1
|
Li L, Wan SP, Wang Y, Thongklang N, Tang SM, Luo ZL, Li SH. New species of Hydnotrya (Ascomycota, Pezizomycetes) from southwestern China with notes on morphological characteristics of 17 species of Hydnotrya. MycoKeys 2023; 100:49-67. [PMID: 38025584 PMCID: PMC10660436 DOI: 10.3897/mycokeys.100.106709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
More specimens of Hydnotrya have been collected from southwestern China in recent years. Morphological and molecular analyses showed that they belonged to three species of Hydnotrya, of which two are new to science, H.oblongispora and H.zayuensis. The third one was H.laojunshanensis, previously reported in 2013. The new species are described, and their relationship to other species of Hydnotrya is discussed. H.laojunshanensis is re-described in more detail. The main morphological characters of 17 species of Hydnotrya are compared and a key to them is provided as well.
Collapse
Affiliation(s)
- Lin Li
- College of Agriculture and Biological Science, Dali University, Dali 671003, Yunnan, ChinaDali UniversityDaliChina
- School of Science, Mae Fah Luang University, Chiang Rai 57100, ThailandMae Fah Luang UniversityChiang RaiChina
| | - Shan-Ping Wan
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, ThailandYunnan Agricultural UniversityKunmingChina
| | - Yun Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, ChinaNew Zealand Institute for Crop and Food Research Limited, Invermay Agricultural CentreMosgielNew Zealand
| | - Naritsada Thongklang
- New Zealand Institute for Crop and Food Research Limited, Invermay Agricultural Centre, Private Bag 50034, Mosgiel, New ZealandMae Fah Luang UniversityChiang RaiThailand
| | - Song-Ming Tang
- New Zealand Institute for Crop and Food Research Limited, Invermay Agricultural Centre, Private Bag 50034, Mosgiel, New ZealandMae Fah Luang UniversityChiang RaiThailand
| | - Zong-Long Luo
- College of Agriculture and Biological Science, Dali University, Dali 671003, Yunnan, ChinaDali UniversityDaliChina
| | - Shu-Hong Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, Yunnan, ChinaBiotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural SciencesKunmingChina
| |
Collapse
|
2
|
Wang XC, Zhuang WY, Zhao RL. Species Diversity of Helvella lacunosa Clade (Pezizales, Ascomycota) in China and Description of Sixteen New Species. J Fungi (Basel) 2023; 9:697. [PMID: 37504686 PMCID: PMC10381826 DOI: 10.3390/jof9070697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
Helvella lacunosa and its allies are widely distributed in the Northern Hemisphere and perform important functions in ecosystems. A comprehensive study on 101 collections of Helvella lacunosa, including those deposited in four Chinese fungaria or collected recently from 10 provinces, was conducted based on morphological and molecular characteristics. Phylogenies of "Helvella lacunosa clade" inferred from Hsp90, ITS, LSU, and TEF were reconstructed with 49 lineages recognized, of which 25 lineages occurred in China, and each represented an individual species. Sixteen new species were determined with detailed descriptions and illustrations. Two new Chinese records were reported. Species concepts and their distinctions in macro- and micro-features were discussed.
Collapse
Affiliation(s)
- Xin-Cun Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui-Lin Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
3
|
Wang XC, Yang ZL, Chen SL, Bau T, Li TH, Li L, Fan L, Zhuang WY. Phylogeny and Taxonomic Revision of the Family Discinaceae ( Pezizales, Ascomycota). Microbiol Spectr 2023; 11:e0020723. [PMID: 37102868 PMCID: PMC10269896 DOI: 10.1128/spectrum.00207-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/20/2023] [Indexed: 04/28/2023] Open
Abstract
Species of Discinaceae are common macrofungi with a worldwide distribution. Some of them are commercially consumed, while a few others are reported as poisonous. Two genera were accepted in the family: the epigeous Gyromitra with discoid, cerebriform to saddle-shaped ascomata and the hypogeous Hydnotrya with globose or tuberous ascomata. However, due to discrepancies in their ecological behaviors, a comprehensive investigation of their relationship was not thoroughly explored. In this study, phylogenies of Discinaceae were reconstructed using sequence analyses of combined and separate three gene partitions (internal transcribed spacer [ITS], large subunit ribosomal DNA [LSU], and translation elongation factor [TEF]) with a matrix containing 116 samples. As a result, the taxonomy of the family was renewed. Eight genera were recognized: two of them (Gyromitra and Hydnotrya) were retained, three (Discina, Paradiscina, and Pseudorhizina) were revived, and three (Paragyromitra, Pseudodiscina, and Pseudoverpa) were newly established. Nine new combinations were made in four genera. Two new species in Paragyromitra and Pseudodiscina and an un-named taxon of Discina were described and illustrated in detail based on the materials collected from China. Furthermore, a key to the genera of the family was also provided. IMPORTANCE Taxonomy of the fungal family Discinaceae (Pezizales, Ascomycota) was significantly renewed on the basis of sequence analyses of internal transcribed spacer (ITS), large subunit ribosomal DNA (LSU), and translation elongation factor (TEF). Eight genera were accepted, including three new genera; two new species were described; and nine new combinations were made. A key to the accepted genera of the family is provided. The aim of this study is to deepen the understanding of the phylogenetic relationships among genera of the group, as well as the associated generic concepts.
Collapse
Affiliation(s)
- Xin-Cun Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhu-Liang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shuang-Lin Chen
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Tolgor Bau
- Key Laboratory of Edible Fungi Resources and Utilization (North), Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun, Jilin, China
| | - Tai-Hui Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Lin Li
- College of Agronomy and Biosciences, Dali University, Dali, China
| | - Li Fan
- College of Life Science, Capital Normal University, Beijing, China
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Skrede I, Løken SB, Mathiesen C, Schumacher T. Additions to the knowledge of the genus Helvella in Europe. New records and de novo description of five species from the Nordic region. Fungal Syst Evol 2023; 11:71-84. [PMID: 38562588 PMCID: PMC10982846 DOI: 10.3114/fuse.2023.11.06] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/25/2023] [Indexed: 04/04/2024] Open
Abstract
Helvella is a species-rich genus, forming a large variation of astounding ascocarps in many different habitats. During the last decade, molecular markers and morphological characters have been combined to delimit and identify cryptic species in this genus. We report on a list of 54 species of Helvella s.s. in the Nordic region and describe five new species, i.e. H. bresadolae, H. convexa, H. japonica, H. nordlandica and H. oroarctica. The morphological and molecular characteristics of the new species and the emended / hypocrateriformis, / fibrosa-macropus, and / fallax-pezizoides lineages of Helvella s.s. are shortly commented upon. Further we include a discussion of the distribution of species in the Nordic region based on a large set of studied collections. The ecological versatility and variable geographic patterns of these species indicate that cryptic species may have contrasting ecology in their local habitats. Citation: Skrede I, Løken SB, Mathiesen C, Schumacher T (2023). Additions to the knowledge of the genus Helvella in Europe. New records and de novo description of five species from the Nordic region. Fungal Systematics and Evolution 11: 71-84. doi: 10.3114/fuse.2023.11.06.
Collapse
Affiliation(s)
- I Skrede
- Department of Biosciences, University of Oslo, P.O. Box 1066, 0316 Oslo Norway
| | - S B Løken
- Department of Biosciences, University of Oslo, P.O. Box 1066, 0316 Oslo Norway
| | - C Mathiesen
- Department of Biosciences, University of Oslo, P.O. Box 1066, 0316 Oslo Norway
| | - T Schumacher
- Department of Biosciences, University of Oslo, P.O. Box 1066, 0316 Oslo Norway
| |
Collapse
|
5
|
Zitouni-Haouar FEH, Bidartondo MI, Moreno G, Carlavilla JR, Manjón JL, Neggaz S, Zitouni-Nourine SH. Bioclimatic Origin Shapes Phylogenetic Structure of Tirmania (Pezizaceae): New Species and New Record from North Africa. J Fungi (Basel) 2023; 9:jof9050532. [PMID: 37233244 DOI: 10.3390/jof9050532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
The phylogenetic relationships among Tirmania were investigated using the internal transcribed spacer (ITS) and large subunit (LSU) regions of the nuclear-encoded ribosomal DNA (rDNA) and compared with morphological and bioclimatic data. The combined analyses of forty-one Tirmania samples from Algeria and Spain supported four lineages corresponding to four morphological species. Besides the two previously described taxa, Tirmania pinoyi and Tirmania nivea, here we describe and illustrate a new species, Tirmania sahariensis sp. nov., which differs from all other Tirmania by its distinct phylogenetic position and its specific combination of morphological features. We also present a first record of Tirmania honrubiae from North Africa (Algeria). Our findings suggest that restrictions imposed by the bioclimatic niche have played a key role in driving the speciation process of Tirmania along the Mediterranean and Middle East.
Collapse
Affiliation(s)
- Fatima El-Houaria Zitouni-Haouar
- Laboratory of Biology of Microorganisms and Biotechnology, Department of Biotechnology, Faculty of Natural and Life Sciences, Oran 1 Ahmed Ben Bella University, Oran 31000, Algeria
| | - Martin I Bidartondo
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, London SL5 7PY, UK
- Ecosystem Stewardship, Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK
| | - Gabriel Moreno
- Departamento de Ciencias de la Vida, Facultad de Biología, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Juan Ramón Carlavilla
- Departamento de Ciencias de la Vida, Facultad de Biología, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - José Luis Manjón
- Departamento de Ciencias de la Vida, Facultad de Biología, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Samir Neggaz
- Laboratory of Biology of Microorganisms and Biotechnology, Department of Biotechnology, Faculty of Natural and Life Sciences, Oran 1 Ahmed Ben Bella University, Oran 31000, Algeria
| | - Saida Hanane Zitouni-Nourine
- Pharmaceutical Development Research Laboratory, Department of Pharmacy, Faculty of Medicine, Oran 1 Ahmed Ben Bella University, Oran 31000, Algeria
| |
Collapse
|
6
|
Temporiti MEE, Nicola L, Girometta CE, Roversi A, Daccò C, Tosi S. The Analysis of the Mycobiota in Plastic Polluted Soil Reveals a Reduction in Metabolic Ability. J Fungi (Basel) 2022; 8:jof8121247. [PMID: 36547580 PMCID: PMC9785340 DOI: 10.3390/jof8121247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Plastic pollution is a growing environmental issue that results in its accumulation and persistence in soil for many decades, with possible effects on soil quality and ecosystem services. Microorganisms, and especially fungi, are a keystone of soil biodiversity and soil metabolic capacity. The aim of this research was to study soil fungal biodiversity and soil microbial metabolic profiles in three different sites in northern Italy, where macro- and microplastic concentration in soil was measured. The metabolic analyses of soil microorganisms were performed by Biolog EcoPlates, while the ITS1 fragment of the 18S ribosomal cDNA was used as a target for the metabarcoding of fungal communities. The results showed an intense and significant decrease in soil microbial metabolic ability in the site with the highest concentration of microplastics. Moreover, the soil fungal community composition was significantly different in the most pristine site when compared with the other two sites. The metabarcoding of soil samples revealed a general dominance of Mortierellomycota followed by Ascomycota in all sampled soils. Moreover, a dominance of fungi involved in the degradation of plant residues was observed in all three sites. In conclusion, this study lays the foundation for further research into the effect of plastics on soil microbial communities and their activities.
Collapse
|
7
|
Schön ME, Abarenkov K, Garnica S. Host generalists dominate fungal communities associated with alpine knotweed roots: a study of Sebacinales. PeerJ 2022; 10:e14047. [PMID: 36217381 PMCID: PMC9547586 DOI: 10.7717/peerj.14047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 08/22/2022] [Indexed: 01/19/2023] Open
Abstract
Bistorta vivipara is a widespread herbaceous perennial plant with a discontinuous pattern of distribution in arctic, alpine, subalpine and boreal habitats across the northern Hemisphere. Studies of the fungi associated with the roots of B. vivipara have mainly been conducted in arctic and alpine ecosystems. This study examined the fungal diversity and specificity from root tips of B. vivipara in two local mountain ecosystems as well as on a global scale. Sequences were generated by Sanger sequencing of the internal transcribed spacer (ITS) region followed by an analysis of accurately annotated nuclear segments including ITS1-5.8S-ITS2 sequences available from public databases. In total, 181 different UNITE species hypotheses (SHs) were detected to be fungi associated with B. vivipara, 73 of which occurred in the Bavarian Alps and nine in the Swabian Alps-with one SH shared among both mountains. In both sites as well as in additional public data, individuals of B. vivipara were found to contain phylogenetically diverse fungi, with the Basidiomycota, represented by the Thelephorales and Sebacinales, being the most dominant. A comparative analysis of the diversity of the Sebacinales associated with B. vivipara and other co-occurring plant genera showed that the highest number of sebacinoid SHs were associated with Quercus and Pinus, followed by Bistorta. A comparison of B. vivipara with plant families such as Ericaceae, Fagaceae, Orchidaceae, and Pinaceae showed a clear trend: Only a few species were specific to B. vivipara and a large number of SHs were shared with other co-occurring non-B. vivipara plant species. In Sebacinales, the majority of SHs associated with B. vivipara belonged to the ectomycorrhiza (ECM)-forming Sebacinaceae, with fewer SHs belonging to the Serendipitaceae encompassing diverse ericoid-orchid-ECM-endophytic associations. The large proportion of non-host-specific fungi able to form a symbiosis with other non-B. vivipara plants could suggest that the high fungal diversity in B. vivipara comes from an active recruitment of their associates from the co-occurring vegetation. The non-host-specificity suggests that this strategy may offer ecological advantages; specifically, linkages with generalist rather than specialist fungi. Proximity to co-occurring non-B. vivipara plants can maximise the fitness of B. vivipara, allowing more rapid and easy colonisation of the available habitats.
Collapse
Affiliation(s)
- Max Emil Schön
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany,Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | - Sigisfredo Garnica
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
8
|
Authier L, Violle C, Richard F. Ectomycorrhizal Networks in the Anthropocene: From Natural Ecosystems to Urban Planning. FRONTIERS IN PLANT SCIENCE 2022; 13:900231. [PMID: 35845640 PMCID: PMC9280895 DOI: 10.3389/fpls.2022.900231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Trees acquire hydric and mineral soil resources through root mutualistic associations. In most boreal, temperate and Mediterranean forests, these functions are realized by a chimeric structure called ectomycorrhizae. Ectomycorrhizal (ECM) fungi are highly diversified and vary widely in their specificity toward plant hosts. Reciprocally, association patterns of ECM plants range from highly specialist to generalist. As a consequence, ECM symbiosis creates interaction networks, which also mediate plant-plant nutrient interactions among different individuals and drive plant community dynamics. Our knowledge of ECM networks essentially relies on a corpus acquired in temperate ecosystems, whereas the below-ground facets of both anthropogenic ECM forests and inter-tropical forests remain poorly investigated. Here, we successively (1) review the current knowledge of ECM networks, (2) examine the content of early literature produced in ECM cultivated forests, (3) analyze the recent progress that has been made in understanding the place of ECM networks in urban soils, and (4) provide directions for future research based on the identification of knowledge gaps. From the examined corpus of knowledge, we reach three main conclusions. First, the emergence of metabarcoding tools has propelled a resurgence of interest in applying network theory to ECM symbiosis. These methods revealed an unexpected interconnection between mutualistic plants with arbuscular mycorrhizal (AM) herbaceous plants, embedding ECM mycelia through root-endophytic interactions. This affinity of ECM fungi to bind VA and ECM plants, raises questions on the nature of the associated functions. Second, despite the central place of ECM trees in cultivated forests, little attention has been paid to these man-made landscapes and in-depth research on this topic is lacking. Third, we report a lag in applying the ECM network theory to urban soils, despite management initiatives striving to interconnect motile organisms through ecological corridors, and the highly challenging task of interconnecting fixed organisms in urban greenspaces is discussed. In particular, we observe a pauperized nature of resident ECM inoculum and a spatial conflict between belowground human pipelines and ECM networks. Finally, we identify the main directions of future research to make the needed link between the current picture of plant functioning and the understanding of belowground ECM networks.
Collapse
Affiliation(s)
- Louise Authier
- CEFE, Univ Montpellier - CNRS - EPHE - IRD, Montpellier, France
- Ilex Paysage + Urbanisme, Lyon, France
| | - Cyrille Violle
- CEFE, Univ Montpellier - CNRS - EPHE - IRD, Montpellier, France
| | - Franck Richard
- CEFE, Univ Montpellier - CNRS - EPHE - IRD, Montpellier, France
| |
Collapse
|
9
|
The first record of the genus Geopora (Pezizales) for Uzbekistan. UKRAINIAN BOTANICAL JOURNAL 2022. [DOI: 10.15407/ukrbotj79.01.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The first record of Geopora arenicola for Uzbekistan is reported from Nuratau Nature Reserve. The genus Geopora is also recorded for the first time in Uzbekistan. Ascocarps of the fungus at first are usually spherical, completely immersed in soil, later they emerge at the ground surface and open at the top. Mature apothecia have a central opening with torn edges and whitish to grayish hymenium surface. A description, distribution data, images of apothecia and micromorphological characters of the fungus are provided.
Collapse
|
10
|
Healy RA, Arnold AE, Bonito G, Huang YL, Lemmond B, Pfister DH, Smith ME. Endophytism and endolichenism in Pezizomycetes: the exception or the rule? THE NEW PHYTOLOGIST 2022; 233:1974-1983. [PMID: 34839525 DOI: 10.1111/nph.17886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Rosanne A Healy
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - A Elizabeth Arnold
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Gregory Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Yu-Ling Huang
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
- Department of Biology, National Museum of Natural Science, Taichung, 404, Taiwan
| | - Benjamin Lemmond
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Donald H Pfister
- Department of Organismic and Evolutionary Biology, Farlow Herbarium, Harvard University, 22 Divinity Ave, Cambridge, MA, 02138-2020, USA
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
11
|
Fortin Faubert M, Labrecque M, Hijri M. Ectomycorrhizal Fungi Dominated the Root and Rhizosphere Microbial Communities of Two Willow Cultivars Grown for Six-Years in a Mixed-Contaminated Environment. J Fungi (Basel) 2022; 8:jof8020145. [PMID: 35205899 PMCID: PMC8880157 DOI: 10.3390/jof8020145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
There is a growing interest in plant microbiome’s engineering to optimize desired functions such as improved phytoremediation. This study is aimed at examining the microbial communities inhabiting the roots and rhizospheres of two Salix miyabeana cultivars that had been grown in a short-rotation intensive culture (SRIC) system for six years in a soil contaminated with the discharge from a petrochemical factory. DNA was extracted from roots and rhizospheric soils, and fungal ITS and bacterial and archaeal 16S rDNA regions were amplified and sequenced using Illumina MiSeq technology. Cultivars ‘SX61’ and ‘SX64’ were found to harbor a similar diversity of fungal, bacterial, and archaeal amplicon sequence variants (ASVs). As expected, a greater microbial diversity was found in the rhizosphere biotope than in the roots of both cultivars, except for cultivar ‘SX64’, where a similar fungal diversity was observed in both biotopes. However, we found that microbial community structures were cultivar- and biotope-specific. Although the implication of some identified taxa for plant adaptability and biomass production capacity remains to be explored, this study provides valuable and useful information regarding microbes that could potentially favor the implantation and phytoremediation efficiency of Salix miyabeana in mixed contamination sites in similar climatic environments.
Collapse
Affiliation(s)
- Maxime Fortin Faubert
- Institut de Recherche en Biologie végétale, Département de Sciences Biologiques, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke East, Montreal, QC H1X 2B2, Canada; (M.F.F.); (M.L.)
| | - Michel Labrecque
- Institut de Recherche en Biologie végétale, Département de Sciences Biologiques, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke East, Montreal, QC H1X 2B2, Canada; (M.F.F.); (M.L.)
| | - Mohamed Hijri
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
- Correspondence:
| |
Collapse
|
12
|
Effects of Early, Small-Scale Nitrogen Addition on Germination and Early Growth of Scots Pine (Pinus sylvestris) Seedlings and on the Recruitment of the Root-Associated Fungal Community. FORESTS 2021. [DOI: 10.3390/f12111589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Scots pine (Pinus sylvestris L.) is one of the most economically important species to the Swedish forest industry, and cost-efficient planting methods are needed to ensure successful reestablishment after harvesting forest stands. While the majority of clear-cuts are replanted with pre-grown seedlings, direct seeding can be a viable option on poorer sites. Organic fertilizer has been shown to improve planted seedling establishment, but the effect on direct seeding is less well known. Therefore, at a scarified (disc trencher harrowed) clear-cut site in northern Sweden, we evaluated the effect of early, small-scale nitrogen addition on establishment and early recruitment of fungi from the disturbed soil community by site-planted Scots pine seeds. Individual seeds were planted using a moisture retaining germination matrix containing 10 mg nitrogen in the form of either arginine phosphate or ammonium nitrate. After one growing season, we collected seedlings and assessed the fungal community of seedling roots and the surrounding soil. Our results demonstrate that early, small-scale N addition increases seedling survival and needle carbon content, that there is rapid recruitment of ectomycorrhizal fungi to the roots and rhizosphere of the young seedlings and that this rapid recruitment was modified but not prevented by N addition.
Collapse
|
13
|
Leonardi M, Iotti M, Mello A, Vizzini A, Paz-Conde A, Trappe J, Pacioni G. Typification of the Four Most Investigated and Valuable Truffles: Tuber aestivum Vittad., T. borchii Vittad., T. magnatum Picco and T. melanosporum Vittad. CRYPTOGAMIE MYCOL 2021. [DOI: 10.5252/cryptogamie-mycologie2021v42a9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Marco Leonardi
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila (Italy)
| | - Mirco Iotti
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila (Italy)
| | - Antonietta Mello
- Istituto per la Protezione Sostenibile delle Piante, CNR, Viale P.A. Mattioli 25, 10125 Torino (Italy)
| | | | | | - James Trappe
- Oregon State University, Department of Botany and Plant Pathology, Corvallis, Oregon 97331 (United States)
| | - Giovanni Pacioni
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila (Italy)
| |
Collapse
|
14
|
Hoeber S, Baum C, Weih M, Manzoni S, Fransson P. Site-Dependent Relationships Between Fungal Community Composition, Plant Genotypic Diversity and Environmental Drivers in a Salix Biomass System. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:671270. [PMID: 37744105 PMCID: PMC10512226 DOI: 10.3389/ffunb.2021.671270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/12/2021] [Indexed: 09/26/2023]
Abstract
Soil fungi are strongly affected by plant species or genotypes since plants modify their surrounding environment, but the effects of plant genotype diversity on fungal diversity and function have not been extensively studied. The interactive responses of fungal community composition to plant genotypic diversity and environmental drivers were investigated in Salix biomass systems, posing questions about: (1) How fungal diversity varies as a function of plant genotype diversity; (2) If plant genotype identity is a strong driver of fungal community composition also in plant mixtures; (3) How the fungal communities change through time (seasonally and interannually)?; and (4) Will the proportion of ECM fungi increase over the rotation? Soil samples were collected over 4 years, starting preplanting from two Salix field trials, including four genotypes with contrasting phenology and functional traits, and genotypes were grown in all possible combinations (four genotypes in Uppsala, Sweden, two in Rostock, Germany). Fungal communities were identified, using Pacific Biosciences sequencing of fungal ITS2 amplicons. We found some site-dependent relationships between fungal community composition and genotype or diversity level, and site accounted for the largest part of the variation in fungal community composition. Rostock had a more homogenous community structure, with significant effects of genotype, diversity level, and the presence of one genotype ("Loden") on fungal community composition. Soil properties and plant and litter traits contributed to explaining the variation in fungal species composition. The within-season variation in composition was of a similar magnitude to the year-to-year variation. The proportion of ECM fungi increased over time irrespective of plant genotype diversity, and, in Uppsala, the 4-mixture showed a weaker response than other combinations. Species richness was generally higher in Uppsala compared with that in Rostock and increased over time, but did not increase with plant genotype diversity. This significant site-specificity underlines the need for consideration of diverse sites to draw general conclusions of temporal variations and functioning of fungal communities. A significant increase in ECM colonization of soil under the pioneer tree Salix on agricultural soils was evident and points to changed litter decomposition and soil carbon dynamics during Salix growth.
Collapse
Affiliation(s)
- Stefanie Hoeber
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Christel Baum
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Martin Weih
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Stefano Manzoni
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Petra Fransson
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
15
|
Yin C, Schlatter DC, Kroese DR, Paulitz TC, Hagerty CH. Responses of Soil Fungal Communities to Lime Application in Wheat Fields in the Pacific Northwest. Front Microbiol 2021; 12:576763. [PMID: 34093451 PMCID: PMC8174452 DOI: 10.3389/fmicb.2021.576763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 04/21/2021] [Indexed: 11/15/2022] Open
Abstract
Liming is an effective agricultural practice and is broadly used to ameliorate soil acidification in agricultural ecosystems. Our understanding of the impacts of lime application on the soil fungal community is scarce. In this study, we explored the responses of fungal communities to liming at two locations with decreasing soil pH in Oregon in the Pacific Northwest using high-throughput sequencing (Illumina MiSeq). Our results revealed that the location and liming did not significantly affect soil fungal diversity and richness, and the impact of soil depth on fungal diversity varied among locations. In contrast, location and soil depth had a strong effect on the structure and composition of soil fungal communities, whereas the impact of liming was much smaller, and location- and depth-dependent. Interestingly, families Lasiosphaeriaceae, Piskurozymaceae, and Sordariaceae predominated in the surface soil (0–7.5 cm) and were positively correlated with soil OM and aluminum, and negatively correlated with pH. The family Kickxellaceae which predominated in deeper soil (15–22.5 cm), had an opposite response to soil OM. Furthermore, some taxa in Ascomycota, such as Hypocreales, Peziza and Penicillium, were increased by liming at one of the locations (Moro). In conclusion, these findings suggest that fungal community structure and composition rather than fungal diversity responded to location, soil depth and liming. Compared to liming, location and depth had a stronger effect on the soil fungal community, but some specific fungal taxa shifted with lime application.
Collapse
Affiliation(s)
- Chuntao Yin
- Department of Plant Pathology, Washington State University, Pullman, WA, United States.,Department of Botany and Plant Pathology, Oregon State University, Adams, OR, United States
| | - Daniel C Schlatter
- Wheat Health, Genetics and Quality Research Unit, United States Department of Agriculture - Agriculture Research Service, Pullman, WA, United States
| | - Duncan R Kroese
- Department of Botany and Plant Pathology, Oregon State University, Adams, OR, United States
| | - Timothy C Paulitz
- Department of Plant Pathology, Washington State University, Pullman, WA, United States.,Wheat Health, Genetics and Quality Research Unit, United States Department of Agriculture - Agriculture Research Service, Pullman, WA, United States
| | - Christina H Hagerty
- Department of Botany and Plant Pathology, Oregon State University, Adams, OR, United States
| |
Collapse
|
16
|
Kinoshita A, Sasaki H, Orihara T, Nakajima M, Nara K. Tuber iryudaense and T. tomentosum: Two new truffles encased in tomentose mycelium from Japan. Mycologia 2021; 113:653-663. [PMID: 33835893 DOI: 10.1080/00275514.2021.1875709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We describe two new Japanese truffle species, Tuber iryudaense and Tuber tomentosum, based on molecular and morphological analyses. Both species are clearly distinguishable from other Tuber species by the ocher tomentose mycelium covering the ascoma surfaces. Tuber iryudaense has one-spored asci that each contain a large (68-97 × 51-80 µm), reddish-brown ascospore; these microscopic characters are similar to those of closely related Chinese species, T. calosporum, T. gigantosporum, T. glabrum, T. monosporum, and T. sinomonosporum. Tuber tomentosum forms one to four ascospores per ascus with a reddish-brown color similar to that of ascospores of T. macrosporum and T. canaliculatum, although their spores are much larger than those of T. tomentosum (27‒64 × 26‒55 µm). Molecular phylogenetic analyses based on ribosomal internal transcribed spacer and partial 28S nuc rDNA sequences support that both species are distinct within the Macrosporum group.
Collapse
Affiliation(s)
- Akihiko Kinoshita
- Kyushu Research Center, Forestry and Forest Products Research Institute, Kurokami, Kumamoto City, Chuo-ku, Kumamoto 860-0862, Japan
| | - Hiromi Sasaki
- Mycologist Circle of Japan, Fujisawa City, Kanagawa, Japan
| | - Takamichi Orihara
- Kanagawa Prefectural Museum of Natural History, 499 Iryuda, Odawara City, Kanagawa 250-0031, Japan
| | | | - Kazuhide Nara
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa City, Chiba 277-8563, Japan
| |
Collapse
|
17
|
Undisturbed Soil Pedon under Birch Forest: Characterization of Microbiome in Genetic Horizons. SOIL SYSTEMS 2021. [DOI: 10.3390/soilsystems5010014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Vast areas of land in the forest-steppe of West Siberia are occupied by birch forests, the most common ecosystems there. However, currently, little is known about the microbiome composition in the underlying soil, especially along a sequence of soil genetic horizons. The study aimed at inventorying microbiome in genetic horizons of a typical Phaeozem under undisturbed birch forest in West Siberia. Bacteria and fungi were studied using 16S rRNA genes’ and ITS2 amplicon sequencing with Illumina MiSeq. Proteobacteria and Acidobacteria together accounted for two-thirds of the operational taxonomic units (OTUs) numbers and half of the sequences in each genetic horizon. Acidobacteria predominated in eluvial environments, whereas Proteobacteria, preferred topsoil. The fungal sequences were dominated by Ascomycota and Basidiomycota phyla. Basidiomycota was the most abundant in the topsoil, whereas Ascomycota increased down the soil profile. Thelephoraceae family was the most abundant in the A horizon, whereas the Pyronemataceae family dominants in the AEl horizon, ultimately prevailing in the subsoil. We conclude that soil genetic horizons shape distinct microbiomes, therefore soil horizontation should be accounted for while studying undisturbed soils. This study, representing the first description of bacterio- and mycobiomes in genetic horizons of the Phaeozem profile, provides a reference for future research.
Collapse
|
18
|
Bang-Andreasen T, Anwar MZ, Lanzén A, Kjøller R, Rønn R, Ekelund F, Jacobsen CS. Total RNA sequencing reveals multilevel microbial community changes and functional responses to wood ash application in agricultural and forest soil. FEMS Microbiol Ecol 2020; 96:5721238. [PMID: 32009159 PMCID: PMC7028008 DOI: 10.1093/femsec/fiaa016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/31/2020] [Indexed: 11/15/2022] Open
Abstract
Recycling of wood ash from energy production may counteract soil acidification and return essential nutrients to soils. However, wood ash amendment affects soil physicochemical parameters that control composition and functional expression of the soil microbial community. Here, we applied total RNA sequencing to simultaneously assess the impact of wood ash amendment on the active soil microbial communities and the expression of functional genes from all microbial taxa. Wood ash significantly affected the taxonomic (rRNA) as well as functional (mRNA) profiles of both agricultural and forest soil. Increase in pH, electrical conductivity, dissolved organic carbon and phosphate were the most important physicochemical drivers for the observed changes. Wood ash amendment increased the relative abundance of the copiotrophic groups Chitinonophagaceae (Bacteroidetes) and Rhizobiales (Alphaproteobacteria) and resulted in higher expression of genes involved in metabolism and cell growth. Finally, total RNA sequencing allowed us to show that some groups of bacterial feeding protozoa increased concomitantly to the enhanced bacterial growth, which shows their pivotal role in the regulation of bacterial abundance in soil.
Collapse
Affiliation(s)
- Toke Bang-Andreasen
- Department of Environmental Science, Aarhus University, RISØ Campus, Roskilde, 4000, Denmark.,Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Muhammad Zohaib Anwar
- Department of Environmental Science, Aarhus University, RISØ Campus, Roskilde, 4000, Denmark
| | - Anders Lanzén
- Department of Conservation of Natural Resources, NEIKER-Tecnalia, Bizkaia Technology Park, E-48160, Derio, Spain.,AZTI-Tecnalia, Herrera Kaia, E-20110, Pasaia, Spain.,Ikerbasque, Basque Foundation for Science, E-48013, Bilbao, Spain
| | - Rasmus Kjøller
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Regin Rønn
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark.,Arctic Station, University of Copenhagen, 3953, Qeqertarsuaq, Greenland
| | - Flemming Ekelund
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Carsten Suhr Jacobsen
- Department of Environmental Science, Aarhus University, RISØ Campus, Roskilde, 4000, Denmark
| |
Collapse
|
19
|
Braeuer S, Borovička J, Kameník J, Prall E, Stijve T, Goessler W. Is arsenic responsible for the toxicity of the hyperaccumulating mushroom Sarcosphaera coronaria? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139524. [PMID: 32474274 DOI: 10.1016/j.scitotenv.2020.139524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
The Violet Crown Cup, Sarcosphaera coronaria, is a rather inconspicuous mushroom, but with an interesting and unresolved mystery. In earlier days, the mushroom was considered edible, but several poisonings were reported in the early 20th century. The reason for the seemingly sporadic toxicity of S. coronaria is still unknown. One possible explanation is arsenic, since Crown Cups can take up high amounts of this element. We investigated the arsenic concentration and arsenic speciation in S. coronaria with inductively coupled plasma mass spectrometry (ICPMS) and HPLC coupled to ICPMS and found up to incredible 0.9% As (dry mass). Most of it was present as methylarsonic acid (MA), a less toxic form of this element. However, low concentrations of the highly toxic methylarsonous acid [MA (III)] were also detected. The amounts were too low to pose an acute risk for consumers, but the concentration of MA (III) significantly increased during simulated gastric digestion. We could not unambiguously identify arsenic as the toxic constituent of S. coronaria, but we demonstrated that the extremely toxic MA (III) can be formed under certain circumstances, which should be carefully investigated in future.
Collapse
Affiliation(s)
- Simone Braeuer
- Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria
| | - Jan Borovička
- Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 16500 Prague 6, Czech Republic; Nuclear Physics Institute of the Czech Academy of Sciences, Hlavní 130, 25068 Husinec-Řež, Czech Republic
| | - Jan Kameník
- Nuclear Physics Institute of the Czech Academy of Sciences, Hlavní 130, 25068 Husinec-Řež, Czech Republic
| | - Elisa Prall
- Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria
| | | | - Walter Goessler
- Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria.
| |
Collapse
|
20
|
Pérez-Izquierdo L, Zabal-Aguirre M, Verdú M, Buée M, Rincón A. Ectomycorrhizal fungal diversity decreases in Mediterranean pine forests adapted to recurrent fires. Mol Ecol 2020; 29:2463-2476. [PMID: 32500559 DOI: 10.1111/mec.15493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 01/02/2023]
Abstract
Fire is a major disturbance linked to the evolutionary history and climate of Mediterranean ecosystems, where the vegetation has evolved fire-adaptive traits (e.g., serotiny in pines). In Mediterranean forests, mutualistic feedbacks between trees and ectomycorrhizal (ECM) fungi, essential for ecosystem dynamics, might be shaped by recurrent fires. We tested how the structure and function of ECM fungal communities of Pinus pinaster and Pinus halepensis vary among populations subjected to high and low fire recurrence in Mediterranean ecosystems, and analysed the relative contribution of environmental (climate, soil properties) and tree-mediated (serotiny) factors. For both pines, local and regional ECM fungal diversity were lower in areas of high than low fire recurrence, although certain fungal species were favoured in the former. A general decline of ECM root-tip enzymatic activity for P. pinaster was associated with high fire recurrence, but not for P. halepensis. Fire recurrence and fire-related factors such as climate, soil properties or tree phenotype explained these results. In addition to the main influence of climate, the tree fire-adaptive trait serotiny recovered a great portion of the variation in structure and function of ECM fungal communities associated with fire recurrence. Edaphic conditions (especially pH, tightly linked to bedrock type) were an important driver shaping ECM fungal communities, but mainly at the local scale and probably independently of the fire recurrence. Our results show that ECM fungal community shifts are associated with fire recurrence in fire-prone dry Mediterranean forests, and reveal complex feedbacks among trees, mutualistic fungi and the surrounding environment in these ecosystems.
Collapse
Affiliation(s)
| | | | | | - Marc Buée
- INRA, UMR1136 INRA Nancy - Université de Lorraine, Interactions Arbres-Microorganismes Labex ARBRE, Champenoux, France
| | - Ana Rincón
- Instituto de Ciencias Agrarias, ICA-CSIC, Madrid, Spain
| |
Collapse
|
21
|
Sun Q, Liu X, Wang S, Lian B. Effects of mineral substrate on ectomycorrhizal fungal colonization and bacterial community structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137663. [PMID: 32172104 DOI: 10.1016/j.scitotenv.2020.137663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Ectomycorrhizal (ECM) fungi can promote the nutrient uptake of plants from soil minerals by bioweathering. However, effects of different minerals on ECM fungal colonization and bacterial community structures in the soil remains poorly documented. Here, we investigated ECM fungal composition and bacterial communities in different mineral-filled mesh bags buried in forest soil. Control (filled with quartz, which has little nutrients for plants) and mineral (apatite, potash feldspar and serpentine) -filled mesh bags were buried in E-horizon soil for six months. After incubation, the contents of available elements in bags were determined, bacterial population sizes were quantified by quantitative PCR, and bacterial and ECM fungal community structures in mesh bags were assessed using high-throughput sequencing. The results showed that dozens of ECM fungal species colonized in different mesh bags, of which 17, 54 and 47 ECM species were observed in apatite-, potash feldspar- and serpentine-filled bags, respectively. Ectomycorrhizal fungal composition and bacterial community structure are affected significantly by mineral types. Pseudomonas, Sphingomonas, Bacillus and Paenibacillus, known for high weathering potential, were the preponderant bacteria in mineral-filled bags compared to the control. Ectomycorrhizal fungi are able to selectively colonize mesh bags based on mineral types, and may have a certain influence on the formation of bacterial community structure, implying a possible cooperation of ECM fungi and bacteria in soil mineral weathering.
Collapse
Affiliation(s)
- Qibiao Sun
- College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xiuming Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; Puding Karst Ecosystem Research Station, Chinese Ecosystem Research Network, Chinese Academy of Sciences, Puding 562100, China
| | - Shijie Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; Puding Karst Ecosystem Research Station, Chinese Ecosystem Research Network, Chinese Academy of Sciences, Puding 562100, China.
| | - Bin Lian
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
22
|
Wang XC, Liu TZ, Chen SL, Li Y, Zhuang WY. A four-locus phylogeny of rib-stiped cupulate species of Helvella (Helvellaceae, Pezizales) with discovery of three new species. MycoKeys 2019; 60:45-67. [PMID: 31723337 PMCID: PMC6838221 DOI: 10.3897/mycokeys.60.38186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/18/2019] [Indexed: 11/12/2022] Open
Abstract
Helvella species are ascomycetous macrofungi with saddle-shaped or cupulate apothecia. They are distributed worldwide and play an important ecological role as ectomycorrhizal symbionts. A recent multi-locus phylogenetic study of the genus suggested that the cupulate group of Helvella was in need of comprehensive revision. In this study, all the specimens of cupulate Helvella sensu lato with ribbed stipes deposited in HMAS were examined morphologically and molecularly. A four-locus phylogeny was reconstructed using partial sequences of the heat shock protein 90, nuclear rDNA internal transcribed spacer region 2, nuclear large subunit ribosomal DNA and translation elongation factor 1-α genes. Three clades were revealed in Helvella sensu stricto. Twenty species were included in the analysis, of which 13 are distributed in China. Three new species, H.acetabuloides, H.sichuanensis and H.tianshanensis, are described and illustrated in detail. A neotype was designated for H.taiyuanensis. Helvellacalycina is a new record for China, while Dissingialeucomelaena should be excluded from Chinese mycota. Hsp90 and ITS2 are recommended as useful supplementary barcodes for species identifications of the genus.
Collapse
Affiliation(s)
- Xin-Cun Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China Institute of Microbiology, Chinese Academy of Sciences Beijing China
| | - Tie-Zhi Liu
- College of Life Sciences, Chifeng University, Chifeng, Inner Mongolia 024000, China Chifeng University Chifeng China
| | - Shuang-Lin Chen
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China Nanjing Normal University Nanjing China
| | - Yi Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China Yangzhou University Yangzhou China
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China Institute of Microbiology, Chinese Academy of Sciences Beijing China
| |
Collapse
|
23
|
Mueller RC, Scudder CM, Whitham TG, Gehring CA. Legacy effects of tree mortality mediated by ectomycorrhizal fungal communities. THE NEW PHYTOLOGIST 2019; 224:155-165. [PMID: 31209891 DOI: 10.1111/nph.15993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/31/2019] [Indexed: 05/16/2023]
Abstract
Successive droughts have resulted in extensive tree mortality in the southwestern United States. Recovery of these areas is dependent on the survival and recruitment of young trees. For trees that rely on ectomycorrhizal fungi (EMF) for survival and growth, changes in soil fungal communities following tree mortality could negatively affect seedling establishment. We used tree-focused and stand-scale measurements to examine the impact of pinyon pine mortality on the performance of surviving juvenile trees and the potential for mutualism limitation of seedling establishment via altered EMF communities. Mature pinyon mortality did not affect the survival of juvenile pinyons, but increased their growth. At both tree and stand scales, high pinyon mortality had no effect on the abundance of EMF inocula, but led to altered EMF community composition including increased abundance of Geopora and reduced abundance of Tuber. Seedling biomass was strongly positively associated with Tuber abundance, suggesting that reductions in this genus with pinyon mortality could have negative consequences for establishing seedlings. These findings suggest that whereas mature pinyon mortality led to competitive release for established juvenile pinyons, changes in EMF community composition with mortality could limit successful seedling establishment and growth in high-mortality sites.
Collapse
Affiliation(s)
- Rebecca C Mueller
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, 617 S. Beaver Street, Flagstaff, AZ, 86011, USA
- Chemical and Biological Engineering Department, Montana State University, Bozeman, MT, 59717, USA
| | - Crescent M Scudder
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, 617 S. Beaver Street, Flagstaff, AZ, 86011, USA
| | - Thomas G Whitham
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, 617 S. Beaver Street, Flagstaff, AZ, 86011, USA
| | - Catherine A Gehring
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, 617 S. Beaver Street, Flagstaff, AZ, 86011, USA
| |
Collapse
|
24
|
Vašutová M, Mleczko P, López-García A, Maček I, Boros G, Ševčík J, Fujii S, Hackenberger D, Tuf IH, Hornung E, Páll-Gergely B, Kjøller R. Taxi drivers: the role of animals in transporting mycorrhizal fungi. MYCORRHIZA 2019; 29:413-434. [PMID: 31292712 DOI: 10.1007/s00572-019-00906-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/19/2019] [Indexed: 05/24/2023]
Abstract
Dispersal of mycorrhizal fungi via animals and the importance for the interacting partners' life history as well as for ecosystems is an understudied topic. In this review, we describe the available evidence and the most important knowledge gaps and finally suggest ways to gain the missing information. So far, 33 articles have been published proving a successful transfer of mycorrhizal propagules by animals. The vast majority of research on invertebrates was focused on arbuscular mycorrhizal (AM) fungi, whereas papers on vertebrates (mainly rodents and artiodactyls) equally addressed ectomycorrhizal (ECM) and AM fungi. Effective dispersal has been mostly shown by the successful inoculation of bait plants and less commonly by spore staining or germination tests. Based on the available data and general knowledge on animal lifestyles, collembolans and oribatid mites may be important in transporting ECM fungal propagules by ectozoochory, whereas earthworms, isopods, and millipedes could mainly transfer AM fungal spores in their gut systems. ECM fungal distribution may be affected by mycophagous dipterans and their hymenopteran parasitoids, while slugs, snails, and beetles could transport both mycorrhizal groups. Vertebrates feeding on fruit bodies were shown to disperse mainly ECM fungi, while AM fungi are transported mostly accidentally by herbivores. The important knowledge gaps include insufficient information on dispersal of fungal propagules other than spores, the role of invertebrates in the dispersal of mycorrhizal fungi, the way in which propagules pass through food webs, and the spatial distances reached by different dispersal mechanisms both horizontally and vertically.
Collapse
Affiliation(s)
- Martina Vašutová
- Global Change Research Institute, Czech Academy of Sciences, Lipová 1789/9, 37005, České Budějovice, Czech Republic.
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, 37005, České Budějovice, Czech Republic.
| | - Piotr Mleczko
- Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 3, 30-387, Kraków, Poland
| | - Alvaro López-García
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Irena Maček
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT), University of Primorska, Glagoljaška 8, 6000, Koper, Slovenia
| | - Gergely Boros
- Department of Zoology and Animal Ecology, Szent István University, Páter Károly u. 1., Gödöllö, Hungary
| | - Jan Ševčík
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 71000, Ostrava, Czech Republic
| | - Saori Fujii
- Insect Ecology Laboratory, Department of Forest Entomology, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | | | - Ivan H Tuf
- Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 77900, Olomouc, Czech Republic
| | - Elisabeth Hornung
- Department of Ecology, Institute for Biology, University of Veterinary Medicine Budapest, Rottenbiller str. 50, Budapest, 1077, Hungary
| | - Barna Páll-Gergely
- Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó str. 15, Budapest, 1022, Hungary
| | - Rasmus Kjøller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Hansen K, Schumacher T, Skrede I, Huhtinen S, Wang XH. Pindara revisited - evolution and generic limits in Helvellaceae. PERSOONIA 2019; 42:186-204. [PMID: 31551618 PMCID: PMC6712539 DOI: 10.3767/persoonia.2019.42.07] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/30/2019] [Indexed: 11/25/2022]
Abstract
The Helvellaceae encompasses taxa that produce some of the most elaborate apothecial forms, as well as hypogeous ascomata, in the class Pezizomycetes (Ascomycota). While the circumscription of the Helvellaceae is clarified, evolutionary relationships and generic limits within the family are debatable. A robust phylogeny of the Helvellaceae, using an increased number of molecular characters from the LSU rDNA, RPB2 and EF-1α gene regions (4 299 bp) and a wide representative sampling, is presented here. Helvella s.lat. was shown to be polyphyletic, because Helvella aestivalis formed a distant monophyletic group with hypogeous species of Balsamia and Barssia. All other species of Helvella formed a large group with the enigmatic Pindara (/Helvella) terrestris nested within it. The ear-shaped Wynnella constitutes an independent lineage and is recognised with the earlier name Midotis. The clade of the hypogeous Balsamia and Barssia, and H. aestivalis is coherent in the three-gene phylogeny, and considering the lack of phenotypic characters to distinguish Barssia from Balsamia we combine species of Barssia, along with H. aestivalis, in Balsamia. The closed/tuberiform, sparassoid H. astieri is shown to be a synonym of H. lactea; it is merely an incidental folded form of the saddle-shaped H. lactea. Pindara is a sister group to a restricted Helvella, i.e., excluding the /leucomelaena lineage, on a notably long branch. We recognise Pindara as a separate genus and erect a new genus Dissingia for the /leucomelaena lineage, viz. H. confusa, H. crassitunicata, H. leucomelaena and H. oblongispora. Dissingia is supported by asci that arise from simple septa; all other species of Helvellaceae have asci that arise from croziers, with one exception being the /alpina-corium lineage of Helvella s.str. This suggests ascus development from croziers is the ancestral state for the Helvellaceae and that ascus development from simple septa has evolved at least twice in the family. Our phylogeny does not determine the evolutionary relationships within Helvella s.str., but it is most parsimonious to infer that the ancestor of the helvelloids produced subsessile or shortly stipitate, cup-shaped apothecia. This shape has been maintained in some lineages of Helvella s.str. The type species of Underwoodia, Underwoodia columnaris, is a sister lineage to the rest of the Helvellaceae.
Collapse
Affiliation(s)
- K. Hansen
- Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden
| | - T. Schumacher
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway
| | - I. Skrede
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway
| | - S. Huhtinen
- Herbarium, Biodiversity Unit, University of Turku, FI-20014 Turku, Finland
| | - X.-H. Wang
- Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| |
Collapse
|
26
|
Patterson A, Flores-Rentería L, Whipple A, Whitham T, Gehring C. Common garden experiments disentangle plant genetic and environmental contributions to ectomycorrhizal fungal community structure. THE NEW PHYTOLOGIST 2019; 221:493-502. [PMID: 30009496 DOI: 10.1111/nph.15352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/16/2018] [Indexed: 05/16/2023]
Abstract
The interactions among climate change, plant genetic variation and fungal mutualists are poorly understood, but probably important to plant survival under drought. We examined these interactions by studying the ectomycorrhizal fungal (EMF) communities of pinyon pine seedlings (Pinus edulis) planted in a wildland ecosystem experiencing two decades of climate change-related drought. We established a common garden containing P. edulis seedlings of known maternal lineages (drought tolerant, DT; drought intolerant, DI), manipulated soil moisture and measured EMF community structure and seedling growth. Three findings emerged: EMF community composition differed at the phylum level between DT and DI seedlings, and diversity was two-fold greater in DT than in DI seedlings. EMF communities of DT seedlings did not shift with water treatment and were dominated by an ascomycete, Geopora sp. By contrast, DI seedlings shifted to basidiomycete dominance with increased moisture, demonstrating a lineage by environment interaction. DT seedlings grew larger than DI seedlings in high (28%) and low (50%) watering treatments. These results show that inherited plant traits strongly influence microbial communities, interacting with drought to affect seedling performance. These interactions and their potential feedback effects may influence the success of trees, such as P. edulis, in future climates.
Collapse
Affiliation(s)
- Adair Patterson
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011-5640, USA
| | - Lluvia Flores-Rentería
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011-5640, USA
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Amy Whipple
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011-5640, USA
- Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, 86011-5640, USA
| | - Thomas Whitham
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011-5640, USA
- Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, 86011-5640, USA
| | - Catherine Gehring
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011-5640, USA
- Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, 86011-5640, USA
| |
Collapse
|
27
|
DNA analysis reveals rich diversity of Hydnotrya with emphasis on the species found in China. Mycol Prog 2018. [DOI: 10.1007/s11557-018-1425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Pérez-Valera E, Verdú M, Navarro-Cano JA, Goberna M. Resilience to fire of phylogenetic diversity across biological domains. Mol Ecol 2018; 27:2896-2908. [PMID: 29802784 DOI: 10.1111/mec.14729] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 04/16/2018] [Accepted: 04/23/2018] [Indexed: 12/22/2022]
Abstract
Fire alters the structure and composition of above- and belowground communities with concurrent shifts in phylogenetic diversity. The inspection of postfire trends in the diversity of ecological communities incorporating phylogenetic information allows to better understand the mechanisms driving fire resilience. While fire reduces plant phylogenetic diversity based on the recruitment of evolutionarily related species with postfire seed persistence, it increases that of soil microbes by limiting soil resources and changing the dominance of competing microbes. Thus, during postfire community reassembly, plant and soil microbes might experience opposing temporal trends in their phylogenetic diversity that are linked through changes in the soil conditions. We tested this hypothesis by investigating the postfire evolution of plant and soil microbial (fungi, bacteria and archaea) communities across three 20-year chronosequences. Plant phylogenetic diversity increased with time since fire as pioneer seeders facilitate the establishment of distantly related late-successional shrubs. The postfire increase in plant phylogenetic diversity fostered plant productivity, eventually recovering soil organic matter. These shifts over time in the soil conditions explained the postfire restoration of fungal and bacterial phylogenetic diversity, which decreased to prefire levels, suggesting that evolutionarily related taxa with high relative fitness recover their competitive superiority during community reassembly. The resilience to fire of phylogenetic diversity across biological domains helps preserve the evolutionary history stored in our ecosystems.
Collapse
Affiliation(s)
| | - Miguel Verdú
- Centro de Investigaciones sobre Desertificación (CSIC-UVEG-GV), Valencia, Spain
| | | | - Marta Goberna
- Centro de Investigaciones sobre Desertificación (CSIC-UVEG-GV), Valencia, Spain
| |
Collapse
|
29
|
Bowman EA, Arnold AE. Distributions of ectomycorrhizal and foliar endophytic fungal communities associated with Pinus ponderosa along a spatially constrained elevation gradient. AMERICAN JOURNAL OF BOTANY 2018; 105:687-699. [PMID: 29756204 DOI: 10.1002/ajb2.1072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Understanding distributions of plant-symbiotic fungi is important for projecting responses to environmental change. Many coniferous trees host ectomycorrhizal fungi (EM) in association with roots and foliar endophytic fungi (FE) in leaves. We examined how EM and FE associated with Pinus ponderosa each vary in abundance, diversity, and community structure over a spatially constrained elevation gradient that traverses four plant communities, 4°C in mean annual temperature, and 15 cm in mean annual precipitation. METHODS We sampled 63 individuals of Pinus ponderosa in 10 sites along a 635 m elevation gradient that encompassed a geographic distance of 9.8 km. We used standard methods to characterize each fungal group (amplified and sequenced EM from root tips; isolated and sequenced FE from leaves). KEY RESULTS Abundance and diversity of EM were similar across sites, but community composition and distributions of the most common EM differed with elevation (i.e., with climate, soil chemistry, and plant communities). Abundance and composition of FE did not differ with elevation, but diversity peaked in mid-to-high elevations. CONCLUSIONS Our results suggest relatively tight linkages between EM and climate, soil chemistry, and plant communities. That FE appear less linked with these factors may speak to limitations of a culture-based approach, but more likely reflects the small spatial scale encompassed by our study. Future work should consider comparable methods for characterizing these functional groups, and additional transects to understand relationships of EM and FE to environmental factors that are likely to shift as a function of climate change.
Collapse
Affiliation(s)
- Elizabeth A Bowman
- School of Plant Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - A Elizabeth Arnold
- School of Plant Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, Arizona, 85721, USA
| |
Collapse
|
30
|
Kušan I, Matočec N, Jadan M, Tkalčec Z, Mešić A. An overview of the genus Coprotus (Pezizales, Ascomycota) with notes on the type species and description of C. epithecioides sp. nov. MycoKeys 2018:15-47. [PMID: 29559824 PMCID: PMC5804121 DOI: 10.3897/mycokeys.29.22978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/23/2018] [Indexed: 11/12/2022] Open
Abstract
In a mycological research performed in the Sjeverni Velebit National Park, Croatia, a new species of Coprotus was discovered, described here as C.epithecioides. Along with the microscopic examination, phylogenetic analysis of the type material, based on ITS and LSU sequences, was performed in order to evaluate its relationship with the type species, C.sexdecimsporus. The type species was sequenced in this study for the first time, providing ITS and LSU sequences from two separate collections which displayed differences in macroscopic characters and content of paraphyses. An extended description of C.sexdecimsporus based on Croatian material is also provided. A worldwide identification key to the species assigned to the genus Coprotus is presented, along with a species overview, containing a data matrix. The phylogenetic position of Coprotus in the Boubovia-Coprotus clade within Pyronemataceae s.l. is discussed. Coprotussexdecimsporus is also reported here as new to the Croatian mycobiota.
Collapse
Affiliation(s)
- Ivana Kušan
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Neven Matočec
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Margita Jadan
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Zdenko Tkalčec
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Armin Mešić
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| |
Collapse
|
31
|
She W, Bai Y, Zhang Y, Qin S, Feng W, Sun Y, Zheng J, Wu B. Resource Availability Drives Responses of Soil Microbial Communities to Short-term Precipitation and Nitrogen Addition in a Desert Shrubland. Front Microbiol 2018; 9:186. [PMID: 29479346 PMCID: PMC5811472 DOI: 10.3389/fmicb.2018.00186] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/26/2018] [Indexed: 11/13/2022] Open
Abstract
Desert microbes are expected to be substantially sensitive to global environmental changes, such as precipitation changes and elevated nitrogen deposition. However, the effects of precipitation changes and nitrogen enrichment on their diversity and community composition remain poorly understood. We conducted a field experiment over 2 years with multi-level precipitation and nitrogen addition in a desert shrubland of northern China, to examine the responses of soil bacteria and fungi in terms of diversity and community composition and to explore the roles of plant and soil factors in structuring microbial communities. Water addition significantly increased soil bacterial diversity and altered the community composition by increasing the relative abundances of stress-tolerant (dormant) taxa (e.g., Acidobacteria and Planctomycetes); however, nitrogen addition had no substantial effects. Increased precipitation and nitrogen did not impact soil fungal diversity, but significantly shifted the fungal community composition. Specifically, water addition reduced the relative abundances of drought-tolerant taxa (e.g., the orders Pezizales, Verrucariales, and Agaricales), whereas nitrogen enrichment decreased those of oligotrophic taxa (e.g., the orders Agaricales and Sordariales). Shifts in microbial community composition under water and nitrogen addition occurred primarily through changing resource availability rather than plant community. Our results suggest that water and nitrogen addition affected desert microbes in different ways, with watering shifting stress-tolerant traits and fertilization altering copiotrophic/oligotrophic traits of the microbial communities. These findings highlight the importance of resource availability in driving the desert microbial responses to short-term environmental changes.
Collapse
Affiliation(s)
- Weiwei She
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Yuxuan Bai
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Yuqing Zhang
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China.,Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Shugao Qin
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China.,Engineering Research Center of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing, China
| | - Wei Feng
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China.,Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Yanfei Sun
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Jing Zheng
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Bin Wu
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China.,Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
32
|
Fungal Planet description sheets: 625-715. Persoonia - Molecular Phylogeny and Evolution of Fungi 2017; 39:270-467. [PMID: 29503478 PMCID: PMC5832955 DOI: 10.3767/persoonia.2017.39.11] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/12/2017] [Indexed: 11/29/2022]
Abstract
Novel species of fungi described in this study include those from various countries as follows: Antarctica: Cadophora antarctica from soil. Australia: Alfaria dandenongensis on Cyperaceae, Amphosoma persooniae on Persoonia sp., Anungitea nullicana on Eucalyptus sp., Bagadiella eucalypti on Eucalyptus globulus, Castanediella eucalyptigena on Eucalyptus sp., Cercospora dianellicola on Dianella sp., Cladoriella kinglakensis on Eucalyptus regnans, Cladoriella xanthorrhoeae (incl. Cladoriellaceae fam. nov. and Cladoriellales ord. nov.) on Xanthorrhoea sp., Cochlearomyces eucalypti (incl. Cochlearomyces gen. nov. and Cochlearomycetaceae fam. nov.) on Eucalyptus obliqua, Codinaea lambertiae on Lambertia formosa, Diaporthe obtusifoliae on Acacia obtusifolia, Didymella acaciae on Acacia melanoxylon, Dothidea eucalypti on Eucalyptus dalrympleana, Fitzroyomyces cyperi (incl. Fitzroyomyces gen. nov.) on Cyperaceae, Murramarangomyces corymbiae (incl. Murramarangomyces gen. nov., Murramarangomycetaceae fam. nov. and Murramarangomycetales ord. nov.) on Corymbia maculata, Neoanungitea eucalypti (incl. Neoanungitea gen. nov.) on Eucalyptus obliqua, Neoconiothyrium persooniae (incl. Neoconiothyrium gen. nov.) on Persoonia laurina subsp. laurina, Neocrinula lambertiae (incl. Neocrinulaceae fam. nov.) on Lambertia sp., Ochroconis podocarpi on Podocarpus grayae, Paraphysalospora eucalypti (incl. Paraphysalospora gen. nov.) on Eucalyptus sieberi, Pararamichloridium livistonae (incl. Pararamichloridium gen. nov., Pararamichloridiaceae fam. nov. and Pararamichloridiales ord. nov.) on Livistona sp., Pestalotiopsis dianellae on Dianella sp., Phaeosphaeria gahniae on Gahnia aspera, Phlogicylindrium tereticornis on Eucalyptus tereticornis, Pleopassalora acaciae on Acacia obliquinervia, Pseudodactylaria xanthorrhoeae (incl. Pseudodactylaria gen. nov., Pseudodactylariaceae fam. nov. and Pseudodactylariales ord. nov.) on Xanthorrhoea sp., Pseudosporidesmium lambertiae (incl. Pseudosporidesmiaceae fam. nov.) on Lambertia formosa, Saccharata acaciae on Acacia sp., Saccharata epacridis on Epacris sp., Saccharata hakeigena on Hakea sericea, Seiridium persooniae on Persoonia sp., Semifissispora tooloomensis on Eucalyptus dunnii, Stagonospora lomandrae on Lomandra longifolia, Stagonospora victoriana on Poaceae, Subramaniomyces podocarpi on Podocarpus elatus, Sympoventuria melaleucae on Melaleuca sp., Sympoventuria regnans on Eucalyptus regnans, Trichomerium eucalypti on Eucalyptus tereticornis, Vermiculariopsiella eucalypticola on Eucalyptus dalrympleana, Verrucoconiothyrium acaciae on Acacia falciformis, Xenopassalora petrophiles (incl. Xenopassalora gen. nov.) on Petrophile sp., Zasmidium dasypogonis on Dasypogon sp., Zasmidium gahniicola on Gahnia sieberiana.Brazil: Achaetomium lippiae on Lippia gracilis, Cyathus isometricus on decaying wood, Geastrum caririense on soil, Lycoperdon demoulinii (incl. Lycoperdon subg. Arenicola) on soil, Megatomentella cristata (incl. Megatomentella gen. nov.) on unidentified plant, Mutinus verrucosus on soil, Paraopeba schefflerae (incl. Paraopeba gen. nov.) on Schefflera morototoni, Phyllosticta catimbauensis on Mandevilla catimbauensis, Pseudocercospora angularis on Prunus persica, Pseudophialophora sorghi on Sorghum bicolor, Spumula piptadeniae on Piptadenia paniculata.Bulgaria: Yarrowia parophonii from gut of Parophonus hirsutulus. Croatia: Pyrenopeziza velebitica on Lonicera borbasiana.Cyprus: Peziza halophila on coastal dunes. Czech Republic: Aspergillus contaminans from human fingernail. Ecuador: Cuphophyllus yacurensis on forest soil, Ganoderma podocarpense on fallen tree trunk. England: Pilidium anglicum (incl. Chaetomellales ord. nov.) on Eucalyptus sp. France: Planamyces parisiensis (incl. Planamyces gen. nov.) on wood inside a house. French Guiana: Lactifluus ceraceus on soil. Germany: Talaromyces musae on Musa sp. India: Hyalocladosporiella cannae on Canna indica, Nothophoma raii from soil. Italy: Setophaeosphaeria citri on Citrus reticulata, Yuccamyces citri on Citrus limon.Japan: Glutinomyces brunneus (incl. Glutinomyces gen. nov.) from roots of Quercus sp. Netherlands (all from soil): Collariella hilkhuijsenii, Fusarium petersiae, Gamsia kooimaniorum, Paracremonium binnewijzendii, Phaeoisaria annesophieae, Plectosphaerella niemeijerarum, Striaticonidium deklijnearum, Talaromyces annesophieae, Umbelopsis wiegerinckiae, Vandijckella johannae (incl. Vandijckella gen. nov. and Vandijckellaceae fam. nov.), Verhulstia trisororum (incl. Verhulstia gen. nov.). New Zealand: Lasiosphaeria similisorbina on decorticated wood. Papua New Guinea: Pseudosubramaniomyces gen. nov. (based on Pseudosubramaniomyces fusisaprophyticus comb. nov.). Slovakia: Hemileucoglossum pusillum on soil. South Africa: Tygervalleyomyces podocarpi (incl. Tygervalleyomyces gen. nov.) on Podocarpus falcatus.Spain: Coniella heterospora from herbivorous dung, Hymenochaete macrochloae on Macrochloa tenacissima, Ramaria cistophila on shrubland of Cistus ladanifer.Thailand: Polycephalomyces phaothaiensis on Coleoptera larvae, buried in soil. Uruguay: Penicillium uruguayense from soil. Vietnam: Entoloma nigrovelutinum on forest soil, Volvariella morozovae on wood of unknown tree. Morphological and culture characteristics along with DNA barcodes are provided.
Collapse
|
33
|
Knoblochová T, Kohout P, Püschel D, Doubková P, Frouz J, Cajthaml T, Kukla J, Vosátka M, Rydlová J. Asymmetric response of root-associated fungal communities of an arbuscular mycorrhizal grass and an ectomycorrhizal tree to their coexistence in primary succession. MYCORRHIZA 2017; 27:775-789. [PMID: 28752181 DOI: 10.1007/s00572-017-0792-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
The arbuscular mycorrhizal (AM) grass Calamagrostis epigejos and predominantly ectomycorrhizal (EcM) tree Salix caprea co-occur at post-mining sites spontaneously colonized by vegetation. During succession, AM herbaceous vegetation is replaced by predominantly EcM woody species. To better understand the interaction of AM and EcM plants during vegetation transition, we studied the reciprocal effects of these species' coexistence on their root-associated fungi (RAF). We collected root and soil samples from three different microenvironments: stand of C. epigejos, under S. caprea canopy, and contact zone where roots of the two species interacted. RAF communities and mycorrhizal colonization were determined in sampled roots, and the soil was tested for EcM and AM inoculation potentials. Although the microenvironment significantly affected composition of the RAF communities in both plant species, the effect was greater in the case of C. epigejos RAF communities than in that of S. caprea RAF communities. The presence of S. caprea also significantly decreased AM fungal abundance in soil as well as AM colonization and richness of AM fungi in C. epigejos roots. Changes observed in the abundance and community composition of AM fungi might constitute an important factor in transition from AM-dominated to EcM-dominated vegetation during succession.
Collapse
Affiliation(s)
- Tereza Knoblochová
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague, Czech Republic
| | - Petr Kohout
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague, Czech Republic
- Institute of Microbiology, Czech Academy of Science, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - David Püschel
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Pavla Doubková
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Jan Frouz
- Faculty of Science, Institute for Environmental Studies, Charles University, Benátská 2, 128 44, Prague, Czech Republic
| | - Tomáš Cajthaml
- Faculty of Science, Institute for Environmental Studies, Charles University, Benátská 2, 128 44, Prague, Czech Republic
| | - Jaroslav Kukla
- Faculty of Science, Institute for Environmental Studies, Charles University, Benátská 2, 128 44, Prague, Czech Republic
| | - Miroslav Vosátka
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Jana Rydlová
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic.
| |
Collapse
|
34
|
A synopsis of the saddle fungi ( Helvella: Ascomycota) in Europe - species delimitation, taxonomy and typification. Persoonia - Molecular Phylogeny and Evolution of Fungi 2017; 39:201-253. [PMID: 29503476 PMCID: PMC5832953 DOI: 10.3767/persoonia.2017.39.09] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/07/2017] [Indexed: 11/25/2022]
Abstract
Helvella is a widespread, speciose genus of large apothecial ascomycetes (Pezizomycete: Pezizales) that are found in terrestrial biomes of the Northern and Southern Hemispheres. This study represents a beginning on assessing species limits and applying correct names for Helvella species based on type material and specimens in the university herbaria (fungaria) of Copenhagen (C), Harvard (FH) and Oslo (O). We use morphology and phylogenetic evidence from four loci – heat shock protein 90 (hsp), translation elongation factor alpha (tef), RNA polymerase II (rpb2) and the nuclear large subunit ribosomal DNA (LSU) – to assess species boundaries in an expanded sample of Helvella specimens from Europe. We combine the morphological and phylogenetic information from 55 Helvella species from Europe with a small sample of Helvella species from other regions of the world. Little intraspecific variation was detected within the species using these molecular markers; hsp and rpb2 markers provided useful barcodes for species delimitation in this genus, while LSU provided more variable resolution among the pertinent species. We discuss typification issues and identify molecular characteristics for 55 European Helvella species, designate neo- and epitypes for 30 species, and describe seven Helvella species new to science, i.e., H. alpicola, H. alpina, H. carnosa, H. danica, H. nannfeldtii, H. pubescens and H. scyphoides.
Collapse
|
35
|
Persistence of ecto- and ectendomycorrhizal fungi associated with Pinus montezumae in experimental microcosms. Symbiosis 2017. [DOI: 10.1007/s13199-017-0496-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Maghnia FZ, Sanguin H, Abbas Y, Verdinelli M, Kerdouh B, El Ghachtouli N, Lancellotti E, Bakkali Yakhlef SE, Duponnois R. [Impact of cork oak management on the ectomycorrhizal fungal diversity associated with Quercus suber in the Mâamora forest (Morocco)]. C R Biol 2017; 340:298-305. [PMID: 28506468 DOI: 10.1016/j.crvi.2017.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 11/28/2022]
Abstract
The cork oak forest is an ecosystem playing a major role in Moroccan socio-economy and biodiversity conservation. However, this ecosystem is negatively impacted by extensive human- and climate-driven pressures, causing a strong decrease in its distribution and a worsening of the desertification processes. This study aims at characterising the impact of cork oak forest management on a major actor of its functioning, the ectomycorrhizal (EcM) fungal community associated with Quercus suber, and the determination of EcM bio-indicators. The EcM fungal community has been monitored during spring and winter seasons in two sites of the Moroccan Mâamora forest, corresponding to a forest site either impacted by human activities or protected. A significant impact of cork oak forest management on the EcM fungal community has been revealed, with major differences during the summer season. The results confirmed the potential ecological significance of several EcM fungi (e.g., Cenococcum) in the sustainability of the cork oak forest functioning, but also the significant association of certain EcM fungi (Pachyphloeus, Russula, Tomentella) with a perturbation or a season, and consequently to the cork oak forest status or to climatic conditions, respectively. The development of study at the Mediterranean scale may improve the robustness of ecological models to predict the impact of global changes on this emblematic ecosystem of Mediterranean basin.
Collapse
Affiliation(s)
- Fatima Z Maghnia
- CIRAD, UMR LSTM, 34398 Montpellier, France; Centre de la recherche forestière, Rabat, Maroc; Laboratoire de biotechnologie microbienne, faculté des sciences et techniques, université Sidi-Mohamed-Ben-Abdellah, Fès, Maroc
| | | | - Younes Abbas
- Centre de la recherche forestière, Rabat, Maroc; Département de biologie-géologie, faculté polydisciplinaire, université Sultan-Moulay-Slimane, Béni Mellal, Maroc
| | | | | | - Naima El Ghachtouli
- Laboratoire de biotechnologie microbienne, faculté des sciences et techniques, université Sidi-Mohamed-Ben-Abdellah, Fès, Maroc
| | | | - Salah Eddine Bakkali Yakhlef
- Direction de l'enseignement, de la formation et de la recherche, ministère de l'Agriculture et de la Pêche maritime, Rabat, Maroc
| | | |
Collapse
|
37
|
Livne-Luzon S, Avidan Y, Weber G, Migael H, Bruns T, Ovadia O, Shemesh H. Wild boars as spore dispersal agents of ectomycorrhizal fungi: consequences for community composition at different habitat types. MYCORRHIZA 2017; 27:165-174. [PMID: 27783205 DOI: 10.1007/s00572-016-0737-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/14/2016] [Indexed: 06/06/2023]
Abstract
The success of dispersal events depend on the organism's ability to reach and establish in a new habitat. In symbiotic organisms, establishment also depends on the presence of their symbiont partner in the new habitat. For instance, the establishment of obligate ectomycorrhizal (EM) trees outside the forest is largely limited by the presence of EM fungi in soil. Wild boars (Sus scrofa) are important dispersal agents of EM fungal spores, particularly in the moderately dry Mediterranean region. The aim of this study was to explore how EM fungal spores dispersed by wild boars influence the EM fungal community associated with the roots of Pinus halepensis seedlings at different habitat types. Using a greenhouse bioassay, we grew pine seedlings in two soil types: old-field and forest soils mixed with either natural or autoclaved wild boar feces. In both soils, we observed a community dominated by a few EM fungal species. Geopora (85 %) and Suillus (68 %) species dominated the forest and old-field soils, respectively. The addition of natural wild boar feces increased the abundance of Tuber species in both EM fungal communities. However, this effect was more pronounced in pots with old-field soil, leading to a more even community, equally dominated by both Tuber and Suillus species. In forest soil, Geopora maintained dominance, but decreased in abundance (67 %), due to the addition of Tuber species. Our findings indicate that wild boar feces can be an important source for EM inoculum, especially in habitats poor in EM fungi such as old-fields.
Collapse
Affiliation(s)
- Stav Livne-Luzon
- Ben-Gurion University of the Negev, Life Sciences, Beer-Sheva, Israel.
| | - Yael Avidan
- Tel-Hai College, Environmental Sciences, Kiryat Shmona, Israel
| | - Gil Weber
- Tel-Hai College, Environmental Sciences, Kiryat Shmona, Israel
| | - Hen Migael
- Tel-Hai College, Environmental Sciences, Kiryat Shmona, Israel
| | - Thomas Bruns
- University of California, Plant and Microbial Biology, Berkeley, CA, USA
| | - Ofer Ovadia
- Ben-Gurion University of the Negev, Life Sciences, Beer-Sheva, Israel
| | - Hagai Shemesh
- Tel-Hai College, Environmental Sciences, Kiryat Shmona, Israel.
| |
Collapse
|
38
|
Kumar LM, Smith ME, Nouhra ER, Orihara T, Sandoval Leiva P, Pfister DH, McLaughlin DJ, Trappe JM, Healy RA. A molecular and morphological re-examination of the generic limits of truffles in the tarzetta-geopyxis lineage – Densocarpa, Hydnocystis, and Paurocotylis. Fungal Biol 2017; 121:264-284. [DOI: 10.1016/j.funbio.2016.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/01/2016] [Accepted: 12/26/2016] [Indexed: 11/26/2022]
|
39
|
Affiliation(s)
| | - D.H. Pfister
- Harvard University Herbaria, Cambridge, Massachusetts 02138
| |
Collapse
|
40
|
Smith ME, Trappe JM, Rizzo DM. Genea,GenabeaandGilkeyagen. nov.: ascomata and ectomycorrhiza formation in aQuercuswoodland. Mycologia 2017. [DOI: 10.1080/15572536.2006.11832642] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Matthew E. Smith
- Department of Plant Pathology, University of California at Davis, Davis, California 95616
| | - James M. Trappe
- Department of Forest Science, Oregon State University, Corvallis, Oregon 97331-5752
| | - David M. Rizzo
- Department of Plant Pathology, University of California at Davis, Davis, California 95616
| |
Collapse
|
41
|
Southworth D, Frank JL. Linking mycorrhizas to sporocarps: a new species, Geopora cercocarpi, on Cercocarpus ledifolius (Rosaceae). Mycologia 2017; 103:1194-200. [DOI: 10.3852/11-053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Jonathan L. Frank
- Department of Biology, Southern Oregon University, Ashland, Oregon 97520-5071
| |
Collapse
|
42
|
Flores-Rentería L, Lau MK, Lamit LJ, Gehring CA. An elusive ectomycorrhizal fungus reveals itself: a new species of Geopora (Pyronemataceae) associated with Pinus edulis. Mycologia 2017; 106:553-63. [DOI: 10.3852/13-263] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Catherine A. Gehring
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, Arizona 86011
| |
Collapse
|
43
|
Hobbie EA, Rice SF, Weber NS, Smith JE. Isotopic evidence indicates saprotrophy in post-fire Morchella in Oregon and Alaska. Mycologia 2017; 108:638-45. [DOI: 10.3852/15-281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/10/2016] [Indexed: 11/10/2022]
Affiliation(s)
| | - Samuel F. Rice
- Earth Systems Research Center, University of New Hampshire, Durham, New Hampshire 03824
| | - Nancy S. Weber
- Department of Forest Ecosystems and Society, Oregon State University, 2160 NW Beechwood Place, Corvallis, Oregon 97330
| | - Jane E. Smith
- US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Forestry Sciences Laboratory, 3200 SW Jefferson Way, Corvallis, Oregon 97331
| |
Collapse
|
44
|
Zhao Q, Sulayman M, Zhu XT, Zhao YC, Yang ZL, Hyde KD. Species clarification of the culinary Bachu mushroom in western China. Mycologia 2017; 108:828-36. [DOI: 10.3852/16-002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/05/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Qi Zhao
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650223 People’s Republic of China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201 People’s Republic of China; School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Mamtimin Sulayman
- College of Life Sciences and Technology, Xinjiang University, Urumqi, Xinjiang, 830046 People’s Republic of China
| | - Xue-tai Zhu
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070 People’s Republic of China
| | - Yong-chang Zhao
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650223 People’s Republic of China
| | - Zhu-Liang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201 People’s Republic of China; School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201 People’s Republic of China
- Center of Excellence in Fungal Research, Mae Fah LuangUniversity, Chiang Rai 57100, Thailand
| |
Collapse
|
45
|
Kovács GM, Trappe JM, Alsheikh AM, Bóka K, Elliott TF. Imaia, a new truffle genus to accommodateTerfezia gigantea. Mycologia 2017; 100:930-9. [DOI: 10.3852/08-023] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gábor M. Kovács
- Department of Plant Anatomy, Eötvös Loránd, University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - James M. Trappe
- Department of Forest Science, Oregon State University, Corvallis, Oregon 97331-5752
| | | | - Károly Bóka
- Department of Plant Anatomy, Eötvös Loránd, University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Todd F. Elliott
- Painter Gap Academy, 3831 Painters Gap Road, Union Mills, North Carolina 28167-8945
| |
Collapse
|
46
|
Lamit L, Holeski L, Flores-Rentería L, Whitham T, Gehring C. Tree genotype influences ectomycorrhizal fungal community structure: Ecological and evolutionary implications. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2016.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
47
|
Taschen E, Rousset F, Sauve M, Benoit L, Dubois MP, Richard F, Selosse MA. How the truffle got its mate: insights from genetic structure in spontaneous and planted Mediterranean populations ofTuber melanosporum. Mol Ecol 2016; 25:5611-5627. [DOI: 10.1111/mec.13864] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 09/17/2016] [Accepted: 09/19/2016] [Indexed: 02/01/2023]
Affiliation(s)
- E. Taschen
- CEFE UMR 5175; CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE; 1919 route de Mende Montpellier 34293 France
- Institut de Systématique, Évolution; Biodiversité (ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE); Muséum National d'Histoire Naturelle; Sorbonne Universités; 57 rue Cuvier (CP50) Paris 75005 France
| | - F. Rousset
- Institut des Sciences de l'Evolution; Université de Montpellier; CNRS, IRD, EPHE CC 065; Place Eugène Bataillon Montpellier 34095 France
| | - M. Sauve
- CEFE UMR 5175; CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE; 1919 route de Mende Montpellier 34293 France
| | - L. Benoit
- CEFE UMR 5175; CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE; 1919 route de Mende Montpellier 34293 France
| | - M.-P. Dubois
- CEFE UMR 5175; CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE; 1919 route de Mende Montpellier 34293 France
| | - F. Richard
- CEFE UMR 5175; CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE; 1919 route de Mende Montpellier 34293 France
| | - M.-A. Selosse
- Institut de Systématique, Évolution; Biodiversité (ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE); Muséum National d'Histoire Naturelle; Sorbonne Universités; 57 rue Cuvier (CP50) Paris 75005 France
- Department of Plant Taxonomy and Nature Conservation; University of Gdansk; Wita Stwosza 59 Gdansk 80-308 Poland
| |
Collapse
|
48
|
Tuber magnatum: The Special One. What Makes It so Different from the Other Tuber spp.? SOIL BIOLOGY 2016. [DOI: 10.1007/978-3-319-31436-5_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
49
|
Advances in the phylogeny of Helvella (Fungi: Ascomycota), inferred from nuclear ribosomal LSU sequences and morphological data. REV MEX BIODIVERS 2015. [DOI: 10.1016/j.rmb.2015.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
50
|
Ángeles-Argáiz RE, Flores-García A, Ulloa M, Garibay-Orijel R. Commercial Sphagnum peat moss is a vector for exotic ectomycorrhizal mushrooms. Biol Invasions 2015. [DOI: 10.1007/s10530-015-0992-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
Sphagnum peat moss is one of the most commonly used substrates for forest plant and houseplant production. It is extracted from peat bogs in the circumboreal region and exported worldwide. Commercial peat moss is pasteurized, and is therefore believed to be free of viable ectomycorrhizal propagules. We used a bioassay with Pinus montezumae to demonstrate that commercial peat moss carries viable ectomycorrhizal spores, able to form mycorrhizae. Ectomycorrhizal fungi on seedling root-tips were sequenced for phylogenetic analyses using the ITS rDNA barcode region. We found three species: Suillus brevipes, Sphaerosporella brunnea, and Thelephora terrestris. S. brevipes and T. terrestris were found as viable inoculum transported in the peat moss, while S. brunnea was a greenhouse contaminant. S. brevipes and T. terrestris have biological characteristics (such as heat resistant and long living spores) that facilitate their survival to the extraction, transport, and storage processes of peat moss. This allows them to colonize nursery seedlings and to become potential invasive species in plantation areas. S. brevipes and T. terrestris are two of the most introduced fungi by anthropic activities; it has been argued that the vehicle for the introductions are their pine symbionts. This is the first time it has been demonstrated that peat moss is an important vehicle for the introduction of these fungi; a fact potentially related to the pattern of introduction of these ectomycorrhizal species from the northern hemisphere to elsewhere in the world.
Collapse
|