China.
| | - Hongyan Qi
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National and Local Joint Engineering Research Centre of Northern Horticultural, Facilities Design and Application Technology (Liaoning), Shenyang, 110866, Liaoning, PR China.
| |
Collapse
|
14
|
Pál M, Szalai G, Gondor OK, Janda T. Unfinished story of polyamines: Role of conjugation, transport and light-related regulation in the polyamine metabolism in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110923. [PMID: 34034871 DOI: 10.1016/j.plantsci.2021.110923] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 05/27/2023]
Abstract
Polyamines play a fundamental role in the functioning of all cells. Their regulatory role in plant development, their function under stress conditions, and their metabolism have been well documented as regards both synthesis and catabolism in an increasing number of plant species. However, the majority of these studies concentrate on the levels of the most abundant polyamines, sometimes providing data on the enzyme activity or gene expression levels during polyamine synthesis, but generally making no mention of the fact that changes in the polyamine pool are very dynamic, and that other processes are also involved in the regulation of actual polyamine levels. Differences in the distribution of individual polyamines and their conjugation with other compounds were described some time ago, but these have been given little attention. In addition, the role of polyamine transporters in plants is only now being recognised. The present review highlights the importance of conjugated polyamines and also points out that investigations should not only deal with the polyamine metabolism itself, but should also cover other important questions, such as the relationship between light perception and the polyamine metabolism, or the involvement of polyamines in the circadian rhythm.
Collapse
Affiliation(s)
- Magda Pál
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Brunszvik u. 2, Martonvásár, H-2462, Hungary.
| | - Gabriella Szalai
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Brunszvik u. 2, Martonvásár, H-2462, Hungary
| | - Orsolya Kinga Gondor
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Brunszvik u. 2, Martonvásár, H-2462, Hungary
| | - Tibor Janda
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Brunszvik u. 2, Martonvásár, H-2462, Hungary
| |
Collapse
|
15
|
Polyamine Metabolism in Scots Pine Embryogenic Cells under Potassium Deficiency. Cells 2021; 10:cells10051244. [PMID: 34070116 PMCID: PMC8158353 DOI: 10.3390/cells10051244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
Polyamines (PA) have a protective role in maintaining growth and development in Scots pine during abiotic stresses. In the present study, a controlled liquid Scots pine embryogenic cell culture was used for studying the responses of PA metabolism related to potassium deficiency. The transcription level regulation of PA metabolism led to the accumulation of putrescine (Put). Arginine decarboxylase (ADC) had an increased expression trend under potassium deficiency, whereas spermidine synthase (SPDS) expression decreased. Generally, free spermidine (Spd) and spermine (Spm)/ thermospermine (t-Spm) contents were kept relatively stable, mostly by the downregulation of polyamine oxidase (PAO) expression. The low potassium contents in the culture medium decreased the potassium content of the cells, which inhibited cell mass growth, but did not affect cell viability. The reduced growth was probably caused by repressed metabolic activity and cell division, whereas there were no signs of H2O2-induced oxidative stress or increased cell death. The low intracellular content of K+ decreased the content of Na+. The decrease in the pH of the culture medium indicated that H+ ions were pumped out of the cells. Altogether, our findings emphasize the specific role(s) of Put under potassium deficiency and strict developmental regulation of PA metabolism in Scots pine.
Collapse
|
16
|
Hashem AM, Moore S, Chen S, Hu C, Zhao Q, Elesawi IE, Feng Y, Topping JF, Liu J, Lindsey K, Chen C. Putrescine Depletion Affects Arabidopsis Root Meristem Size by Modulating Auxin and Cytokinin Signaling and ROS Accumulation. Int J Mol Sci 2021; 22:4094. [PMID: 33920993 PMCID: PMC8071467 DOI: 10.3390/ijms22084094] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Polyamines (PAs) dramatically affect root architecture and development, mainly by unknown mechanisms; however, accumulating evidence points to hormone signaling and reactive oxygen species (ROS) as candidate mechanisms. To test this hypothesis, PA levels were modified by progressively reducing ADC1/2 activity and Put levels, and then changes in root meristematic zone (MZ) size, ROS, and auxin and cytokinin (CK) signaling were investigated. Decreasing putrescine resulted in an interesting inverted-U-trend in primary root growth and a similar trend in MZ size, and differential changes in putrescine (Put), spermidine (Spd), and combined spermine (Spm) plus thermospermine (Tspm) levels. At low Put concentrations, ROS accumulation increased coincidently with decreasing MZ size, and treatment with ROS scavenger KI partially rescued this phenotype. Analysis of double AtrbohD/F loss-of-function mutants indicated that NADPH oxidases were not involved in H2O2 accumulation and that elevated ROS levels were due to changes in PA back-conversion, terminal catabolism, PA ROS scavenging, or another pathway. Decreasing Put resulted in a non-linear trend in auxin signaling, whereas CK signaling decreased, re-balancing auxin and CK signaling. Different levels of Put modulated the expression of PIN1 and PIN2 auxin transporters, indicating changes to auxin distribution. These data strongly suggest that PAs modulate MZ size through both hormone signaling and ROS accumulation in Arabidopsis.
Collapse
Affiliation(s)
- Ahmed M. Hashem
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.H.); (S.M.); (S.C.); (C.H.); (Q.Z.); (I.E.E.); (Y.F.)
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Science, Guizhou University, Guiyang 550025, China
- Biotechnology Department, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Simon Moore
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.H.); (S.M.); (S.C.); (C.H.); (Q.Z.); (I.E.E.); (Y.F.)
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; (J.F.T.); (J.L.); (K.L.)
| | - Shangjian Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.H.); (S.M.); (S.C.); (C.H.); (Q.Z.); (I.E.E.); (Y.F.)
| | - Chenchen Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.H.); (S.M.); (S.C.); (C.H.); (Q.Z.); (I.E.E.); (Y.F.)
| | - Qing Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.H.); (S.M.); (S.C.); (C.H.); (Q.Z.); (I.E.E.); (Y.F.)
| | - Ibrahim Eid Elesawi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.H.); (S.M.); (S.C.); (C.H.); (Q.Z.); (I.E.E.); (Y.F.)
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Science, Guizhou University, Guiyang 550025, China
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Yanni Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.H.); (S.M.); (S.C.); (C.H.); (Q.Z.); (I.E.E.); (Y.F.)
| | - Jennifer F. Topping
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; (J.F.T.); (J.L.); (K.L.)
| | - Junli Liu
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; (J.F.T.); (J.L.); (K.L.)
| | - Keith Lindsey
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; (J.F.T.); (J.L.); (K.L.)
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.M.H.); (S.M.); (S.C.); (C.H.); (Q.Z.); (I.E.E.); (Y.F.)
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
17
|
Yin X, Yang Y, Lv Y, Li Y, Yang D, Yue Y, Yang Y. BrrICE1.1 is associated with putrescine synthesis through regulation of the arginine decarboxylase gene in freezing tolerance of turnip (Brassica rapa var. rapa). BMC PLANT BIOLOGY 2020; 20:504. [PMID: 33148172 PMCID: PMC7641815 DOI: 10.1186/s12870-020-02697-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 10/12/2020] [Indexed: 06/02/2023]
Abstract
BACKGROUND In the agricultural areas of Qinghai-Tibet Plateau, temperature varies widely from day to night during the growing season, which makes the extreme temperature become one of the limiting factors of crop yield. Turnip (Brassica rapa var. rapa) is a traditional crop of Tibet grown in the Tibet Plateau, but its molecular and metabolic mechanisms of freezing tolerance are unclear. RESULTS Here, based on the changes in transcriptional and metabolic levels of Tibetan turnip under freezing treatment, the expression of the arginine decarboxylase gene BrrADC2.2 exhibited an accumulative pattern in accordance with putrescine content. Moreover, we demonstrated that BrrICE1.1 (Inducer of CBF Expression 1) could directly bind to the BrrADC2.2 promoter, activating BrrADC2.2 to promote the accumulation of putrescine, which was verified by RNAi and overexpression analyses for both BrrADC2.2 and BrrICE1.1 using transgenic hair root. The function of putrescine in turnip was further analyzed by exogenous application putrescine and its inhibitor DL-α-(Difluoromethyl) arginine (DFMA) under freezing tolerance. In addition, the BrrICE1.1 was found to be involved in the ICE1-CBF pathway to increase the freezing stress of turnip. CONCLUSIONS BrrICE1.1 could bind the promoter of BrrADC2.2 or CBFs to participate in freezing tolerance of turnip by transcriptomics and targeted metabolomics analyses. This study revealed the regulatory network of the freezing tolerance process in turnip and increased our understanding of the plateau crops response to extreme environments in Tibet.
Collapse
Affiliation(s)
- Xin Yin
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunqiang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yanqiu Lv
- Changchun Normal University, Changchun, 130032, China
| | - Yan Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Danni Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanling Yue
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, China
| | - Yongping Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China.
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
18
|
Lou YR, Ahmed S, Yan J, Adio AM, Powell HM, Morris PF, Jander G. Arabidopsis ADC1 functions as an N δ -acetylornithine decarboxylase. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:601-613. [PMID: 31081586 DOI: 10.1111/jipb.12821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
Polyamines are small aliphatic amines found in almost all organisms, ranging from bacteria to plants and animals. In most plants, putrescine, the metabolic precursor for longer polyamines, such as spermidine and spermine, is produced from arginine, with either agmatine or ornithine as intermediates. Here we show that Arabidopsis thaliana (Arabidopsis) arginine decarboxylase 1 (ADC1), one of the two known arginine decarboxylases in Arabidopsis, not only synthesizes agmatine from arginine, but also converts Nδ -acetylornithine to N-acetylputrescine. Phylogenetic analyses indicate that duplication and neofunctionalization of ADC1 and NATA1, the enzymes that synthesize Nδ -acetylornithine in Arabidopsis, co-occur in a small number of related species in the Brassicaceae. Unlike ADC2, which is localized in the chloroplasts, ADC1 is in the endoplasmic reticulum together with NATA1, an indication that these two enzymes have access to the same substrate pool. Together, these results are consistent with a model whereby NATA1 and ADC1 together provide a pathway for the synthesis of N-acetylputrescine in Arabidopsis.
Collapse
Affiliation(s)
- Yann-Ru Lou
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Sheaza Ahmed
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Jian Yan
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Adewale M Adio
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Hannah M Powell
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Paul F Morris
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Georg Jander
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| |
Collapse
|
19
|
Cui G, Chai H, Yin H, Yang M, Hu G, Guo M, Yi R, Zhang P. Full-length transcriptome sequencing reveals the low-temperature-tolerance mechanism of Medicago falcata roots. BMC PLANT BIOLOGY 2019; 19:575. [PMID: 31864302 PMCID: PMC6925873 DOI: 10.1186/s12870-019-2192-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/08/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Low temperature is one of the main environmental factors that limits crop growth, development, and production. Medicago falcata is an important leguminous herb that is widely distributed worldwide. M. falcata is related to alfalfa but is more tolerant to low temperature than alfalfa. Understanding the low temperature tolerance mechanism of M. falcata is important for the genetic improvement of alfalfa. RESULTS In this study, we explored the transcriptomic changes in the roots of low-temperature-treated M. falcata plants by combining SMRT sequencing and NGS technologies. A total of 115,153 nonredundant sequences were obtained, and 8849 AS events, 73,149 SSRs, and 4189 lncRNAs were predicted. A total of 111,587 genes from SMRT sequencing were annotated, and 11,369 DEGs involved in plant hormone signal transduction, protein processing in endoplasmic reticulum, carbon metabolism, glycolysis/gluconeogenesis, starch and sucrose metabolism, and endocytosis pathways were identified. We characterized 1538 TF genes into 45 TF gene families, and the most abundant TF family was the WRKY family, followed by the ERF, MYB, bHLH and NAC families. A total of 134 genes, including 101 whose expression was upregulated and 33 whose expression was downregulated, were differentially coexpressed at all five temperature points. PB40804, PB75011, PB110405 and PB108808 were found to play crucial roles in the tolerance of M. falcata to low temperature. WGCNA revealed that the MEbrown module was significantly correlated with low-temperature stress in M. falcata. Electrolyte leakage was correlated with most genetic modules and verified that electrolyte leakage can be used as a direct stress marker in physiological assays to indicate cell membrane damage from low-temperature stress. The consistency between the qRT-PCR results and RNA-seq analyses confirmed the validity of the RNA-seq data and the analysis of the regulatory mechanism of low-temperature stress on the basis of the transcriptome. CONCLUSIONS The full-length transcripts generated in this study provide a full characterization of the transcriptome of M. falcata and may be useful for mining new low-temperature stress-related genes specific to M. falcata. These new findings could facilitate the understanding of the low-temperature-tolerance mechanism of M. falcata.
Collapse
Affiliation(s)
- Guowen Cui
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Hua Chai
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161005, China
| | - Hang Yin
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Mei Yang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Guofu Hu
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Mingying Guo
- Hulunbuir Grassland Station, Hulunbuir, 021008, China
| | - Rugeletu Yi
- Hulunbuir Grassland Station, Hulunbuir, 021008, China
| | - Pan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
20
|
Vuosku J, Muilu-Mäkelä R, Avia K, Suokas M, Kestilä J, Läärä E, Häggman H, Savolainen O, Sarjala T. Thermospermine Synthase ( ACL5) and Diamine Oxidase ( DAO) Expression Is Needed for Zygotic Embryogenesis and Vascular Development in Scots Pine. FRONTIERS IN PLANT SCIENCE 2019; 10:1600. [PMID: 31921249 PMCID: PMC6934065 DOI: 10.3389/fpls.2019.01600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 11/14/2019] [Indexed: 05/27/2023]
Abstract
Unlike in flowering plants, the detailed roles of the enzymes in the polyamine (PA) pathway in conifers are poorly known. We explored the sequence conservation of the PA biosynthetic genes and diamine oxidase (DAO) in conifers and flowering plants to reveal the potential functional diversification of the enzymes between the plant lineages. The expression of the genes showing different selective constraints was studied in Scots pine zygotic embryogenesis and early seedling development. We found that the arginine decarboxylase pathway is strongly preferred in putrescine production in the Scots pine as well as generally in conifers and that the reduced use of ornithine decarboxylase (ODC) has led to relaxed purifying selection in ODC genes. Thermospermine synthase (ACL5) genes evolve under strong purifying selection in conifers and the DAO gene is also highly conserved in pines. In developing Scots pine seeds, the expression of both ACL5 and DAO increased as embryogenesis proceeded. Strong ACL5 expression was present in the procambial cells of the embryo and in the megagametophyte cells destined to die via morphologically necrotic cell death. Thus, the high sequence conservation of ACL5 genes in conifers may indicate the necessity of ACL5 for both embryogenesis and vascular development. Moreover, the result suggests the involvement of ACL5 in morphologically necrotic cell death and supports the view of the genetic regulation of necrosis in Scots pine embryogenesis and in plant development. DAO transcripts were located close to the cell walls and between the walls of adjacent cells in Scots pine zygotic embryos and in the roots of young seedlings. We propose that DAO, in addition to the role in Put oxidation for providing H2O2 during the cell-wall structural processes, may also participate in cell-to-cell communication at the mRNA level. To conclude, our findings indicate that the PA pathway of Scots pines possesses several special functional characteristics which differ from those of flowering plants.
Collapse
Affiliation(s)
- Jaana Vuosku
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | | | - Komlan Avia
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Marko Suokas
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Johanna Kestilä
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Esa Läärä
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, Finland
| | - Hely Häggman
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Outi Savolainen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Tytti Sarjala
- Production Systems, Natural Resources Institute Finland, Espoo, Finland
| |
Collapse
|
21
|
El Amrani A, Couée I, Berthomé R, Ramel F, Gouesbet G, Sulmon C. Involvement of polyamines in sucrose-induced tolerance to atrazine-mediated chemical stress in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2019; 238:1-11. [PMID: 31121522 DOI: 10.1016/j.jplph.2019.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 05/10/2023]
Abstract
Treatment of Arabidopsis thaliana seedlings with the PSII-inhibiting herbicide atrazine results in xenobiotic and oxidative stress, developmental arrest, induction of senescence and cell death processes. In contrast, exogenous sucrose supply confers a high level of atrazine stress tolerance, in relation with genome-wide modifications of transcript levels and regulation of genes involved in detoxification, defense and repair. However, the regulation mechanisms related to exogenous sucrose, involved in this sucrose-induced tolerance, are largely unknown. Characterization of these mechanisms was carried out through a combination of transcriptomic, metabolic, functional and mutant analysis under different conditions of atrazine exposure. Exogenous sucrose was found to differentially regulate genes involved in polyamine synthesis. ARGININE DECARBOXYLASE ADC1 and ADC2 paralogues, which encode the rate-limiting enzyme (EC 4.1.1.19) of the first step of polyamine biosynthesis, were strongly upregulated by sucrose treatment in the presence of atrazine. Such regulation occurred concomitantly with significant changes of major polyamines (putrescine, spermidine, spermine). Physiological characterization of a mutant affected in ADC activity and exogenous treatments with sucrose, putrescine, spermidine and spermine further showed that modification of polyamine synthesis and of polyamine levels could play adaptive roles in response to atrazine stress, and that putrescine and spermine had antagonistic effects, especially in the presence of sucrose. This interplay between sucrose, putrescine and spermine is discussed in relation with survival and anti-death mechanisms in the context of chemical stress exposure.
Collapse
Affiliation(s)
- Abdelhak El Amrani
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, Campus de Beaulieu, Bâtiment 14A, 263 avenue du Général Leclerc, F-35000, Rennes, France
| | - Ivan Couée
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, Campus de Beaulieu, Bâtiment 14A, 263 avenue du Général Leclerc, F-35000, Rennes, France
| | - Richard Berthomé
- LIPM, Université de Toulouse, INRA, CNRS, INPT, Castanet-Tolosan, France
| | - Fanny Ramel
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, Campus de Beaulieu, Bâtiment 14A, 263 avenue du Général Leclerc, F-35000, Rennes, France
| | - Gwenola Gouesbet
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, Campus de Beaulieu, Bâtiment 14A, 263 avenue du Général Leclerc, F-35000, Rennes, France
| | - Cécile Sulmon
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, Campus de Beaulieu, Bâtiment 14A, 263 avenue du Général Leclerc, F-35000, Rennes, France.
| |
Collapse
|
22
|
Kou S, Chen L, Tu W, Scossa F, Wang Y, Liu J, Fernie AR, Song B, Xie C. The arginine decarboxylase gene ADC1, associated to the putrescine pathway, plays an important role in potato cold-acclimated freezing tolerance as revealed by transcriptome and metabolome analyses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1283-1298. [PMID: 30307077 DOI: 10.1111/tpj.14126] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 09/29/2018] [Accepted: 10/04/2018] [Indexed: 05/25/2023]
Abstract
Low temperature severely influences potato production as the cultivated potato (Solanum tuberosum) is frost sensitive, however the mechanism underlying the freezing tolerance of the potato is largely unknown. In the present research, we studied the transcriptome and metabolome of the freezing-tolerant wild species Solanum acaule (Aca) and freezing-sensitive cultivated S. tuberosum (Tub) to identify the main pathways and important factors related to freezing tolerance. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation indicated that polyamine and amino acid metabolic pathways were specifically upregulated in Aca under cold treatment. The transcriptome changes detected in Aca were accompanied by the specific accumulation of putrescine, saccharides, amino acids and other metabolites. The combination of transcriptome and metabolome analyses revealed that putrescine exhibited an accumulative pattern in accordance with the expression of the arginine decarboxylase gene ADC1. The primary role of putrescine was further confirmed by analyzing all three polyamines (putrescine, spermidine, and spermine) and the genes encoding the corresponding enzymes in two sets of potato genotypes with distinct freezing tolerance, implying that only putrescine and ADC1 were uniquely enhanced by cold in the freezing-tolerant genotypes. The function of putrescine was further analyzed by its exogenous application and the overexpression of SaADC1 in S. tuberosum cv. E3, indicating its important role(s) in cold-acclimated freezing tolerance, which was accompanied with the activation of C-repeat binding factor genes (CBFs). The present research has identified that the ADC1-associated putrescine pathway plays an important role in cold-acclimated freezing tolerance of potato, probably by enhancing the expression of CBF genes.
Collapse
Affiliation(s)
- Shuang Kou
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Chen
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Tu
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Federico Scossa
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Council for Agricultural Research and Economics, Research Center, CREA-OFA, Via di Fioranello 52, 00134, Rome, Italy
| | - Yamei Wang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jun Liu
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Botao Song
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Conghua Xie
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
23
|
Podlešáková K, Ugena L, Spíchal L, Doležal K, De Diego N. Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. N Biotechnol 2018; 48:53-65. [PMID: 30048769 DOI: 10.1016/j.nbt.2018.07.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 06/20/2018] [Accepted: 07/21/2018] [Indexed: 11/16/2022]
Abstract
In plants, γ-aminobutyric acid (GABA) accumulates rapidly in response to environmental stress and variations in its endogenous concentration have been shown to affect plant growth. Exogenous application of GABA has also conferred higher stress tolerance by modulating the expression of genes involved in plant signalling, transcriptional regulation, hormone biosynthesis, reactive oxygen species production and polyamine metabolism. Plant hormones play critical roles in adaptation of plants to adverse environmental conditions through a sophisticated crosstalk among them. Several studies have provided evidence for the relationships between GABA, polyamines and hormones such as abscisic acid, cytokinins, auxins, gibberellins and ethylene, among others, focussing on the effect that one specific group of compounds exerts over the metabolic and signalling pathways of others. In this review, we bring together information obtained from plants exposed to several stress conditions and discuss the possible links among these different groups of molecules. The analysis supports the view that highly conserved pathways connect primary and secondary metabolism, with an overlap of regulatory functions related to stress responses and tolerance among phytohormones, amino acids and polyamines.
Collapse
Affiliation(s)
- Kateřina Podlešáková
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.
| | - Lydia Ugena
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.
| |
Collapse
|
24
|
Majumdar R, Shao L, Turlapati SA, Minocha SC. Polyamines in the life of Arabidopsis: profiling the expression of S-adenosylmethionine decarboxylase (SAMDC) gene family during its life cycle. BMC PLANT BIOLOGY 2017; 17:264. [PMID: 29281982 PMCID: PMC5745906 DOI: 10.1186/s12870-017-1208-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 12/08/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Arabidopsis has 5 paralogs of the S-adenosylmethionine decarboxylase (SAMDC) gene. Neither their specific role in development nor the role of positive/purifying selection in genetic divergence of this gene family is known. While some data are available on organ-specific expression of AtSAMDC1, AtSAMDC2, AtSAMDC3 and AtSAMDC4, not much is known about their promoters including AtSAMDC5, which is believed to be non-functional. RESULTS (1) Phylogenetic analysis of the five AtSAMDC genes shows similar divergence pattern for promoters and coding sequences (CDSs), whereas, genetic divergence of 5'UTRs and 3'UTRs was independent of the promoters and CDSs; (2) while AtSAMDC1 and AtSAMDC4 promoters exhibit high activity (constitutive in the former), promoter activities of AtSAMDC2, AtSAMDC3 and AtSAMDC5 are moderate to low in seedlings (depending upon translational or transcriptional fusions), and are localized mainly in the vascular tissues and reproductive organs in mature plants; (3) based on promoter activity, it appears that AtSAMDC5 is both transcriptionally and translationally active, but based on it's coding sequence it seems to produce a non-functional protein; (4) though 5'-UTR based regulation of AtSAMDC expression through upstream open reading frames (uORFs) in the 5'UTR is well known, no such uORFs are present in AtSAMDC4 and AtSAMDC5; (5) the promoter regions of all five AtSAMDC genes contain common stress-responsive elements and hormone-responsive elements; (6) at the organ level, the activity of AtSAMDC enzyme does not correlate with the expression of specific AtSAMDC genes or with the contents of spermidine and spermine. CONCLUSIONS Differential roles of positive/purifying selection were observed in genetic divergence of the AtSAMDC gene family. All tissues express one or more AtSAMDC gene with significant redundancy, and concurrently, there is cell/tissue-specificity of gene expression, particularly in mature organs. This study provides valuable information about AtSAMDC promoters, which could be useful in future manipulation of crop plants for nutritive purposes, stress tolerance or bioenergy needs. The AtSAMDC1 core promoter might serve the need of a strong constitutive promoter, and its high expression in the gametophytic cells could be exploited, where strong male/female gametophyte-specific expression is desired; e.g. in transgenic modification of crop varieties.
Collapse
Affiliation(s)
- Rajtilak Majumdar
- Department of Biological Sciences, University of New Hampshire, Durham, NH USA
- USDA-ARS, SRRC, 1100 Robert E. Lee Blvd, New Orleans, LA 70124 USA
| | - Lin Shao
- Department of Biological Sciences, University of New Hampshire, Durham, NH USA
| | - Swathi A. Turlapati
- Department of Biological Sciences, University of New Hampshire, Durham, NH USA
| | - Subhash C. Minocha
- Department of Biological Sciences, University of New Hampshire, Durham, NH USA
| |
Collapse
|
25
|
Maruri-López I, Jiménez-Bremont JF. Hetero- and homodimerization of Arabidopsis thaliana arginine decarboxylase AtADC1 and AtADC2. Biochem Biophys Res Commun 2017; 484:508-513. [DOI: 10.1016/j.bbrc.2017.01.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 01/04/2023]
|
26
|
Shen Y, Ruan Q, Chai H, Yuan Y, Yang W, Chen J, Xin Z, Shi H. The Arabidopsis polyamine transporter LHR1/PUT3 modulates heat responsive gene expression by enhancing mRNA stability. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:1006-1021. [PMID: 27541077 DOI: 10.1111/tpj.13310] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 05/20/2023]
Abstract
Polyamines involve in gene regulation by interacting with and modulating the functions of various anionic macromolecules such as DNA, RNA and proteins. In this study, we identified an important function of the polyamine transporter LHR1 (LOWER EXPRESSION OF HEAT RESPONSIVE GENE1) in heat-inducible gene expression in Arabidopsis thaliana. The lhr1 mutant was isolated through a forward genetic screening for altered expression of the luciferase reporter gene driven by the promoter from the heat-inducible gene AtHSP18.2. The lhr1 mutant showed reduced induction of the luciferase gene in response to heat stress and was more sensitive to high temperature than the wild type. Map-based cloning identified that the LHR1 gene encodes the polyamine transporter PUT3 (POLYAMINE UPTAKE TRANSPORTER 3) localized in the plasma membrane. The LHR1/PUT3 is required for the uptake of extracellular polyamines and plays an important role in stabilizing the mRNAs of several crucial heat stress responsive genes under high temperature. Genome-wide gene expression analysis using RNA-seq identified an array of differentially expressed genes, among which the transcript levels of some of the heat shock protein genes significantly reduced in response to prolonged heat stress in the lhr1 mutant. Our findings revealed an important heat stress response and tolerance mechanism involving polyamine influx which modulates mRNA stability of heat-inducible genes under heat stress conditions.
Collapse
Affiliation(s)
- Yun Shen
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Qingxia Ruan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Haoxi Chai
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Yongze Yuan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wannian Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Junping Chen
- Plant Stress and Germplasm Development Unit, USDA-ARS, Lubbock, TX, 79415, USA
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, USDA-ARS, Lubbock, TX, 79415, USA
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
27
|
John R, Anjum NA, Sopory SK, Akram NA, Ashraf M. Some key physiological and molecular processes of cold acclimation. BIOLOGIA PLANTARUM 2016; 60:603-618. [PMID: 0 DOI: 10.1007/s10535-016-0648-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
|
28
|
Rossi FR, Marina M, Pieckenstain FL. Role of Arginine decarboxylase (ADC) in Arabidopsis thaliana defence against the pathogenic bacterium Pseudomonas viridiflava. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:831-9. [PMID: 25409942 DOI: 10.1111/plb.12289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/12/2014] [Indexed: 05/26/2023]
Abstract
Polyamine biosynthesis starts with putrescine production through the decarboxylation of arginine or ornithine. In Arabidopsis thaliana, putrescine is synthesised exclusively by arginine decarboxylase (ADC), which exists as two isoforms (ADC1 and 2) that are differentially regulated by abiotic stimuli, but their role in defence against pathogens has not been studied in depth. This work analysed the participation of ADC in Arabidopsis defence against Pseudomonas viridiflava. ADC activity and expression, polyamine levels and bacterial resistance were analysed in null mutants of each ADC isoform. In non-infected wild-type (WT) plants, ADC2 expression was much higher than ADC1. Analysis of adc mutants demonstrated that ADC2 contributes to a much higher extent than ADC1 to basal ADC activity and putrescine biosynthesis. In addition, adc2 mutants showed increased basal expression of salicylic acid- and jasmonic acid-dependent PR genes. Bacterial infection induced putrescine accumulation and ADC1 expression in WT plants, but pathogen-induced putrescine accumulation was blocked in adc1 mutants. Results suggest a specific participation of ADC1 in defence, although basal resistance was not decreased by dysfunction of either of the two ADC genes. In addition, and as opposed to WT plants, bacterial infection increased ADC2 expression and ADC activity in adc1 mutants, which could counterbalance the lack of ADC1. Results demonstrate a major contribution of ADC2 to total ADC activity and the specific induction of ADC1 in response to infection. A certain degree of functional redundancy between the two isoforms in relation to their contribution to basal resistance is also evident.
Collapse
Affiliation(s)
- F R Rossi
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina
| | - M Marina
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina
| | - F L Pieckenstain
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina
| |
Collapse
|
29
|
Anwar S, Inselsbacher E, Grundler FM, Hofmann J. Arginine metabolism of Arabidopsis thaliana is modulated by Heterodera schachtii infection. NEMATOLOGY 2015. [DOI: 10.1163/15685411-00002921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The plant-parasitic cyst nematode Heterodera schachtii induces syncytial feeding structures in the roots of host plants. These syncytia provide all required nutrients, water and solutes to the parasites. Previous studies on the composition of primary metabolites in syncytia revealed significantly increased amino acid levels. However, mainly due to technical limitations, little is known about the role of arginine in plant-nematode interactions. This free amino acid plays a central role in the plant primary metabolism and serves as substrate for metabolites involved in plant stress responses. Thus, in the present work, expression of genes coding for the enzymes of arginine metabolism were studied in nematode-induced syncytia compared to non-infected control roots of Arabidopsis thaliana. Further, amiRNA lines were constructed and T-DNA lines were isolated to test their effects on nematode development. While the silencing of genes involved in arginine synthesis increased nematode development, most T-DNA lines did not show any significant difference from the wild type. Amino acid analyses of syncytia showed that they accumulate high arginine levels. In addition, manipulating arginine cycling had a global effect on the local amino acid composition in syncytia as well as on the systemic amino acid levels in roots and shoots.
Collapse
Affiliation(s)
- Shahbaz Anwar
- Department of Crop Sciences, University of Natural Resources and Life Sciences, Konrad Lorenzstrasse 24, 3430 Tulln, Austria
| | - Erich Inselsbacher
- Department of Geography and Regional Research, University of Vienna, 1010 Vienna, Austria
| | - Florian M.W. Grundler
- INRES Molecular Phytomedicine, University Bonn, Karlrobert-Kreiten-Strasse 13, 53115 Bonn, Germany
| | - Julia Hofmann
- Department of Crop Sciences, University of Natural Resources and Life Sciences, Konrad Lorenzstrasse 24, 3430 Tulln, Austria
| |
Collapse
|
30
|
Jiménez-Bremont JF, Marina M, Guerrero-González MDLL, Rossi FR, Sánchez-Rangel D, Rodríguez-Kessler M, Ruiz OA, Gárriz A. Physiological and molecular implications of plant polyamine metabolism during biotic interactions. FRONTIERS IN PLANT SCIENCE 2014; 5:95. [PMID: 24672533 PMCID: PMC3957736 DOI: 10.3389/fpls.2014.00095] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 02/25/2014] [Indexed: 05/19/2023]
Abstract
During ontogeny, plants interact with a wide variety of microorganisms. The association with mutualistic microbes results in benefits for the plant. By contrast, pathogens may cause a remarkable impairment of plant growth and development. Both types of plant-microbe interactions provoke notable changes in the polyamine (PA) metabolism of the host and/or the microbe, being each interaction a complex and dynamic process. It has been well documented that the levels of free and conjugated PAs undergo profound changes in plant tissues during the interaction with microorganisms. In general, this is correlated with a precise and coordinated regulation of PA biosynthetic and catabolic enzymes. Interestingly, some evidence suggests that the relative importance of these metabolic pathways may depend on the nature of the microorganism, a concept that stems from the fact that these amines mediate the activation of plant defense mechanisms. This effect is mediated mostly through PA oxidation, even though part of the response is activated by non-oxidized PAs. In the last years, a great deal of effort has been devoted to profile plant gene expression following microorganism recognition. In addition, the phenotypes of transgenic and mutant plants in PA metabolism genes have been assessed. In this review, we integrate the current knowledge on this field and analyze the possible roles of these amines during the interaction of plants with microbes.
Collapse
Affiliation(s)
- Juan F. Jiménez-Bremont
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis PotosíMéxico
| | - María Marina
- UB3, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| | | | - Franco R. Rossi
- UB3, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| | - Diana Sánchez-Rangel
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis PotosíMéxico
| | | | - Oscar A. Ruiz
- UB1, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| | - Andrés Gárriz
- UB3, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| |
Collapse
|
31
|
Kim SH, Kim SH, Yoo SJ, Min KH, Nam SH, Cho BH, Yang KY. Putrescine regulating by stress-responsive MAPK cascade contributes to bacterial pathogen defense in Arabidopsis. Biochem Biophys Res Commun 2013; 437:502-8. [PMID: 23831467 DOI: 10.1016/j.bbrc.2013.06.080] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/20/2013] [Indexed: 11/16/2022]
Abstract
Polyamines in plants are involved in various physiological and developmental processes including abiotic and biotic stress responses. We investigated the expression of ADCs, which are key enzymes in putrescine (Put) biosynthesis, and roles of Put involving defense response in Arabidopsis. The increased expression of ADC1 and ADC2, and the induction of Put were detected in GVG-NtMEK2(DD) transgenic Arabidopsis, whereas, their performance was partially compromised in GVG-NtMEK2(DD)/mpk3 and GVG-NtMEK2(DD)/mpk6 mutant following DEX treatment. The expression of ADC2 was highly induced by Pst DC3000 inoculation, while the transcript levels of ADC1 were slightly up-regulated. Compared to the WT plant, Put content in the adc2 knock-out mutant was reduced after Pst DC3000 inoculation, and showed enhanced susceptibility to pathogen infection. The adc2 mutant exhibited reduced expression of PR-1 after bacterial infection and the growth of the pathogen was about 4-fold more than that in the WT plant. Furthermore, the disease susceptibility of the adc2 mutant was recovered by the addition of exogenous Put. Taken together, these results suggest that Arabidopsis MPK3 and MPK6 play a positive role in the regulation of Put biosynthesis, and that Put contributes to bacterial pathogen defense in Arabidopsis.
Collapse
Affiliation(s)
- Su-Hyun Kim
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Polyamines Induced by Osmotic Stress Protect Synechocystis sp. PCC 6803 Cells and Arginine Decarboxylase Transcripts Against UV-B Radiation. Appl Biochem Biotechnol 2012; 168:1476-88. [DOI: 10.1007/s12010-012-9871-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/28/2012] [Indexed: 12/30/2022]
|
33
|
Docimo T, Reichelt M, Schneider B, Kai M, Kunert G, Gershenzon J, D'Auria JC. The first step in the biosynthesis of cocaine in Erythroxylum coca: the characterization of arginine and ornithine decarboxylases. PLANT MOLECULAR BIOLOGY 2012; 78:599-615. [PMID: 22311164 DOI: 10.1007/s11103-012-9886-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 01/19/2012] [Indexed: 05/25/2023]
Abstract
Despite the long history of cocaine use among humans and its social and economic significance today, little information is available about the biochemical and molecular aspects of cocaine biosynthesis in coca (Erythroxylum coca) in comparison to what is known about the formation of other pharmacologically-important tropane alkaloids in species of the Solanaceae. In this work, we investigated the site of cocaine biosynthesis in E. coca and the nature of the first step. The two principal tropane alkaloids of E. coca, cocaine and cinnamoyl cocaine, were present in highest concentrations in buds and rolled leaves. These are also the organs in which the rate of alkaloid biosynthesis was the highest based on the incorporation of ¹³CO₂. In contrast, tropane alkaloids in the Solanaceae are biosynthesized in the roots and translocated to the leaves. A collection of EST sequences from a cDNA library made from young E. coca leaves was employed to search for genes encoding the first step in tropane alkaloid biosynthesis. Full-length cDNA clones were identified encoding two candidate enzymes, ornithine decarboxylase (ODC) and arginine decarboxylase (ADC), and the enzymatic activities of the corresponding proteins confirmed by heterologous expression in E. coli and complementation of a yeast mutant. The transcript levels of both ODC and ADC genes were highest in buds and rolled leaves and lower in other organs. The levels of both ornithine and arginine themselves showed a similar pattern, so it was not possible to assign a preferential role in cocaine biosynthesis to one of these proteins.
Collapse
Affiliation(s)
- Teresa Docimo
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Pommerrenig B, Feussner K, Zierer W, Rabinovych V, Klebl F, Feussner I, Sauer N. Phloem-specific expression of Yang cycle genes and identification of novel Yang cycle enzymes in Plantago and Arabidopsis. THE PLANT CELL 2011; 23:1904-19. [PMID: 21540433 PMCID: PMC3123959 DOI: 10.1105/tpc.110.079657] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 03/14/2011] [Accepted: 04/15/2011] [Indexed: 05/19/2023]
Abstract
The 5-methylthioadenosine (MTA) or Yang cycle is a set of reactions that recycle MTA to Met. In plants, MTA is a byproduct of polyamine, ethylene, and nicotianamine biosynthesis. Vascular transcriptome analyses revealed phloem-specific expression of the Yang cycle gene 5-METHYLTHIORIBOSE KINASE1 (MTK1) in Plantago major and Arabidopsis thaliana. As Arabidopsis has only a single MTK gene, we hypothesized that the expression of other Yang cycle genes might also be vascular specific. Reporter gene studies and quantitative analyses of mRNA levels for all Yang cycle genes confirmed this hypothesis for Arabidopsis and Plantago. This includes the Yang cycle genes 5-METHYLTHIORIBOSE-1-PHOSPHATE ISOMERASE1 and DEHYDRATASE-ENOLASE-PHOSPHATASE-COMPLEX1. We show that these two enzymes are sufficient for the conversion of methylthioribose-1-phosphate to 1,2-dihydroxy-3-keto-5-methylthiopentene. In bacteria, fungi, and animals, the same conversion is catalyzed in three to four separate enzymatic steps. Furthermore, comparative analyses of vascular and nonvascular metabolites identified Met, S-adenosyl Met, and MTA preferentially or almost exclusively in the vascular tissue. Our data represent a comprehensive characterization of the Yang cycle in higher plants and demonstrate that the Yang cycle works primarily in the vasculature. Finally, expression analyses of polyamine biosynthetic genes suggest that the Yang cycle in leaves recycles MTA derived primarily from polyamine biosynthesis.
Collapse
Affiliation(s)
- Benjamin Pommerrenig
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
- Erlangen Center of Plant Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Kirstin Feussner
- Abteilung Biochemie der Pflanze, Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, 37077 Gottingen, Germany
| | - Wolfgang Zierer
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Valentyna Rabinovych
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Franz Klebl
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Ivo Feussner
- Abteilung Biochemie der Pflanze, Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, 37077 Gottingen, Germany
| | - Norbert Sauer
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
- Erlangen Center of Plant Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| |
Collapse
|
35
|
Alet AI, Sánchez DH, Ferrando A, Tiburcio AF, Alcazar R, Cuevas JC, Altabella T, Pico FM, Carrasco-Sorli P, Menéndez AB, Ruiz OA. Homeostatic control of polyamine levels under long-term salt stress in Arabidopsis: changes in putrescine content do not alleviate ionic toxicity. PLANT SIGNALING & BEHAVIOR 2011; 6:237-42. [PMID: 21330788 PMCID: PMC3121984 DOI: 10.4161/psb.6.2.14214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 11/16/2010] [Indexed: 05/08/2023]
Abstract
Salt stress has been frequently studied in its first osmotic phase. Very often, data regarding the second ionic phase is missing. It has also been suggested that Putrescine or/and Spermine could be responsible for salt resistance. In order to test this hypothesis under long-term salt stress, we obtained Arabidopsis thaliana transgenic plants harboring pRD29A::oatADC or pRD29A::GUS construction. Although Putrescine was the only polyamine significantly increased after salt acclimation in pRD29A::oatADC transgenic lines, this rendered in no advantage to this kind of stress. The higher Spermine levels found in WT and transgenic lines when compared to control conditions along with no increment on Putrescine levels in WT plants under salt acclimation, leads us to analyze Spermine effect on pADC1 and pADC2 expression. Increasing levels of this polyamine inhibits these promoters expression while enhances pRD29A expression, making Spermine the polyamine responsible for salt acclimation, and the transgenic lines developed in this work suitable for studying Putrescine roles in conditions where its biosynthesis would be inhibited in the WT genotype.
Collapse
Affiliation(s)
- Analía I Alet
- Unidad de Biotecnología, IIB-INTECH (UNSAM-CONICET), Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Alet AI, Sanchez DH, Cuevas JC, Del Valle S, Altabella T, Tiburcio AF, Marco F, Ferrando A, Espasandín FD, González ME, Ruiz OA, Carrasco P. Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress. PLANT SIGNALING & BEHAVIOR 2011; 6:278-86. [PMID: 21330789 PMCID: PMC3121989 DOI: 10.4161/psb.6.2.14702] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 01/02/2011] [Indexed: 05/19/2023]
Abstract
Polyamines have been globally associated to plant responses to abiotic stress. Particularly, putrescine has been related to a better response to cold and dehydration stresses. It is known that this polyamine is involved in cold tolerance, since Arabidopsis thaliana plants mutated in the key enzyme responsible for putrescine synthesis (arginine decarboxilase, ADC; EC 4.1.1.19) are more sensitive than the wild type to this stress. Although it is speculated that the over-expression of ADC genes may confer tolerance, this is hampered by pleiotropic effects arising from the constitutive expression of enzymes from the polyamine metabolism. Here, we present our work using A. thaliana transgenic plants harboring the ADC gene from oat under the control of a stress-inducible promoter (pRD29A) instead of a constitutive promoter. The transgenic lines presented in this work were more resistant to both cold and dehydration stresses, associated with a concomitant increment in endogenous putrescine levels under stress. Furthermore, the increment in putrescine upon cold treatment correlated with the induction of known stress-responsive genes, and suggested that putrescine may be directly or indirectly involved in ABA metabolism and gene expression.
Collapse
Affiliation(s)
- Analía I Alet
- IIB-INTECH, Unidad de Biotecnología, Chascomús; Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Vandenkoornhuyse P, Dufresne A, Quaiser A, Gouesbet G, Binet F, Francez AJ, Mahé S, Bormans M, Lagadeuc Y, Couée I. Integration of molecular functions at the ecosystemic level: breakthroughs and future goals of environmental genomics and post-genomics. Ecol Lett 2010; 13:776-91. [PMID: 20426792 PMCID: PMC2901524 DOI: 10.1111/j.1461-0248.2010.01464.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/16/2009] [Accepted: 02/24/2010] [Indexed: 11/30/2022]
Abstract
Environmental genomics and genome-wide expression approaches deal with large-scale sequence-based information obtained from environmental samples, at organismal, population or community levels. To date, environmental genomics, transcriptomics and proteomics are arguably the most powerful approaches to discover completely novel ecological functions and to link organismal capabilities, organism-environment interactions, functional diversity, ecosystem processes, evolution and Earth history. Thus, environmental genomics is not merely a toolbox of new technologies but also a source of novel ecological concepts and hypotheses. By removing previous dichotomies between ecophysiology, population ecology, community ecology and ecosystem functioning, environmental genomics enables the integration of sequence-based information into higher ecological and evolutionary levels. However, environmental genomics, along with transcriptomics and proteomics, must involve pluridisciplinary research, such as new developments in bioinformatics, in order to integrate high-throughput molecular biology techniques into ecology. In this review, the validity of environmental genomics and post-genomics for studying ecosystem functioning is discussed in terms of major advances and expectations, as well as in terms of potential hurdles and limitations. Novel avenues for improving the use of these approaches to test theory-driven ecological hypotheses are also explored.
Collapse
|
38
|
Liu JH, Ban Y, Wen XP, Nakajima I, Moriguchi T. Molecular cloning and expression analysis of an arginine decarboxylase gene from peach (Prunus persica). Gene 2008; 429:10-7. [PMID: 18996450 DOI: 10.1016/j.gene.2008.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 10/09/2008] [Accepted: 10/13/2008] [Indexed: 11/15/2022]
Abstract
Arginine decarboxylase (ADC), one of the enzymes responsible for putrescine (Put) biosynthesis, has been shown to be implicated in stress response. In the current paper attempts were made to clone and characterize a gene encoding ADC from peach (Prunus persica (L.) Batsch, 'Akatsuki'). Rapid amplification of cDNA ends (RACE) gave rise to a full-length ADC cDNA (PpADC) with a complete open reading frame of 2178 bp, encoding a 725 amino acid polypeptide. Homology search and sequence multi-alignment demonstrated that the deduced PpADC protein sequence shared a high identity with ADCs from other plants, including several highly conservative motifs and amino acids. Southern blotting indicated that PpADC existed in peach genome as a single gene. Expression levels of PpADC in different tissues of peach (P. persica 'Akatsuki') were spatially and developmentally regulated. Treatment of peach shoots from 'Mochizuki' with exogenous 5 mM Put, an indirect product of ADC, remarkably induced accumulation of PpADC mRNA. Transcripts of PpADC in peach leaves from 'Mochizuki' were quickly induced, either transiently or continuously, in response to dehydration, high salinity (200 mM NaCl), low temperature (4 degrees C) and heavy metal (150 microM CdCl(2)), but repressed by high temperature 37 degrees C) during a 2-day treatment, which changed in an opposite direction when the stresses were otherwise removed with the exception of CdCl(2) treatment. In addition, steady-state of PpADC mRNA could be also transiently up-regulated by abscisic acid (ABA) in 'Mochizuki' leaves. All of these, taken together, suggest that PpADC is a stress-responsive gene and can be considered as a potential target that is genetically manipulated so as to create novel germplasms with enhanced stress tolerance in the future.
Collapse
Affiliation(s)
- Ji Hong Liu
- National Institute of Fruit Tree Science, Tsukuba, Ibaraki 305-8605, Japan
| | | | | | | | | |
Collapse
|
39
|
Flores T, Todd CD, Tovar-Mendez A, Dhanoa PK, Correa-Aragunde N, Hoyos ME, Brownfield DM, Mullen RT, Lamattina L, Polacco JC. Arginase-negative mutants of Arabidopsis exhibit increased nitric oxide signaling in root development. PLANT PHYSIOLOGY 2008; 147:1936-46. [PMID: 18567826 PMCID: PMC2492630 DOI: 10.1104/pp.108.121459] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 06/05/2008] [Indexed: 05/18/2023]
Abstract
Mutation of either arginase structural gene (ARGAH1 or ARGAH2 encoding arginine [Arg] amidohydrolase-1 and -2, respectively) resulted in increased formation of lateral and adventitious roots in Arabidopsis (Arabidopsis thaliana) seedlings and increased nitric oxide (NO) accumulation and efflux, detected by the fluorogenic traps 3-amino,4-aminomethyl-2',7'-difluorofluorescein diacetate and diamino-rhodamine-4M, respectively. Upon seedling exposure to the synthetic auxin naphthaleneacetic acid, NO accumulation was differentially enhanced in argah1-1 and argah2-1 compared with the wild type. In all genotypes, much 3-amino,4-aminomethyl-2',7'-difluorofluorescein diacetate fluorescence originated from mitochondria. The arginases are both localized to the mitochondrial matrix and closely related. However, their expression levels and patterns differ: ARGAH1 encoded the minor activity, and ARGAH1-driven beta-glucuronidase (GUS) was expressed throughout the seedling; the ARGAH2::GUS expression pattern was more localized. Naphthaleneacetic acid increased seedling lateral root numbers (total lateral roots per primary root) in the mutants to twice the number in the wild type, consistent with increased internal NO leading to enhanced auxin signaling in roots. In agreement, argah1-1 and argah2-1 showed increased expression of the auxin-responsive reporter DR5::GUS in root tips, emerging lateral roots, and hypocotyls. We propose that Arg, or an Arg derivative, is a potential NO source and that reduced arginase activity in the mutants results in greater conversion of Arg to NO, thereby potentiating auxin action in roots. This model is supported by supplemental Arg induction of adventitious roots and increased NO accumulation in argah1-1 and argah2-1 versus the wild type.
Collapse
Affiliation(s)
- Teresita Flores
- Biochemistry Department, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Jumtee K, Bamba T, Okazawa A, Fukusaki E, Kobayashi A. Integrated metabolite and gene expression profiling revealing phytochrome A regulation of polyamine biosynthesis of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:1187-200. [PMID: 18375607 DOI: 10.1093/jxb/ern026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this study, metabolite profiling was demonstrated as a useful tool to plot a specific metabolic pathway, which is regulated by phytochrome A (phyA). Etiolated Arabidopsis wild-type (WT) and phyA mutant seedlings were irradiated with either far-red light (FR) or white light (W). Primary metabolites of the irradiated seedlings were profiled by gas chromatography time-of-flight mass spectrometry (GC/TOF-MS) to obtain new insights on phyA-regulated metabolic pathways. Comparison of metabolite profiles in phyA and WT seedlings grown under FR revealed a number of metabolites that contribute to the differences between phyA and the WT. Several metabolites, including some amino acids, organic acids, and major sugars, as well as putrescine, were found in smaller amounts in WT compared with the content in phyA seedlings grown under FR. There were also significant differences between metabolite profiles of WT and phyA seedlings during de-etiolation under W. The polyamine biosynthetic pathway was investigated further, because putrescine, one of the polyamines existing in a wide variety of living organisms, was found to be present in lower amounts in WT than in phyA under both light conditions. The expression levels of polyamine biosynthesis-related genes were investigated by quantitative real-time RT-PCR. The gene expression profiles revealed that the arginine decarboxylase 2 (ADC2) gene was transcribed less in the WT than in phyA seedlings under both light conditions. This finding suggests that ADC2 is negatively regulated by phyA during photomorphogenesis. In addition, S-adenosylmethionine decarboxylase 2 and 4 (SAMDC2 and SAMDC4) were found to be regulated by phyA but in a different manner from the regulation of ADC2.
Collapse
Affiliation(s)
- Kanokwan Jumtee
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | | | | | | | | |
Collapse
|
41
|
Akiyama T, Jin S. Molecular cloning and characterization of an arginine decarboxylase gene up-regulated by chilling stress in rice seedlings. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:645-54. [PMID: 16769152 DOI: 10.1016/j.jplph.2006.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 04/13/2006] [Indexed: 05/10/2023]
Abstract
We cloned a rice cDNA encoding a putative arginine decarboxylase (ADC) protein, a key enzyme involved with putrescine (Put) biosynthesis in plants. The isolated full-length cDNA (OsADC1) contains an insert consisting of 2451 bp. The longest open reading frame within encodes a putative protein of 702 amino acids, with a calculated molecular mass of 74 kDa and an isoelectric point of 4.9. ClustalW alignment revealed that the deduced OsADC1 protein sequence shares overall 60% and 61% identity at the amino acid level with the Pisum sativum and Glycine max ADC proteins, respectively. Additionally, several OsADC1 regions exhibited striking similarity with these two other plant ADC protein sequences, including motifs characteristic of ADC proteins. Further, RNA gel blot analysis revealed markedly increased OsADC1 mRNA levels in rice seedling leaves subjected to chilling stress. Interestingly, this treatment induced a concomitant increase in free Put levels in these samples, coincident with the observed elevated OsADC1 mRNA levels. To our knowledge, this represents the first direct evidence supporting essentially chilling-specific regulation of a rice ADC gene that also potentially influences Put accumulation, a phenomenon previously noted in cold-stressed rice seedlings.
Collapse
Affiliation(s)
- Takashi Akiyama
- Department of Low-Temperature Science, National Agricultural Research Center for Hokkaido Region, 1 Hitsujigaoka, Toyohira-ku, Sapporo, Hokkaido 062-8555, Japan.
| | | |
Collapse
|
42
|
Alcázar R, Marco F, Cuevas JC, Patron M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T. Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 2006; 28:1867-76. [PMID: 17028780 DOI: 10.1007/s10529-006-9179-3] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 07/27/2006] [Indexed: 11/26/2022]
Abstract
Environmental stresses are the major cause of crop loss worldwide. Polyamines are involved in plant stress responses. However, the precise role(s) of polyamine metabolism in these processes remain ill-defined. Transgenic approaches demonstrate that polyamines play essential roles in stress tolerance and open up the possibility to exploit this strategy to improve plant tolerance to multiple environmental stresses. The use of Arabidopsis as a model plant enables us to carry out global expression studies of the polyamine metabolic genes under different stress conditions, as well as genome-wide expression analyses of insertional-mutants and plants over-expressing these genes. These studies are essential to dissect the polyamine mechanism of action in order to design new strategies to increase plant survival in adverse environments.
Collapse
Affiliation(s)
- Rubén Alcázar
- Laboratori de Fisiologia Vegetal, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ziosi V, Bregoli AM, Bonghi C, Fossati T, Biondi S, Costa G, Torrigiani P. Transcription of ethylene perception and biosynthesis genes is altered by putrescine, spermidine and aminoethoxyvinylglycine (AVG) during ripening in peach fruit (Prunus persica). THE NEW PHYTOLOGIST 2006; 172:229-38. [PMID: 16995911 DOI: 10.1111/j.1469-8137.2006.01828.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The time course of ethylene biosynthesis and perception was investigated in ripening peach fruit (Prunus persica) following treatments with the polyamines putrescine (Pu) and spermidine (Sd), and with aminoethoxyvinylglycine (AVG). Fruit treatments were performed in planta. Ethylene production was measured by gas chromatography, and polyamine content by high-performance liquid chromatography; expression analyses were performed by Northern blot or real-time polymerase chain reaction. Differential increases in the endogenous polyamine pool in the epicarp and mesocarp were induced by treatments; in both cases, ethylene production, fruit softening and abscission were greatly inhibited. The rise in 1-aminocyclopropane-1-carboxylate oxidase (PpACO1) mRNA was counteracted and delayed in polyamine-treated fruit, whereas transcript abundance of ethylene receptors PpETR1 (ethylene receptor 1) and PpERS1 (ethylene sensor 1) was enhanced at harvest. Transcript abundance of arginine decarboxylase (ADC) and S-adenosylmethionine decarboxylase (SAMDC) was transiently reduced in both the epicarp and mesocarp. AVG, here taken as a positive control, exerted highly comparable effects to those of Pu and Sd. Thus, in peach fruit, increasing the endogenous polyamine pool in the epicarp or in the mesocarp strongly interfered, both at a biochemical and at a biomolecular level, with the temporal evolution of the ripening syndrome.
Collapse
Affiliation(s)
- Vanina Ziosi
- Dip. di Biologia e.s., Università di Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Hummel I, Gouesbet G, El Amrani A, Aïnouche A, Couée I. Characterization of the two arginine decarboxylase (polyamine biosynthesis) paralogues of the endemic subantarctic cruciferous species Pringlea antiscorbutica and analysis of their differential expression during development and response to environmental stress. Gene 2004; 342:199-209. [PMID: 15527979 DOI: 10.1016/j.gene.2004.08.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 06/23/2004] [Accepted: 08/25/2004] [Indexed: 11/26/2022]
Abstract
Arginine decarboxylase (ADC) is a key enzyme involved in the synthesis of polyamines, which have been implicated in developmental processes and stress responses in higher plants. An ancestral ADC gene appears to have been duplicated at the origin of the Brassicaceae family, thus yielding two paralogues in the derived taxa. ADC gene structure was investigated in Pringlea antiscorbutica R. Br., a geographically isolated Brassicaceae species that is endemic from the subantarctic region. P. antiscorbutica exhibits several biochemical and physiological adaptations related to this cold and harsh environment, including high levels of polyamines, which is unusual in higher plants, and especially high levels of agmatine, the product of the ADC-catalysed reaction. Various ADC clones were obtained from P. antiscorbutica. Sequence and phylogenetic analysis showed that all these clones fitted with the presence of two paralogues, PaADC1 and PaADC2, in P. antiscorbutica. Expression of these ADC paralogues was analyzed in P. antiscorbutica during vegetative development and response to stress. Whereas PaADC2 was expressed at both seedling and mature stages, PaADC1 transcripts were hardly detected during early development and were significantly expressed in mature plants. Moreover, PaADC2, but not PaADC1, expression was up-regulated in response to chilling and salt stress at seedling stage. Analysis of 5' regulatory regions of these ADC genes revealed several differences in putative cis-regulatory elements, which could be associated with specific expression patterns. These results were compared to ADC paralogue expression in Arabidopsis thaliana and are discussed in the evolutionary context of genetic diversity resulting from gene duplication.
Collapse
MESH Headings
- 5' Flanking Region/genetics
- Agmatine/metabolism
- Amino Acid Sequence
- Base Sequence
- Blotting, Southern
- Brassicaceae/genetics
- Brassicaceae/growth & development
- Brassicaceae/metabolism
- Carboxy-Lyases/genetics
- Carboxy-Lyases/metabolism
- Cloning, Molecular
- Cold Temperature
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Evolution, Molecular
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Molecular Sequence Data
- Phylogeny
- Polyamines/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Irène Hummel
- Centre National de la Recherche Scientifique, Université de Rennes 1, UMR 6553 ECOBIO, Campus de Beaulieu, bâtiment 14A, F-35042 Rennes Cedex, France
| | | | | | | | | |
Collapse
|