1
|
Welmillage SU, James EK, Tak N, Shedge S, Huang L, Muszyński A, Azadi P, Gyaneshwar P. A rhamnose-rich O-antigen of Paraburkholderia phymatum MP20 is required for symbiosis with Mimosa pudica. J Bacteriol 2025; 207:e0042224. [PMID: 39846764 PMCID: PMC11841133 DOI: 10.1128/jb.00422-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
Paraburkholderia phymatum, a β-proteobacterium, forms a nitrogen-fixing symbiosis with many species of the large legume genus Mimosa as well as with common bean (Phaseolus vulgaris L.). Paraburkholderia are considered to have evolved nodulation independently from the well-studied α-proteobacteria symbionts of legumes. However, the detailed mechanisms important for β-rhizobia-legume symbiosis have not yet been determined. In this manuscript, we have sequenced the genome of P. phymatum MP20, a strain isolated from Mimosa pudica nodules, and utilized transposon mutagenesis to identify a mutant that showed delayed and ineffective nodulation of M. pudica. Further analysis revealed that the mutant strain produced an altered lipopolysaccharide lacking rhamnose containing O-antigen. Complementation with the wild-type gene restored the symbiosis. Microscopic analysis of the ineffective nodules showed that the mutant strain did not infect the cortical cells but was restricted to the endodermis. The results suggest that the O-antigen of P. phymatum is important for the bacterial infection of cortical cells and for nodule maturation. Further research will unveil the specific involvement of the glycosyltransferase gene in LPS biosynthesis and its impact on successful nodule formation by P. phymatum.IMPORTANCEThe nitrogen-fixing symbiosis between legumes and rhizobia is important for agricultural and environmental sustainability. The mechanisms of the symbiotic interactions are extensively studied using α-rhizobia. In contrast, mechanisms of symbiotic interactions important for β-rhizobia and their Caesalpinioid (mimosoid) legume hosts are not well known. Here, we describe the genome sequence of P. phymatum MP20, a β-rhizobia isolated from the nodules of M. pudica, and isolation and characterization of a transposon mutant defective in symbiosis. We demonstrate that the O-antigen of the LPS is required for nodulation and symbiotic nitrogen fixation. This study broadens our knowledge of symbiotic interactions in β-rhizobia and will lead to a better understanding of the wider rhizobial-legume symbiosis apart from the α-rhizobia.
Collapse
Affiliation(s)
- Shashini U. Welmillage
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Euan K. James
- The James Hutton Institute, Dundee, Scotland, United Kingdom
| | - Nisha Tak
- Department of Botany, Jai Narain Vyas University, Jodhpur, Rajasthan, India
| | - Sonali Shedge
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Lei Huang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Prasad Gyaneshwar
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Bellés-Sancho P, Golaz D, Paszti S, Vitale A, Liu Y, Bailly A, Eberl L, James EK, Pessi G. Tn-seq profiling reveals that NodS of the beta-rhizobium Paraburkholderia phymatum is detrimental for nodulating soybean. Commun Biol 2024; 7:1706. [PMID: 39730742 DOI: 10.1038/s42003-024-07385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 12/09/2024] [Indexed: 12/29/2024] Open
Abstract
The beta-rhizobial strain Paraburkholderia phymatum STM815T is noteworthy for its wide host range in nodulating legumes, primarily mimosoids (over 50 different species) but also some papilionoids. It cannot, however, nodulate soybean (Glycine max [L.] Merr.), one of the world's most important crops. Here, we constructed a highly saturated genome-wide transposon library of a P. phymatum strain and employed a transposon sequencing (Tn-seq) approach to investigate the underlying genetic mechanisms of symbiotic incompatibility between P. phymatum and soybean. Soybean seedlings inoculated with the P. phymatum Tn-seq library display nodules on the roots that are mainly occupied by different mutants in a gene, nodS, coding for a methyltransferase involved in the biosynthesis of nodulation factors. The construction of a nodS deletion strain and a complemented mutant confirms that nodS is responsible for the nodulation-incompatibility of P. phymatum with soybean. Moreover, infection tests with different host plants reveal that NodS is necessary for optimal nodulation of common bean (Phaseolus vulgaris), but it is not required for nodulation of its natural host Mimosa pudica. In conclusion, our results suggest that NodS is involved in determining nodulation specificity of P. phymatum.
Collapse
Affiliation(s)
- Paula Bellés-Sancho
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| | - Daphné Golaz
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Sarah Paszti
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Alessandra Vitale
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Laboratoires d'analyses médicales, Clinique de La Source, Lausanne, Switzerland
| | - Yilei Liu
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Aurélien Bailly
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Euan K James
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Kaur T, Devi R, Negi R, Kour H, Singh S, Khan SS, Kumari C, Kour D, Chowdhury S, Kapoor M, Rai AK, Rustagi S, Shreaz S, Yadav AN. Macronutrients-availing microbiomes: biodiversity, mechanisms, and biotechnological applications for agricultural sustainability. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01220-w. [PMID: 39592542 DOI: 10.1007/s12223-024-01220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
Nitrogen, phosphorus, and potassium are the three most essential micronutrients which play major roles in plant survivability by being a structural or non-structural component of the cell. Plants acquire these nutrients from soil in the fixed (NO3¯, NH4+) and solubilized forms (K+, H2PO4- and HPO42-). In soil, the fixed and solubilized forms of nutrients are unavailable or available in bare minimum amounts; therefore, agrochemicals were introduced. Agrochemicals, mined from the deposits or chemically prepared, have been widely used in the agricultural farms over the decades for the sake of higher production of the crops. The excessive use of agrochemicals has been found to be deleterious for humans, as well as the environment. In the environment, agrochemical usage resulted in soil acidification, disturbance of microbial ecology, and eutrophication of aquatic and terrestrial ecosystems. A solution to such devastating agro-input was found to be substituted by macronutrients-availing microbiomes. Macronutrients-availing microbiomes solubilize and fix the insoluble form of nutrients and convert them into soluble forms without causing any significant harm to the environment. Microbes convert the insoluble form to the soluble form of macronutrients (nitrogen, phosphorus, and potassium) through different mechanisms such as fixation, solubilization, and chelation. The microbiomes having capability of fixing and solubilizing nutrients contain some specific genes which have been reported in diverse microbial species surviving in different niches. In the present review, the biodiversity, mechanism of action, and genomics of different macronutrients-availing microbiomes are presented.
Collapse
Affiliation(s)
- Tanvir Kaur
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| | - Rubee Devi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Harpreet Kour
- Department of Botany, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Ayodhya, Faizabad, Uttar Pradesh, India
| | - Sofia Sharief Khan
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Chandresh Kumari
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Bhajhol, Solan, Himachal Pradesh, India
| | - Divjot Kour
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Sohini Chowdhury
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, India
| | - Monit Kapoor
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Sheikh Shreaz
- Desert Agriculture and Ecosystem Department, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India.
| |
Collapse
|
4
|
Pena R, Tibbett M. Mycorrhizal symbiosis and the nitrogen nutrition of forest trees. Appl Microbiol Biotechnol 2024; 108:461. [PMID: 39249589 PMCID: PMC11384646 DOI: 10.1007/s00253-024-13298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Terrestrial plants form primarily mutualistic symbiosis with mycorrhizal fungi based on a compatible exchange of solutes between plant and fungal partners. A key attribute of this symbiosis is the acquisition of soil nutrients by the fungus for the benefit of the plant in exchange for a carbon supply to the fungus. The interaction can range from mutualistic to parasitic depending on environmental and physiological contexts. This review considers current knowledge of the functionality of ectomycorrhizal (EM) symbiosis in the mobilisation and acquisition of soil nitrogen (N) in northern hemisphere forest ecosystems, highlighting the functional diversity of the fungi and the variation of symbiotic benefits, including the dynamics of N transfer to the plant. It provides an overview of recent advances in understanding 'mycorrhizal decomposition' for N release from organic or mineral-organic forms. Additionally, it emphasises the taxon-specific traits of EM fungi in soil N uptake. While the effects of EM communities on tree N are likely consistent across different communities regardless of species composition, the sink activities of various fungal taxa for tree carbon and N resources drive the dynamic continuum of mutualistic interactions. We posit that ectomycorrhizas contribute in a species-specific but complementary manner to benefit tree N nutrition. Therefore, alterations in diversity may impact fungal-plant resource exchange and, ultimately, the role of ectomycorrhizas in tree N nutrition. Understanding the dynamics of EM functions along the mutualism-parasitism continuum in forest ecosystems is essential for the effective management of ecosystem restoration and resilience amidst climate change. KEY POINTS: • Mycorrhizal symbiosis spans a continuum from invested to appropriated benefits. • Ectomycorrhizal fungal communities exhibit a high functional diversity. • Tree nitrogen nutrition benefits from the diversity of ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Rodica Pena
- Department of Sustainable Land Management, School of Agriculture, Policy and Development, University of Reading, Reading, UK.
- Department of Silviculture, Transilvania University of Brasov, Brasov, Romania.
| | - Mark Tibbett
- Department of Sustainable Land Management, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| |
Collapse
|
5
|
Petipas RH, Antoch AA, Eaker AA, Kehlet-Delgado H, Friesen ML. Back to the future: Using herbarium specimens to isolate nodule-associated bacteria. Ecol Evol 2024; 14:e11719. [PMID: 39011130 PMCID: PMC11246978 DOI: 10.1002/ece3.11719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
Herbarium specimens are increasingly being used as sources of information to understand the ecology and evolution of plants and their associated microbes. Most studies have used specimens as a source of genetic material using culture-independent approaches. We demonstrate that herbarium specimens can also be used to culture nodule-associated bacteria, opening the possibility of using specimens to understand plant-microbe interactions at new spatiotemporal scales. We used historic and contemporary nodules of a common legume, Medicago lupulina, to create a culture collection. We were able to recover historic bacteria in 15 genera from three specimens (collected in 1950, 2004, and 2015). This work is the first of its kind to isolate historic bacteria from herbarium specimens. Future work should include inoculating plants with historic strains to see if they produce nodules and if they affect plant phenotype and fitness. Although we were unable to recover any Ensifer, the main symbiont of Medicago lupulina, we recovered some other potential nodulating species, as well as many putative growth-promoting bacteria.
Collapse
Affiliation(s)
- Renee H Petipas
- Department of Plant Pathology Washington State University Pullman Washington USA
| | - Amanda A Antoch
- Department of Plant Pathology Washington State University Pullman Washington USA
- Department of Microbiology University of Washington Seattle Washington USA
| | - Ashton A Eaker
- Department of Plant Pathology Washington State University Pullman Washington USA
| | - Hanna Kehlet-Delgado
- Department of Plant Pathology Washington State University Pullman Washington USA
| | - Maren L Friesen
- Department of Plant Pathology Washington State University Pullman Washington USA
| |
Collapse
|
6
|
Chang YL, Chang YC, Kurniawan A, Chang PC, Liou TY, Wang WD, Chuang HW. Employing Genomic Tools to Explore the Molecular Mechanisms behind the Enhancement of Plant Growth and Stress Resilience Facilitated by a Burkholderia Rhizobacterial Strain. Int J Mol Sci 2024; 25:6091. [PMID: 38892282 PMCID: PMC11172717 DOI: 10.3390/ijms25116091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The rhizobacterial strain BJ3 showed 16S rDNA sequence similarity to species within the Burkholderia genus. Its complete genome sequence revealed a 97% match with Burkholderia contaminans and uncovered gene clusters essential for plant-growth-promoting traits (PGPTs). These clusters include genes responsible for producing indole acetic acid (IAA), osmolytes, non-ribosomal peptides (NRPS), volatile organic compounds (VOCs), siderophores, lipopolysaccharides, hydrolytic enzymes, and spermidine. Additionally, the genome contains genes for nitrogen fixation and phosphate solubilization, as well as a gene encoding 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The treatment with BJ3 enhanced root architecture, boosted vegetative growth, and accelerated early flowering in Arabidopsis. Treated seedlings also showed increased lignin production and antioxidant capabilities, as well as notably increased tolerance to water deficit and high salinity. An RNA-seq transcriptome analysis indicated that BJ3 treatment significantly activated genes related to immunity induction, hormone signaling, and vegetative growth. It specifically activated genes involved in the production of auxin, ethylene, and salicylic acid (SA), as well as genes involved in the synthesis of defense compounds like glucosinolates, camalexin, and terpenoids. The expression of AP2/ERF transcription factors was markedly increased. These findings highlight BJ3's potential to produce various bioactive metabolites and its ability to activate auxin, ethylene, and SA signaling in Arabidopsis, positioning it as a new Burkholderia strain that could significantly improve plant growth, stress resilience, and immune function.
Collapse
Affiliation(s)
- Yueh-Long Chang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
| | - Yu-Cheng Chang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
| | - Andi Kurniawan
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
- Department of Agronomy, Brawijaya University, Malang 65145, Indonesia
| | - Po-Chun Chang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
| | - Ting-Yu Liou
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
| | - Wen-Der Wang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
| | - Huey-wen Chuang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
| |
Collapse
|
7
|
Abe JNA, Dhungana I, Nguyen NH. Legume-nodulating rhizobia are widespread in soils and plants across the island of O'ahu, Hawai'i. PLoS One 2023; 18:e0291250. [PMID: 37695782 PMCID: PMC10495000 DOI: 10.1371/journal.pone.0291250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023] Open
Abstract
Legumes and their interaction with rhizobia represent one of the most well-characterized symbioses that are widespread across both natural and agricultural environments. However, larger distribution patterns and host associations on isolated Pacific islands with many native and introduced hosts have not been well-documented. Here, we used molecular and culturing techniques to characterize rhizobia from soils and 24 native and introduced legume species on the island of O'ahu, Hawai'i. We chose two of these isolates to inoculate an endemic legume tree, Erythina sandwicensis to measure nodulation potentials and host benefits. We found that all rhizobia genera can be found in the soil, where only Cupriavidus was found at all sites, although at lower abundance relative to other more common genera such as Rhizobium (and close relatives), Bradyzhizobium, and Devosia. Bradyrhizobium was the most common nodulator of legumes, where the strain Bradyrhizobium sp. strain JA1 is a generalist capable of forming nodules on nine different host species, including two native species. In greenhouse nursery inoculations, the two different Bradyrhizobium strains successfully nodulate the endemic E. sandwicensis; both strains equally and significantly increased seedling biomass in nursery inoculations. Overall, this work provides a molecular-based framework in which to study potential native and introduced rhizobia on one of the most isolated archipelagos on the planet.
Collapse
Affiliation(s)
- Jonathan N. A. Abe
- Department of Tropical Plant and Soil Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | - Ishwora Dhungana
- Department of Tropical Plant and Soil Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | - Nhu H. Nguyen
- Department of Tropical Plant and Soil Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| |
Collapse
|
8
|
Nguyen NH. Fungal Hyphosphere Microbiomes Are Distinct from Surrounding Substrates and Show Consistent Association Patterns. Microbiol Spectr 2023; 11:e0470822. [PMID: 36939352 PMCID: PMC10100729 DOI: 10.1128/spectrum.04708-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/22/2023] [Indexed: 03/21/2023] Open
Abstract
Mat-forming fungi are common in forest and grassland soils across the world, where their activity contributes to important soil ecological processes. These fungi maintain dominance through aggressive and abundant hyphae that modify their internal physical and chemical environments and through these modifications select for what appears to be a suite of mycophilic bacteria. Here, the bacteria associated with the fungal mats of Leucopaxillus gentianeus and Leucopaxillus albissimus from western North America are compared to adjacent nonmat substrates. Within the mats, the bacterial richness and diversity were significantly reduced, and the community composition was significantly different. The bacterial community structure between the two fungal hosts was marginally significant and indicated a shared set of bacterial associates. The genera Burkholderia, Streptomyces, Bacillus, Paenibacillus, and Mycobacterium were significantly abundant within the fungal mats and represent core members of these hypha-rich environments. Comparison with the literature from fungal mat studies worldwide showed that these genera are common and often significantly found within fungal mats, further reinforcing the concept of a mycophilic bacterial guild. These genera are incorporated into a synthesis discussion in the context of our current understanding of the nature of fungal-bacterial interactions and the potential outcomes of these interactions in soil nutrient cycling, plant productivity, and human health. IMPORTANCE Fungi and bacteria are the most abundant and diverse organisms in soils (perhaps more so than any other habitat on earth), and together these microorganisms contribute to broad soil ecosystem processes. There is a suite of bacteria that appears consistently within the physical space called the hyphosphere, the area of influence surrounding fungal hyphae. How these bacteria are selected for, how they are maintained, and what broader ecological functions they perform are subjects of interest in this relatively new field-the cross-kingdom interactions between fungi and bacteria. Understanding their cooccurrence and their interactions can open new realms of understanding in soil ecological processes with global consequences.
Collapse
Affiliation(s)
- Nhu H. Nguyen
- University of Hawaiʻi at Mānoa, Honolulu, Hawaiʻi, USA
| |
Collapse
|
9
|
Guo K, Yang J, Yu N, Luo L, Wang E. Biological nitrogen fixation in cereal crops: Progress, strategies, and perspectives. PLANT COMMUNICATIONS 2023; 4:100499. [PMID: 36447432 PMCID: PMC10030364 DOI: 10.1016/j.xplc.2022.100499] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 05/04/2023]
Abstract
Nitrogen is abundant in the atmosphere but is generally the most limiting nutrient for plants. The inability of many crop plants, such as cereals, to directly utilize freely available atmospheric nitrogen gas means that their growth and production often rely heavily on the application of chemical fertilizers, which leads to greenhouse gas emissions and the eutrophication of water. By contrast, legumes gain access to nitrogen through symbiotic association with rhizobia. These bacteria convert nitrogen gas into biologically available ammonia in nodules through a process termed symbiotic biological nitrogen fixation, which plays a decisive role in ecosystem functioning. Engineering cereal crops that can fix nitrogen like legumes or associate with nitrogen-fixing microbiomes could help to avoid the problems caused by the overuse of synthetic nitrogen fertilizer. With the development of synthetic biology, various efforts have been undertaken with the aim of creating so-called "N-self-fertilizing" crops capable of performing autonomous nitrogen fixation to avoid the need for chemical fertilizers. In this review, we briefly summarize the history and current status of engineering N-self-fertilizing crops. We also propose several potential biotechnological approaches for incorporating biological nitrogen fixation capacity into non-legume plants.
Collapse
Affiliation(s)
- Kaiyan Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Nan Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Li Luo
- School of Life Sciences, Shanghai Key Laboratory of Bioenergy Crops, Shanghai University, Shanghai 200444, China.
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
10
|
Nitrogen-Fixing Symbiotic Paraburkholderia Species: Current Knowledge and Future Perspectives. NITROGEN 2023. [DOI: 10.3390/nitrogen4010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
A century after the discovery of rhizobia, the first Beta-proteobacteria species (beta-rhizobia) were isolated from legume nodules in South Africa and South America. Since then, numerous species belonging to the Burkholderiaceae family have been isolated. The presence of a highly branching lineage of nodulation genes in beta-rhizobia suggests a long symbiotic history. In this review, we focus on the beta-rhizobial genus Paraburkholderia, which includes two main groups: the South American mimosoid-nodulating Paraburkholderia and the South African predominantly papilionoid-nodulating Paraburkholderia. Here, we discuss the latest knowledge on Paraburkholderia nitrogen-fixing symbionts in each step of the symbiosis, from their survival in the soil, through the first contact with the legumes until the formation of an efficient nitrogen-fixing symbiosis in root nodules. Special attention is given to the strain P. phymatum STM815T that exhibits extraordinary features, such as the ability to: (i) enter into symbiosis with more than 50 legume species, including the agriculturally important common bean, (ii) outcompete other rhizobial species for nodulation of several legumes, and (iii) endure stressful soil conditions (e.g., high salt concentration and low pH) and high temperatures.
Collapse
|
11
|
Doty SL, Joubert PM, Firrincieli A, Sher AW, Tournay R, Kill C, Parikh SS, Okubara P. Potential Biocontrol Activities of Populus Endophytes against Several Plant Pathogens Using Different Inhibitory Mechanisms. Pathogens 2022; 12:pathogens12010013. [PMID: 36678361 PMCID: PMC9862643 DOI: 10.3390/pathogens12010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The plant microbiome can be used to bolster plant defense against abiotic and biotic stresses. Some strains of endophytes, the microorganisms within plants, can directly inhibit the growth of plant fungal pathogens. A previously isolated endophyte from wild Populus (poplar), WPB of the species Burkholderia vietnamiensis, had robust in vitro antifungal activity against pathogen strains that are highly virulent and of concern to Pacific Northwest agriculture: Rhizoctonia solani AG-8, Fusarium culmorum 70110023, and Gaemannomyces graminis var. tritici (Ggt) ARS-A1, as well as activity against the oomycete, Pythium ultimum 217. A direct screening method was developed for isolation of additional anti-fungal endophytes from wild poplar extracts. By challenging pathogens directly with dilute extracts, eleven isolates were found to be inhibitory to at least two plant pathogen strains and were therefore chosen for further characterization. Genomic analysis was conducted to determine if these endophyte strains harbored genes known to be involved in antimicrobial activities. The newly isolated Bacillus strains had gene clusters for production of bacillomycin, fengicyn, and bacillibactin, while the gene cluster for the synthesis of sessilin, viscosin and tolaasin were found in the Pseudomonas strains. The biosynthesis gene cluster for occidiofungin (ocf) was present in the Burkholderia vietnamiensis WPB genome, and an ocf deletion mutant lost inhibitory activity against 3 of the 4 pathogens. The new isolates lacked the gene cluster for occidiofungin implying they employ different modes of action. Other symbiotic traits including nitrogen fixation, phosphate solubilization, and the production of auxins and siderophores were investigated. Although it will be necessary to conduct in vivo tests of the candidates with pathogen-infected agricultural crops, the wild poplar tree microbiome may be a rich source of beneficial endophyte strains with potential for biocontrol applications against a variety of pathogens and utilizing varying modes of action.
Collapse
Affiliation(s)
- Sharon L. Doty
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195, USA
- Correspondence:
| | - Pierre M. Joubert
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195, USA
- Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Andrea Firrincieli
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195, USA
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | - Andrew W. Sher
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195, USA
| | - Robert Tournay
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195, USA
| | - Carina Kill
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195, USA
- Native Roots School, Taos, NM 87571, USA
| | - Shruti S. Parikh
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195, USA
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| | - Patricia Okubara
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
12
|
Li X, Liu Y, Wang Z, Yang C, Zhang R, Luo Y, Ma Y, Deng Y. Microbiome analysis and biocontrol bacteria isolation from rhizosphere soils associated with different sugarcane root rot severity. Front Bioeng Biotechnol 2022; 10:1062351. [PMID: 36588942 PMCID: PMC9802638 DOI: 10.3389/fbioe.2022.1062351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
To explore the causal pathogen and the correlated rhizosphere soil microecology of sugarcane root rot, we sampled the sugarcane root materials displaying different disease severity, and the corresponding rhizosphere soil, for systematic root phenotype and microbial population analyses. We found that with increased level of disease severity reflected by above-ground parts of sugarcane, the total root length, total root surface area and total volume were significantly reduced, accompanied with changes in the microbial population diversity and structure in rhizosphere soil. Fungal community richness was significantly lower in the rhizosphere soil samples from mildly diseased plant than that from either healthy plant, or severely diseased plant. Particularly, we noticed that a peculiar decrease of potential pathogenic fungi in rhizosphere soil, including genera Fusarium, Talaromyces and Neocosmospora, with increased level of disease severity. As for bacterial community, Firmicutes was found to be of the highest level, while Acidobacteria and Chloroflexi of the lowest level, in rhizosphere soil from healthy plant compared to that from diseased plant of different severity. FUNGuild prediction showed that the proportion of saprophytic fungi was higher in the rhizosphere soil of healthy plants, while the proportion of pathogenic fungi was higher in the rhizosphere soil of diseased plants. By co-occurrence network analysis we demonstrated the Bacillus and Burkholderia were in a strong interaction with Fusarium pathogen(s). Consistently, the biocontrol and/or growth-promoting bacteria isolated from the rhizosphere soil were mostly (6 out of 7) belonging to Bacillus and Burkholderia species. By confrontation culture and pot experiments, we verified the biocontrol and/or growth-promoting property of the isolated bacterial strains. Overall, we demonstrated a clear correlation between sugarcane root rot severity and rhizosphere soil microbiome composition and function, and identified several promising biocontrol bacteria strains with strong disease suppression effect and growth-promoting properties.
Collapse
Affiliation(s)
- Xinyang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Yue Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
- Laboratory of Crop Physiology and Field Ecology, Northwest A&F University, Yangling, China
| | - Ziting Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Chenglong Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Runzhi Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Yibao Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Yuming Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yizhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Bellés-Sancho P, Liu Y, Heiniger B, von Salis E, Eberl L, Ahrens CH, Zamboni N, Bailly A, Pessi G. A novel function of the key nitrogen-fixation activator NifA in beta-rhizobia: Repression of bacterial auxin synthesis during symbiosis. FRONTIERS IN PLANT SCIENCE 2022; 13:991548. [PMID: 36247538 PMCID: PMC9554594 DOI: 10.3389/fpls.2022.991548] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Rhizobia fix nitrogen within root nodules of host plants where nitrogenase expression is strictly controlled by its key regulator NifA. We recently discovered that in nodules infected by the beta-rhizobial strain Paraburkholderia phymatum STM815, NifA controls expression of two bacterial auxin synthesis genes. Both the iaaM and iaaH transcripts, as well as the metabolites indole-acetamide (IAM) and indole-3-acetic acid (IAA) showed increased abundance in nodules occupied by a nifA mutant compared to wild-type nodules. Here, we document the structural changes that a P. phymatum nifA mutant induces in common bean (Phaseolus vulgaris) nodules, eventually leading to hypernodulation. To investigate the role of the P. phymatum iaaMH genes during symbiosis, we monitored their expression in presence and absence of NifA over different stages of the symbiosis. The iaaMH genes were found to be under negative control of NifA in all symbiotic stages. While a P. phymatum iaaMH mutant produced the same number of nodules and nitrogenase activity as the wild-type strain, the nifA mutant produced more nodules than the wild-type that clustered into regularly-patterned root zones. Mutation of the iaaMH genes in a nifA mutant background reduced the presence of these nodule clusters on the root. We further show that the P. phymatum iaaMH genes are located in a region of the symbiotic plasmid with a significantly lower GC content and exhibit high similarity to two genes of the IAM pathway often used by bacterial phytopathogens to deploy IAA as a virulence factor. Overall, our data suggest that the increased abundance of rhizobial auxin in the non-fixing nifA mutant strain enables greater root infection rates and a role for bacterial auxin production in the control of early stage symbiotic interactions.
Collapse
Affiliation(s)
- Paula Bellés-Sancho
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Yilei Liu
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Benjamin Heiniger
- Agroscope, Molecular Ecology and Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Elia von Salis
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Christian H. Ahrens
- Agroscope, Molecular Ecology and Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Nicola Zamboni
- ETH Zürich, Institute of Molecular Systems Biology, Zurich, Switzerland
| | - Aurélien Bailly
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Pronk LJU, Bakker PAHM, Keel C, Maurhofer M, Flury P. The secret life of plant-beneficial rhizosphere bacteria: insects as alternative hosts. Environ Microbiol 2022; 24:3273-3289. [PMID: 35315557 PMCID: PMC9542179 DOI: 10.1111/1462-2920.15968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022]
Abstract
Root-colonizing bacteria have been intensively investigated for their intimate relationship with plants and their manifold plant-beneficial activities. They can inhibit growth and activity of pathogens or induce defence responses. In recent years, evidence has emerged that several plant-beneficial rhizosphere bacteria do not only associate with plants but also with insects. Their relationships with insects range from pathogenic to mutualistic and some rhizobacteria can use insects as vectors for dispersal to new host plants. Thus, the interactions of these bacteria with their environment are even more complex than previously thought and can extend far beyond the rhizosphere. The discovery of this secret life of rhizobacteria represents an exciting new field of research that should link the fields of plant-microbe and insect-microbe interactions. In this review, we provide examples of plant-beneficial rhizosphere bacteria that use insects as alternative hosts, and of potentially rhizosphere-competent insect symbionts. We discuss the bacterial traits that may enable a host-switch between plants and insects and further set the multi-host lifestyle of rhizobacteria into an evolutionary and ecological context. Finally, we identify important open research questions and discuss perspectives on the use of these rhizobacteria in agriculture.
Collapse
Affiliation(s)
| | | | - Christoph Keel
- Department of Fundamental MicrobiologyUniversity of LausanneLausanneSwitzerland
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative BiologyETH ZürichZürichSwitzerland
| | - Pascale Flury
- Crop Protection – Phytopathology, Department of Crop SciencesResearch Institute of Organic Agriculture FiBLFrickSwitzerland
| |
Collapse
|
15
|
Eardly B, Meor Osman WA, Ardley J, Zandberg J, Gollagher M, van Berkum P, Elia P, Marinova D, Seshadri R, Reddy TBK, Ivanova N, Pati A, Woyke T, Kyrpides N, Loedolff M, Laird DW, Reeve W. The Genome of the Acid Soil-Adapted Strain Rhizobium favelukesii OR191 Encodes Determinants for Effective Symbiotic Interaction With Both an Inverted Repeat Lacking Clade and a Phaseoloid Legume Host. Front Microbiol 2022; 13:735911. [PMID: 35495676 PMCID: PMC9048898 DOI: 10.3389/fmicb.2022.735911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 02/10/2022] [Indexed: 11/15/2022] Open
Abstract
Although Medicago sativa forms highly effective symbioses with the comparatively acid-sensitive genus Ensifer, its introduction into acid soils appears to have selected for symbiotic interactions with acid-tolerant R. favelukesii strains. Rhizobium favelukesii has the unusual ability of being able to nodulate and fix nitrogen, albeit sub-optimally, not only with M. sativa but also with the promiscuous host Phaseolus vulgaris. Here we describe the genome of R. favelukesii OR191 and genomic features important for the symbiotic interaction with both of these hosts. The OR191 draft genome contained acid adaptation loci, including the highly acid-inducible lpiA/acvB operon and olsC, required for production of lysine- and ornithine-containing membrane lipids, respectively. The olsC gene was also present in other acid-tolerant Rhizobium strains but absent from the more acid-sensitive Ensifer microsymbionts. The OR191 symbiotic genes were in general more closely related to those found in Medicago microsymbionts. OR191 contained the nodA, nodEF, nodHPQ, and nodL genes for synthesis of polyunsaturated, sulfated and acetylated Nod factors that are important for symbiosis with Medicago, but contained a truncated nodG, which may decrease nodulation efficiency with M. sativa. OR191 contained an E. meliloti type BacA, which has been shown to specifically protect Ensifer microsymbionts from Medicago nodule-specific cysteine-rich peptides. The nitrogen fixation genes nifQWZS were present in OR191 and P. vulgaris microsymbionts but absent from E. meliloti-Medicago microsymbionts. The ability of OR191 to nodulate and fix nitrogen symbiotically with P. vulgaris indicates that this host has less stringent requirements for nodulation than M. sativa but may need rhizobial strains that possess nifQWZS for N2-fixation to occur. OR191 possessed the exo genes required for the biosynthesis of succinoglycan, which is required for the Ensifer-Medicago symbiosis. However, 1H-NMR spectra revealed that, in the conditions tested, OR191 exopolysaccharide did not contain a succinyl substituent but instead contained a 3-hydroxybutyrate moiety, which may affect its symbiotic performance with Medicago hosts. These findings provide a foundation for the genetic basis of nodulation requirements and symbiotic effectiveness with different hosts.
Collapse
Affiliation(s)
- Bertrand Eardly
- Berks College, Penn State University, Reading, PA, United States
| | - Wan Adnawani Meor Osman
- Centre for Crop and Food Innovation, College of Science, Health, Engineering and Education, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Julie Ardley
- Centre for Crop and Food Innovation, College of Science, Health, Engineering and Education, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Jaco Zandberg
- Centre for Crop and Food Innovation, College of Science, Health, Engineering and Education, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Margaret Gollagher
- Murdoch University Associate, Murdoch, WA, Australia.,Sustainability and Biosecurity, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Peter van Berkum
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Beltsville, MD, United States
| | - Patrick Elia
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Beltsville, MD, United States
| | - Dora Marinova
- Curtin University Sustainability Policy Institute, Curtin University, Bentley, WA, Australia
| | - Rekha Seshadri
- Department of Energy (DOE) Joint Genome Institute, Berkeley, CA, United States
| | - T B K Reddy
- Department of Energy (DOE) Joint Genome Institute, Berkeley, CA, United States
| | - Natalia Ivanova
- Department of Energy (DOE) Joint Genome Institute, Berkeley, CA, United States
| | - Amrita Pati
- Department of Energy (DOE) Joint Genome Institute, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy (DOE) Joint Genome Institute, Berkeley, CA, United States
| | - Nikos Kyrpides
- Department of Energy (DOE) Joint Genome Institute, Berkeley, CA, United States
| | - Matthys Loedolff
- Centre for Crop and Food Innovation, College of Science, Health, Engineering and Education, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Damian W Laird
- Centre for Water Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Wayne Reeve
- Centre for Crop and Food Innovation, College of Science, Health, Engineering and Education, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
16
|
Bellés-Sancho P, Lardi M, Liu Y, Eberl L, Zamboni N, Bailly A, Pessi G. Metabolomics and Dual RNA-Sequencing on Root Nodules Revealed New Cellular Functions Controlled by Paraburkholderia phymatum NifA. Metabolites 2021; 11:metabo11070455. [PMID: 34357349 PMCID: PMC8305402 DOI: 10.3390/metabo11070455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/25/2023] Open
Abstract
Paraburkholderia phymatum STM815 is a nitrogen-fixing endosymbiont that nodulate the agriculturally important Phaseolus vulgaris and several other host plants. We previously showed that the nodules induced by a STM815 mutant of the gene encoding the master regulator of nitrogen fixation NifA showed no nitrogenase activity (Fix−) and increased in number compared to P. vulgaris plants infected with the wild-type strain. To further investigate the role of NifA during symbiosis, nodules from P. phymatum wild-type and nifA mutants were collected and analyzed by metabolomics and dual RNA-Sequencing, allowing us to investigate both host and symbiont transcriptome. Using this approach, several metabolites’ changes could be assigned to bacterial or plant responses. While the amount of the C4-dicarboxylic acid succinate and of several amino acids was lower in Fix− nodules, the level of indole-acetamide (IAM) and brassinosteroids increased. Transcriptome analysis identified P. phymatum genes involved in transport of C4-dicarboxylic acids, carbon metabolism, auxin metabolism and stress response to be differentially expressed in absence of NifA. Furthermore, P. vulgaris genes involved in autoregulation of nodulation (AON) are repressed in nodules in absence of NifA potentially explaining the hypernodulation phenotype of the nifA mutant. These results and additional validation experiments suggest that P. phymatum STM815 NifA is not only important to control expression of nitrogenase and related enzymes but is also involved in regulating its own auxin production and stress response. Finally, our data indicate that P. vulgaris does sanction the nifA nodules by depleting the local carbon allocation rather than by mounting a strong systemic immune response to the Fix− rhizobia.
Collapse
Affiliation(s)
- Paula Bellés-Sancho
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (L.E.)
| | - Martina Lardi
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (L.E.)
| | - Yilei Liu
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (L.E.)
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (L.E.)
| | - Nicola Zamboni
- ETH Zürich, Institute of Molecular Systems Biology, CH-8093 Zürich, Switzerland;
| | - Aurélien Bailly
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (L.E.)
- Correspondence: (A.B.); (G.P.)
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (L.E.)
- Correspondence: (A.B.); (G.P.)
| |
Collapse
|
17
|
Zilli JÉ, de Moraes Carvalho CP, de Matos Macedo AV, de Barros Soares LH, Gross E, James EK, Simon MF, de Faria SM. Nodulation of the neotropical genus Calliandra by alpha or betaproteobacterial symbionts depends on the biogeographical origins of the host species. Braz J Microbiol 2021; 52:2153-2168. [PMID: 34245449 DOI: 10.1007/s42770-021-00570-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/01/2021] [Indexed: 11/26/2022] Open
Abstract
The neotropical genus Calliandra is of great importance to ecology and agroforestry, but little is known about its nodulation or its rhizobia. The nodulation of several species from two restricted diversity centres with native/endemic species (Eastern Brazil and North-Central America) and species widespread in South America, as well as their nodule structure and the molecular characterization of their rhizobial symbionts based on phylogeny of the 16S rRNA, recA and nodC gene, is reported herein. Species representative of different regions were grown in Brazilian soil, their nodulation observed, and their symbionts characterized. Calliandra nodules have anatomy that is typical of mimosoid nodules regardless of the microsymbiont type. The rhizobial symbionts differed according to the geographical origin of the species, i.e. Alphaproteobacteria (Rhizobium) were the exclusive symbionts from North-Central America, Betaproteobacteria (Paraburkholderia) from Eastern Brazil, and a mixture of both nodulated the widespread species. The symbiont preferences of Calliandra species are the result of the host co-evolving with the "local" symbiotic bacteria that thrive in the different edaphoclimatic conditions, e.g. the acidic soils of NE Brazil are rich in acid-tolerant Paraburkholderia, whereas those of North-Central America are typically neutral-alkaline and harbour Rhizobium. It is hypothesized that the flexibility of widespread species in symbiont choice has assisted in their wider dispersal across the neotropics.
Collapse
Affiliation(s)
- Jerri Édson Zilli
- Embrapa Agrobiologia, BR 465 km 07, Seropédica, Rio de Janeiro, 23891-000, Brazil.
| | | | | | | | - Eduardo Gross
- Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, Ilhéus, 45662-900, Bahia, Brazil
| | | | - Marcelo Fragomeni Simon
- Embrapa Recursos Genéticos e Biotecnologia, Cx. Postal 02372, Brasília, DF, 70770-917, Brazil
| | | |
Collapse
|
18
|
Paulitsch F, Dos Reis FB, Hungria M. Twenty years of paradigm-breaking studies of taxonomy and symbiotic nitrogen fixation by beta-rhizobia, and indication of Brazil as a hotspot of Paraburkholderia diversity. Arch Microbiol 2021; 203:4785-4803. [PMID: 34245357 DOI: 10.1007/s00203-021-02466-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
Twenty years ago, the first members of the genus Burkholderia capable of nodulating and fixing N2 during symbiosis with leguminous plants were reported. The discovery that β-proteobacteria could nodulate legumes represented a breakthrough event because, for over 100 years, it was thought that all rhizobia belonged exclusively to the α-Proteobacteria class. Over the past 20 years, efforts toward robust characterization of these bacteria with large-scale phylogenomic and taxonomic studies have led to the separation of clinically important and phytopathogenic members of Burkholderia from environmental ones, and the symbiotic nodulating species are now included in the genera Paraburkholderia and Trinickia. Paraburkholderia encompasses the vast majority of β-rhizobia and has been mostly found in South America and South Africa, presenting greater symbiotic affinity with native members of the families Mimosoideae and Papilionoideae, respectively. Being the main center of Mimosa spp. diversity, Brazil is also known as the center of symbiotic Paraburkholderia diversity. Of the 21 symbiotic Paraburkholderia species described to date, 11 have been isolated in Brazil, and others first isolated in different countries have also been found in this country. Additionally, besides the symbiotic N2-fixation capacity of some of its members, Paraburkholderia is considered rich in other beneficial interactions with plants and can promote growth through several direct and indirect mechanisms. Therefore, these bacteria can be considered biological resources employed as environmentally friendly alternatives that could reduce the agricultural dependence on agrochemical inputs.
Collapse
Affiliation(s)
- Fabiane Paulitsch
- Embrapa Soja, C.P. 231, Londrina, Paraná, 86001-970, Brazil.,Departamento de Microbiologia, Universidade Estadual de Londrina, C.P. 10011, Londrina, Paraná, 86057-970, Brazil.,Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, Brasília, Distrito Federal, 70040-020, Brazil
| | | | - Mariangela Hungria
- Embrapa Soja, C.P. 231, Londrina, Paraná, 86001-970, Brazil. .,Departamento de Microbiologia, Universidade Estadual de Londrina, C.P. 10011, Londrina, Paraná, 86057-970, Brazil.
| |
Collapse
|
19
|
Bellés-Sancho P, Lardi M, Liu Y, Hug S, Pinto-Carbó MA, Zamboni N, Pessi G. Paraburkholderia phymatum Homocitrate Synthase NifV Plays a Key Role for Nitrogenase Activity during Symbiosis with Papilionoids and in Free-Living Growth Conditions. Cells 2021; 10:cells10040952. [PMID: 33924023 PMCID: PMC8073898 DOI: 10.3390/cells10040952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/29/2022] Open
Abstract
Homocitrate is an essential component of the iron-molybdenum cofactor of nitrogenase, the bacterial enzyme that catalyzes the reduction of dinitrogen (N2) to ammonia. In nitrogen-fixing and nodulating alpha-rhizobia, homocitrate is usually provided to bacteroids in root nodules by their plant host. In contrast, non-nodulating free-living diazotrophs encode the homocitrate synthase (NifV) and reduce N2 in nitrogen-limiting free-living conditions. Paraburkholderia phymatum STM815 is a beta-rhizobial strain, which can enter symbiosis with a broad range of legumes, including papilionoids and mimosoids. In contrast to most alpha-rhizobia, which lack nifV, P. phymatum harbors a copy of nifV on its symbiotic plasmid. We show here that P. phymatum nifV is essential for nitrogenase activity both in root nodules of papilionoid plants and in free-living growth conditions. Notably, nifV was dispensable in nodules of Mimosa pudica despite the fact that the gene was highly expressed during symbiosis with all tested papilionoid and mimosoid plants. A metabolome analysis of papilionoid and mimosoid root nodules infected with the P. phymatum wild-type strain revealed that among the approximately 400 measured metabolites, homocitrate and other metabolites involved in lysine biosynthesis and degradation have accumulated in all plant nodules compared to uninfected roots, suggesting an important role of these metabolites during symbiosis.
Collapse
Affiliation(s)
- Paula Bellés-Sancho
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (S.H.); (M.A.P.-C.)
| | - Martina Lardi
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (S.H.); (M.A.P.-C.)
| | - Yilei Liu
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (S.H.); (M.A.P.-C.)
| | - Sebastian Hug
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (S.H.); (M.A.P.-C.)
| | - Marta Adriana Pinto-Carbó
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (S.H.); (M.A.P.-C.)
| | - Nicola Zamboni
- ETH Zürich, Institute of Molecular Systems Biology, CH-8093 Zürich, Switzerland;
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (S.H.); (M.A.P.-C.)
- Correspondence: ; Tel.: +41-44-63-52904
| |
Collapse
|
20
|
Bonatelli ML, Lacerda-Júnior GV, dos Reis Junior FB, Fernandes-Júnior PI, Melo IS, Quecine MC. Beneficial Plant-Associated Microorganisms From Semiarid Regions and Seasonally Dry Environments: A Review. Front Microbiol 2021; 11:553223. [PMID: 33519722 PMCID: PMC7845453 DOI: 10.3389/fmicb.2020.553223] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Semiarid regions are apparently low biodiversity environments; however, these environments may host a phylogenetically diverse microbial community associated with plants. Their microbial inhabitants are often recruited to withstand stressful settings and improve plant growth under harsh conditions. Thus, plant-associated microorganisms isolated from semiarid and seasonally dry environments will be detailed in the present review, focusing on plant growth promotion potential and the microbial ability to alleviate plant abiotic stress. Initially, we explored the role of microbes from dry environments around the world, and then, we focused on seasonally dry Brazilian biomes, the Caatinga and the Cerrado. Cultivable bacteria from semiarid and seasonally dry environments have demonstrated great plant growth promotion traits such as plant hormone production, mobilization of insoluble nutrients, and mechanisms related to plant abiotic stress alleviation. Several of these isolates were able to improve plant growth under stressful conditions commonly present in typical semiarid regions, such as high salinity and drought. Additionally, we highlight the potential of plants highly adapted to seasonal climates from the Caatinga and Cerrado biomes as a suitable pool of microbial inoculants to maintain plant growth under abiotic stress conditions. In general, we point out the potential for the exploitation of new microbial inoculants from plants growing in dry environments to ensure a sustainable increase in agricultural productivity in a future climate change scenario.
Collapse
Affiliation(s)
- Maria Leticia Bonatelli
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | | | | | - Itamar Soares Melo
- Brazilian Agricultural Research Corporation, Embrapa Meio Ambiente, Jaguariúna, Brazil
| | - Maria Carolina Quecine
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
21
|
Hug S, Liu Y, Heiniger B, Bailly A, Ahrens CH, Eberl L, Pessi G. Differential Expression of Paraburkholderia phymatum Type VI Secretion Systems (T6SS) Suggests a Role of T6SS-b in Early Symbiotic Interaction. FRONTIERS IN PLANT SCIENCE 2021; 12:699590. [PMID: 34394152 PMCID: PMC8356804 DOI: 10.3389/fpls.2021.699590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 05/06/2023]
Abstract
Paraburkholderia phymatum STM815, a rhizobial strain of the Burkholderiaceae family, is able to nodulate a broad range of legumes including the agriculturally important Phaseolus vulgaris (common bean). P. phymatum harbors two type VI Secretion Systems (T6SS-b and T6SS-3) in its genome that contribute to its high interbacterial competitiveness in vitro and in infecting the roots of several legumes. In this study, we show that P. phymatum T6SS-b is found in the genomes of several soil-dwelling plant symbionts and that its expression is induced by the presence of citrate and is higher at 20/28°C compared to 37°C. Conversely, T6SS-3 shows homologies to T6SS clusters found in several pathogenic Burkholderia strains, is more prominently expressed with succinate during stationary phase and at 37°C. In addition, T6SS-b expression was activated in the presence of germinated seeds as well as in P. vulgaris and Mimosa pudica root nodules. Phenotypic analysis of selected deletion mutant strains suggested a role of T6SS-b in motility but not at later stages of the interaction with legumes. In contrast, the T6SS-3 mutant was not affected in any of the free-living and symbiotic phenotypes examined. Thus, P. phymatum T6SS-b is potentially important for the early infection step in the symbiosis with legumes.
Collapse
Affiliation(s)
- Sebastian Hug
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Yilei Liu
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Benjamin Heiniger
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics, Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Aurélien Bailly
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Christian H. Ahrens
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics, Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- *Correspondence: Gabriella Pessi,
| |
Collapse
|
22
|
Liu X, You S, Liu H, Yuan B, Wang H, James EK, Wang F, Cao W, Liu ZK. Diversity and Geographic Distribution of Microsymbionts Associated With Invasive Mimosa Species in Southern China. Front Microbiol 2020; 11:563389. [PMID: 33250864 PMCID: PMC7673401 DOI: 10.3389/fmicb.2020.563389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/11/2020] [Indexed: 11/24/2022] Open
Abstract
In order to investigated diversity and geographic distribitution of rhizobia associated with invasive Mimosa species, Mimosa nodules and soils around the plants were sampled from five provinces in southern China. In total, 361 isolates were obtained from Mimosa pudica and Mimosa diplotricha in 25 locations. A multi-locus sequence analysis (MLSA) including 16S rRNA, atpD, dnaK, glnA, gyrB, and recA identified the isolates into eight genospecies corresponding to Paraburkhleria mimosarum, Paraburkholderia phymatum, Paraburkholeria carbensis, Cupriavidus taiwanensis, Cupriavidus sp., Rhizobium altiplani, Rhizobium mesoamericanum, and Rhizobium etli. The majority of the isolates were Cupriavidus (62.6%), followed by Paraburkholderia (33.5%) and Rhizobium (2.9%). Cupriavidus strains were more predominant in nodules of M. diplotricha (76.2) than in M. pudica (59.9%), and the distribution of P. phymatum in those two plant species was reverse (3.4:18.2%). Four symbiotypes were defined among the isolates based upon the phylogeny of nodA-nifH genes, represented by P. mimosarum, P. phymatum–P. caribensis, Cupriavidus spp., and Rhizobium spp. The species affiliation and the symbiotype division among the isolates demonstrated the multiple origins of Mimosa rhizobia in China: most were similar to those found in the original centers of Mimosa plants, but Cupriavidus sp. might have a local origin. The unbalanced distribution of symbionts between the two Mimosa species might be related to the soil pH, organic matter and available nitrogen; Cupriavidus spp. generally dominated most of the soils colonized by Mimosa in this study, but it had a particular preference for neutral-alkaline soils with low fertility whereas. While Paraburkholderia spp. preferred more acidic and fertile soils. The Rhizobium spp. tended to prefer neutral–acidic soils with high fertility soils.
Collapse
Affiliation(s)
- Xiaoyun Liu
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science/Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Shenghao You
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science/Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Huajie Liu
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science/Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Baojuan Yuan
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science/Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Haoyu Wang
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science/Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Fang Wang
- Key Laboratory of State Forestry Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
| | - Weidong Cao
- Institute of Agricultural Resources and Regional Planning of CAAS, Beijing, China
| | - Zhong Kuan Liu
- Institute of Agro-resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| |
Collapse
|
23
|
Mavima L, Beukes CW, Palmer M, De Meyer SE, James EK, Maluk M, Gross E, Dos Reis Junior FB, Avontuur JR, Chan WY, Venter SN, Steenkamp ET. Paraburkholderia youngii sp. nov. and 'Paraburkholderia atlantica' - Brazilian and Mexican Mimosa-associated rhizobia that were previously known as Paraburkholderia tuberum sv. mimosae. Syst Appl Microbiol 2020; 44:126152. [PMID: 33276286 DOI: 10.1016/j.syapm.2020.126152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
Previous studies have recognized South and Central/Latin American mimosoid legumes in the genera Mimosa, Piptadenia and Calliandra as hosts for various nodulating Paraburkholderia species. Several of these species have been validly named in the last two decades, e.g., P. nodosa, P. phymatum, P. diazotrophica, P. piptadeniae, P. ribeironis, P. sabiae and P. mimosarum. There are still, however, a number of diverse Paraburkholderia strains associated with these legumes that have an unclear taxonomic status. In this study, we focus on 30 of these strains which originate from the root nodules of Brazilian and Mexican Mimosa species. They were initially identified as P. tuberum and subsequently placed into a symbiovar (sv. mimosae) based on their host preferences. A polyphasic approach for the delineation of these strains was used, consisting of genealogical concordance analysis (using atpD, gyrB, acnA, pab and 16S rRNA gene sequences), together with comparisons of Average Nucleotide Identity (ANI), DNA G+C content ratios and phenotypic characteristics with those of the type strains of validly named Paraburkholderia species. Accordingly, these 30 strains were delineated into two distinct groups, of which one is conspecific with 'P. atlantica' CNPSo 3155T and the other new to Science. We propose the name Paraburkholderia youngii sp. nov. with type strain JPY169T (= LMG 31411T; SARCC751T) for this novel species.
Collapse
Affiliation(s)
- Lazarus Mavima
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Chrizelle W Beukes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Marike Palmer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa; School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States of America
| | - Sofie E De Meyer
- MALDIID Pty Ltd, Murdoch, Western Australia, Australia; Laboratory of Microbiology, Department Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Marta Maluk
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Eduardo Gross
- Universidade Estadual de Santa Cruz, km 16 Rodovia Ilhéus - Itabuna, CEP 45662-900 Ilhéus, BA, Brazil
| | | | - Juanita R Avontuur
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Wai Y Chan
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa; Biotechnology Platform, Agricultural Research Council Onderstepoort Veterinary Institute (ARC-OVI), Onderstepoort, South Africa
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
24
|
Wilhelm RC, Cyle KT, Martinez CE, Karasz DC, Newman JD, Buckley DH. Paraburkholderia solitsugae sp. nov. and Paraburkholderia elongata sp. nov., phenolic acid-degrading bacteria isolated from forest soil and emended description of Paraburkholderia madseniana. Int J Syst Evol Microbiol 2020; 70:5093-5105. [PMID: 32809929 DOI: 10.1099/ijsem.0.004387] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Two bacterial strains, 1NT and 5NT, were isolated from hemlock forest soil using a soluble organic matter enrichment. Cells of 1NT (0.65×1.85 µm) and 5NT (0.6×1.85 µm) are Gram-stain-negative, aerobic, motile, non-sporulating and exist as single rods, diplobacilli or in chains of varying length. During growth in dilute media (≤0.1× tryptic soy broth; TSB), cells are primarily motile with flagella. At higher concentrations (≥0.3× TSB), cells of both strains increasingly form non-motile chains, and cells of 5NT elongate (0.57×~7 µm) and form especially long filaments. Optimum growth of 1NT and 5NT occurred at 25-30 °C, pH 6.5-7.0 and <0.5% salinity. Results of comparative chemotaxonomic, genomic and phylogenetic analyses revealed that 1NT and 5NT were distinct from one another and their closest related type strains: Paraburkholderia madseniana RP11T, Paraburkholderia aspalathi LMG 27731T and Paraburkholderia caffeinilytica CF1T. The genomes of 1NT and 5NT had an average nucleotide identity (91.6 and 91.3%) and in silico DNA-DNA hybridization values (45.8%±2.6 and 45.5%±2.5) and differed in functional gene content from their closest related type strains. The composition of fatty acids and patterns of substrate use, including the catabolism of phenolic acids, also differentiated strains 1NT and 5NT from each other and their closest relatives. The only ubiquinone present in strains 1NT and 5NT was Q-8. The major cellular fatty acids were C16 : 0, 3OH-C16 : 0, C17 : 0 cyclo, C19 : 0 cyclo ω8c and summed features 2 (3OH-C14 : 0 / C16 : 1 iso I), 3 (C16 : 1 ω6c/ω7c) and 8 (C18 : 1 ω7c/ω6c). A third bacterium, strain RL16-012-BIC-B, was isolated from soil associated with shallow roots and was determined to be a strain of P. madseniana (ANI, 98.8%; 16S rRNA gene similarity, 100%). Characterizations of strain RL16-012-BIC-B (DSM 110723=LMG 31706) led to proposed emendments to the species description of P. madseniana. Our polyphasic approach demonstrated that strains 1NT and 5NT represent novel species from the genus Paraburkholderia for which the names Paraburkholderia solitsugae sp. nov. (type strain 1NT=DSM 110721T=LMG 31704T) and Paraburkholderia elongata sp. nov. (type strain 5NT=DSM 110722T=LMG 31705T) are proposed.
Collapse
Affiliation(s)
- Roland C Wilhelm
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - K Taylor Cyle
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Carmen Enid Martinez
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - David C Karasz
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | | | - Daniel H Buckley
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
25
|
Paulitsch F, Delamuta JRM, Ribeiro RA, da Silva Batista JS, Hungria M. Phylogeny of symbiotic genes reveals symbiovars within legume-nodulating Paraburkholderia species. Syst Appl Microbiol 2020; 43:126151. [PMID: 33171385 DOI: 10.1016/j.syapm.2020.126151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
Abstract
Bacteria belonging to the genus Paraburkholderia are capable of establishing symbiotic relationships with plants belonging to the Fabaceae (=Leguminosae) family and fixing the atmospheric nitrogen in specialized structures in the roots called nodules, in a process known as biological nitrogen fixation (BNF). In the nodulation and BNF processes several bacterial symbiotic genes are involved, but the relations between symbiotic, core genes and host specificity are still poorly studied and understood in Paraburkholderia. In this study, eight strains of nodulating nitrogen-fixing Paraburkholderia isolated in Brazil, together with described species and other reference strains were used to infer the relatedness between core (16S rDNA, recA) and symbiotic (nod, nif, fix) genes. The diversity of genes involved in the nodulation (nodAC) and nitrogen fixation (nifH) abilities was investigated. Only two groups, one containing three Paraburkholderia species symbionts of Mimosa, and another one with P. ribeironis strains presented similar phylogenetic patterns in the analysis of core and symbiotic genes. In three other groups events of horizontal gene transfer of symbiotic genes were detected. Paraburkholderia strains with available genomes were used in the complementary analysis of nifHDK and fixABC and confirmed well-defined phylogenetic positions of symbiotic genes. In all analyses of nod, nif and fix genes the strains were distributed into five clades with high bootstrap support, allowing the proposal of five symbiovars in nodulating nitrogen-fixing Paraburkholderia, designated as mimosae, africana, tropicalis, atlantica and piptadeniae. Phylogenetic inferences within each symbiovar are discussed.
Collapse
Affiliation(s)
- Fabiane Paulitsch
- Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil; Departamento de Microbiologia, Universidade Estadual de Londrina, C.P. 10011, 86057-970 Londrina, Paraná, Brazil; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020 Brasília, Distrito Federal, Brazil.
| | - Jakeline Renata Marçon Delamuta
- Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil; Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, Distrito Federal, Brazil.
| | - Renan Augusto Ribeiro
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, Distrito Federal, Brazil.
| | - Jesiane Stefania da Silva Batista
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Avenida General Carlos Cavalcanti, 4748 - Uvaranas, C.P. 6001, Ponta Grossa, PR 84030‑900, Brazil.
| | - Mariangela Hungria
- Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil; Departamento de Microbiologia, Universidade Estadual de Londrina, C.P. 10011, 86057-970 Londrina, Paraná, Brazil; Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, Distrito Federal, Brazil.
| |
Collapse
|
26
|
Paraburkholderia phymatum STM815 σ54 Controls Utilization of Dicarboxylates, Motility, and T6SS-b Expression. NITROGEN 2020. [DOI: 10.3390/nitrogen1020008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rhizobia have two major life styles, one as free-living bacteria in the soil, and the other as bacteroids within the root/stem nodules of host legumes where they convert atmospheric nitrogen into ammonia. In the soil, rhizobia have to cope with changing and sometimes stressful environmental conditions, such as nitrogen limitation. In the beta-rhizobial strain Paraburkholderia phymatum STM815, the alternative sigma factor σ54 (or RpoN) has recently been shown to control nitrogenase activity during symbiosis with Phaseolus vulgaris. In this study, we determined P. phymatum’s σ54 regulon under nitrogen-limited free-living conditions. Among the genes significantly downregulated in the absence of σ54, we found a C4-dicarboxylate carrier protein (Bphy_0225), a flagellar biosynthesis cluster (Bphy_2926-64), and one of the two type VI secretion systems (T6SS-b) present in the P. phymatum STM815 genome (Bphy_5978-97). A defined σ54 mutant was unable to grow on C4 dicarboxylates as sole carbon source and was less motile compared to the wild-type strain. Both defects could be complemented by introducing rpoNin trans. Using promoter reporter gene fusions, we also confirmed that the expression of the T6SS-b cluster is regulated by σ54. Accordingly, we show that σ54 affects in vitro competitiveness of P. phymatum STM815 against Paraburkholderia diazotrophica.
Collapse
|
27
|
Liu Y, Bellich B, Hug S, Eberl L, Cescutti P, Pessi G. The Exopolysaccharide Cepacian Plays a Role in the Establishment of the Paraburkholderia phymatum - Phaseolus vulgaris Symbiosis. Front Microbiol 2020; 11:1600. [PMID: 32765457 PMCID: PMC7378592 DOI: 10.3389/fmicb.2020.01600] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Paraburkholderia phymatum is a rhizobial strain that belongs to the beta-proteobacteria, a group known to form efficient nitrogen-fixing symbioses within root nodules of several legumes, including the agriculturally important common bean. The establishment of the symbiosis requires the exchange of rhizobial and plant signals such as lipochitooligosaccharides (Nod factors), polysaccharides, and flavonoids. Inspection of the genome of the competitive rhizobium P. phymatum revealed the presence of several polysaccharide biosynthetic gene clusters. In this study, we demonstrate that bceN, a gene encoding a GDP-D-mannose 4,6-dehydratase, which is involved in the production of the exopolysaccharide cepacian, an important component of biofilms produced by closely related opportunistic pathogens of the Burkholderia cepacia complex (Bcc), is required for efficient plant colonization. Wild-type P. phymatum was shown to produce cepacian while a bceN mutant did not. Additionally, the bceN mutant produced a significantly lower amount of biofilm and formed less root nodules compared to the wild-type strain with Phaseolus vulgaris as host plant. Finally, expression of the operon containing bceN was induced by the presence of germinated P. vulgaris seeds under nitrogen limiting conditions suggesting a role of this polysaccharide in the establishment of this ecologically important symbiosis.
Collapse
Affiliation(s)
- Yilei Liu
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Barbara Bellich
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Sebastian Hug
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Genomic Comparison of Insect Gut Symbionts from Divergent Burkholderia Subclades. Genes (Basel) 2020; 11:genes11070744. [PMID: 32635398 PMCID: PMC7397029 DOI: 10.3390/genes11070744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 01/01/2023] Open
Abstract
Stink bugs of the superfamilies Coreoidea and Lygaeoidea establish gut symbioses with environmentally acquired bacteria of the genus Burkholderia sensu lato. In the genus Burkholderia, the stink bug-associated strains form a monophyletic clade, named stink bug-associated beneficial and environmental (SBE) clade (or Caballeronia). Recently, we revealed that members of the family Largidae of the superfamily Pyrrhocoroidea are associated with Burkholderia but not specifically with the SBE Burkholderia; largid bugs harbor symbionts that belong to a clade of plant-associated group of Burkholderia, called plant-associated beneficial and environmental (PBE) clade (or Paraburkholderia). To understand the genomic features of Burkholderia symbionts of stink bugs, we isolated two symbiotic Burkholderia strains from a bordered plant bug Physopellta gutta (Pyrrhocoroidea: Largidae) and determined their complete genomes. The genome sizes of the insect-associated PBE (iPBE) are 9.5 Mb and 11.2 Mb, both of which are larger than the genomes of the SBE Burkholderia symbionts. A whole-genome comparison between two iPBE symbionts and three SBE symbionts highlighted that all previously reported symbiosis factors are shared and that 282 genes are specifically conserved in the five stink bug symbionts, over one-third of which have unknown function. Among the symbiont-specific genes, about 40 genes formed a cluster in all five symbionts; this suggests a "symbiotic island" in the genome of stink bug-associated Burkholderia.
Collapse
|
29
|
Effects of Selected Functional Bacteria on Maize Growth and Nutrient Use Efficiency. Microorganisms 2020; 8:microorganisms8060854. [PMID: 32517011 PMCID: PMC7356773 DOI: 10.3390/microorganisms8060854] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 01/09/2023] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR), which include isolates from genera Paraburkholderia, Burkholderia and Serratia, have received attention due to their numerous plant growth-promoting mechanisms such as their ability to solubilize insoluble phosphates and nitrogen-fixation. However, there is a dearth of information on the potential plant growth-promoting effects of these three groups of bacteria on non-legumes such as maize. This study determined the influences of the aforementioned strains on soil properties, maize growth, nutrient uptake and nutrient use efficiency. A pot trial using maize as a test crop was done using a randomized complete block design with 7 treatments each replicated 7 times. The treatments used in this study were: Control (no fertilizer), chemical fertilizer (CF), organic-chemical fertilizers combination without inoculum (OCF) and with inocula consisting of single strains [cellulolytic bacteria (TC), organic fertilizer and chemical fertilizer with N-fixing bacteria (TN), organic fertilizer and chemical fertilizer with P-solubilizing bacteria (TP)) and three-strain inocula (TCNP), respectively. The variables measured included plant growth and nutrient content, soil nutrient content and functional rhizospheric bacterial populations. Paraburkholderia nodosa NB1 and Burkholderia cepacia PB3 showed comparable effects on maize biomass and also improved N and P use efficiencies when compared to full chemical fertilization. Nitrogen-fixing rhizobacteria had a positive effect on above-ground biomass of maize. Paraburkholderia nodosa NB1 improved soil total C and organic matter contents, besides being the only bacterial treatment that improved K use efficiency compared to OCF. The results suggest that P. nodosa NB1 and B. cepacia PB3 have potential usage in bio-fertilizers. In contrast, treatments with Serratia nematodiphila C46d and consortium strains showed poorer maize nutrient uptake and use efficiency than the other single strain treatments. Bacterial treatments generally showed comparable or higher overall N and P use efficiencies than full chemical fertilization. These findings suggest that at least half the amounts of N and P fertilizers could be reduced through the use of combined fertilization together with beneficial bacteria.
Collapse
|
30
|
Accumulation of phosphorus and carbon and the dependency on biological N2 fixation for nitrogen nutrition in Polhillia, Wiborgia and Wiborgiella species growing in natural stands in cape fynbos, South Africa. Symbiosis 2020. [DOI: 10.1007/s13199-020-00683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Sharma V, Bhattacharyya S, Kumar R, Kumar A, Ibañez F, Wang J, Guo B, Sudini HK, Gopalakrishnan S, DasGupta M, Varshney RK, Pandey MK. Molecular Basis of Root Nodule Symbiosis between Bradyrhizobium and 'Crack-Entry' Legume Groundnut ( Arachis hypogaea L.). PLANTS (BASEL, SWITZERLAND) 2020; 9:E276. [PMID: 32093403 PMCID: PMC7076665 DOI: 10.3390/plants9020276] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/16/2022]
Abstract
Nitrogen is one of the essential plant nutrients and a major factor limiting crop productivity. To meet the requirements of sustainable agriculture, there is a need to maximize biological nitrogen fixation in different crop species. Legumes are able to establish root nodule symbiosis (RNS) with nitrogen-fixing soil bacteria which are collectively called rhizobia. This mutualistic association is highly specific, and each rhizobia species/strain interacts with only a specific group of legumes, and vice versa. Nodulation involves multiple phases of interactions ranging from initial bacterial attachment and infection establishment to late nodule development, characterized by a complex molecular signalling between plants and rhizobia. Characteristically, legumes like groundnut display a bacterial invasion strategy popularly known as "crack-entry'' mechanism, which is reported approximately in 25% of all legumes. This article accommodates critical discussions on the bacterial infection mode, dynamics of nodulation, components of symbiotic signalling pathway, and also the effects of abiotic stresses and phytohormone homeostasis related to the root nodule symbiosis of groundnut and Bradyrhizobium. These parameters can help to understand how groundnut RNS is programmed to recognize and establish symbiotic relationships with rhizobia, adjusting gene expression in response to various regulations. This review further attempts to emphasize the current understanding of advancements regarding RNS research in the groundnut and speculates on prospective improvement possibilities in addition to ways for expanding it to other crops towards achieving sustainable agriculture and overcoming environmental challenges.
Collapse
Affiliation(s)
- Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (V.S.); (H.K.S.); (S.G.); (R.K.V.)
| | - Samrat Bhattacharyya
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India (M.D.)
- Department of Botany, Sister Nibedita Government General Degree College for Girls, Kolkata 700027, India
| | - Rakesh Kumar
- Department of Life Sciences, Central University of Karnataka, Kadaganchi-585367, India
| | - Ashish Kumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (V.S.); (H.K.S.); (S.G.); (R.K.V.)
- DBT-National Agri-food Biotechnology Institute (NABI), Punjab 140308, India
| | - Fernando Ibañez
- Instituto de Investigaciones Agrobiotecnológicas (CONICET-UNRC), Río Cuarto-5800, Córdoba, Argentina
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL 103610, USA;
| | - Baozhu Guo
- Crop Protection and Management Research Unit, United State Department of Agriculture- Agriculture Research Service (USDA-ARS), Tifton, GA 31793, USA;
| | - Hari K. Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (V.S.); (H.K.S.); (S.G.); (R.K.V.)
| | - Subramaniam Gopalakrishnan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (V.S.); (H.K.S.); (S.G.); (R.K.V.)
| | - Maitrayee DasGupta
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India (M.D.)
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (V.S.); (H.K.S.); (S.G.); (R.K.V.)
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (V.S.); (H.K.S.); (S.G.); (R.K.V.)
| |
Collapse
|
32
|
Current Progress in Nitrogen Fixing Plants and Microbiome Research. PLANTS 2020; 9:plants9010097. [PMID: 31940996 PMCID: PMC7020401 DOI: 10.3390/plants9010097] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 01/10/2023]
Abstract
In agroecosystems, nitrogen is one of the major nutrients limiting plant growth. To meet the increased nitrogen demand in agriculture, synthetic fertilizers have been used extensively in the latter part of the twentieth century, which have led to environmental challenges such as nitrate pollution. Biological nitrogen fixation (BNF) in plants is an essential mechanism for sustainable agricultural production and healthy ecosystem functioning. BNF by legumes and associative, endosymbiotic, and endophytic nitrogen fixation in non-legumes play major roles in reducing the use of synthetic nitrogen fertilizer in agriculture, increased plant nutrient content, and soil health reclamation. This review discusses the process of nitrogen-fixation in plants, nodule formation, the genes involved in plant-rhizobia interaction, and nitrogen-fixing legume and non-legume plants. This review also elaborates on current research efforts involved in transferring nitrogen-fixing mechanisms from legumes to non-legumes, especially to economically important crops such as rice, maize, and wheat at the molecular level and relevant other techniques involving the manipulation of soil microbiome for plant benefits in the non-legume root environment.
Collapse
|
33
|
Yoneyama T, Terakado-Tonooka J, Bao Z, Minamisawa K. Molecular Analyses of the Distribution and Function of Diazotrophic Rhizobia and Methanotrophs in the Tissues and Rhizosphere of Non-Leguminous Plants. PLANTS 2019; 8:plants8100408. [PMID: 31614562 PMCID: PMC6843303 DOI: 10.3390/plants8100408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/26/2019] [Accepted: 10/10/2019] [Indexed: 01/16/2023]
Abstract
Biological nitrogen fixation (BNF) by plants and its bacterial associations represent an important natural system for capturing atmospheric dinitrogen (N2) and processing it into a reactive form of nitrogen through enzymatic reduction. The study of BNF in non-leguminous plants has been difficult compared to nodule-localized BNF in leguminous plants because of the diverse sites of N2 fixation in non-leguminous plants. Identification of the involved N2-fixing bacteria has also been difficult because the major nitrogen fixers were often lost during isolation attempts. The past 20 years of molecular analyses has led to the identification of N2 fixation sites and active nitrogen fixers in tissues and the rhizosphere of non-leguminous plants. Here, we examined BNF hotspots in six reported non-leguminous plants. Novel rhizobia and methanotrophs were found to be abundantly present in the free-living state at sites where carbon and energy sources were predominantly available. In the carbon-rich apoplasts of plant tissues, rhizobia such as Bradyrhizobium spp. microaerobically fix N2. In paddy rice fields, methane molecules generated under anoxia are oxidized by xylem aerenchyma-transported oxygen with the simultaneous fixation of N2 by methane-oxidizing methanotrophs. We discuss the effective functions of the rhizobia and methanotrophs in non-legumes for the acquisition of fixed nitrogen in addition to research perspectives.
Collapse
Affiliation(s)
- Tadakatsu Yoneyama
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
- National Agriculture and Food Research Organization, Kannondai 3-1-1, Tsukuba, Ibaraki 305-8666, Japan.
| | - Junko Terakado-Tonooka
- National Agriculture and Food Research Organization, Kannondai 3-1-1, Tsukuba, Ibaraki 305-8666, Japan.
| | - Zhihua Bao
- School of Ecology and Environment, Inner Mongolia University, 235 West University Blvd., Hohhot 010021, Inner Mongolia, China.
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| |
Collapse
|
34
|
Paraburkholderia guartelaensis sp. nov., a nitrogen-fixing species isolated from nodules of Mimosa gymnas in an ecotone considered as a hotspot of biodiversity in Brazil. Arch Microbiol 2019; 201:1435-1446. [PMID: 31428824 DOI: 10.1007/s00203-019-01714-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/14/2019] [Accepted: 08/10/2019] [Indexed: 10/26/2022]
Abstract
A polyphasic approach was used to infer the phylogenetic position of six nitrogen-fixing symbiotic bacteria isolated from Mimosa gymnas nodules grown in an ecotone between the Brazilian biomes of Atlantic Forest and Cerrado, considered as a hotspot of biodiversity. The 16S rRNA gene phylogeny indicated the highest similarity with Paraburkholderia oxyphila (98.7-98.9%), but similar values were found with other Paraburkholderia species. The multilocus sequence analysis (MLSA) of five (recA, gyrB, trpB, gltB, and atpD) housekeeping genes indicated that the CNPSo strains represent a novel lineage, sharing less than 95.7% of nucleotide identity (NI) with other Paraburkholderia species, being more closely related to P. nodosa. Genome parameters were analyzed for strain CNPSo 3008T, and DNA-DNA hybridization revealed a maximum of 55.9% of DNA-DNA relatedness with P. nodosa, while average nucleotide identity with the two closest species was of 93.84% with P. nodosa and of 87.93% with P. mimosarum, both parameters confirming that the strain represents a new species. In the analysis of the nodulation nodC gene, all CNPSo strains showed the highest similarity with P. nodosa, and nodulation tests indicated host specificity with Mimosa. Other phylogenetic, physiological, and chemotaxonomic properties were evaluated. All data obtained support the description of the novel species Paraburkholderia guartelaensis sp. nov., with CNPSo 3008T (= U13000T = G29.01T) indicated as the type strain.
Collapse
|
35
|
Beukes CW, Boshoff FS, Phalane FL, Hassen AI, le Roux MM, Stȩpkowski T, Venter SN, Steenkamp ET. Both Alpha- and Beta-Rhizobia Occupy the Root Nodules of Vachellia karroo in South Africa. Front Microbiol 2019; 10:1195. [PMID: 31214140 PMCID: PMC6558075 DOI: 10.3389/fmicb.2019.01195] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 05/13/2019] [Indexed: 12/13/2022] Open
Abstract
Vachellia karroo (formerly Acacia karroo) is a wide-spread legume species indigenous to southern Africa. Little is known regarding the identity or diversity of rhizobia that associate with this plant in its native range in South Africa. The aims of this study were therefore: (i) to gather a collection of rhizobia associated with V. karroo from a wide range of geographic locations and biomes; (ii) to identify the isolates and infer their evolutionary relationships with known rhizobia; (iii) to confirm their nodulation abilities by using them in inoculation assays to induce nodules under glasshouse conditions. To achieve these aims, soil samples were collected from 28 locations in seven biomes throughout South Africa, which were then used to grow V. karroo seedlings under nitrogen-free conditions. The resulting 88 bacterial isolates were identified to genus-level using 16S rRNA sequence analysis and to putative species-level using recA-based phylogenetic analyses. Our results showed that the rhizobial isolates represented members of several genera of Alphaproteobacteria (Bradyrhizobium, Ensifer, Mesorhizobium, and Rhizobium), as well as Paraburkholderia from the Betaproteobacteria. Our study therefore greatly increases the known number of Paraburkholderia isolates which can associate with this southern African mimosoid host. We also show for the first time that members of this genus can associate with legumes, not only in the Fynbos biome, but also in the Albany Thicket and Succulent Karoo biomes. Twenty-six putative species were delineated among the 88 isolates, many of which appeared to be new to Science with other likely being conspecific or closely related to E. alkalisoli, M. abyssinicae, M. shonense, and P. tropica. We encountered only a single isolate of Bradyrhizobium, which is in contrast to the dominant association of this genus with Australian Acacia. V. karroo also associates with diverse genera in the Grassland biome where it is quite invasive and involved in bush encroachment. Our findings therefore suggest that V. karroo is a promiscuous host capable of forming effective nodules with both alpha- and beta-rhizobia, which could be a driving force behind the ecological success of this tree species.
Collapse
Affiliation(s)
- Chrizelle W Beukes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Francois S Boshoff
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Francina L Phalane
- Agricultural Research Council, Plant Health and Protection Institute, Pretoria, South Africa
| | - Ahmed I Hassen
- Agricultural Research Council, Plant Health and Protection Institute, Pretoria, South Africa
| | - Marianne M le Roux
- South African National Biodiversity Institute, Pretoria National Botanical Garden, Pretoria, South Africa.,Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg, South Africa
| | - Tomasz Stȩpkowski
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
36
|
Paraburkholderia strydomiana sp. nov. and Paraburkholderia steynii sp. nov.: rhizobial symbionts of the fynbos legume Hypocalyptus sophoroides. Antonie van Leeuwenhoek 2019; 112:1369-1385. [DOI: 10.1007/s10482-019-01269-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/22/2019] [Indexed: 02/07/2023]
|
37
|
Mannaa M, Park I, Seo YS. Genomic Features and Insights into the Taxonomy, Virulence, and Benevolence of Plant-Associated Burkholderia Species. Int J Mol Sci 2018; 20:E121. [PMID: 30598000 PMCID: PMC6337347 DOI: 10.3390/ijms20010121] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 11/17/2022] Open
Abstract
The members of the Burkholderia genus are characterized by high versatility and adaptability to various ecological niches. With the availability of the genome sequences of numerous species of Burkholderia, many studies have been conducted to elucidate the unique features of this exceptional group of bacteria. Genomic and metabolic plasticity are common among Burkholderia species, as evidenced by their relatively large multi-replicon genomes that are rich in insertion sequences and genomic islands and contain a high proportion of coding regions. Such unique features could explain their adaptability to various habitats and their versatile lifestyles, which are reflected in a multiplicity of species including free-living rhizospheric bacteria, plant endosymbionts, legume nodulators, and plant pathogens. The phytopathogenic Burkholderia group encompasses several pathogens representing threats to important agriculture crops such as rice. Contrarily, plant-beneficial Burkholderia have also been reported, which have symbiotic and growth-promoting roles. In this review, the taxonomy of Burkholderia is discussed emphasizing the recent updates and the contributions of genomic studies to precise taxonomic positioning. Moreover, genomic and functional studies on Burkholderia are reviewed and insights are provided into the mechanisms underlying the virulence and benevolence of phytopathogenic and plant-beneficial Burkholderia, respectively, on the basis of cutting-edge knowledge.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Inmyoung Park
- Department of Oriental Food and Culinary Arts, Youngsan University, Busan 48015, Korea.
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
38
|
Rathi S, Tak N, Bissa G, Chouhan B, Ojha A, Adhikari D, Barik SK, Satyawada RR, Sprent JI, James EK, Gehlot HS. Selection of Bradyrhizobium or Ensifer symbionts by the native Indian caesalpinioid legume Chamaecrista pumila depends on soil pH and other edaphic and climatic factors. FEMS Microbiol Ecol 2018; 94:5089966. [DOI: 10.1093/femsec/fiy180] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/01/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sonam Rathi
- BNF and Microbial Genomics Lab., Department of Botany, Center of Advanced Study, Jai Narain Vyas University, Jodhpur- 342001, Rajasthan, India
| | - Nisha Tak
- BNF and Microbial Genomics Lab., Department of Botany, Center of Advanced Study, Jai Narain Vyas University, Jodhpur- 342001, Rajasthan, India
| | - Garima Bissa
- BNF and Microbial Genomics Lab., Department of Botany, Center of Advanced Study, Jai Narain Vyas University, Jodhpur- 342001, Rajasthan, India
| | - Bhawana Chouhan
- BNF and Microbial Genomics Lab., Department of Botany, Center of Advanced Study, Jai Narain Vyas University, Jodhpur- 342001, Rajasthan, India
| | - Archana Ojha
- Department of Botany, North-Eastern Hill University, Shillong-793022, Meghalaya, India
| | - Dibyendu Adhikari
- Department of Botany, North-Eastern Hill University, Shillong-793022, Meghalaya, India
| | - Saroj K Barik
- Department of Botany, North-Eastern Hill University, Shillong-793022, Meghalaya, India
| | - Rama Rao Satyawada
- Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong-793022, Meghalaya, India
| | - Janet I Sprent
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Hukam S Gehlot
- BNF and Microbial Genomics Lab., Department of Botany, Center of Advanced Study, Jai Narain Vyas University, Jodhpur- 342001, Rajasthan, India
| |
Collapse
|
39
|
Bournaud C, James EK, de Faria SM, Lebrun M, Melkonian R, Duponnois R, Tisseyre P, Moulin L, Prin Y. Interdependency of efficient nodulation and arbuscular mycorrhization in Piptadenia gonoacantha, a Brazilian legume tree. PLANT, CELL & ENVIRONMENT 2018; 41:2008-2020. [PMID: 29059477 DOI: 10.1111/pce.13095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
Tripartite interactions between legumes and their root symbionts (rhizobia and arbuscular mycorrhizal fungi, AMF) are poorly understood, although it is well established that only specific combinations of symbionts lead to optimal plant growth. A classic example in which to investigate such interactions is the Brazilian legume tree Piptadenia gonoacantha (Caesalpinioideae), for which efficient nodulation has been described as dependent on the presence of AMF symbiosis. In this study, we compared the nodulation behaviour of several rhizobial strains with or without AMF inoculation, and performed analyses on nodulation, nodule cytology, N-fixing efficiency, and plant growth response. Nodulation of P. gonoacantha does not rely on the presence of AMF, but mycorrhization was rhizobial strain-dependent, and nodule effectiveness and plant growth were dependent on the presence of specific combinations of rhizobial strains and AMF. The co-occurrence of both symbionts within efficient nodules and the differentiation of bacteroids within nodule cells were also demonstrated. Novel close interactions and interdependency for the establishment and/or functioning of these symbioses were also revealed in Piptadenia, thanks to immunocytochemical analyses. These data are discussed in terms of the evolutionary position of the newly circumscribed mimosoid clade within the Caesalpinioid subfamily and its relative proximity to non-nodulated (but AMF-associated) basal subfamilies.
Collapse
Affiliation(s)
- Caroline Bournaud
- CIRAD, UMR LSTM, F-34398, Montpellier, France
- LSTM, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, F-343983, Montpellier, France
| | | | - Sergio M de Faria
- EMBRAPA-Agrobiologia, Seropedica, RJ23891-000, Rio de Janeiro, Brazil
| | - Michel Lebrun
- Université de Montpellier, UMR LSTM, F-34398, Montpellier, Cedex 5, France
| | | | | | | | | | - Yves Prin
- CIRAD, UMR LSTM, F-34398, Montpellier, France
- LSTM, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, F-343983, Montpellier, France
| |
Collapse
|
40
|
Estrada-de Los Santos P, Palmer M, Chávez-Ramírez B, Beukes C, Steenkamp ET, Briscoe L, Khan N, Maluk M, Lafos M, Humm E, Arrabit M, Crook M, Gross E, Simon MF, Dos Reis Junior FB, Whitman WB, Shapiro N, Poole PS, Hirsch AM, Venter SN, James EK. Whole Genome Analyses Suggests that Burkholderia sensu lato Contains Two Additional Novel Genera ( Mycetohabitans gen. nov., and Trinickia gen. nov.): Implications for the Evolution of Diazotrophy and Nodulation in the Burkholderiaceae. Genes (Basel) 2018; 9:genes9080389. [PMID: 30071618 PMCID: PMC6116057 DOI: 10.3390/genes9080389] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 11/21/2022] Open
Abstract
Burkholderia sensu lato is a large and complex group, containing pathogenic, phytopathogenic, symbiotic and non-symbiotic strains from a very wide range of environmental (soil, water, plants, fungi) and clinical (animal, human) habitats. Its taxonomy has been evaluated several times through the analysis of 16S rRNA sequences, concantenated 4–7 housekeeping gene sequences, and lately by genome sequences. Currently, the division of this group into Burkholderia, Caballeronia, Paraburkholderia, and Robbsia is strongly supported by genome analysis. These new genera broadly correspond to the various habitats/lifestyles of Burkholderia s.l., e.g., all the plant beneficial and environmental (PBE) strains are included in Paraburkholderia (which also includes all the N2-fixing legume symbionts) and Caballeronia, while most of the human and animal pathogens are retained in Burkholderia sensu stricto. However, none of these genera can accommodate two important groups of species. One of these includes the closely related Paraburkholderia rhizoxinica and Paraburkholderia endofungorum, which are both symbionts of the fungal phytopathogen Rhizopus microsporus. The second group comprises the Mimosa-nodulating bacterium Paraburkholderia symbiotica, the phytopathogen Paraburkholderia caryophylli, and the soil bacteria Burkholderia dabaoshanensis and Paraburkholderia soli. In order to clarify their positions within Burkholderia sensu lato, a phylogenomic approach based on a maximum likelihood analysis of conserved genes from more than 100 Burkholderia sensu lato species was carried out. Additionally, the average nucleotide identity (ANI) and amino acid identity (AAI) were calculated. The data strongly supported the existence of two distinct and unique clades, which in fact sustain the description of two novel genera Mycetohabitans gen. nov. and Trinickia gen. nov. The newly proposed combinations are Mycetohabitans endofungorum comb. nov., Mycetohabitansrhizoxinica comb. nov., Trinickia caryophylli comb. nov., Trinickiadabaoshanensis comb. nov., Trinickia soli comb. nov., and Trinickiasymbiotica comb. nov. Given that the division between the genera that comprise Burkholderia s.l. in terms of their lifestyles is often complex, differential characteristics of the genomes of these new combinations were investigated. In addition, two important lifestyle-determining traits—diazotrophy and/or symbiotic nodulation, and pathogenesis—were analyzed in depth i.e., the phylogenetic positions of nitrogen fixation and nodulation genes in Trinickia via-à-vis other Burkholderiaceae were determined, and the possibility of pathogenesis in Mycetohabitans and Trinickia was tested by performing infection experiments on plants and the nematode Caenorhabditis elegans. It is concluded that (1) T. symbiotica nif and nod genes fit within the wider Mimosa-nodulating Burkholderiaceae but appear in separate clades and that T. caryophyllinif genes are basal to the free-living Burkholderia s.l. strains, while with regard to pathogenesis (2) none of the Mycetohabitans and Trinickia strains tested are likely to be pathogenic, except for the known phytopathogen T. caryophylli.
Collapse
Affiliation(s)
| | - Marike Palmer
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0083, South Africa.
| | - Belén Chávez-Ramírez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, 11340 Cd. de Mexico, Mexico.
| | - Chrizelle Beukes
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0083, South Africa.
| | - Emma T Steenkamp
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0083, South Africa.
| | - Leah Briscoe
- Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| | - Noor Khan
- Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| | - Marta Maluk
- The James Hutton Institute, Dundee DD2 5DA, UK.
| | | | - Ethan Humm
- Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| | - Monique Arrabit
- Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| | - Matthew Crook
- 450G Tracy Hall Science Building, Weber State University, Ogden, 84403 UT, USA.
| | - Eduardo Gross
- Center for Electron Microscopy, Department of Agricultural and Environmental Sciences, Santa Cruz State University, 45662-900 Ilheus, BA, Brazil.
| | - Marcelo F Simon
- Embrapa CENARGEN, 70770-917 Brasilia, Distrito Federal, Brazil.
| | | | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| | - Nicole Shapiro
- DOE Joint Genome Institute, Walnut Creek, CA 94598, USA.
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| | - Ann M Hirsch
- Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| | - Stephanus N Venter
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0083, South Africa.
| | | |
Collapse
|
41
|
Functional Genomics Approaches to Studying Symbioses between Legumes and Nitrogen-Fixing Rhizobia. High Throughput 2018; 7:ht7020015. [PMID: 29783718 PMCID: PMC6023288 DOI: 10.3390/ht7020015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/13/2018] [Accepted: 05/16/2018] [Indexed: 01/24/2023] Open
Abstract
Biological nitrogen fixation gives legumes a pronounced growth advantage in nitrogen-deprived soils and is of considerable ecological and economic interest. In exchange for reduced atmospheric nitrogen, typically given to the plant in the form of amides or ureides, the legume provides nitrogen-fixing rhizobia with nutrients and highly specialised root structures called nodules. To elucidate the molecular basis underlying physiological adaptations on a genome-wide scale, functional genomics approaches, such as transcriptomics, proteomics, and metabolomics, have been used. This review presents an overview of the different functional genomics approaches that have been performed on rhizobial symbiosis, with a focus on studies investigating the molecular mechanisms used by the bacterial partner to interact with the legume. While rhizobia belonging to the alpha-proteobacterial group (alpha-rhizobia) have been well studied, few studies to date have investigated this process in beta-proteobacteria (beta-rhizobia).
Collapse
|
42
|
Peralta AL, Sun Y, McDaniel MD, Lennon JT. Crop rotational diversity increases disease suppressive capacity of soil microbiomes. Ecosphere 2018. [DOI: 10.1002/ecs2.2235] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Ariane L. Peralta
- Department of Biology East Carolina University S301B Howell Science Complex Greenville North Carolina 27858 USA
| | - Yanmei Sun
- Department of Biology East Carolina University S301B Howell Science Complex Greenville North Carolina 27858 USA
- School of Environment and Civil Engineering Dongguan University of Technology Dongguang 523808 China
| | - Marshall D. McDaniel
- Department of Agronomy Iowa State University 2517 Agronomy Hall Ames Iowa 50014 USA
| | - Jay T. Lennon
- Department of Biology Indiana University 261 Jordan Hall Bloomington Indiana 47405 USA
| |
Collapse
|
43
|
Silva VC, Alves PAC, Rhem MFK, dos Santos JMF, James EK, Gross E. Brazilian species of Calliandra Benth. (tribe Ingeae) are nodulated by diverse strains of Paraburkholderia. Syst Appl Microbiol 2018; 41:241-250. [DOI: 10.1016/j.syapm.2017.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 11/15/2022]
|
44
|
Lardi M, Liu Y, Giudice G, Ahrens CH, Zamboni N, Pessi G. Metabolomics and Transcriptomics Identify Multiple Downstream Targets of Paraburkholderia phymatum σ 54 During Symbiosis with Phaseolus vulgaris. Int J Mol Sci 2018; 19:ijms19041049. [PMID: 29614780 PMCID: PMC5979394 DOI: 10.3390/ijms19041049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 12/20/2022] Open
Abstract
RpoN (or σ54) is the key sigma factor for the regulation of transcription of nitrogen fixation genes in diazotrophic bacteria, which include α- and β-rhizobia. Our previous studies showed that an rpoN mutant of the β-rhizobial strain Paraburkholderia phymatum STM815T formed root nodules on Phaseolus vulgaris cv. Negro jamapa, which were unable to reduce atmospheric nitrogen into ammonia. In an effort to further characterize the RpoN regulon of P. phymatum, transcriptomics was combined with a powerful metabolomics approach. The metabolome of P. vulgaris root nodules infected by a P. phymatumrpoN Fix− mutant revealed statistically significant metabolic changes compared to wild-type Fix+ nodules, including reduced amounts of chorismate and elevated levels of flavonoids. A transcriptome analysis on Fix− and Fix+ nodules—combined with a search for RpoN binding sequences in promoter regions of regulated genes—confirmed the expected control of σ54 on nitrogen fixation genes in nodules. The transcriptomic data also allowed us to identify additional target genes, whose differential expression was able to explain the observed metabolite changes in numerous cases. Moreover, the genes encoding the two-component regulatory system NtrBC were downregulated in root nodules induced by the rpoN mutant, and contained a putative RpoN binding motif in their promoter region, suggesting direct regulation. The construction and characterization of an ntrB mutant strain revealed impaired nitrogen assimilation in free-living conditions, as well as a noticeable symbiotic phenotype, as fewer but heavier nodules were formed on P. vulgaris roots.
Collapse
Affiliation(s)
- Martina Lardi
- Department of Plant and Microbial Biology, University of Zurich, CH-8057 Zurich, Switzerland.
| | - Yilei Liu
- Department of Plant and Microbial Biology, University of Zurich, CH-8057 Zurich, Switzerland.
| | - Gaetano Giudice
- Department of Plant and Microbial Biology, University of Zurich, CH-8057 Zurich, Switzerland.
| | - Christian H Ahrens
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & Swiss Institute of Bioinformatics (SIB), CH-8820 Wädenswil, Switzerland.
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, CH-8057 Zurich, Switzerland.
| |
Collapse
|
45
|
Xu J, Kloepper JW, Huang P, McInroy JA, Hu CH. Isolation and characterization of N 2 -fixing bacteria from giant reed and switchgrass for plant growth promotion and nutrient uptake. J Basic Microbiol 2018; 58:459-471. [PMID: 29473969 DOI: 10.1002/jobm.201700535] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/31/2018] [Accepted: 02/03/2018] [Indexed: 12/18/2022]
Abstract
The aims of this study were to isolate and characterize N2 -fixing bacteria from giant reed and switchgrass and evaluate their plant growth promotion and nutrient uptake potential for use as biofertilizers. A total of 190 bacteria were obtained from rhizosphere soil and inside stems and roots of giant reed and switchgrass. All the isolates were confirmed to have nitrogenase activity, 96.9% produced auxin, and 85% produced siderophores. Then the top six strains, including Sphingomonas trueperi NNA-14, Sphingomonas trueperi NNA-19, Sphingomonas trueperi NNA-17, Sphingomonas trueperi NNA-20, Psychrobacillus psychrodurans NP-3, and Enterobacter oryzae NXU-38, based on nitrogenase activity, were inoculated on maize and wheat seeds in greenhouse tests to assess their potential benefits to plants. All the selected strains promoted plant growth by increasing at least one plant growth parameter or increasing the nutrient concentration of maize or wheat plants. NNA-14 outperformed others in promoting early growth and nutrient uptake by maize. Specifically, NNA-14 significantly increased root length, surface area, and fine roots of maize by 14%, 12%, and 17%, respectively, and enhanced N, Ca, S, B, Cu, and Zn in maize. NNA-19 and NXU-38 outperformed others in promoting both early growth and nutrient uptake by wheat. Specifically, NNA-19 significantly increased root dry weight and number of root tips of wheat by 25% and 96%, respectively, and enhanced Ca in wheat. NXU-38 significantly increased root length, surface area, and fine roots of wheat by 21%, 13%, and 26%, respectively, and enhanced levels of Ca and Mg in wheat. It is concluded that switchgrass and giant reed are colonized by N2 -fixing bacteria that have the potential to contribute to plant growth and nutrient uptake by agricultural crops.
Collapse
Affiliation(s)
- Jia Xu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama
| | - Joseph W Kloepper
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama
| | - Ping Huang
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama
| | - John A McInroy
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama
| | - Chia H Hu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama
| |
Collapse
|
46
|
Punjee P, Siripornadulsil W, Siripornadulsil S. Reduction of cadmium uptake in rice endophytically colonized with the cadmium-tolerant bacterium Cupriavidus taiwanensis KKU2500-3. Can J Microbiol 2018; 64:131-145. [DOI: 10.1139/cjm-2017-0198] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of the cadmium (Cd)-tolerant bacterium Cupriavidus taiwanensis KKU2500-3 on the growth, yield, and Cd concentration in rice grains were investigated in the rice variety Phitsanulok 2 (PL2), which was cultivated in a hydroponic greenhouse. The numbers of Cd-tolerant bacteria isolated from the roots and shoots of plants under the RB (rice with bacteria) and RBC (rice with bacteria and Cd) treatments ranged from 2.60 to 9.03 and from 3.99 to 9.60 log cfu·g−1 of PL2, respectively. This KKU2500-3 strain was successfully colonized in rice, indicating that it was not only nontoxic to the plants but also became distributed and reproduced throughout the plants. Scanning electron microscopy analysis revealed attachment of the bacterium to the root surface, whereas the internally colonized bacteria were located in the vascular tissue, cell wall, and intercellular space. Although the Cd contents found in PL2 were very high (189.10 and 79.49 mg·kg−1 in the RC (rice with Cd) and RBC roots, respectively), the Cd accumulated inside the rice seeds at densities of only 3.10 and 1.31 mg·kg−1, respectively; thus, the bacteria reduced the Cd content to 57.74% of the control content. Therefore, the colonizing bacteria likely acted as an inhibitor of Cd translocation in PL2.
Collapse
Affiliation(s)
- Putthita Punjee
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Wilailak Siripornadulsil
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
- Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen, Thailand
| | - Surasak Siripornadulsil
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
- Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen, Thailand
- Genomics and Proteomics Research Group for Improvement of Salt-tolerant Rice, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
47
|
Klonowska A, Melkonian R, Miché L, Tisseyre P, Moulin L. Transcriptomic profiling of Burkholderia phymatum STM815, Cupriavidus taiwanensis LMG19424 and Rhizobium mesoamericanum STM3625 in response to Mimosa pudica root exudates illuminates the molecular basis of their nodulation competitiveness and symbiotic evolutionary history. BMC Genomics 2018; 19:105. [PMID: 29378510 PMCID: PMC5789663 DOI: 10.1186/s12864-018-4487-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Rhizobial symbionts belong to the classes Alphaproteobacteria and Betaproteobacteria (called "alpha" and "beta"-rhizobia). Most knowledge on the genetic basis of symbiosis is based on model strains belonging to alpha-rhizobia. Mimosa pudica is a legume that offers an excellent opportunity to study the adaptation toward symbiotic nitrogen fixation in beta-rhizobia compared to alpha-rhizobia. In a previous study (Melkonian et al., Environ Microbiol 16:2099-111, 2014) we described the symbiotic competitiveness of M. pudica symbionts belonging to Burkholderia, Cupriavidus and Rhizobium species. RESULTS In this article we present a comparative analysis of the transcriptomes (by RNAseq) of B. phymatum STM815 (BP), C. taiwanensis LMG19424 (CT) and R. mesoamericanum STM3625 (RM) in conditions mimicking the early steps of symbiosis (i.e. perception of root exudates). BP exhibited the strongest transcriptome shift both quantitatively and qualitatively, which mirrors its high competitiveness in the early steps of symbiosis and its ancient evolutionary history as a symbiont, while CT had a minimal response which correlates with its status as a younger symbiont (probably via acquisition of symbiotic genes from a Burkholderia ancestor) and RM had a typical response of Alphaproteobacterial rhizospheric bacteria. Interestingly, the upregulation of nodulation genes was the only common response among the three strains; the exception was an up-regulated gene encoding a putative fatty acid hydroxylase, which appears to be a novel symbiotic gene specific to Mimosa symbionts. CONCLUSION The transcriptional response to root exudates was correlated to each strain nodulation competitiveness, with Burkholderia phymatum appearing as the best specialised symbiont of Mimosa pudica.
Collapse
Affiliation(s)
| | - Rémy Melkonian
- IRD, UMR LSTM, Campus de Baillarguet, Montpellier, France
| | - Lucie Miché
- IRD, UMR LSTM, Campus de Baillarguet, Montpellier, France.,Present address: Aix Marseille University, University of Avignon, CNRS, IRD, IMBE, Marseille, France
| | | | - Lionel Moulin
- IRD, Cirad, University of Montpellier, IPME, Montpellier, France.
| |
Collapse
|
48
|
Lardi M, Liu Y, Purtschert G, Bolzan de Campos S, Pessi G. Transcriptome Analysis of Paraburkholderia phymatum under Nitrogen Starvation and during Symbiosis with Phaseolus Vulgaris. Genes (Basel) 2017; 8:genes8120389. [PMID: 29244728 PMCID: PMC5748707 DOI: 10.3390/genes8120389] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 01/31/2023] Open
Abstract
Paraburkholderia phymatum belongs to the β-subclass of proteobacteria. It has recently been shown to be able to nodulate and fix nitrogen in symbiosis with several mimosoid and papilionoid legumes. In contrast to the symbiosis of legumes with α-proteobacteria, very little is known about the molecular determinants underlying the successful establishment of this mutualistic relationship with β-proteobacteria. In this study, we performed an RNA-sequencing (RNA-seq) analysis of free-living P. phymatum growing under nitrogen-replete and -limited conditions, the latter partially mimicking the situation in nitrogen-deprived soils. Among the genes upregulated under nitrogen limitation, we found genes involved in exopolysaccharides production and in motility, two traits relevant for plant root infection. Next, RNA-seq data of P. phymatum grown under free-living conditions and from symbiotic root nodules of Phaseolus vulgaris (common bean) were generated and compared. Among the genes highly upregulated during symbiosis, we identified—besides the nif gene cluster—an operon encoding a potential cytochrome o ubiquinol oxidase (Bphy_3646-49). Bean root nodules induced by a cyoB mutant strain showed reduced nitrogenase and nitrogen fixation abilities, suggesting an important role of the cytochrome for respiration inside the nodule. The analysis of mutant strains for the RNA polymerase transcription factor RpoN (σ54) and its activator NifA indicated that—similar to the situation in α-rhizobia—P. phymatum RpoN and NifA are key regulators during symbiosis with P. vulgaris.
Collapse
Affiliation(s)
- Martina Lardi
- Department of Plant and Microbial Biology, University of Zurich, CH-8057 Zurich, Switzerland.
| | - Yilei Liu
- Department of Plant and Microbial Biology, University of Zurich, CH-8057 Zurich, Switzerland.
| | - Gabriela Purtschert
- Department of Plant and Microbial Biology, University of Zurich, CH-8057 Zurich, Switzerland.
| | | | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, CH-8057 Zurich, Switzerland.
| |
Collapse
|
49
|
de Campos SB, Lardi M, Gandolfi A, Eberl L, Pessi G. Mutations in Two Paraburkholderia phymatum Type VI Secretion Systems Cause Reduced Fitness in Interbacterial Competition. Front Microbiol 2017; 8:2473. [PMID: 29312183 PMCID: PMC5732942 DOI: 10.3389/fmicb.2017.02473] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
Paraburkholderia phymatum is a highly effective microsymbiont of Mimosa spp. and has also been shown to nodulate papilionoid legumes. P. phymatum was found to be highly competitive both in a natural environment as well as under controlled test conditions and is more competitive for nodulation over other α- and β-rhizobial strains in a variety of different plant hosts. In order to elucidate the factors that make this bacterium highly competitive for legume infection, we here characterized the type VI secretion system (T6SS) clusters of P. phymatum. T6SSs have been shown to function as a contact-dependent injection system for both bacterial and eukaryotic cells. We identified two T6SS clusters in the genome, created respective mutant strains and showed that they are defective in biofilm formation and in interbacterial competition in vitro. While the T6SS mutants were as efficient as the wild-type in nodulating the non-cognate host Vigna unguiculata, the mutants were less competitive in in planta competition assays, suggesting that the T6SS is one of the factors responsible for the success of P. phymatum in infecting legumes by directly inhibiting competitors.
Collapse
Affiliation(s)
| | - Martina Lardi
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Alessia Gandolfi
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Leo Eberl
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gabriella Pessi
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
50
|
Identification of sRNA mediated responses to nutrient depletion in Burkholderia pseudomallei. Sci Rep 2017; 7:17173. [PMID: 29215024 PMCID: PMC5719362 DOI: 10.1038/s41598-017-17356-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022] Open
Abstract
The Burkholderia genus includes many species that are known to survive in diverse environmental conditions including low nutrient environments. One species, Burkholderia pseudomallei is a versatile pathogen that can survive in a wide range of hosts and environmental conditions. In this study, we investigated how a nutrient depleted growth environment evokes sRNA mediated responses by B. pseudomallei. Computationally predicted B. pseudomallei D286 sRNAs were mapped to RNA-sequencing data for cultures grown under two conditions: (1) BHIB as a nutrient rich media reference environment and (2) M9 media as a nutrient depleted stress environment. The sRNAs were further selected to identify potentially cis-encoded systems by investigating their possible interactions with their flanking genes. The mappings of predicted sRNA genes and interactions analysis to their flanking genes identified 12 sRNA candidates that may possibly have cis-acting regulatory roles that are associated to a nutrient depleted growth environment. Our approach can be used for identifying novel sRNA genes and their possible role as cis-mediated regulatory systems.
Collapse
|