1
|
Ma F, Xu Q, Wang A, Yang D, Li Q, Guo J, Zhang L, Ou J, Li R, Yin H, Li K, Wang L, Wang Y, Zhao X, Niu X, Zhang S, Li X, Chai S, Zhang E, Rao Z, Zhang G. A universal design of restructured dimer antigens: Development of a superior vaccine against the paramyxovirus in transgenic rice. Proc Natl Acad Sci U S A 2024; 121:e2305745121. [PMID: 38236731 PMCID: PMC10823241 DOI: 10.1073/pnas.2305745121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
The development of vaccines, which induce effective immune responses while ensuring safety and affordability, remains a substantial challenge. In this study, we proposed a vaccine model of a restructured "head-to-tail" dimer to efficiently stimulate B cell response. We also demonstrate the feasibility of using this model to develop a paramyxovirus vaccine through a low-cost rice endosperm expression system. Crystal structure and small-angle X-ray scattering data showed that the restructured hemagglutinin-neuraminidase (HN) formed tetramers with fully exposed quadruple receptor binding domains and neutralizing epitopes. In comparison with the original HN antigen and three traditional commercial whole virus vaccines, the restructured HN facilitated critical epitope exposure and initiated a faster and more potent immune response. Two-dose immunization with 0.5 μg of the restructured antigen (equivalent to one-127th of a rice grain) and one-dose with 5 μg completely protected chickens against a lethal challenge of the virus. These results demonstrate that the restructured HN from transgenic rice seeds is safe, effective, low-dose useful, and inexpensive. We provide a plant platform and a simple restructured model for highly effective vaccine development.
Collapse
Affiliation(s)
- Fanshu Ma
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
- School of Advanced Agriculture Sciences, Peking University, Beijing100871, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou450046, China
- College of Life Sciences, Zhengzhou University, Zhengzhou450001, China
- Chinese Academy of Sciences Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Qianru Xu
- School of Basic Medical Sciences, Henan University, Kaifeng475004, China
| | - Aiping Wang
- College of Life Sciences, Zhengzhou University, Zhengzhou450001, China
| | - Daichang Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430074, China
| | - Qingmei Li
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Junqing Guo
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Longxian Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou450046, China
| | - Jiquan Ou
- Wuhan Healthgen Biotechnology Corp., Wuhan430074, China
| | - Rui Li
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Heng Yin
- Wuhan Healthgen Biotechnology Corp., Wuhan430074, China
| | - Kunpeng Li
- Wuhan Healthgen Biotechnology Corp., Wuhan430074, China
| | - Li Wang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Yanan Wang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Xiangyue Zhao
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Xiangxiang Niu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
| | - Shenli Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
| | - Xueyang Li
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
| | - Shujun Chai
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Erqin Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou450046, China
| | - Zihe Rao
- Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing100084, China
| | - Gaiping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
- School of Advanced Agriculture Sciences, Peking University, Beijing100871, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou450046, China
- College of Life Sciences, Zhengzhou University, Zhengzhou450001, China
| |
Collapse
|
2
|
Zhu Q, Tan J, Liu YG. Molecular farming using transgenic rice endosperm. Trends Biotechnol 2022; 40:1248-1260. [PMID: 35562237 DOI: 10.1016/j.tibtech.2022.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 01/05/2023]
Abstract
Plant expression platforms are low-cost, scalable, safe, and environmentally friendly systems for the production of recombinant proteins and bioactive metabolites. Rice (Oryza sativa L.) endosperm is an ideal bioreactor for the production and storage of high-value active substances, including pharmaceutical proteins, oral vaccines, vitamins, and nutraceuticals such as flavonoids and carotenoids. Here, we explore the use of molecular farming from producing medicines to developing functional food crops (biofortification). We review recent progress in producing pharmaceutical proteins and bioactive substances in rice endosperm and compare this platform with other plant expression systems. We describe how rice endosperm could be modified to design metabolic pathways and express and store stable products and discuss the factors restricting the commercialization of transgenic rice products and future prospects.
Collapse
Affiliation(s)
- Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Jiantao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
3
|
Hu N, Jiang X, Yuan Q, Liu W, Yao K, Long Y, Pei X. Increased pollen source area does not always enhance the risk of pollen dispersal and gene flow in Oryza sativa L. Sci Rep 2020; 10:6143. [PMID: 32273546 PMCID: PMC7145849 DOI: 10.1038/s41598-020-63119-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/19/2020] [Indexed: 11/09/2022] Open
Abstract
Pollen dispersal is one of the main ways of gene flow. In the past years, rice pollen dispersal and gene flow have been well studies. However, there is much dispute whether the risk of pollen dispersal and gene flow continuously increases with the source area. A Lagrangian stochastic model was used to simulate the pollen depositions at different distances from different pollen source areas. The field experiments showed a good fit in the pollen depositions. The larger the source area, the more the pollen grains were deposited at each distance, with the pollen dispersal distance increasing accordingly. However, this effect gradually leveled off as the source area increased. In the large-area of pollen source, we found a significantly higher saturation point for the amount of pollen deposition. Once the source area exceeded 1000 × 1000 m2, the pollen deposition no longer increased, even if the source area continued to increase, indicating the "critical source area" of rice pollen dispersal. However, a 100 × 100 m2 critical source area for conventional rice and hybrid rice was sufficient, while the critical source area for the sterile line was about 230 × 230 m2.
Collapse
Affiliation(s)
- Ning Hu
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science & Technology, Nanjing, 210044, China
- Jiangsu Key Laboratory of Agriculture Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xiaodong Jiang
- Jiangsu Key Laboratory of Agriculture Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Qianhua Yuan
- College of Tropical Agriculture, Hainan University, Haikou, 570228, China
| | - Wuge Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Kemin Yao
- Jiangsu Key Laboratory of Agriculture Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yan Long
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinwu Pei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
4
|
Li Y, Hallerman EM, Wu K, Peng Y. Insect-Resistant Genetically Engineered Crops in China: Development, Application, and Prospects for Use. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:273-292. [PMID: 31594412 DOI: 10.1146/annurev-ento-011019-025039] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
With 20% of the world's population but just 7% of the arable land, China has invested heavily in crop biotechnology to increase agricultural productivity. We examine research on insect-resistant genetically engineered (IRGE) crops in China, including strategies to promote their sustainable use. IRGE cotton, rice, and corn lines have been developed and proven efficacious for controlling lepidopteran crop pests. Ecological impact studies have demonstrated conservation of natural enemies of crop pests and halo suppression of crop-pest populations on a local scale. Economic, social, and human health effects are largely positive and, in the case of Bt cotton, have proven sustainable over 20 years of commercial production. Wider adoption of IRGE crops in China is constrained by relatively limited innovation capacity, public misperception, and regulatory inaction, suggesting the need for further financial investment in innovation and greater scientific engagement with the public. The Chinese experience with Bt cotton might inform adoption of other Bt crops in China and other developing countries.
Collapse
Affiliation(s)
- Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute for Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Eric M Hallerman
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute for Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute for Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| |
Collapse
|
5
|
Wang XJ, Dong YF, Jin X, Yang JT, Wang ZX. The application of gene splitting technique for controlling transgene flow in rice. Transgenic Res 2019; 29:69-80. [PMID: 31654191 DOI: 10.1007/s11248-019-00178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/18/2019] [Indexed: 10/25/2022]
Abstract
Controlling transgene flow in China is important, as this country is part of the center of origin of rice. A gene-splitting technique based on intein-mediated trans-splicing represents a new strategy for controlling transgene flow via biological measures. In this study, the G2-aroA gene which provides glyphosate tolerance was split into an N-terminal and a C-terminal region, which were then fused to intein N and intein C of the Ssp DnaE intein, ultimately forming EPSPSn:In and Ic:EPSPSc fusion genes, respectively. These fusion genes were subsequently transformed into the rice cultivar Zhonghua 11 via the Agrobacterium-mediated method. The two split gene fragments were then introduced into the same rice genome by genetic crossings. Glyphosate tolerance analysis revealed that the functional target protein was reconstituted by Ssp DnaE intein-mediated trans-splicing and that the resultant hybrid rice was glyphosate tolerant. The reassembly efficiency of the split gene fragments ranged from 67 to 91% at the molecular level, and 100% of the hybrid F1 progeny were glyphosate tolerant. Transgene flow experiments showed that when the split gene fragments are inserted into homologous chromosomes, the gene-splitting technique can completely avoid the escape of the target trait to the environment. This report is the first on the reassembly efficiency and effectiveness of transgene flow containment via gene splitting in rice. This study provides not only a new biological strategy for controlling rice transgene flow but also a new method for cultivating hybrid transgenic rice.
Collapse
Affiliation(s)
- Xu-Jing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing, 100081, China
| | - Yu-Feng Dong
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing, 100081, China
| | - Xi Jin
- Department of Biochemistry, Baoding University, Baoding, 071000, China
| | - Jiang-Tao Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing, 100081, China
| | - Zhi-Xing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing, 100081, China.
| |
Collapse
|
6
|
Thomas E, Tovar E, Villafañe C, Bocanegra JL, Moreno R. Distribution, genetic diversity and potential spatiotemporal scale of alien gene flow in crop wild relatives of rice (Oryza spp.) in Colombia. RICE (NEW YORK, N.Y.) 2017; 10:13. [PMID: 28421550 PMCID: PMC5395511 DOI: 10.1186/s12284-017-0150-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/24/2017] [Indexed: 05/16/2023]
Abstract
BACKGROUND Crop wild relatives (CWRs) of rice hold important traits that can contribute to enhancing the ability of cultivated rice (Oryza sativa and O. glaberrima) to produce higher yields, cope with the effects of climate change, and resist attacks of pests and diseases, among others. However, the genetic resources of these species remain dramatically understudied, putting at risk their future availability from in situ and ex situ sources. Here we assess the distribution of genetic diversity of the four rice CWRs known to occur in Colombia (O. glumaepatula, O. alta, O. grandiglumis, and O. latifolia). Furthermore, we estimated the degree of overlap between areas with suitable habitat for cultivated and wild rice, both under current and predicted future climate conditions to assess the potential spatiotemporal scale of potential gene flow from GM rice to its CWRs. RESULTS Our findings suggest that part of the observed genetic diversity and structure, at least of the most exhaustively sampled species, may be explained by their glacial and post-glacial range dynamics. Furthermore, in assessing the expected impact of climate change and the potential spatiotemporal scale of gene flow between populations of CWRs and GM rice we find significant overlap between present and future suitable areas for cultivated rice and its four CWRs. Climate change is expected to have relatively limited negative effects on the rice CWRs, with three species showing opportunities to expand their distribution ranges in the future. CONCLUSIONS Given (i) the sparse presence of CWR populations in protected areas (ii) the strong suitability overlap between cultivated rice and its four CWRs; and (iii) the complexity of managing and regulating areas to prevent alien gene flow, the first priority should be to establish representative ex situ collections for all CWR species, which currently do not exist. In the absence of studies under field conditions on the scale and extent of gene flow between cultivated rice and its Colombian CWRs, effective in situ conservation might best be achieved through tailor-made management plans and exclusion of GM rice cultivation in areas holding the most genetically diverse CWR populations. This may be combined with assisted migration of populations to suitable areas where rice is unlikely to be cultivated under current and future climate conditions.
Collapse
Affiliation(s)
| | - Eduardo Tovar
- The Alexander von Humboldt Biological Resources Research Institute, Laboratory of Conservation Genetics, Bogota, Colombia
| | - Carolina Villafañe
- Ministry of Environment and Sustainable Development, Genetic Resources Group, Bogota, Colombia
| | - José Leonardo Bocanegra
- The Alexander von Humboldt Biological Resources Research Institute, International Affairs, Policy and Cooperation Office, Bogota, Colombia
| | - Rodrigo Moreno
- The Alexander von Humboldt Biological Resources Research Institute, International Affairs, Policy and Cooperation Office, Bogota, Colombia
| |
Collapse
|
7
|
Song J, Niu B, Wang D, Zhang F. Quantifying the measurement uncertainty of the nopaline synthase terminator in mixed samples of genetically modified rice using a bottom-up approach. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Liu W, Liu C, Chen F, Yang J, Zheng L. Discrimination of transgenic soybean seeds by terahertz spectroscopy. Sci Rep 2016; 6:35799. [PMID: 27782205 PMCID: PMC5080623 DOI: 10.1038/srep35799] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 09/30/2016] [Indexed: 11/09/2022] Open
Abstract
Discrimination of genetically modified organisms is increasingly demanded by legislation and consumers worldwide. The feasibility of a non-destructive discrimination of glyphosate-resistant and conventional soybean seeds and their hybrid descendants was examined by terahertz time-domain spectroscopy system combined with chemometrics. Principal component analysis (PCA), least squares-support vector machines (LS-SVM) and PCA-back propagation neural network (PCA-BPNN) models with the first and second derivative and standard normal variate (SNV) transformation pre-treatments were applied to classify soybean seeds based on genotype. Results demonstrated clear differences among glyphosate-resistant, hybrid descendants and conventional non-transformed soybean seeds could easily be visualized with an excellent classification (accuracy was 88.33% in validation set) using the LS-SVM and the spectra with SNV pre-treatment. The results indicated that THz spectroscopy techniques together with chemometrics would be a promising technique to distinguish transgenic soybean seeds from non-transformed seeds with high efficiency and without any major sample preparation.
Collapse
Affiliation(s)
- Wei Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
- Intelligent Control and Compute Vision Lab, Hefei University, Hefei 230601, China
| | - Changhong Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Feng Chen
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, United States
| | - Jianbo Yang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Lei Zheng
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
- School of Medical Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
9
|
Li L, Yang X, Wang L, Yan H, Su J, Wang F, Lu BR. Limited ecological risk of insect-resistance transgene flow from cultivated rice to its wild ancestor based on life-cycle fitness assessment. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-016-1152-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Lu B, Yang X, Ellstrand NC. Fitness correlates of crop transgene flow into weedy populations: a case study of weedy rice in China and other examples. Evol Appl 2016; 9:857-70. [PMID: 27468304 PMCID: PMC4947148 DOI: 10.1111/eva.12377] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/02/2016] [Indexed: 02/04/2023] Open
Abstract
Whether transgene flow from crops to cross‐compatible weedy relatives will result in negative environmental consequences has been the topic of discussion for decades. An important component of environmental risk assessment depends on whether an introgressed transgene is associated with a fitness change in weedy populations. Several crop‐weed pairs have received experimental attention. Perhaps, the most worrisome example is transgene flow from genetically engineered cultivated rice, a staple for billions globally, to its conspecific weed, weedy rice. China's cultivated/weedy rice system is one of the best experimentally studied systems under field conditions for assessing how the presence of transgenes alters the weed's fitness and the likely impacts of that fitness change. Here, we present the cultivated/weedy rice system as a case study on the consequences of introgressed transgenes in unmanaged populations. The experimental work on this system reveals considerable variation in fitness outcomes ‐ increased, decreased, and none ‐ based on the transgenic trait, its introgressed genomic background, and the environment. A review of similar research from a sample of other crop‐wild pairs suggests such variation is the rule. We conclude such variation in fitness correlates supports the case‐by‐case method of biosafety regulation is sound.
Collapse
Affiliation(s)
- Bao‐Rong Lu
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering Department of Ecology and Evolutionary Biology Fudan University Shanghai China
| | - Xiao Yang
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering Department of Ecology and Evolutionary Biology Fudan University Shanghai China
| | - Norman C. Ellstrand
- Department of Botany and Plant Sciences Center for Conservation Biology University of California Riverside CA USA
- Center for Invasive Species Research University of California Riverside CA USA
| |
Collapse
|
11
|
Wang L, Haccou P, Lu BR. High-Resolution Gene Flow Model for Assessing Environmental Impacts of Transgene Escape Based on Biological Parameters and Wind Speed. PLoS One 2016; 11:e0149563. [PMID: 26959240 PMCID: PMC4784949 DOI: 10.1371/journal.pone.0149563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/01/2016] [Indexed: 11/25/2022] Open
Abstract
Environmental impacts caused by transgene flow from genetically engineered (GE) crops to their wild relatives mediated by pollination are longstanding biosafety concerns worldwide. Mathematical modeling provides a useful tool for estimating frequencies of pollen-mediated gene flow (PMGF) that are critical for assessing such environmental impacts. However, most PMGF models are impractical for this purpose because their parameterization requires actual data from field experiments. In addition, most of these models are usually too general and ignored the important biological characteristics of concerned plant species; and therefore cannot provide accurate prediction for PMGF frequencies. It is necessary to develop more accurate PMGF models based on biological and climatic parameters that can be easily measured in situ. Here, we present a quasi-mechanistic PMGF model that only requires the input of biological and wind speed parameters without actual data from field experiments. Validation of the quasi-mechanistic model based on five sets of published data from field experiments showed significant correlations between the model-simulated and field experimental-generated PMGF frequencies. These results suggest accurate prediction for PMGF frequencies using this model, provided that the necessary biological parameters and wind speed data are available. This model can largely facilitate the assessment and management of environmental impacts caused by transgene flow, such as determining transgene flow frequencies at a particular spatial distance, and establishing spatial isolation between a GE crop and its coexisting non-GE counterparts and wild relatives.
Collapse
Affiliation(s)
- Lei Wang
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Handan Road 220, Shanghai 200433, China
| | - Patsy Haccou
- Leiden University College The Hague, P.O. Box 13228, 2501 EE The Hague, the Netherlands
| | - Bao-Rong Lu
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Handan Road 220, Shanghai 200433, China
| |
Collapse
|
12
|
Li Y, Hallerman EM, Liu Q, Wu K, Peng Y. The development and status of Bt rice in China. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:839-48. [PMID: 26369652 DOI: 10.1111/pbi.12464] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/07/2015] [Indexed: 05/28/2023]
Abstract
Multiple lines of transgenic rice expressing insecticidal genes from the bacterium Bacillus thuringiensis (Bt) have been developed in China, posing the prospect of increases in production with decreased application of pesticides. We explore the issues facing adoption of Bt rice for commercial production in China. A body of safety assessment work on Bt rice has shown that Bt rice poses a negligible risk to the environment and that Bt rice products are as safe as non-Bt control rice products as food. China has a relatively well-developed regulatory system for risk assessment and management of genetically modified (GM) plants; however, decision-making regarding approval of commercial production has become politicized, and two Bt rice lines that otherwise were ready have not been allowed to enter the Chinese agricultural system. We predict that Chinese farmers would value the prospect of increased yield with decreased use of pesticide and would readily adopt production of Bt rice. That Bt rice lines may not be commercialized in the near future we attribute to social pressures, largely due to the low level of understanding and acceptance of GM crops by Chinese consumers. Hence, enhancing communication of GM crop science-related issues to the public is an important, unmet need. While the dynamics of each issue are particular to China, they typify those in many countries where adoption of GM crops has been not been rapid; hence, the assessment of these dynamics might inform resolution of these issues in other countries.
Collapse
Affiliation(s)
- Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Eric M Hallerman
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Qingsong Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Sánchez MA, Cid P, Navarrete H, Aguirre C, Chacón G, Salazar E, Prieto H. Outcrossing potential between 11 important genetically modified crops and the Chilean vascular flora. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:625-637. [PMID: 26052925 DOI: 10.1111/pbi.12408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/17/2015] [Accepted: 04/10/2015] [Indexed: 06/04/2023]
Abstract
The potential impact of genetically modified (GM) crops on biodiversity is one of the main concerns in an environmental risk assessment (ERA). The likelihood of outcrossing and pollen-mediated gene flow from GM crops and non-GM crops are explained by the same principles and depend primarily on the biology of the species. We conducted a national-scale study of the likelihood of outcrossing between 11 GM crops and vascular plants in Chile by use of a systematized database that included cultivated, introduced and native plant species in Chile. The database included geographical distributions and key biological and agronomical characteristics for 3505 introduced, 4993 native and 257 cultivated (of which 11 were native and 246 were introduced) plant species. Out of the considered GM crops (cotton, soya bean, maize, grape, wheat, rice, sugar beet, alfalfa, canola, tomato and potato), only potato and tomato presented native relatives (66 species total). Introduced relative species showed that three GM groups were formed having: a) up to one introduced relative (cotton and soya bean), b) up to two (rice, grape, maize and wheat) and c) from two to seven (sugar beet, alfalfa, canola, tomato and potato). In particular, GM crops presenting introduced noncultivated relative species were canola (1 relative species), alfalfa (up to 4), rice (1), tomato (up to 2) and potato (up to 2). The outcrossing potential between species [OP; scaled from 'very low' (1) to 'very high' (5)] was developed, showing medium OPs (3) for GM-native relative interactions when they occurred, low (2) for GMs and introduced noncultivated and high (4) for the grape-Vitis vinifera GM-introduced cultivated interaction. This analytical tool might be useful for future ERA for unconfined GM crop release in Chile.
Collapse
Affiliation(s)
- Miguel A Sánchez
- Asociación Gremial ChileBio CropLife, Providencia, Santiago, Chile
| | - Pablo Cid
- Biotechnology Laboratory, La Platina Research Station, Instituto de Investigaciones Agropecuarias, La Pintana, Santiago, Chile
| | - Humberto Navarrete
- Molecular Fruit Phytopathology Laboratory, Facultad Ciencias Agropecuarias, Universidad de Chile, La Pintana, Santiago, Chile
| | - Carlos Aguirre
- Biotechnology Laboratory, La Platina Research Station, Instituto de Investigaciones Agropecuarias, La Pintana, Santiago, Chile
| | - Gustavo Chacón
- Computer Sciences Laboratory, La Platina Research Station, Instituto de Investigaciones Agropecuarias, La Pintana, Santiago, Chile
| | - Erika Salazar
- Genetic Resources Unit and Germplasm Bank, La Platina Research Station, Instituto de Investigaciones Agropecuarias, La Pintana, Santiago, Chile
| | - Humberto Prieto
- Biotechnology Laboratory, La Platina Research Station, Instituto de Investigaciones Agropecuarias, La Pintana, Santiago, Chile
| |
Collapse
|
14
|
Gene flow from herbicide resistant genetically modified rice to conventional rice (Oryza sativa L.) cultivars. ACTA ACUST UNITED AC 2015. [DOI: 10.5141/ecoenv.2015.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Efficacy of insect-resistance Bt/CpTI transgenes in F 5 –F 7 generations of rice crop–weed hybrid progeny: implications for assessing ecological impact of transgene flow. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0885-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Liu Y, Ge F, Liang Y, Wu G, Li J. Characterization of competitive interactions in the coexistence of Bt-transgenic and conventional rice. BMC Biotechnol 2015; 15:27. [PMID: 25928331 PMCID: PMC4409737 DOI: 10.1186/s12896-015-0141-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transgene flow through pollen and seeds leads to transgenic volunteers and feral populations in the nature, and consumer choice and economic incentives determine whether transgenic crops will be cultivated in the field. Transgenic and non-transgenic plants are likely to coexist in the field and natural habitats, but their competitive interactions are not well understood. METHODS Field experiments were conducted in an agricultural ecosystem with insecticide spraying and a natural ecosystem, using Bt-transgenic rice (Oryza sativa) and its non-transgenic counterpart in pure and mixed stands with a replacement series. RESULTS Insect damage and competition significantly decreased plant growth and reproduction under the coexistence of transgenic and conventional rice. Insect-resistant transgenic rice was not competitively superior to its counterpart under different densities in both agricultural and natural ecosystems, irrespective of insect infection. Fitness cost due to Bt-transgene expression occurred only in an agroecosystem, where the population yield decreased with increasing percentage of transgenic rice. The population yield fluctuated in a natural ecosystem, with slight differences among pure and mixed stands under plant competition or insect pressure. The presence of Chilo suppressalis infection increased the number of non-target insects. CONCLUSIONS Plant growth and reproduction patterns, relative competition ability and population yield indicate that Bt-transgenic and non-transgenic rice can coexist in agroecosystems, whereas in more natural habitats, transgenic rice is likely to outcompete non-transgenic rice.
Collapse
Affiliation(s)
- Yongbo Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, the Chinese Academy of Sciences, 8 Dayangfang, Beijing, 100101, China.
| | - Yuyong Liang
- Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| | - Gang Wu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Junsheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
17
|
Jia S, Yuan Q, Pei X, Wang F, Hu N, Yao K, Wang Z. Rice transgene flow: its patterns, model and risk management. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1259-1270. [PMID: 25431202 DOI: 10.1111/pbi.12306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 10/24/2014] [Accepted: 11/04/2014] [Indexed: 06/04/2023]
Abstract
Progress has been made in a 12 year's systemic study on the rice transgene flow including (i) with experiments conducted at multiple locations and years using up to 21 pollen recipients, we have elucidated the patterns of transgene flow to different types of rice. The frequency to male sterile lines is 10(1) and 10(3) higher than that to O. rufipogon and rice cultivars. Wind speed and direction are the key meteorological factors affecting rice transgene flow. (ii) A regional applicable rice gene flow model is established and used to predict the maximum threshold distances (MTDs) of gene flow during 30 years in 993 major rice producing counties of southern China. The MTD0.1% for rice cultivars is basically ≤5 m in the whole region, despite climate differs significantly at diverse locations and years. This figure is particularly valuable for the commercialization and regulation of transgenic rice. (iii) The long-term fate of transgene integrated into common wild rice was investigated. Results demonstrated that the F1 hybrids of transgenic rice/O. rufipogon gradually disappeared within 3-5 years, and the Bt or bar gene was not detectable in the mixed population, suggesting the O. rufipogon may possess a strong mechanism of exclusiveness for self-protection. (iv) The flowering time isolation and a 2-m-high cloth-screen protection were proved to be effective in reducing transgene flow. We have proposed to use a principle of classification and threshold management for different types of rice.
Collapse
Affiliation(s)
- Shirong Jia
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Pu DQ, Shi M, Wu Q, Gao MQ, Liu JF, Ren SP, Yang F, Tang P, Ye GY, Shen ZC, He JH, Yang D, Bu WJ, Zhang CT, Song Q, Xu D, Strand MR, Chen XX. Flower-visiting insects and their potential impact on transgene flow in rice. J Appl Ecol 2014. [DOI: 10.1111/1365-2664.12299] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- De-qiang Pu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology; Institute of Insect Sciences; Zhejiang University; Hangzhou 310058 China
| | - Min Shi
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology; Institute of Insect Sciences; Zhejiang University; Hangzhou 310058 China
| | - Qiong Wu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology; Institute of Insect Sciences; Zhejiang University; Hangzhou 310058 China
| | - Ming-qing Gao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology; Institute of Insect Sciences; Zhejiang University; Hangzhou 310058 China
| | - Jia-Fu Liu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology; Institute of Insect Sciences; Zhejiang University; Hangzhou 310058 China
| | - Shao-peng Ren
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology; Institute of Insect Sciences; Zhejiang University; Hangzhou 310058 China
| | - Fan Yang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology; Institute of Insect Sciences; Zhejiang University; Hangzhou 310058 China
| | - Pu Tang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology; Institute of Insect Sciences; Zhejiang University; Hangzhou 310058 China
| | - Gong-yin Ye
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology; Institute of Insect Sciences; Zhejiang University; Hangzhou 310058 China
| | - Zhi-cheng Shen
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology; Institute of Insect Sciences; Zhejiang University; Hangzhou 310058 China
| | - Jun-hua He
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology; Institute of Insect Sciences; Zhejiang University; Hangzhou 310058 China
| | - Ding Yang
- Department of Entomology; China Agricultural University; Beijing 100193 China
| | - Wen-Jun Bu
- Institute of Entomology; College of Life Sciences; Nankai University; 94 Weijin Road Tianjin 300071 China
| | - Chun-tian Zhang
- Liaoning Key Laboratory of Evolution and Biodiversity; Shenyang Normal University; Shenyang 110034 China
| | - Qisheng Song
- Molecular Insect Physiology; Division of Plant Sciences; University of Missouri; Columbia MO 65211 USA
| | - Dong Xu
- Computer Science Department and Christopher S. Bond Life Sciences Center; University of Missouri; Columbia MO 65211 USA
| | - Michael R. Strand
- Department of Entomology; University of Georgia; Athens GA 30602 USA
| | - Xue-xin Chen
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology; Institute of Insect Sciences; Zhejiang University; Hangzhou 310058 China
| |
Collapse
|
19
|
Nondestructive determination of transgenic Bacillus thuringiensis rice seeds (Oryza sativa L.) using multispectral imaging and chemometric methods. Food Chem 2014; 153:87-93. [DOI: 10.1016/j.foodchem.2013.11.166] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/07/2013] [Accepted: 11/24/2013] [Indexed: 11/19/2022]
|
20
|
Ou J, Guo Z, Shi J, Wang X, Liu J, Shi B, Guo F, Zhang C, Yang D. Transgenic rice endosperm as a bioreactor for molecular pharming. PLANT CELL REPORTS 2014; 33:585-594. [PMID: 24413763 DOI: 10.1007/s00299-013-1559-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/18/2013] [Accepted: 12/27/2013] [Indexed: 06/03/2023]
Abstract
Plants provide a promising expression platform for producing recombinant proteins with several advantages in terms of high expression level, lower production cost, scalability, and safety and environment-friendly. Molecular pharming has been recognized as an emerging industry with strategic importance that could play an important role in economic development and healthcare in China. Here, this review represents the significant advances using transgenic rice endosperm as bioreactor to produce various therapeutic recombinant proteins in transgenic rice endosperm and large-scale production of OsrHSA, and discusses the challenges to develop molecular pharming as an emerging industry with strategic importance in China.
Collapse
Affiliation(s)
- Jiquan Ou
- College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Busconi M, Baldi G, Lorenzoni C, Fogher C. Gene flow from transgenic rice to red rice (Oryza sativa L.) in the field. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:22-27. [PMID: 23590388 DOI: 10.1111/plb.12021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/30/2013] [Indexed: 06/02/2023]
Abstract
In this study, we simulate a transgenic rice crop highly infested with red rice to examine transgene transfer from a transgenic line (A2504) resistant to glufosinate ammonium to cohabitant red rice. The red rice was sown along with the transgenic line at the highest density found in naturally infested crops in the region. Agricultural practices similar to those used to control red rice infestation in northern Italy rice fields were used to reproduce the local rice production system. During the first 2 years, the field was treated with herbicide at the appropriate time; in the first year the dosage of herbicide was three times the recommended amount. In this first year, detectable red rice plants that escaped herbicide treatment were manually removed. Nevertheless, two herbicide-resistant hybrid plants (named 101 and 104) were identified in the experimental field during the second year of cultivation. Phenotypic and molecular characterisation suggests the hybrid nature of these two plants, deriving from crossing events involving A2504, respectively, with red rice (plant 101) and the buffer cultivar Gladio (plant 104). The progeny of two subsequent generations of the two plants were examined and the presence of the transgene detected, indicating stable transfer of the transgene across generations. In conclusion, despite control methods, red rice progeny tolerant to the herbicide can be expected following use of transgenic rice and, consequently, difficulties in controlling this weed with chemicals will emerge in a relatively short time.
Collapse
Affiliation(s)
- M Busconi
- Institute of Agronomy, Genetics and Field Crops, Università Cattolica S. Cuore, Piacenza, Italy
| | - G Baldi
- Institute of Agronomy, Genetics and Field Crops, Università Cattolica S. Cuore, Piacenza, Italy
| | - C Lorenzoni
- Institute of Agronomy, Genetics and Field Crops, Università Cattolica S. Cuore, Piacenza, Italy
| | - C Fogher
- Institute of Agronomy, Genetics and Field Crops, Università Cattolica S. Cuore, Piacenza, Italy
| |
Collapse
|
22
|
Chen Z, He Y, Shi B, Yang D. Human serum albumin from recombinant DNA technology: Challenges and strategies. Biochim Biophys Acta Gen Subj 2013; 1830:5515-25. [DOI: 10.1016/j.bbagen.2013.04.037] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 04/24/2013] [Accepted: 04/29/2013] [Indexed: 12/22/2022]
|
23
|
Serrat X, Esteban R, Peñas G, Català MM, Melé E, Messeguer J. Direct and reverse pollen-mediated gene flow between GM rice and red rice weed. AOB PLANTS 2013; 5:plt050. [PMCID: PMC4130427 DOI: 10.1093/aobpla/plt050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/24/2013] [Indexed: 06/01/2023]
Abstract
Several studies have reported transgenic rice transferring transgenes to red rice weed. However, gene flow also occurs in the opposite direction resulting in transgenic seeds that have incorporated the traits of wild red rice. We quantified this reverse flow being higher than the direct gene flow, nevertheless transgenic seeds carrying wild genes would remain in the spike and therefore most of it would be removed at harvesting. This phenomenon must be considered in fields used for elite seed production and in developing countries where there is a higher risk of GM red rice weed infestation increasing from year to year. Potential risks of genetically modified (GM) crops must be identified before their commercialization, as happens with all new technologies. One of the major concerns is the proper risk assessment of adventitious presence of transgenic material in rice fields due to cross-pollination. Several studies have been conducted in order to quantify pollen-mediated gene flow from transgenic rice (Oryza sativa) to both conventional rice and red rice weed (O. sativa f. spontanea) under field conditions. Some of these studies reported GM pollen-donor rice transferring GM traits to red rice. However, gene flow also occurs in the opposite direction, in a phenomenon that we have called reverse gene flow, resulting in transgenic seeds that have incorporated the traits of wild red rice. We quantified reverse gene flow using material from two field trials. A molecular analysis based on amplified fragment length polymorphisms was carried out, being complemented with a phenotypic identification of red rice traits. In both field trials, the reverse gene flow detected was greater than the direct gene flow. The rate of direct gene flow varied according to the relative proportions of the donor (GM rice) and receptor (red rice) plants and was influenced by wind direction. The ecological impact of reverse gene flow is limited in comparison with that of direct gene flow because non-shattered and non-dormant seeds would be obtained in the first generation. Hybrid seed would remain in the spike and therefore most of it would be removed during harvesting. Nevertheless, this phenomenon must be considered in fields used for elite seed production and in developing countries where farmers often keep some seed for planting the following year. In these cases, there is a higher risk of GM red rice weed infestation increasing from year to year and therefore a proper monitoring plan needs to be established.
Collapse
Affiliation(s)
- X. Serrat
- IRTA, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus UAB, Edifici CRAG, Bellaterra (Cerdanyola del Vallès), E-08193 Bellaterra, Spain
| | - R. Esteban
- IRTA, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus UAB, Edifici CRAG, Bellaterra (Cerdanyola del Vallès), E-08193 Bellaterra, Spain
| | - G. Peñas
- IRTA, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus UAB, Edifici CRAG, Bellaterra (Cerdanyola del Vallès), E-08193 Bellaterra, Spain
| | | | - E. Melé
- IRTA, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus UAB, Edifici CRAG, Bellaterra (Cerdanyola del Vallès), E-08193 Bellaterra, Spain
| | - J. Messeguer
- IRTA, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus UAB, Edifici CRAG, Bellaterra (Cerdanyola del Vallès), E-08193 Bellaterra, Spain
| |
Collapse
|
24
|
Block A, Debode F, Grohmann L, Hulin J, Taverniers I, Kluga L, Barbau-Piednoir E, Broeders S, Huber I, Van den Bulcke M, Heinze P, Berben G, Busch U, Roosens N, Janssen E, Žel J, Gruden K, Morisset D. The GMOseek matrix: a decision support tool for optimizing the detection of genetically modified plants. BMC Bioinformatics 2013; 14:256. [PMID: 23965170 PMCID: PMC3765097 DOI: 10.1186/1471-2105-14-256] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 08/06/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Since their first commercialization, the diversity of taxa and the genetic composition of transgene sequences in genetically modified plants (GMOs) are constantly increasing. To date, the detection of GMOs and derived products is commonly performed by PCR-based methods targeting specific DNA sequences introduced into the host genome. Information available regarding the GMOs' molecular characterization is dispersed and not appropriately organized. For this reason, GMO testing is very challenging and requires more complex screening strategies and decision making schemes, demanding in return the use of efficient bioinformatics tools relying on reliable information. DESCRIPTION The GMOseek matrix was built as a comprehensive, online open-access tabulated database which provides a reliable, comprehensive and user-friendly overview of 328 GMO events and 247 different genetic elements (status: 18/07/2013). The GMOseek matrix is aiming to facilitate GMO detection from plant origin at different phases of the analysis. It assists in selecting the targets for a screening analysis, interpreting the screening results, checking the occurrence of a screening element in a group of selected GMOs, identifying gaps in the available pool of GMO detection methods, and designing a decision tree. The GMOseek matrix is an independent database with effective functionalities in a format facilitating transferability to other platforms. Data were collected from all available sources and experimentally tested where detection methods and certified reference materials (CRMs) were available. CONCLUSIONS The GMOseek matrix is currently a unique and very valuable tool with reliable information on GMOs from plant origin and their present genetic elements that enables further development of appropriate strategies for GMO detection. It is flexible enough to be further updated with new information and integrated in different applications and platforms.
Collapse
Affiliation(s)
- Annette Block
- Walloon Agricultural Research Centre (CRA-W), Gembloux, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yang X, Wang F, Su J, Lu BR. Limited fitness advantages of crop-weed hybrid progeny containing insect-resistant transgenes (Bt/CpTI) in transgenic rice field. PLoS One 2012; 7:e41220. [PMID: 22815975 PMCID: PMC3398902 DOI: 10.1371/journal.pone.0041220] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 06/18/2012] [Indexed: 11/21/2022] Open
Abstract
Background The spread of insect-resistance transgenes from genetically engineered (GE) rice to its coexisting weedy rice (O. sativa f. spontanea) populations via gene flow creates a major concern for commercial GE rice cultivation. Transgene flow to weedy rice seems unavoidable. Therefore, characterization of potential fitness effect brought by the transgenes is essential to assess environmental consequences caused by crop-weed transgene flow. Methodology/Principal Findings Field performance of fitness-related traits was assessed in advanced hybrid progeny of F4 generation derived from a cross between an insect-resistant transgenic (Bt/CpTI) rice line and a weedy strain. The performance of transgene-positive hybrid progeny was compared with the transgene-negative progeny and weedy parent in pure and mixed planting of transgenic and nontransgenic plants under environmental conditions with natural vs. low insect pressure. Results showed that under natural insect pressure the insect-resistant transgenes could effectively suppress target insects and bring significantly increased fitness to transgenic plants in pure planting, compared with nontransgenic plants (including weedy parent). In contrast, no significant differences in fitness were detected under low insect pressure. However, such increase in fitness was not detected in the mixed planting of transgenic and nontransgenic plants due to significantly reduced insect pressure. Conclusions/Significance Insect-resistance transgenes may have limited fitness advantages to hybrid progeny resulted from crop-weed transgene flow owning to the significantly reduced ambient target insect pressure when an insect-resistant GE crop is grown. Given that the extensive cultivation of an insect-resistant GE crop will ultimately reduce the target insect pressure, the rapid spread of insect-resistance transgenes in weedy populations in commercial GE crop fields may be not likely to happen.
Collapse
Affiliation(s)
- Xiao Yang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Shanghai, China
| | - Feng Wang
- Fujian Province Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jun Su
- Fujian Province Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Bao-Rong Lu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
26
|
Luan FX, Tao R, Xu YG, Wu J, Guan XJ. High-throughput detection of genetically modified rice ingredients in foods using multiplex polymerase chain reaction coupled with high-performance liquid chromatography method. Eur Food Res Technol 2012. [DOI: 10.1007/s00217-012-1671-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Jiang Z, Xia H, Basso B, Lu BR. Introgression from cultivated rice influences genetic differentiation of weedy rice populations at a local spatial scale. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:309-322. [PMID: 21947325 DOI: 10.1007/s00122-011-1706-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 09/07/2011] [Indexed: 05/31/2023]
Abstract
Hybridization and introgression can play an important role in genetic differentiation and adaptive evolution of plant species. For example, a conspecific feral species may frequently acquire new alleles from its coexisting crops via introgression. However, little is known about this process. We analyzed 24 weedy rice (Oryza sativa f. spontanea) populations and their coexisting rice cultivars from northern Italy to study their genetic differentiation, outcrossing, and introgression based on microsatellite polymorphisms. A total of 576 maternal plants representing 24 weedy populations were used to estimate their genetic differentiation, and 5,395 progeny (seedlings) derived from 299 families of 15 selected populations were included to measure outcrossing rates. Considerable genetic differentiation (F (st) = 0.26) was detected among weedy rice populations, although the differentiation was not associated with the spatial pattern of the populations. Private alleles (28%) were identified in most populations that exhibited a multiple cluster assignments, indicating stronger genetic affinities of some weedy populations. Outcrossing rates were greatly variable and positively correlated (R (2) = 0.34, P = 0.02) with the private alleles of the corresponding populations. Paternity analysis suggested that ~15% of paternal specific alleles, a considerable portion of which was found to be crop-specific, were acquired from the introgression of the coexisting rice cultivars. Frequent allelic introgression into weedy populations resulting from outcrossing with nearby cultivars determines the private alleles of local feral populations, possibly leading to their genetic differentiation. Introgression from a crop may play an important role in the adaptive evolution of feral populations.
Collapse
Affiliation(s)
- Zhuxi Jiang
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Handan Road 220, Shanghai, 200433, China
| | | | | | | |
Collapse
|
28
|
Guertler P, Huber I, Pecoraro S, Busch U. Development of an event-specific detection method for genetically modified rice Kefeng 6 by quantitative real-time PCR. J Verbrauch Lebensm 2011. [DOI: 10.1007/s00003-011-0748-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Large-scale production of functional human serum albumin from transgenic rice seeds. Proc Natl Acad Sci U S A 2011; 108:19078-83. [PMID: 22042856 DOI: 10.1073/pnas.1109736108] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human serum albumin (HSA) is widely used in clinical and cell culture applications. Conventional production of HSA from human blood is limited by the availability of blood donation and the high risk of viral transmission from donors. Here, we report the production of Oryza sativa recombinant HSA (OsrHSA) from transgenic rice seeds. The level of OsrHSA reached 10.58% of the total soluble protein of the rice grain. Large-scale production of OsrHSA generated protein with a purity >99% and a productivity rate of 2.75 g/kg brown rice. Physical and biochemical characterization of OsrHSA revealed it to be equivalent to plasma-derived HSA (pHSA). The efficiency of OsrHSA in promoting cell growth and treating liver cirrhosis in rats was similar to that of pHSA. Furthermore, OsrHSA displays similar in vitro and in vivo immunogenicity as pHSA. Our results suggest that a rice seed bioreactor produces cost-effective recombinant HSA that is safe and can help to satisfy an increasing worldwide demand for human serum albumin.
Collapse
|
30
|
Abstract
Rice is the most important food crops in maintaining food security in China. The loss of China's annual rice production caused by pests is over ten million tons. Present studies showed that the transgenic insect-resistant rice can substantially reduce the application amount of chemical pesticides. In the case of no pesticide use, the pest density in transgenic rice field is significantly lower than that in non-transgenic field, and the neutral insects and natural enemies of pests increased significantly, indicating that the ecological environment and biodiversity toward the positive direction. The gene flow frequency from transgenic rice is dramatically reduced with the distance increases, reaching less than 0.01% at the distance of 6.2 m. Application of transgenic insect-resistant rice in China has an important significance for ensuring food security, maintaining sustainable agricultural development, and protecting the ecological environment and biodiversity. This review summarized the research progress in transgenic insect-resistant rice and its effect on biodiversity. The research directions and development trends of crop pest controlling in future are discussed. These help to promote better use of transgenic insect-resistant rice.
Collapse
|
31
|
Yang X, Xia H, Wang W, Wang F, Su J, Snow AA, Lu BR. Transgenes for insect resistance reduce herbivory and enhance fecundity in advanced generations of crop-weed hybrids of rice. Evol Appl 2011; 4:672-84. [PMID: 25568014 PMCID: PMC3352537 DOI: 10.1111/j.1752-4571.2011.00190.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 03/18/2011] [Indexed: 01/19/2023] Open
Abstract
Gene flow from transgenic crops allows novel traits to spread to sexually compatible weeds. Traits such as resistance to insects may enhance the fitness of weeds, but few studies have tested for these effects under natural field conditions. We created F2 and F3 crop–weed hybrid lineages of genetically engineered rice (Oryza sativa) using lines with two transgene constructs, cowpea trypsin inhibitor (CpTI) and a Bt transgene linked to CpTI (Bt/CpTI). Experiments conducted in Fuzhou, China, demonstrated that CpTI alone did not significantly affect fecundity, although it reduced herbivory. In contrast, under certain conditions, Bt/CpTI conferred up to 79% less insect damage and 47% greater fecundity relative to nontransgenic controls, and a 44% increase in fecundity relative to the weedy parent. A small fitness cost was detected in F3 progeny with Bt/CpTI when grown under low insect pressure and direct competition with transgene-negative controls. We conclude that Bt/CpTI transgenes may introgress into co-occurring weedy rice populations and contribute to greater seed production when target insects are abundant. However, the net fitness benefits that are associated with Bt/CpTI could be ephemeral if insect pressure is lacking, for example, because of widespread planting of Bt cultivars that suppress target insect populations.
Collapse
Affiliation(s)
- Xiao Yang
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University Shanghai, China
| | - Hui Xia
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University Shanghai, China
| | - Wei Wang
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University Shanghai, China
| | - Feng Wang
- Fujian Province Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences Fuzhou, China
| | - Jun Su
- Fujian Province Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences Fuzhou, China
| | - Allison A Snow
- Department of Evolution, Ecology & Organismal Biology, Ohio State University Columbus, OH, USA
| | - Bao-Rong Lu
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University Shanghai, China
| |
Collapse
|
32
|
Chun YJ, Kim DI, Park KW, Kim HJ, Jeong SC, An JH, Cho KH, Back K, Kim HM, Kim CG. Gene flow from herbicide-tolerant GM rice and the heterosis of GM rice-weed F2 progeny. PLANTA 2011; 233:807-815. [PMID: 21212977 DOI: 10.1007/s00425-010-1339-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/13/2010] [Indexed: 05/30/2023]
Abstract
Gene flow from genetically modified (GM) crops to non-GM cultivars or weedy relatives may lead to the development of more aggressive weeds. We quantified the amount of gene flow from herbicide-tolerant GM rice (Protox GM, derived from the cultivar Dongjin) to three cultivars (Dongjin, Aranghyangchal and Hwaseong) and a weedy rice line. Gene flow frequency generally decreased with increasing distance from the pollen donor. At the shortest distance (0.5 m), we observed a maximum frequency (0.039%) of gene flow. We found that the cultivar Dongjin received the greatest amount of gene flow, with the second being weedy rice. Heterosis of F2 inbred progeny was also examined between Protox GM and weedy rice. We compared growth and reproduction between F2 progeny (homozygous or hemizygous for the Protox gene) and parental rice lines (GM and weedy rice). Here, transgene-homozygous F2 progeny was significantly taller and produced more seeds than the transgene-hemizygous F2 progeny and parental lines. Although the gene flow frequency was generally low, our results suggest that F2 progeny between GM and weedy relatives may exhibit heterosis.
Collapse
Affiliation(s)
- Young Jin Chun
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, 685-1 Yangcheong-ri, Ochang-eup, Cheongwon-gun, Chungcheongbuk-do, 363-883, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chen M, Shelton A, Ye GY. Insect-resistant genetically modified rice in China: from research to commercialization. ANNUAL REVIEW OF ENTOMOLOGY 2011; 56:81-101. [PMID: 20868281 DOI: 10.1146/annurev-ento-120709-144810] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
From the first insect-resistant genetically modified (IRGM) rice transformation in 1989 in China to October 2009 when the Chinese Ministry of Agriculture issued biosafety certificates for commercial production of two cry1Ab/Ac Bacillus thuringiensis (Bt) lines, China made a great leap forward from IRGM rice basic research to potential commercialization of the world's first IRGM rice. Research has been conducted on developing IRGM rice, assessing its environmental and food safety impacts, and evaluating its socioeconomic consequences. Laboratory and field tests have confirmed that these two Bt rice lines can provide effective and economic control of the lepidopteran complex on rice with less risk to the environment than present practices. Commercializing these Bt plants, while developing other GM plants that address the broader complex of insects and other pests, will need to be done within a comprehensive integrated pest management program to ensure the food security of China and the world.
Collapse
Affiliation(s)
- Mao Chen
- Department of Entomology, Cornell University/NYSAES, Geneva, New York 14456, USA.
| | | | | |
Collapse
|
34
|
Integrated structure and event-specific real-time detection of transgenic cry1Ac/SCK rice Kefeng 6. Eur Food Res Technol 2010. [DOI: 10.1007/s00217-010-1399-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Event-specific qualitative and quantitative detection of transgenic rice Kefeng-6 by characterization of the transgene flanking sequence. Eur Food Res Technol 2010. [DOI: 10.1007/s00217-010-1389-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Rong J, Song Z, de Jong TJ, Zhang X, Sun S, Xu X, Xia H, Liu B, Lu BR. Modelling pollen-mediated gene flow in rice: risk assessment and management of transgene escape. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:452-464. [PMID: 20132516 DOI: 10.1111/j.1467-7652.2009.00488.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fast development and commercialization of genetically modified plants have aroused concerns of transgene escape and its environmental consequences. A model that can effectively predict pollen-mediated gene flow (PMGF) is essential for assessing and managing risks from transgene escape. A pollen-trap method was used to measure the wind-borne pollen dispersal in cultivated rice and common wild rice, and effects of relative humidity, temperature and wind speed on pollen dispersal were estimated. A PMGF model was constructed based on the pollen dispersal pattern in rice, taking outcrossing rates of recipients and cross-compatibility between rice and its wild relatives into consideration. Published rice gene flow data were used to validate the model. Pollen density decreased in a simple exponential pattern with distances to the rice field. High relative humidity reduced pollen dispersal distances. Model simulation showed an increased PMGF frequency with the increase of pollen source size (the area of a rice field), but this effect levelled off with a large pollen-source size. Cross-compatibility is essential when modelling PMGF from rice to its wild relatives. The model fits the data well, including PMGF from rice to its wild relatives. Therefore, it can be used to predict PMGF in rice under diverse conditions (e.g. different outcrossing rates and cross-compatibilities), facilitating the determination of isolation distances to minimize transgene escape. The PMGF model may be extended to other wind-pollinated plant species such as wheat and barley.
Collapse
Affiliation(s)
- Jun Rong
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Reiting R, Grohmann L, Mäde D. A testing cascade for the detection of genetically modified rice by real-time PCR in food and its application for detection of an unauthorized rice line similar to KeFeng6. J Verbrauch Lebensm 2010. [DOI: 10.1007/s00003-010-0573-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Cao QJ, Xia H, Yang X, Lu BR. Performance of hybrids between weedy rice and insect-resistant transgenic rice under field experiments: implication for environmental biosafety assessment. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:1138-1148. [PMID: 20021561 DOI: 10.1111/j.1744-7909.2009.00877.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Transgene escape from genetically modified (GM) rice into weedy rice via gene flow may cause undesired environmental consequences. Estimating the field performance of crop-weed hybrids will facilitate our understanding of potential introgression of crop genes (including transgenes) into weedy rice populations, allowing for effective biosafety assessment. Comparative studies of three weedy rice strains and their hybrids with two GM rice lines containing different insect-resistance transgenes (CpTI or Bt/CpTI) indicated an enhanced relative performance of the crop-weed hybrids, with taller plants, more tillers, panicles, and spikelets per plant, as well as higher 1 000-seed weight, compared with the weedy rice parents, although the hybrids produced less filled seeds per plant than their weedy parents. Seeds from the F(1) hybrids had higher germination rates and produced more seedlings than the weedy parents, which correlated positively with 1 000-seed weight. The crop-weed hybrids demonstrated a generally enhanced relative performance than their weedy rice parents in our field experiments. These findings indicate that transgenes from GM rice can persist to and introgress into weedy rice populations through recurrent crop-to-weed gene flow with the aid of slightly increased relative fitness in F(1) hybrids.
Collapse
Affiliation(s)
- Qian-Jin Cao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200433, China
| | | | | | | |
Collapse
|
39
|
Statement on a scientific publication on vertical gene flow in rice and its potential ecological consequences by Lu & Yang (2009). EFSA J 2009. [DOI: 10.2903/j.efsa.2009.1365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
40
|
Xia H, Lu BR, Su J, Chen R, Rong J, Song Z, Wang F. Normal expression of insect-resistant transgene in progeny of common wild rice crossed with genetically modified rice: its implication in ecological biosafety assessment. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:635-644. [PMID: 19504082 DOI: 10.1007/s00122-009-1075-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Accepted: 05/15/2009] [Indexed: 05/27/2023]
Abstract
Transgene outflow from genetically modified (GM) rice to its wild relatives may cause undesirable ecological consequences. Understanding the level of transgene expression in wild rice following gene flow is important for assessing such consequences, providing that transgene escape from GM rice cannot be prevented. To determine the expression of a transgene in common wild rice (Oryza rufipogon), we analyzed the content of Cry1Ac protein in three GM rice lines containing a Bt transgene, their F(1) hybrids with common wild rice and F(2) progeny at different growth stages, using the sandwich enzyme-linked immunosorbent assay. The average content of Cry1Ac protein in leaf samples of the wild rice lines ranged between 0.016 and 0.069% during the entire growth period, whereas that in stems varied between 0.12 and 0.39%. A great variation in Cry1Ac protein content was detected among individuals of F(1) hybrids and F(2) progeny, with some wild individuals showing higher level of Bt toxin than the cultivated GM rice. The results suggest that the Bt transgene can express normally in the interspecific hybrids between insect-resistant GM rice and common wild rice, and may have similar effects on the target insects as in GM rice.
Collapse
Affiliation(s)
- Hui Xia
- The Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, 200433, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Gene flow from genetically modified rice to its wild relatives: Assessing potential ecological consequences. Biotechnol Adv 2009; 27:1083-1091. [PMID: 19463932 DOI: 10.1016/j.biotechadv.2009.05.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pollen-mediated gene flow is the major pathway for transgene escape from GM rice to its wild relatives. Transgene escape to wild Oryza species having AA-genome will occur if GM rice is released to environments with these wild Oryza species. Transgenes may persist to and spread in wild populations after gene flow, resulting unwanted ecological consequences. For assessing the potential consequences caused by transgene escape, it is important to understand the actual gene flow frequencies from GM rice to wild relatives, transgene expression and inheritance in the wild relatives, as well as fitness changes that brought to wild relatives by the transgenes. This article reviews studies on transgene escape from rice to its wild relatives via gene flow and its ecological consequences. A framework for assessing potential ecological consequences caused by transgene escape from GM rice to its wild relatives is discussed based on studies of gene flow and fitness changes.
Collapse
|
42
|
Yuan QH, Shi L, Wang F, Cao B, Qian Q, Lei XM, Liao YL, Liu WG, Cheng L, Jia SR. Investigation of rice transgene flow in compass sectors by using male sterile line as a pollen detector. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:549-60. [PMID: 17622509 DOI: 10.1007/s00122-007-0588-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 06/07/2007] [Indexed: 05/16/2023]
Abstract
Rice is the most important staple food in the world. The rapid development of transgenic rice and its future commercialization have raised concerns regarding transgene flow and its potential environmental risk. It is known that rice is a self-pollinated crop; the outcrossing rate between common cultivars is generally less than 1%. In order to improve the detection sensitivity of rice transgene flow, a male sterile (ms) line BoA with a high outcrossing rate was used as a pollen detector in this study. A concentric circle design was adopted, in which the transgenic rice B2 containing bar gene as a pollen donor was planted in the center circle and the recipient BoA was planted in eight compass sectors. The frequency of transgene flow in compass sectors was analyzed by continuous sampling to generate cumulative data. The results of two years with sound reproducibility demonstrated that the rice gene flow was closely associated with the wind direction. According to the mean frequency of transgene flow, the eight sectors can be divided into two groups: a higher frequency group downstream of the prevailing wind (DPW) with a mean frequency ranging from 6.47 to 26.24%, and a lower frequency group lateral to or upstream of the prevailing wind (UPW) with a mean frequency of 0.39 to 3.03%. On the basis of the cumulative data, 90-96% of the cumulative gene flow events occurred in the four DPW sectors, while it was 4-10% in the four UPW sectors. By using these systematic data, simulation models and isograms of transgene flow in the eight compass sectors were calculated and drawn, respectively.
Collapse
Affiliation(s)
- Q H Yuan
- College of Life Science and Agriculture, MOE Key Lab of Tropic Biological Resources, Hainan University, Haikou, 570228, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jia S, Wang F, Shi L, Yuan Q, Liu W, Liao Y, Li S, Jin W, Peng H. Transgene flow to hybrid rice and its male-sterile lines. Transgenic Res 2007; 16:491-501. [PMID: 17443417 DOI: 10.1007/s11248-006-9037-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 08/29/2006] [Indexed: 10/23/2022]
Abstract
Gene flow from genetically modified (GM) crops to the same species or wild relatives is a major concern in risk assessment. Transgenic rice with insect and/or disease resistance, herbicide, salt and/or drought tolerance and improved quality has been successfully developed. However, data on rice gene flow from environmental risk assessment studies are currently insufficient for the large-scale commercialization of GM rice. We have provided data on the gene flow frequency at 17 distances between a GM japonica line containing the bar gene as a pollen donor and two indica hybrid rice varieties and four male-sterile (ms) lines. The GM line was planted in a 640 m2 in an isolated experimental plot (2.4 ha), which simulates actual conditions of rice production with pollen competition. Results showed that: (1) under parallel plantation at the 0-m zone, the transgene flow frequency to the ms lines ranged from 3.145 to 36.116% and was significantly higher than that to hybrid rice cultivars (0.037-0.045%). (2) Gene flow frequency decreased as the distance increased, with a sharp cutoff point at about 1-2 m; (3) The maximum distance of transgene flow was 30-40 m to rice cultivars and 40-150 m to ms lines. We believe that these data will be useful for the risk assessment and management of transgenic rice lines, especially in Asia where 90% of world's rice is produced and hybrid rice varieties are extensively used.
Collapse
Affiliation(s)
- Shirong Jia
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rong J, Lu BR, Song Z, Su J, Snow AA, Zhang X, Sun S, Chen R, Wang F. Dramatic reduction of crop-to-crop gene flow within a short distance from transgenic rice fields. THE NEW PHYTOLOGIST 2007; 173:346-53. [PMID: 17204081 DOI: 10.1111/j.1469-8137.2006.01906.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Genetically modified (GM) rice with enhanced agronomic traits and pharmaceutical uses are ready for widespread adoption. Little is known about isolation requirements for achieving stringent transgene confinement in rice. To investigate the extent of pollen-mediated crop-to-crop transgene flow, we conducted a field experiment with four plot-size treatments of adjacent GM and nonGM rice (Oryza sativa) in China. Three insect-resistant GM rice (Bt/CpTI) and nonGM isogenic lines were used in the study. The hygromycin-resistance transgene (hpt) marker was used to screen seeds from the nonGM rice rows at different distance intervals from GM rice plots. Based on the examination of > 2.1 million germinated seeds, we found a dramatic reduction in transgene frequencies with increasing distance from the GM crop, ranging from c. 0.28% at 0.2 m to < 0.01% at 6.2 m. In addition, different plot size did not significantly affect the frequencies of gene flow. In conclusion, pollen-mediated crop-to-crop transgene flow in rice can be maintained at negligible levels with short spatial isolation. The model can also be applied to other crops with self- and wind-pollination.
Collapse
Affiliation(s)
- Jun Rong
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Handan Road 220, Shanghai 200433, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang F, Yuan QH, Shi L, Qian Q, Liu WG, Kuang BG, Zeng DL, Liao YL, Cao B, Jia SR. A large-scale field study of transgene flow from cultivated rice (Oryza sativa) to common wild rice (O. rufipogon) and barnyard grass (Echinochloa crusgalli). PLANT BIOTECHNOLOGY JOURNAL 2006; 4:667-76. [PMID: 17309736 DOI: 10.1111/j.1467-7652.2006.00210.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The introgression of transgenes into wild relatives or weeds through pollen-mediated gene flow is a major concern in environmental risk assessment of transgenic crops. A large-scale (1.3-1.8 ha) rice gene flow study was conducted using transgenic rice containing the bar gene as a pollen donor and Oryza rufipogon as a recipient. There was a high frequency of transgene flow (11%-18%) at 0-1 m, with a steep decline with increasing distance to a detection limit of 0.01% by 250 m. To our knowledge, this is the highest frequency and longest distance of gene flow from transgenic rice to O. rufipogon reported so far. On the basis of these data, an adequate isolation distance from both conventional and transgenic rice should be taken for in situ conservation of common wild rice. Meanwhile, there is no evidence of transgene introgression into barnyard grass, even when it has coexisted with transgenic rice containing the bar gene for five successive years. Thus, the environmental risk of gene flow to this weedy species is of little concern.
Collapse
Affiliation(s)
- Feng Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 51064, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|