1
|
Liu K, Ge Z, Ai D, Ma Z, Huang D, Zhang J. Coupled effects of redox-active substances and microbial communities on reactive oxygen species in rhizosphere sediments of submerged macrophytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175421. [PMID: 39128517 DOI: 10.1016/j.scitotenv.2024.175421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
Reactive oxygen species (ROS) play crucial roles in element cycling and pollutant dynamics, but their variations and mechanisms in the rhizosphere of submerged macrophytes are poorly investigated. This study investigated the light-dark cycle fluctuations and periodic variations in ROS, redox-active substances, and microbial communities in the rhizosphere of Vallisneria natans. The results showed sustained production and significant diurnal fluctuations in the O2•- and •OH from 27.6 ± 3.7 to 61.7 ± 3.0 μmol/kg FW and 131.0 ± 6.8 to 195.4 ± 8.7 μmol/kg FW, respectively, which simultaneously fluctuated with the redox-active substances. The ROS contents in the rhizosphere were higher than those observed in non-rhizosphere sediments over the V. natans growth period, exhibiting increasing-decreasing trends. According to the redundancy analysis results, water-soluble phenols, fungi, and bacteria were the main factors influencing ROS production in the rhizosphere, showing contribution rates of 74.0, 17.3, and 4.4 %, respectively. The results of partial least squares path modeling highlighted the coupled effects of redox-active substances and microbial metabolism. Our findings also demonstrated the degradation effect of ROS in rhizosphere sediments of submerged macrophytes. This study provides experimental evidence of ROS-related rhizosphere effects and further insights into submerged macrophytes-based ecological restoration.
Collapse
Affiliation(s)
- Kexuan Liu
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Zuhan Ge
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Dan Ai
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Zihang Ma
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Deying Huang
- Department of Chemistry, Fudan University, Shanghai 200433, PR China
| | - Jibiao Zhang
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China; Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai 200233, PR China.
| |
Collapse
|
2
|
Ai D, Wu T, Ge Z, Ying Z, Sun S, Huang D, Zhang J. The coupling effect promotes superoxide radical production in the microalgal-fungal symbiosis systems: Production, mechanisms and implication for Hg(II) reduction. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135347. [PMID: 39084012 DOI: 10.1016/j.jhazmat.2024.135347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/10/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Redox transformation of mercury (Hg) is critical for Hg exchange at the air-water interface. However, the superoxide radicals (O2•─) contribution of microalgal-fungal symbiotic systems in lake water to Hg(II) reduction is mainly unknown. Here, we studied the enhanced potential for O2•─ production by the coupling effect between microalgae and fungi. The relationships between microenvironment, microorganisms, and O2•─ production were also investigated. Furthermore, the implication of O2•─ for Hg(II) reduction was explored. The results showed that the coupling effect of microalgae and fungi enhanced O2•─ generation in the symbiotic systems, and the O2•─ generation peaked on day 4 in the lake water at 160.51 ± 13.06-173.28 ± 18.21 μmol/kg FW (fresh weight). In addition, O2•- exhibited circadian fluctuations that correlated with changes in dissolved oxygen content and redox potential on the inter-spherical interface of microalgal-fungal consortia. Partial least squares path modeling (PLS-PM) indicates that O2•─ formation was primarily associated with microenvironmental factors and microbial metabolic processes. The experimental results suggest that O2•─ in the microalgal-fungal systems could mediate Hg(II) reduction, promoting Hg conversion and cycling. The findings highlight the importance of microalgae and fungal symbiotic systems in Hg transformation in aquatic environments.
Collapse
Affiliation(s)
- Dan Ai
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Tao Wu
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Zuhan Ge
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Zeguo Ying
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Shiqing Sun
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Deying Huang
- Department of Chemistry, Fudan University, Shanghai 200433, PR China; Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai 200233, PR China
| | - Jibiao Zhang
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China; Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai 200233, PR China.
| |
Collapse
|
3
|
Masood A, Khan S, Mir IR, Anjum NA, Rasheed F, Al-Hashimi A, Khan NA. Ethylene Is Crucial in Abscisic Acid-Mediated Modulation of Seed Vigor, Growth, and Photosynthesis of Salt-Treated Mustard. PLANTS (BASEL, SWITZERLAND) 2024; 13:2307. [PMID: 39204743 PMCID: PMC11360230 DOI: 10.3390/plants13162307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
The current study explored the differential interaction between ethylene (ET) and abscisic acid (ABA) in relation to salt stress in mustard (Brassica juncea L.) plants. Significant reductions in seed germination, growth, and photosynthesis were observed with 100 mmol NaCl. Among the cultivars tested, the Pusa Vijay cultivar was noted as ET-sensitive. Pusa Vijay responded maximally to an application of 2.0 mmol ethephon (Eth; 2-chloethyl phosphonic acid-ethylene source), and exhibited the greatest growth, photosynthesis, activity of 1-aminocyclopropane carboxylic acid (ACC) synthase (ACS), and ET evolution. Notably, Eth (2.0 mmol) more significantly improved the seed germination percentage, germination and vigor index, amylase activity, and reduced H2O2 content under salt stress, while ABA (25 µmol) had negative effects. Moreover, the individual application of Eth and ABA on Pusa Vijay under both optimal and salt-stressed conditions increased the growth and photosynthetic attributes, nitrogen (N) and sulfur (S) assimilation, and antioxidant defense machinery. The addition of aminoethoxyvinylglycine (0.01 µmol AVG, ET biosynthesis inhibitor) to ABA + NaCl-treated plants further added to the effects of ABA on parameters related to seed germination and resulted in less effectiveness of growth and photosynthesis. In contrast, the effects of Eth were seen with the addition of fluoridone (25 µmol Flu, ABA biosynthesis inhibitor) to Eth + NaCl. Thus, it can be suggested that ET is crucial for alleviating salt-induced inhibition in seed germination, growth, and photosynthesis, while ABA collaborated with ET to offer protection by regulating nutrient assimilation and enhancing antioxidant metabolism. These findings provide insight into the complex regulatory processes involved in ET-ABA interaction, enhancing our understanding of plant growth and development and the mitigation of salt stress in mustard. It opens pathways for developing hormonal-based strategies to improve crop productivity and resilience, ultimately benefiting agricultural practices amidst a challenging environment.
Collapse
Affiliation(s)
- Asim Masood
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Sheen Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Iqbal R. Mir
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Naser A. Anjum
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Faisal Rasheed
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Abdulrahman Al-Hashimi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
4
|
Sharma V, Sharma DP, Salwan R. Surviving the stress: Understanding the molecular basis of plant adaptations and uncovering the role of mycorrhizal association in plant abiotic stresses. Microb Pathog 2024; 193:106772. [PMID: 38969183 DOI: 10.1016/j.micpath.2024.106772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/28/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Environmental stresses severely impair plant growth, resulting in significant crop yield and quality loss. Among various abiotic factors, salt and drought stresses are one of the major factors that affect the nutrients and water uptake by the plants, hence ultimately various physiological aspects of the plants that compromises crop yield. Continuous efforts have been made to investigate, dissect and improve plant adaptations at the molecular level in response to drought and salinity stresses. In this context, the plant beneficial microbiome presents in the rhizosphere, endosphere, and phyllosphere, also referred as second genomes of the plant is well known for its roles in plant adaptations. Exploration of beneficial interaction of fungi with host plants known as mycorrhizal association is one such special interaction that can facilitates the host plants adaptations. Mycorrhiza assist in alleviating the salinity and drought stresses of plants via redistributing the ion imbalance through translocation to different parts of the plants, as well as triggering oxidative machinery. Mycorrhiza association also regulates the level of various plant growth regulators, osmolytes and assists in acquiring minerals that are helpful in plant's adaptation against extreme environmental stresses. The current review examines the role of various plant growth regulators and plants' antioxidative systems, followed by mycorrhizal association during drought and salt stresses.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali PB 140413, India.
| | - D P Sharma
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur, H.P 177 001, India
| | - Richa Salwan
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur, H.P 177 001, India.
| |
Collapse
|
5
|
Zhang F, Wang C, Yao J, Xing C, Xu K, Zhang Z, Chen Q, Qiao Q, Dong H, Han C, Lin L, Zhang S, Huang X. PbHsfC1a-coordinates ABA biosynthesis and H 2O 2 signalling pathways to improve drought tolerance in Pyrus betulaefolia. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1177-1197. [PMID: 38041554 PMCID: PMC11022796 DOI: 10.1111/pbi.14255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
Abiotic stresses have had a substantial impact on fruit crop output and quality. Plants have evolved an efficient immune system to combat abiotic stress, which employs reactive oxygen species (ROS) to activate the downstream defence response signals. Although an aquaporin protein encoded by PbPIP1;4 is identified from transcriptome analysis of Pyrus betulaefolia plants under drought treatments, little attention has been paid to the role of PIP and ROS in responding to abiotic stresses in pear plants. In this study, we discovered that overexpression of PbPIP1;4 in pear callus improved tolerance to oxidative and osmotic stresses by reconstructing redox homeostasis and ABA signal pathways. PbPIP1;4 overexpression enhanced the transport of H2O2 into pear and yeast cells. Overexpression of PbPIP1;4 in Arabidopsis plants mitigates the stress effects caused by adding ABA, including stomatal closure and reduction of seed germination and seedling growth. Overexpression of PbPIP1;4 in Arabidopsis plants decreases drought-induced leaf withering. The PbPIP1;4 promoter could be bound and activated by TF PbHsfC1a. Overexpression of PbHsfC1a in Arabidopsis plants rescued the leaf from wilting under drought stress. PbHsfC1a could bind to and activate AtNCED4 and PbNCED4 promoters, but the activation could be inhibited by adding ABA. Besides, PbNCED expression was up-regulated under H2O2 treatment but down-regulated under ABA treatment. In conclusion, this study revealed that PbHsfC1a is a positive regulator of abiotic stress, by targeting PbPIP1;4 and PbNCED4 promoters and activating their expression to mediate redox homeostasis and ABA biosynthesis. It provides valuable information for breeding drought-resistant pear cultivars through gene modification.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Chunmeng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Jia‐Long Yao
- The New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
| | - Caihua Xing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Kang Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Zan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Qiming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Qinghai Qiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Huizhen Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Chenyang Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Likun Lin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Xiaosan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of HorticultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
6
|
Lima RPM, Oliveira JS, do Nascimento LC, Labate MTV, Labate CA, Barreto P, Maia IDG. High-throughput analysis reveals disturbances throughout the cell caused by Arabidopsis UCP1 and UCP3 double knockdown. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108324. [PMID: 38183903 DOI: 10.1016/j.plaphy.2023.108324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/08/2024]
Abstract
Three genes encoding mitochondrial uncoupling proteins (UCPs) have been described in Arabidopsis thaliana (UCP1 to UCP3). In plants, UCPs may act as an uncoupler or as an aspartate/glutamate exchanger. For instance, much of the data regarding UCP functionality were obtained for the UCP1 and UCP2 isoforms compared with UCP3. Here, to get a better understanding about the concerted action of UCP1 and UCP3 in planta, we investigated the transcriptome and metabolome profiles of ucp1 ucp3 double mutant plants during the vegetative phase. For that, 21-day-old mutant plants, which displayed the most evident phenotypic alterations compared to wild type (WT) plants, were employed. The double knockdown of UCP1 and UCP3, isoforms unequivocally present inside the mitochondria, promoted important transcriptional reprogramming with alterations in the expression of genes related to mitochondrial and chloroplast function as well as those responsive to abiotic stress, suggesting disturbances throughout the cell. The observed transcriptional changes were well integrated with the metabolomic data of ucp1 ucp3 plants. Alterations in metabolites related to primary and secondary metabolism, particularly enriched in the Alanine, Aspartate and Glutamate metabolism, were detected. These findings extend our knowledge of the underlying roles played by UCP3 in concert with UCP1 at the whole plant level.
Collapse
Affiliation(s)
- Rômulo Pedro Macêdo Lima
- Departamento de Ciências Químicas e Biológicas (Setor Genética), Instituto de Biociências, UNESP, CEP 18618-689, Botucatu, SP, Brazil
| | - Jakeline Santos Oliveira
- Departamento de Biologia Estrutural e Funcional (Setor Fisiologia), Instituto de Biociências, UNESP, CEP 18618-689, Botucatu, SP, Brazil
| | | | | | - Carlos Alberto Labate
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", USP, CEP 13418-260, Piracicaba, SP, Brazil
| | - Pedro Barreto
- Departamento de Ciências Químicas e Biológicas (Setor Genética), Instituto de Biociências, UNESP, CEP 18618-689, Botucatu, SP, Brazil
| | - Ivan de Godoy Maia
- Departamento de Ciências Químicas e Biológicas (Setor Genética), Instituto de Biociências, UNESP, CEP 18618-689, Botucatu, SP, Brazil.
| |
Collapse
|
7
|
Puli MR, Muchoki P, Yaaran A, Gershon N, Dalal A, Nalufunjo F, Dagan Y, Rosental L, Abadi S, Haber Z, Silva L, Brotman Y, Sade N, Yalovsky S. Null mutants of a tomato Rho of plants exhibit enhanced water use efficiency without a penalty to yield. Proc Natl Acad Sci U S A 2024; 121:e2309006120. [PMID: 38190516 PMCID: PMC10823239 DOI: 10.1073/pnas.2309006120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/23/2023] [Indexed: 01/10/2024] Open
Abstract
Improving water use efficiency in crops is a significant challenge as it involves balancing water transpiration and CO2 uptake through stomatal pores. This study investigates the role of SlROP9, a tomato Rho of Plants protein, in guard cells and its impact on plant transpiration. The results reveal that SlROP9 null mutants exhibit reduced stomatal conductance while photosynthetic CO2 assimilation remains largely unaffected. Notably, there is a notable decrease in whole-plant transpiration in the rop9 mutants compared to the wild type, especially during noon hours when the water pressure deficit is high. The elevated stomatal closure observed in rop9 mutants is linked to an increase in reactive oxygen species formation. This is very likely dependent on the respiratory burst oxidase homolog (RBOH) NADPH oxidase and is not influenced by abscisic acid (ABA). Consistently, activated ROP9 can interact with RBOHB in both yeast and plants. In diverse tomato accessions, drought stress represses ROP9 expression, and in Arabidopsis stomatal guard cells, ABA suppresses ROP signaling. Therefore, the phenotype of the rop9 mutants may arise from a disruption in ROP9-regulated RBOH activity. Remarkably, large-scale field experiments demonstrate that the rop9 mutants display improved water use efficiency without compromising fruit yield. These findings provide insights into the role of ROPs in guard cells and their potential as targets for enhancing water use efficiency in crops.
Collapse
Affiliation(s)
- Mallikarjuna R. Puli
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv6997801, Israel
| | - Purity Muchoki
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv6997801, Israel
| | - Adi Yaaran
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv6997801, Israel
| | - Noga Gershon
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv6997801, Israel
| | - Ahan Dalal
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv6997801, Israel
| | - Felista Nalufunjo
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv6997801, Israel
| | - Yoav Dagan
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv6997801, Israel
| | - Leah Rosental
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva8410501, Israel
| | - Shiran Abadi
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv6997801, Israel
| | - Zachary Haber
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv6997801, Israel
| | - Lucas Silva
- Environmental Studies and Biology, University of Oregon, Eugene, OR97403
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva8410501, Israel
| | - Nir Sade
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv6997801, Israel
| | - Shaul Yalovsky
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv6997801, Israel
| |
Collapse
|
8
|
Mao X, Zheng X, Sun B, Jiang L, Zhang J, Lyu S, Yu H, Chen P, Chen W, Fan Z, Li C, Liu Q. MKK3 Cascade Regulates Seed Dormancy Through a Negative Feedback Loop Modulating ABA Signal in Rice. RICE (NEW YORK, N.Y.) 2024; 17:2. [PMID: 38170405 PMCID: PMC10764673 DOI: 10.1186/s12284-023-00679-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND With the increasing frequency of climatic anomalies, high temperatures and long-term rain often occur during the rice-harvesting period, especially for early rice crops in tropical and subtropical regions. Seed dormancy directly affects the resistance to pre-harvest sprouting (PHS). Therefore, in order to increase rice production, it is critical to enhance seed dormancy and avoid yield losses to PHS. The elucidation and utilization of the seed dormancy regulation mechanism is of great significance to rice production. Preliminary results indicated that the OsMKKK62-OsMKK3-OsMPK7/14 module might regulate ABA sensitivity and then control seed dormancy. The detailed mechanism is still unclear. RESULTS The overexpression of OsMKK3 resulted in serious PHS. The expression levels of OsMKK3 and OsMPK7 were upregulated by ABA and GA at germination stage. OsMKK3 and OsMPK7 are both located in the nucleus and cytoplasm. The dormancy level of double knockout mutant mkk3/mft2 was lower than that of mkk3, indicating that OsMFT2 functions in the downstream of MKK3 cascade in regulating rice seeds germination. Biochemical results showed that OsMPK7 interacted with multiple core ABA signaling components according to yeast two-hybrid screening and luciferase complementation experiments, suggesting that MKK3 cascade regulates ABA signaling by modulating the core ABA signaling components. Moreover, the ABA response and ABA responsive genes of mpk7/14 were significantly higher than those of wild-type ZH11 when subjected to ABA treatment. CONCLUSION MKK3 cascade mediates the negative feedback loop of ABA signal through the interaction between OsMPK7 and core ABA signaling components in rice.
Collapse
Affiliation(s)
- Xingxue Mao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Xiaoyu Zheng
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Bingrui Sun
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Liqun Jiang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Jing Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Shuwei Lyu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Hang Yu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Pingli Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Wenfeng Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Zhilan Fan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Chen Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China.
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China.
| | - Qing Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China.
- Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China.
| |
Collapse
|
9
|
Liang K, Chen X, Liu F. Crosstalk between ABA and ethylene in regulating stomatal behavior in tomato under high CO2 and progressive soil drying. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5931-5946. [PMID: 37540146 DOI: 10.1093/jxb/erad309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023]
Abstract
Increasing atmospheric CO2 concentrations accompanied by intensifying drought markedly impact plant growth and physiology. This study aimed to explore the role of abscisic acid (ABA) in mediating the response of stomata to elevated CO2 (e[CO2]) and drought. Tomato plants with different endogenous ABA concentrations [Ailsa Craig (AC), the ABA-deficient mutant flacca, and ABA-overproducing transgenic tomato SP5] were grown in ambient (a[CO2], 400 μmol mol-1) and elevated (e[CO2],800 μmol mol-1) CO2 environments and subjected to progressive soil drying. Compared with a[CO2] plants, e[CO2] plants had significantly lower stomatal conductance in AC and SP5 but not in flacca. Under drought, e[CO2] plants had better water status and higher water use efficiency. e[CO2] promoted the accumulation of ABA in leaves of plants subjected to drought, which coincided with the up-regulation of ABA biosynthetic genes and down-regulation of ABA metabolic genes. Although the increase of ABA induced by drought in flacca was much less than in AC and SP5, flacca accumulated large amounts of ethylene, suggesting that in plants with ABA deficiency, ethylene might play a compensatory role in inducing stomatal closure during soil drying. Collectively, these findings improve our understanding of plant performance in a future drier and higher-CO2 environment.
Collapse
Affiliation(s)
- Kehao Liang
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegaard Alle 13, 2630 Taastrup, Denmark
| | - Xuefei Chen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegaard Alle 13, 2630 Taastrup, Denmark
| | - Fulai Liu
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegaard Alle 13, 2630 Taastrup, Denmark
| |
Collapse
|
10
|
Qi J, Yang S, Salam A, Yang C, Khan AR, Wu J, Azhar W, Gan Y. OsRbohI Regulates Rice Growth and Development via Jasmonic Acid Signalling. PLANT & CELL PHYSIOLOGY 2023; 64:686-699. [PMID: 37036744 DOI: 10.1093/pcp/pcad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/07/2023] [Accepted: 04/10/2023] [Indexed: 06/16/2023]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules, generated by nicotinamide adenine dinucleotide phosphate oxidases encoded by respiratory burst oxidase homologs. The functions of the OsRbohs gene family in rice are diverse and poorly understood. OsRbohI was recently identified as a newly evolved gene in the rice OsRbohs gene family. However, the function of OsRbohI in regulating rice growth is not yet reported. In this study, our results indicate that knockout (KO) OsRbohI mutants showed significantly shorter shoot and primary roots, along with lower ROS content than the control lines, whereas the overexpression (OE) lines displayed contrasting results. Further experiments showed that the abnormal length of the shoot and root is mainly caused by altered cell size. These results indicate that OsRbohI regulates rice shoot and root growth through the ROS signal. More importantly, RNA-seq analysis and jasmonic acid (JA) treatment demonstrated that OsRbohI regulates rice growth via the JA synthesis and signaling pathways. Compared with the control, the results showed that the KO mutants were more sensitive to JA, whereas the OE lines were less sensitive to JA. Collectively, our results reveal a novel pathway in which OsRbohI regulates rice growth and development by affecting their ROS homeostasis through JA synthesis and signaling pathway.
Collapse
Affiliation(s)
- Jiaxuan Qi
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310000, China
| | - Shuaiqi Yang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310000, China
| | - Abdul Salam
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310000, China
| | - Chunyan Yang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310000, China
| | - Ali Raza Khan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310000, China
| | - Junyu Wu
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310000, China
| | - Wardah Azhar
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310000, China
| | - Yinbo Gan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310000, China
| |
Collapse
|
11
|
Xiong XX, Liu Y, Zhang LL, Li XJ, Zhao Y, Zheng Y, Yang QH, Yang Y, Min DH, Zhang XH. G-Protein β-Subunit Gene TaGB1-B Enhances Drought and Salt Resistance in Wheat. Int J Mol Sci 2023; 24:ijms24087337. [PMID: 37108500 PMCID: PMC10138664 DOI: 10.3390/ijms24087337] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
In the hexaploid wheat genome, there are three Gα genes, three Gβ and twelve Gγ genes, but the function of Gβ in wheat has not been explored. In this study, we obtained the overexpression of TaGB1 Arabidopsis plants through inflorescence infection, and the overexpression of wheat lines was obtained by gene bombardment. The results showed that under drought and NaCl treatment, the survival rate of Arabidopsis seedlings' overexpression of TaGB1-B was higher than that of the wild type, while the survival rate of the related mutant agb1-2 was lower than that of the wild type. The survival rate of wheat seedlings with TaGB1-B overexpression was higher than that of the control. In addition, under drought and salt stress, the levels of superoxide dismutase (SOD) and proline (Pro) in the wheat overexpression of TaGB1-B were higher than that of the control, and the concentration of malondialdehyde (MDA) was lower than that of the control. This indicates that TaGB1-B could improve the drought resistance and salt tolerance of Arabidopsis and wheat by scavenging active oxygen. Overall, this work provides a theoretical basis for wheat G-protein β-subunits in a further study, and new genetic resources for the cultivation of drought-tolerant and salt-tolerant wheat varieties.
Collapse
Affiliation(s)
- Xin-Xin Xiong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Li-Li Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Xiao-Jian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yue Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yan Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Qian-Hui Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Dong-Hong Min
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Xiao-Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
12
|
Lv X, Li Y, Chen R, Rui M, Wang Y. Stomatal Responses of Two Drought-Tolerant Barley Varieties with Different ROS Regulation Strategies under Drought Conditions. Antioxidants (Basel) 2023; 12:antiox12040790. [PMID: 37107165 PMCID: PMC10135251 DOI: 10.3390/antiox12040790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Drought stress is a major obstacle to agricultural production. Stomata are central to efforts to improve photosynthesis and water use. They are targets for manipulation to improve both processes and the balance between them. An in-depth understanding of stomatal behavior and kinetics is important for improving photosynthesis and the WUE of crops. In this study, a drought stress pot experiment was performed, and a transcriptome analysis of the leaves of three contrasting, cultivated barley genotypes Lumley (Lum, drought-tolerant), Golden Promise (GP, drought-sensitive), and Tadmor (Tad, drought-tolerant), generated by high-throughput sequencing, were compared. Lum exhibited a different WUE at the leaf and whole-plant levels and had greater CO2 assimilation, with a higher gs under drought stress. Interestingly, Lum showed a slower stomatal closure in response to a light-dark transition and significant differences compared to Tad in stomatal response to the exogenous application of ABA, H2O2, and CaCl2. A transcriptome analysis revealed that 24 ROS-related genes were indeed involved in drought response regulation, and impaired ABA-induced ROS accumulation in Lum was identified using ROS and antioxidant capacity measurements. We conclude that different stomatal ROS responses affect stomatal closure in barley, demonstrating different drought regulation strategies. These results provide valuable insight into the physiological and molecular basis of stomatal behavior and drought tolerance in barley.
Collapse
Affiliation(s)
- Xiachen Lv
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yihong Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Rongjia Chen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Mengmeng Rui
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Pérez-Llorca M, Pollmann S, Müller M. Ethylene and Jasmonates Signaling Network Mediating Secondary Metabolites under Abiotic Stress. Int J Mol Sci 2023; 24:5990. [PMID: 36983071 PMCID: PMC10051637 DOI: 10.3390/ijms24065990] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Plants are sessile organisms that face environmental threats throughout their life cycle, but increasing global warming poses an even more existential threat. Despite these unfavorable circumstances, plants try to adapt by developing a variety of strategies coordinated by plant hormones, resulting in a stress-specific phenotype. In this context, ethylene and jasmonates (JAs) present a fascinating case of synergism and antagonism. Here, Ethylene Insensitive 3/Ethylene Insensitive-Like Protein1 (EIN3/EIL1) and Jasmonate-Zim Domain (JAZs)-MYC2 of the ethylene and JAs signaling pathways, respectively, appear to act as nodes connecting multiple networks to regulate stress responses, including secondary metabolites. Secondary metabolites are multifunctional organic compounds that play crucial roles in stress acclimation of plants. Plants that exhibit high plasticity in their secondary metabolism, which allows them to generate near-infinite chemical diversity through structural and chemical modifications, are likely to have a selective and adaptive advantage, especially in the face of climate change challenges. In contrast, domestication of crop plants has resulted in change or even loss in diversity of phytochemicals, making them significantly more vulnerable to environmental stresses over time. For this reason, there is a need to advance our understanding of the underlying mechanisms by which plant hormones and secondary metabolites respond to abiotic stress. This knowledge may help to improve the adaptability and resilience of plants to changing climatic conditions without compromising yield and productivity. Our aim in this review was to provide a detailed overview of abiotic stress responses mediated by ethylene and JAs and their impact on secondary metabolites.
Collapse
Affiliation(s)
- Marina Pérez-Llorca
- Department of Biology, Health and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Ali-Mentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
14
|
Kim JH, Kim MS, Seo YW. Overexpression of a plant U-box gene TaPUB4 confers drought stress tolerance in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:596-607. [PMID: 36780722 DOI: 10.1016/j.plaphy.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Drought stress frequently results in significant reductions in crop production and yield. Plant U-box proteins (PUB) play a key role in the response to abiotic stress. Despite extensive characterization of PUB in model plants, their roles in wheat abiotic stress response remains unknown. In this study, we identified the physiological function of TaPUB4, a gene encoding the U-box and nuclear localization domains. The transcription level of TaPUB4 was induced by drought (mannitol) and abscisic acid. TaPUB4 displays E3 ubiquitin ligase activity and is located in the nucleus. Overexpression of TaPUB4 in Arabidopsis plants enhanced sensitivity with under ABA condition during early seedling developmental stages. In addition, the stomatal conductance of TaPUB4 was closer to that of WT under ABA conditions. Moreover, TaPUB4 facilitated stomatal response to elevated CO2 emission rates under ABA conditions. TaPUB4-overexpressing Arabidopsis, on the other hand, was more resistant to drought stress in plant development, demonstrating that TaPUB4 positively regulates drought-mediated control of plant growth. Moreover, the ectopic expression of the TaPUB4 gene was significant influential in drought sensitive metrics including survival rate, chlorophyll content, water loss, proline content and the expression of drought stress-response genes. Collectively, our results demonstrate that TaPUB4 may regulate drought stress response and ABA conditions.
Collapse
Affiliation(s)
- Jae Ho Kim
- Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea; Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Moon Seok Kim
- Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Yang Z, Wang X, Feng J, Zhu S. Biological Functions of Hydrogen Sulfide in Plants. Int J Mol Sci 2022; 23:ijms232315107. [PMID: 36499443 PMCID: PMC9736554 DOI: 10.3390/ijms232315107] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/27/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Hydrogen sulfide (H2S), which is a gasotransmitter, can be biosynthesized and participates in various physiological and biochemical processes in plants. H2S also positively affects plants' adaptation to abiotic stresses. Here, we summarize the specific ways in which H2S is endogenously synthesized and metabolized in plants, along with the agents and methods used for H2S research, and outline the progress of research on the regulation of H2S on plant metabolism and morphogenesis, abiotic stress tolerance, and the series of different post-translational modifications (PTMs) in which H2S is involved, to provide a reference for future research on the mechanism of H2S action.
Collapse
Affiliation(s)
- Zhifeng Yang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an 271018, China
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Xiaoyu Wang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Jianrong Feng
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Shuhua Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an 271018, China
- Correspondence:
| |
Collapse
|
16
|
Li S, Liu S, Zhang Q, Cui M, Zhao M, Li N, Wang S, Wu R, Zhang L, Cao Y, Wang L. The interaction of ABA and ROS in plant growth and stress resistances. FRONTIERS IN PLANT SCIENCE 2022; 13:1050132. [PMID: 36507454 PMCID: PMC9729957 DOI: 10.3389/fpls.2022.1050132] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/08/2022] [Indexed: 05/31/2023]
Abstract
The plant hormone ABA (abscisic acid) plays an extremely important role in plant growth and adaptive stress, including but are not limited to seed germination, stomatal closure, pathogen infection, drought and cold stresses. Reactive oxygen species (ROS) are response molecules widely produced by plant cells under biotic and abiotic stress conditions. The production of apoplast ROS is induced and regulated by ABA, and participates in the ABA signaling pathway and its regulated plant immune system. In this review, we summarize ABA and ROS in apoplast ROS production, plant response to biotic and abiotic stresses, plant growth regulation, ABA signal transduction, and the regulatory relationship between ABA and other plant hormones. In addition, we also discuss the effects of protein post-translational modifications on ABA and ROS related factors.
Collapse
Affiliation(s)
- Shenghui Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Sha Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Qiong Zhang
- Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai’an, China
| | - Meixiang Cui
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Min Zhao
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Nanyang Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Suna Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Ruigang Wu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Lin Zhang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Yunpeng Cao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
17
|
Liu J, Zhu K, Zhang C, Zhang X, Chen N, Jia H. Microscale Spatiotemporal Variation and Generation Mechanisms of Reactive Oxygen Species in the Rhizosphere of Ryegrass: Coupled Biotic-Abiotic Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16483-16493. [PMID: 36326608 DOI: 10.1021/acs.est.2c06167] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Reactive oxygen species (ROS) play key roles in soil biogeochemical processes, yet the occurrence and accumulation of ROS in the rhizosphere are poorly documented. Herein, we first developed a ROS-trapping membrane to in situ determine ROS in the ryegrass rhizosphere and then quantified the temporal and spatial variations of representative ROS (i.e., O2•─, H2O2, and •OH). Fluorescence imaging clearly visualized the production of ROS in the rhizosphere. Both O2•─ and H2O2 content increased first and then declined throughout the life cycle of ryegrass, while •OH concentration decreased continuously. Spatially, ROS contents remained at a relatively high level at 0-5 mm and then descended with increasing distance. The concentrations of ROS in different soils followed the order of black soil > latosol soil > yellow-brown soil > tier soil ∼ red soil. Analysis of soil properties suggested that both biotic factors (microbial community) and abiotic factors (Fe(II) and water-soluble phenols) played critical roles in ROS production. The combined processes, including Fe(II) and water-soluble phenol-mediated electron transfer, microbial community-driven extracellular O2•─ release, and Fe(II)/Fe(III) cycling, may be responsible for ROS production. These findings provide insights into ROS-associated rhizosphere effects and inspiration for the phytoremediation of pollutants and element cycling.
Collapse
Affiliation(s)
- Jinbo Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling712100, China
| | - Kecheng Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling712100, China
| | - Chi Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling712100, China
| | - Xuechen Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling712100, China
| | - Na Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling712100, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling712100, China
| |
Collapse
|
18
|
Liu J, Shu D, Tan Z, Ma M, Guo N, Gao S, Duan G, Kuai B, Hu Y, Li S, Cui D. The Arabidopsis IDD14 transcription factor interacts with bZIP-type ABFs/AREBs and cooperatively regulates ABA-mediated drought tolerance. THE NEW PHYTOLOGIST 2022; 236:929-942. [PMID: 35842794 DOI: 10.1111/nph.18381] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The INDETERMINATE DOMAIN (IDD) transcription factors mediate various aspects of plant growth and development. We previously reported that an Arabidopsis IDD subfamily regulates spatial auxin accumulation, and thus organ morphogenesis and gravitropic responses. However, its functions in stress responses are not well defined. Here, we use a combination of physiological, biochemical, molecular, and genetic approaches to provide evidence that the IDD14 cooperates with basic leucine zipper-type binding factors/ABA-responsive element (ABRE)-binding proteins (ABRE-binding factors (ABFs)/AREBs) in ABA-mediated drought tolerance. idd14-1D, a gain-of-function mutant of IDD14, exhibits decreased leaf water loss and improved drought tolerance, whereas inactivation of IDD14 in idd14-1 results in increased transpiration and reduced drought tolerance. Altered IDD14 expression affects ABA sensitivity and ABA-mediated stomatal closure. IDD14 can physically interact with ABF1-4 and subsequently promote their transcriptional activities. Moreover, ectopic expression and mutation of ABFs could, respectively, suppress and enhance plant sensitivity to drought stress in the idd14-1 mutant. Our results demonstrate that IDD14 forms a functional complex with ABFs and positively regulates drought-stress responses, thus revealing a previously unidentified role of IDD14 in ABA signaling and drought responses.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Defeng Shu
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Zilong Tan
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Mei Ma
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Ning Guo
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
- School of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Shan Gao
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Guangyou Duan
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Benke Kuai
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shipeng Li
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Dayong Cui
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
- School of Life Sciences, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
19
|
Jan R, Khan M, Asaf S, Lubna, Asif S, Kim KM. Bioactivity and Therapeutic Potential of Kaempferol and Quercetin: New Insights for Plant and Human Health. PLANTS (BASEL, SWITZERLAND) 2022; 11:2623. [PMID: 36235488 PMCID: PMC9571405 DOI: 10.3390/plants11192623] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 07/25/2023]
Abstract
Plant secondary metabolites, especially flavonoids, are major metabolites widely found in plants that play several key roles in plant defence and signalling in response to stress conditions. The most studied among these flavonoids are kaempferol and quercetin due to their anti-oxidative potential and their key roles in the defence system, making them more critical for plant adaptation in stress environments. Kaempferol and quercetin in plants have great therapeutic potential for human health. Despite being well-studied, some of their functional aspects regarding plants and human health need further evaluation. This review summarizes the emerging potential of kaempferol and quercetin in terms of antimicrobial activity, bioavailability and bioactivity in the human body as well as in the regulation of plant defence in response to stresses and as a signalling molecule in terms of hormonal modulation under stress conditions. We also evaluated the safe use of both metabolites in the pharmaceutical industry.
Collapse
Affiliation(s)
- Rahmatullah Jan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Korea
| | - Murtaza Khan
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Korea
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Lubna
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Saleem Asif
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
20
|
Maity S, Guchhait R, Pramanick K. Melatonin mediated activation of MAP kinase pathway may reduce DNA damage stress in plants: A review. Biofactors 2022; 48:965-971. [PMID: 35938772 DOI: 10.1002/biof.1882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/20/2022] [Indexed: 12/21/2022]
Abstract
Melatonin is an important biomolecule found in diverse groups of organisms. Under different abiotic stresses, the synthesis of melatonin is markedly increased suggesting pivotal roles of melatonin in plants enduring stresses. Being an endogenous signaling molecule with antioxidant activity, melatonin alters many physiological responses and is found to be involved in regulating DNA damage responses. However, the molecular mechanisms of melatonin in response to DNA damage have not yet been studied. The present review aims to provide insights into the molecular mechanisms of melatonin in response to DNA damage in plants. We propose that the MAP kinase pathway is involved in regulating melatonin dependent response of plants under DNA damage stress. Where melatonin might activate MAPK via H2 O2 or Ca2+ dependent pathways. The activated MAPK in turn might phosphorylate and activate SOG1 and repressor type MYBs to mitigate DNA damage under abiotic stress.
Collapse
Affiliation(s)
- Sukhendu Maity
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Rajkumar Guchhait
- P.G. Department of Zoology, Mahishadal Raj College, Purba Medinipur, West Bengal, India
| | - Kousik Pramanick
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
21
|
Huang Z, Song L, Xiao Y, Zhong X, Wang J, Xu W, Jiang CZ. Overexpression of Myrothamnus flabellifolia MfWRKY41 confers drought and salinity tolerance by enhancing root system and antioxidation ability in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:967352. [PMID: 35937333 PMCID: PMC9355591 DOI: 10.3389/fpls.2022.967352] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Myrothamnus flabellifolia is the only woody resurrection plant discovered so far and could recover from extreme desiccation condition. However, few genes related to its strong drought tolerance have been characterized, and the underlying molecular mechanisms remains mysterious. Members of WRKY transcription factor family are effective in regulating abiotic stress responses or tolerance in various plants. An early dehydration-induced gene encoding a WRKY transcription factor namely MfWRKY41 was isolated from M. flabellifolia, which is homologous to AtWRKY41 of Arabidopsis. It contains a typical WRKY domain and zinc finger motif, and is located in the nucleus. Comparing to wild type, the four transgenic lines overexpressing MfWRKY41 showed better growth performance under drought and salt treatments, and exhibited higher chlorophyll content, lower water loss rate and stomatal aperture and better osmotic adjustment capacity. These results indicated that MfWRKY41 of M. flabellifolia positively regulates drought as well as salinity responses. Interestingly, the root system architecture, including lateral root number and primary root length, of the transgenic lines was enhanced by MfWRKY41 under both normal and stressful conditions, and the antioxidation ability was also significantly improved. Therefore, MfWRKY41 may have potential application values in genetic improvement of plant tolerance to drought and salinity stresses. The molecular mechanism involving in the regulatory roles of MfWRKY41 is worthy being explored in the future.
Collapse
Affiliation(s)
- Zhuo Huang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Li Song
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yao Xiao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xiaojuan Zhong
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jiatong Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Wenxin Xu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA, United States
| |
Collapse
|
22
|
Faragó D, Zsigmond L, Benyó D, Alcazar R, Rigó G, Ayaydin F, Rabilu SA, Hunyadi‐Gulyás É, Szabados L. Small paraquat resistance proteins modulate paraquat and ABA responses and confer drought tolerance to overexpressing Arabidopsis plants. PLANT, CELL & ENVIRONMENT 2022; 45:1985-2003. [PMID: 35486392 PMCID: PMC9324991 DOI: 10.1111/pce.14338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 05/13/2023]
Abstract
Adaptation of higher plants to extreme environmental conditions is under complex regulation. Several small peptides have recently been described to modulate responses to stress conditions. The Small Paraquat resistance protein (SPQ) of Lepidium crassifolium has previously been identified due to its capacity to confer paraquat resistance to overexpressing transgenic Arabidopsis plants. Here, we show that overexpression of the closely related Arabidopsis SPQ can also enhance resistance to paraquat, while the Arabidopsis spq1 mutant is slightly hypersensitive to this herbicide. Besides being implicated in paraquat response, overexpression of SPQs enhanced sensitivity to abscisic acid (ABA), and the knockout spq1 mutant was less sensitive to ABA. Both Lepidium- and Arabidopsis-derived SPQs could improve drought tolerance by reducing water loss, stabilizing photosynthetic electron transport and enhancing plant viability and survival in a water-limited environment. Enhanced drought tolerance of SPQ-overexpressing plants could be confirmed by characterizing various parameters of growth, morphology and photosynthesis using an automatic plant phenotyping platform with RGB and chlorophyll fluorescence imaging. Our results suggest that SPQs can be regulatory small proteins connecting ROS and ABA regulation and through that influence responses to certain stresses.
Collapse
Affiliation(s)
- Dóra Faragó
- Institute of Plant Biology, Biological Research CentreSzegedHungary
| | - Laura Zsigmond
- Institute of Plant Biology, Biological Research CentreSzegedHungary
| | - Dániel Benyó
- Institute of Plant Biology, Biological Research CentreSzegedHungary
| | - Rubén Alcazar
- Facultat de FarmàciaUniversitat de BarcelonaBarcelonaSpain
| | - Gábor Rigó
- Institute of Plant Biology, Biological Research CentreSzegedHungary
| | - Ferhan Ayaydin
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM) Nonprofit Ltd.SzegedHungary
- Cellular Imaging Laboratory, Biological Research CentreSzegedHungary
| | - Sahilu Ahmad Rabilu
- Institute of Plant Biology, Biological Research CentreSzegedHungary
- Doctoral School in Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
| | | | - László Szabados
- Institute of Plant Biology, Biological Research CentreSzegedHungary
| |
Collapse
|
23
|
Dai H, Wu B, Chen B, Ma B, Chu C. Diel Fluctuation of Extracellular Reactive Oxygen Species Production in the Rhizosphere of Rice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9075-9082. [PMID: 35593708 DOI: 10.1021/acs.est.2c00005] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reactive oxygen species (ROS) are ubiquitous on earth and drive numerous redox-centered biogeochemical processes. The rhizosphere of wetland plants is a highly dynamic interface for the exchange of oxygen and electrons, presenting the basis of the precedent for ROS production, yet whether extracellular ROS are produced in the rhizosphere remains unknown. Here, we designed a microfluidic chip setup to detect in-situ ROS productions in the rhizosphere of rice with spatial and temporal resolutions. Fluorescence imaging clearly displayed the hot spots of ROS generation in the rhizosphere. The formation concentration of the hydroxyl radical (•OH, a representative ROS, 10-6 M) was comparable to those by the classical photochemical route (10-6-10-7 M) in aquatic systems, therefore highlighting the rhizosphere as an unrecognized hotspot for ROS production. Moreover, the rhizosphere ROS production exhibits diel fluctuation, which simultaneously fluctuated with dissolved oxygen, redox potential, and pH, all driven by radial oxygen loss near the root in the daytime. The production and diel fluctuation of ROS were confirmed in the rhizosphere of rice root incubated in natural soils. We demonstrated that the extracellular ROS production was triggered by the interplay between root-released oxygen and microbial respiration released extracellular electrons, while iron mineral and organic matter might play key roles in storing and shuttling electrons. Our results highlight the rhizosphere as a widespread but previously unappreciated hotspot for ROS production, which may affect pollutant redox dynamics and biogeochemical processes in soils.
Collapse
Affiliation(s)
- Hengyi Dai
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Binbin Wu
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bin Ma
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Chiheng Chu
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
24
|
Viviani A, Spada M, Giordani T, Fambrini M, Pugliesi C. Origin of the genome editing systems: application for crop improvement. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Systemic Signaling: A Role in Propelling Crop Yield. PLANTS 2022; 11:plants11111400. [PMID: 35684173 PMCID: PMC9182853 DOI: 10.3390/plants11111400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
Abstract
Food security has become a topic of great concern in many countries. Global food security depends heavily on agriculture that has access to proper resources and best practices to generate higher crop yields. Crops, as with other plants, have a variety of strategies to adapt their growth to external environments and internal needs. In plants, the distal organs are interconnected through the vascular system and intricate hierarchical signaling networks, to communicate and enhance survival within fluctuating environments. Photosynthesis and carbon allocation are fundamental to crop production and agricultural outputs. Despite tremendous progress achieved by analyzing local responses to environmental cues, and bioengineering of critical enzymatic processes, little is known about the regulatory mechanisms underlying carbon assimilation, allocation, and utilization. This review provides insights into vascular-based systemic regulation of photosynthesis and resource allocation, thereby opening the way for the engineering of source and sink activities to optimize the yield performance of major crops.
Collapse
|
26
|
Xiong J, Zhang W, Zheng D, Xiong H, Feng X, Zhang X, Wang Q, Wu F, Xu J, Lu Y. ZmLBD5 Increases Drought Sensitivity by Suppressing ROS Accumulation in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2022; 11:1382. [PMID: 35631807 PMCID: PMC9144968 DOI: 10.3390/plants11101382] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Drought stress is known to significantly limit crop growth and productivity. Lateral organ boundary domain (LBD) transcription factors-particularly class-I members-play essential roles in plant development and biotic stress. However, little information is available on class-II LBD genes related to abiotic stress in maize. Here, we cloned a maize class-II LBD transcription factor, ZmLBD5, and identified its function in drought stress. Transient expression, transactivation, and dimerization assays demonstrated that ZmLBD5 was localized in the nucleus, without transactivation, and could form a homodimer or heterodimer. Promoter analysis demonstrated that multiple drought-stress-related and ABA response cis-acting elements are present in the promoter region of ZmLBD5. Overexpression of ZmLBD5 in Arabidopsis promotes plant growth under normal conditions, and suppresses drought tolerance under drought conditions. Furthermore, the overexpression of ZmLBD5 increased the water loss rate, stomatal number, and stomatal apertures. DAB and NBT staining demonstrated that the reactive oxygen species (ROS) decreased in ZmLBD5-overexpressed Arabidopsis. A physiological index assay also revealed that SOD and POD activities in ZmLBD5-overexpressed Arabidopsis were higher than those in wild-type Arabidopsis. These results revealed the role of ZmLBD5 in drought stress by regulating ROS levels.
Collapse
Affiliation(s)
- Jing Xiong
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
| | - Weixiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
| | - Dan Zheng
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
| | - Hao Xiong
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
| | - Xuanjun Feng
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang 611130, China
| | - Xuemei Zhang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
| | - Qingjun Wang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
| | - Jie Xu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang 611130, China
| |
Collapse
|
27
|
Wong A, Gehring C. New Horizons in Plant Cell Signaling. Int J Mol Sci 2022; 23:5826. [PMID: 35628641 PMCID: PMC9147848 DOI: 10.3390/ijms23105826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/04/2022] Open
Abstract
Responding to environmental stimuli with appropriate molecular mechanisms is essential to all life forms and particularly so in sessile organisms such as plants [...].
Collapse
Affiliation(s)
- Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Wenzhou 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou 325060, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou 325060, China
| | - Christoph Gehring
- Department of Chemistry, Biology & Biotechnology, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy
| |
Collapse
|
28
|
Lin PA, Chen Y, Ponce G, Acevedo FE, Lynch JP, Anderson CT, Ali JG, Felton GW. Stomata-mediated interactions between plants, herbivores, and the environment. TRENDS IN PLANT SCIENCE 2022; 27:287-300. [PMID: 34580024 DOI: 10.1016/j.tplants.2021.08.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Stomata play a central role in plant responses to abiotic and biotic stresses. Existing knowledge regarding the roles of stomata in plant stress is centered on abiotic stresses and plant-pathogen interactions, but how stomata influence plant-herbivore interactions remains largely unclear. Here, we summarize the functions of stomata in plant-insect interactions and highlight recent discoveries of how herbivores manipulate plant stomata. Because stomata are linked to interrelated physiological processes in plants, herbivory-induced changes in stomatal dynamics might have cellular, organismic, and/or even community-level impacts. We summarize our current understanding of how stomata mediate plant responses to herbivory and environmental stimuli, propose how herbivores may influence these responses, and identify key knowledge gaps in plant-herbivore interactions.
Collapse
Affiliation(s)
- Po-An Lin
- Department of Entomology, Pennsylvania State University, State College, PA, USA.
| | - Yintong Chen
- Department of Biology, Pennsylvania State University, State College, PA, USA
| | - Gabriela Ponce
- Department of Entomology, Pennsylvania State University, State College, PA, USA
| | - Flor E Acevedo
- Department of Entomology, Pennsylvania State University, State College, PA, USA
| | - Jonathan P Lynch
- Department of Plant Science, Pennsylvania State University, State College, PA, USA
| | - Charles T Anderson
- Department of Biology, Pennsylvania State University, State College, PA, USA
| | - Jared G Ali
- Department of Entomology, Pennsylvania State University, State College, PA, USA
| | - Gary W Felton
- Department of Entomology, Pennsylvania State University, State College, PA, USA
| |
Collapse
|
29
|
Laoué J, Fernandez C, Ormeño E. Plant Flavonoids in Mediterranean Species: A Focus on Flavonols as Protective Metabolites under Climate Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020172. [PMID: 35050060 PMCID: PMC8781291 DOI: 10.3390/plants11020172] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 05/03/2023]
Abstract
Flavonoids are specialized metabolites largely widespread in plants where they play numerous roles including defense and signaling under stress conditions. These compounds encompass several chemical subgroups such as flavonols which are one the most represented classes. The most studied flavonols are kaempferol, quercetin and myricetin to which research attributes antioxidative properties and a potential role in UV-defense through UV-screening mechanisms making them critical for plant adaptation to climate change. Despite the great interest in flavonol functions in the last decades, some functional aspects remain under debate. This review summarizes the importance of flavonoids in plant defense against climate stressors and as signal molecules with a focus on flavonols in Mediterranean plant species. The review emphasizes the relationship between flavonol location (at the organ, tissue and cellular scales) and their function as defense metabolites against climate-related stresses. It also provides evidence that biosynthesis of flavonols, or flavonoids as a whole, could be a crucial process allowing plants to adapt to climate change, especially in the Mediterranean area which is considered as one of the most sensitive regions to climate change over the globe.
Collapse
|
30
|
Sehar Z, Iqbal N, Fatma M, Rather BA, Albaqami M, Khan NA. Ethylene Suppresses Abscisic Acid, Modulates Antioxidant System to Counteract Arsenic-Inhibited Photosynthetic Performance in the Presence of Selenium in Mustard. FRONTIERS IN PLANT SCIENCE 2022; 13:852704. [PMID: 35651777 PMCID: PMC9149584 DOI: 10.3389/fpls.2022.852704] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/19/2022] [Indexed: 05/10/2023]
Abstract
Arsenic (As) stress provokes various toxic effects in plants that disturbs its photosynthetic potential and hampers growth. Ethylene and selenium (Se) have shown regulatory interaction in plants for metal tolerance; however, their synergism in As tolerance through modification of the antioxidant enzymes and hormone biosynthesis needs further elaboration. With this in view, we investigated the impact of ethylene and Se in the protection of photosynthetic performance against As stress in mustard (Brassica juncea L.). Supplementation with ethephon (2-chloroethylphosphonic acid; ethylene source) and/or Se allayed the negative impact of As-induced toxicity by limiting As content in leaves, enhancing the antioxidant defense system, and decreasing the accumulation of abscisic acid (ABA). Ethylene plus Se more prominently regulated stomatal behavior, improved photosynthetic capacity, and mitigated As-induced effects. Ethephon in the presence of Se decreased stress ethylene formation and ABA accumulation under As stress, resulting in improved photosynthesis and growth through enhanced reduced glutathione (GSH) synthesis, which in turn reduced the oxidative stress. In both As-stressed and non-stressed plants treated with ethylene action inhibitor, norbornadiene, resulted in increased ABA and oxidative stress with reduced photosynthetic activity by downregulating expression of ascorbate peroxidase and glutathione reductase, suggesting the involvement of ethylene in the reversal of As-induced toxicity. These findings suggest that ethephon and Se induce regulatory interaction between ethylene, ABA accumulation, and GSH metabolism through regulating the activity and expression of antioxidant enzymes. Thus, in an economically important crop (mustard), the severity of As stress could be reduced through the supplementation of both ethylene and Se that coordinate for maximum stress alleviation.
Collapse
Affiliation(s)
- Zebus Sehar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | | | - Mehar Fatma
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Bilal A. Rather
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
- *Correspondence: Mohammed Albaqami
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
- Nafees A. Khan
| |
Collapse
|
31
|
Singh P, Arif Y, Bajguz A, Hayat S. The role of quercetin in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:10-19. [PMID: 34087741 DOI: 10.1016/j.plaphy.2021.05.023] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/17/2021] [Indexed: 05/20/2023]
Abstract
Flavonoids are a special category of hydroxylated phenolic compounds having an aromatic ring structure. Quercetin is aspecial subclass of flavonoid. It is a bioactive natural compound built upon the flavon structure nC6(ring A)-C3(ring C)-C6(ring B). Quercetin facilitates several plant physiological processes, such as seed germination, pollen growth, antioxidant machinery, and photosynthesis, as well as induces proper plant growth and development. Quercetin is a powerful antioxidant, so it potently provides plant tolerance against several biotic and abiotic stresses. This review highlights quercetin's role in increasing several physiological and biochemical processes under stress and non-stress environments. Additionally, this review briefly assesses quercetin's role in mitigating biotic and abiotic stresses (e.g., salt, heavy metal, and UV stress). The biosynthesis of flavonoids, their signaling pathways, and quercetin's role in plant signaling are also discussed.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Yamshi Arif
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, 1J Ciolkowskiego St., 15-245, Bialystok, Poland
| | - Shamsul Hayat
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
32
|
Jiang Y, Ye J, Niinemets Ü. Dose-dependent methyl jasmonate effects on photosynthetic traits and volatile emissions: biphasic kinetics and stomatal regulation. PLANT SIGNALING & BEHAVIOR 2021; 16:1917169. [PMID: 33879022 PMCID: PMC8204986 DOI: 10.1080/15592324.2021.1917169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Exogenous application of methyl jasmonate (MeJA) has been extensively used to study jasmonate-dependent signaling events triggered by biotic stresses. MeJA application leads to complex jasmonate-dependent physiological responses, including changes in stomatal openness and induction of emissions of a multitude of volatile compounds. Whether the alterations in stomatal conductance and emissions of MeJA-induced volatiles are quantitatively associated with MeJA dose, and whether the induced volatile emissions are regulated by modifications in stomatal conductance had been poorly known until recently. Our latest studies highlighted a biphasic kinetics of jasmonate-dependent volatile emissions induced by MeJA treatment in the model species cucumber (Cucumis sativus), indicating induction of an immediate stress response and subsequent gene-expression level response. Both the immediate and delayed responses were MeJA dose-dependent. The studies further demonstrated that stomata modulated the kinetics of emissions of water-soluble volatiles in a MeJA dose-dependent manner. These studies contribute to understanding of plant short- and long-term responses to different biotic stress severities as simulated by treatments with a range of MeJA doses corresponding to mild to acute stress.
Collapse
Affiliation(s)
- Yifan Jiang
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- College of Horticulture, Nanjing Agricultural University, NanjingChina
| | - Jiayan Ye
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- School of Forestry and Bio-Technology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- School of Forestry and Bio-Technology, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Estonian Academy of Sciences, Tallinn, Estonia
| |
Collapse
|
33
|
Zhang TY, Li ZQ, Zhao YD, Shen WJ, Chen MS, Gao HQ, Ge XM, Wang HQ, Li X, He JM. Ethylene-induced stomatal closure is mediated via MKK1/3-MPK3/6 cascade to EIN2 and EIN3. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1324-1340. [PMID: 33605510 DOI: 10.1111/jipb.13083] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Mitogen-activated protein kinases (MPKs) play essential roles in guard cell signaling, but whether MPK cascades participate in guard cell ethylene signaling and interact with hydrogen peroxide (H2 O2 ), nitric oxide (NO), and ethylene-signaling components remain unclear. Here, we report that ethylene activated MPK3 and MPK6 in the leaves of wild-type Arabidopsis thaliana as well as ethylene insensitive2 (ein2), ein3, nitrate reductase1 (nia1), and nia2 mutants, but this effect was impaired in ethylene response1 (etr1), nicotinamide adenine dinucleotide phosphate oxidase AtrbohF, mpk kinase1 (mkk1), and mkk3 mutants. By contrast, the constitutive triple response1 (ctr1) mutant had constitutively active MPK3 and MPK6. Yeast two-hybrid, bimolecular fluorescence complementation, and pull-down assays indicated that MPK3 and MPK6 physically interacted with MKK1, MKK3, and the C-terminal region of EIN2 (EIN2 CEND). mkk1, mkk3, mpk3, and mpk6 mutants had typical levels of ethylene-induced H2 O2 generation but impaired ethylene-induced EIN2 CEND cleavage and nuclear translocation, EIN3 protein accumulation, NO production in guard cells, and stomatal closure. These results show that the MKK1/3-MPK3/6 cascade mediates ethylene-induced stomatal closure by functioning downstream of ETR1, CTR1, and H2 O2 to interact with EIN2, thereby promoting EIN3 accumulation and EIN3-dependent NO production in guard cells.
Collapse
Affiliation(s)
- Teng-Yue Zhang
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhong-Qi Li
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Yu-Dong Zhao
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Wen-Jie Shen
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Meng-Shu Chen
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hai-Quan Gao
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiao-Min Ge
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hui-Qin Wang
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xue Li
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Jun-Min He
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
34
|
Zhu ZD, Sun HJ, Li J, Yuan YX, Zhao JF, Zhang CG, Chen YL. RIC7 plays a negative role in ABA-induced stomatal closure by inhibiting H 2O 2 production. PLANT SIGNALING & BEHAVIOR 2021; 16:1876379. [PMID: 33586611 PMCID: PMC7971284 DOI: 10.1080/15592324.2021.1876379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
When plants encounter environmental stresses, phytohormone abscisic acid (ABA) accumulates quickly and efficiently reduces water loss by inducing stomatal closure. Reactive oxygen species (ROS) is an important regulator in ABA-induced stomatal closure, and ROS generation is modulated by multiple components in guard-cell ABA signaling. ROP interactive CRIB-containing protein 7 (RIC7) has been found to negatively regulate ABA-induced stomatal closure. However, the molecular details of the RIC7 function in this process are unclear. Here, by using two RIC7 overexpressing mutants, we confirmed the negative role of RIC7 in ABA-induced stomatal closure and found that guard cells of RIC7 overexpressing mutants generated less H2O2 than the wild type with ABA treatment, which were consistent with the reduced expression levels of ROS generation related NADPH oxidase genes AtRBOHD and AtRBOHF, and cytosolic polyamine oxidase genes PAO1 and PAO5 in the RIC7 overexpressing mutants. Furthermore, external applied H2O2 failed to rescue the defects of stomatal closure in RIC7 overexpressing mutants. These results suggest that RIC7 affects H2O2 generation in guard cells, and the function of H2O2 is dependent on RIC7 in ABA-induced stomatal closure, indicative of interdependency between RIC7 and H2O2 in ABA guard-cell signaling.
Collapse
Affiliation(s)
- Zi-Dan Zhu
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Hai-Jing Sun
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jiao Li
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ya-Xin Yuan
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jun-Feng Zhao
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Chun-Guang Zhang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yu-Ling Chen
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
35
|
Lin P, Chen Y, Chaverra‐Rodriguez D, Heu CC, Zainuddin NB, Sidhu JS, Peiffer M, Tan C, Helms A, Kim D, Ali J, Rasgon JL, Lynch J, Anderson CT, Felton GW. Silencing the alarm: an insect salivary enzyme closes plant stomata and inhibits volatile release. THE NEW PHYTOLOGIST 2021; 230:793-803. [PMID: 33459359 PMCID: PMC8048682 DOI: 10.1111/nph.17214] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/17/2020] [Indexed: 05/02/2023]
Abstract
Herbivore-induced plant volatiles (HIPVs) are widely recognized as an ecologically important defensive response of plants against herbivory. Although the induction of this 'cry for help' has been well documented, only a few studies have investigated the inhibition of HIPVs by herbivores and little is known about whether herbivores have evolved mechanisms to inhibit the release of HIPVs. To examine the role of herbivore effectors in modulating HIPVs and stomatal dynamics, we conducted series of experiments combining pharmacological, surgical, genetic (CRISPR-Cas9) and chemical (GC-MS analysis) approaches. We show that the salivary enzyme, glucose oxidase (GOX), secreted by the caterpillar Helicoverpa zea on leaves, causes stomatal closure in tomato (Solanum lycopersicum) within 5 min, and in both tomato and soybean (Glycine max) for at least 48 h. GOX also inhibits the emission of several HIPVs during feeding by H. zea, including (Z)-3-hexenol, (Z)-jasmone and (Z)-3-hexenyl acetate, which are important airborne signals in plant defenses. Our findings highlight a potential adaptive strategy where an insect herbivore inhibits plant airborne defenses during feeding by exploiting the association between stomatal dynamics and HIPV emission.
Collapse
Affiliation(s)
- Po‐An Lin
- Department of EntomologyPennsylvania State University501 ASI BuildingUniversity ParkPA16802USA
| | - Yintong Chen
- Department of BiologyPennsylvania State University415 Life Sciences BuildingUniversity ParkPA16802USA
| | - Duverney Chaverra‐Rodriguez
- Department of Cell and Developmental BiologyUniversity of California San Diego9500 Gilman Drive #0335La JollaCA92093USA
| | - Chan Chin Heu
- Department of EntomologyPennsylvania State University501 ASI BuildingUniversity ParkPA16802USA
| | - Nursyafiqi Bin Zainuddin
- Department of EntomologyPennsylvania State University501 ASI BuildingUniversity ParkPA16802USA
- Department of Plant ProtectionFaculty of AgricultureUniversiti Putra MalaysiaSerdangSelangor43400 UPMMalaysia
| | - Jagdeep Singh Sidhu
- Department of Plant SciencePennsylvania State University310 Tyson BuildingUniversity ParkPA16802USA
| | - Michelle Peiffer
- Department of EntomologyPennsylvania State University501 ASI BuildingUniversity ParkPA16802USA
| | - Ching‐Wen Tan
- Department of EntomologyPennsylvania State University501 ASI BuildingUniversity ParkPA16802USA
| | - Anjel Helms
- Department of Entomology103DA Entomology Research LaboratoryTexas A&M UniversityCollege StationTX77843USA
| | - Donghun Kim
- Department of Applied BiologyKyungpook National University80 DaehakroBukgu, Daegu41566Korea
| | - Jared Ali
- Department of EntomologyPennsylvania State University501 ASI BuildingUniversity ParkPA16802USA
| | - Jason L. Rasgon
- Department of EntomologyPennsylvania State University501 ASI BuildingUniversity ParkPA16802USA
| | - Jonathan Lynch
- Department of Plant SciencePennsylvania State University310 Tyson BuildingUniversity ParkPA16802USA
| | - Charles T. Anderson
- Department of BiologyPennsylvania State University415 Life Sciences BuildingUniversity ParkPA16802USA
| | - Gary W. Felton
- Department of EntomologyPennsylvania State University501 ASI BuildingUniversity ParkPA16802USA
| |
Collapse
|
36
|
Foes or Friends: ABA and Ethylene Interaction under Abiotic Stress. PLANTS 2021; 10:plants10030448. [PMID: 33673518 PMCID: PMC7997433 DOI: 10.3390/plants10030448] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022]
Abstract
Due to their sessile nature, plants constantly adapt to their environment by modulating various internal plant hormone signals and distributions, as plants perceive environmental changes. Plant hormones include abscisic acid (ABA), auxins, brassinosteroids, cytokinins, ethylene, gibberellins, jasmonates, salicylic acid, and strigolactones, which collectively regulate plant growth, development, metabolism, and defense. Moreover, plant hormone crosstalk coordinates a sophisticated plant hormone network to achieve specific physiological functions, on both a spatial and temporal level. Thus, the study of hormone–hormone interactions is a competitive field of research for deciphering the underlying regulatory mechanisms. Among plant hormones, ABA and ethylene present a fascinating case of interaction. They are commonly recognized to act antagonistically in the control of plant growth, and development, as well as under stress conditions. However, several studies on ABA and ethylene suggest that they can operate in parallel or even interact positively. Here, an overview is provided of the current knowledge on ABA and ethylene interaction, focusing on abiotic stress conditions and a simplified hypothetical model describing stomatal closure / opening, regulated by ABA and ethylene.
Collapse
|
37
|
Yoon JS, Kim JY, Kim DY, Seo YW. A novel wheat ASR gene, TaASR2D, enhances drought tolerance in Brachypodium distachyon. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:400-414. [PMID: 33229191 DOI: 10.1016/j.plaphy.2020.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Abscisic acid-, stress-, and ripening-induced (ASR) proteins play an important role in protecting plants against adverse environmental conditions. Here, we identified 24 ASR genes in the wheat genome and analyzed their characteristics. Among these, five ASR genes highly induced by abscisic acid (ABA) and polyethylene glycol were cloned and further characterized. The TaASR genes were expressed in response to different abiotic stresses and ABA and were found to be localized in the nucleus and plasma membrane of transformed tobacco cells. Brachypodium distachyon transgenic plants overexpressing TaASR2D showed enhanced drought tolerance by regulating leaf transpiration. The expression levels of stress-related and ABA-responsive genes were higher in transgenic plants than in wild-type plants under drought stress conditions. Moreover, overexpression of TaASR2D increased the levels of both endogenous ABA and hydrogen peroxide in response to drought stress, and these plants showed hypersensitivity to exogenous ABA at the germination stage. Furthermore, plants overexpressing TaASR2D showed increased stomatal closure. Further analysis revealed that TaASR2D interacts with ABA biosynthesis and stress-related proteins in yeast and tobacco plants. Collectively, these findings indicate that TaASR2D plays an important role in the response of plants to drought stress by regulating the ABA biosynthesis pathway and redox homeostasis system.
Collapse
Affiliation(s)
- Jin Seok Yoon
- Department of Plant Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Jae Yoon Kim
- Department of Plant Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea; Department of Plant Resources, Kongju National University, Yesan, Chungnam, 32439, Republic of Korea
| | - Dae Yeon Kim
- Department of Plant Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
38
|
Ma Y, Shao L, Zhang W, Zheng F. Hydrogen sulfide induced by hydrogen peroxide mediates brassinosteroid-induced stomatal closure of Arabidopsis thaliana. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:195-205. [PMID: 32910883 DOI: 10.1071/fp20205] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
The role of hydrogen sulfide (H2S) and its relationship with hydrogen peroxide (H2O2) in brassinosteroid-induced stomatal closure in Arabidopsis thaliana (L.) Heynh. were investigated. In the present study, 2,4-epibrassinolide (EBR, a bioactive BR) induced stomatal closure in the wild type, the effects were inhibited by H2S scavenger and synthesis inhibitors, and H2O2 scavengers and synthesis inhibitor. However, EBR failed to close the stomata of mutants Atl-cdes, Atd-cdes, AtrbohF and AtrbohD/F. Additionally, EBR induced increase of L-/D-cysteine desulfhydrase (L-/D-CDes) activity, H2S production, and H2O2 production in the wild type, and the effects were inhibited by H2S scavenger and synthesis inhibitors, and H2O2 scavengers and synthesis inhibitor respectively. Furthermore, EBR increased H2O2 levels in the guard cells of AtrbohD mutant, but couldn't raise H2O2 levels in the guard cells of AtrbohF and AtrbohD/F mutants. Next, scavengers and synthesis inhibitor of H2O2 could significantly inhibit EBR-induced rise of L-/D-CDes activity and H2S production in the wild type, but H2S scavenger and synthesis inhibitors failed to repress EBR-induced H2O2 production. EBR could increase H2O2 levels in the guard cells of Atl-cdes and Atd-cdes mutants, but EBR failed to induce increase of L-/D-CDes activity and H2S production in AtrbohF and AtrbohD/F mutants. Therefore, we conclude that H2S and H2O2 are involved in the signal transduction pathway of EBR-induced stomatal closure. Altogether, our data suggested that EBR induces AtrbohF-dependent H2O2 production and subsequent AtL-CDes-/AtD-CDes-catalysed H2S production, and finally closes stomata in A. thaliana.
Collapse
Affiliation(s)
- Yinli Ma
- College of Life Sciences, Shanxi Normal University, Linfen 041004, People's Republic of China; and Corresponding author.
| | - Luhan Shao
- College of Life Sciences, Shanxi Normal University, Linfen 041004, People's Republic of China
| | - Wei Zhang
- College of Life Sciences, Shanxi Normal University, Linfen 041004, People's Republic of China
| | - Fengxi Zheng
- College of Life Sciences, Shanxi Normal University, Linfen 041004, People's Republic of China
| |
Collapse
|
39
|
Rayback SA, Belmecheri S, Gagen MH, Lini A, Gregory R, Jenkins C. North American temperate conifer (Tsuga canadensis) reveals a complex physiological response to climatic and anthropogenic stressors. THE NEW PHYTOLOGIST 2020; 228:1781-1795. [PMID: 33439504 DOI: 10.1111/nph.16811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/03/2020] [Indexed: 05/08/2023]
Abstract
Rising atmospheric CO2 (ca) is expected to promote tree growth and lower water loss via changes in leaf gas exchange. However, uncertainties remain if gas-exchange regulation strategies are homeostatic or dynamical in response to increasing ca, as well as evolving climate and pollution inputs. Using a suite of tree ring-based δ13C-derived physiological parameters (Δ13C, ci, iWUE) and tree growth from a mesic, low elevation stand of canopy-dominant Tsuga canadensis in north-eastern USA, we investigated the influence of rising ca, climate and pollution on, and characterised the dynamical regulation strategy of, leaf gas exchange at multidecadal scales. Isotopic and growth time series revealed an evolving physiological response in which the species shifted its leaf gas-exchange strategy dynamically (constant ci; constant ci/ca; constant ca - ci) in response to rising ca, moisture availability and site conditions over 111 yr. Tree iWUE plateaued after 1975, driven by greater moisture availability and a changing soil biogeochemistry that may have impaired a stomatal response. Results suggested that trees may exhibit more complex physiological responses to the changing environmental conditions over multidecadal periods, and complicating the parameterisation of Earth system models and the estimation of future carbon sink capacity and water balance in midlatitude forests and elsewhere.
Collapse
Affiliation(s)
- Shelly A Rayback
- Department of Geography, University of Vermont, 207 Old Mill Building, 94 University Place, Burlington, VT, 05405, USA
| | - Soumaya Belmecheri
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, 85721, USA
| | - Mary H Gagen
- Department of Geography, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Andrea Lini
- Department of Geology, University of Vermont, 319 Delehanty Hall, 180 Colchester Avenue, Burlington, VT, 05405, USA
| | - Rachel Gregory
- School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Catherine Jenkins
- School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
40
|
Wenjing W, Chen Q, Singh PK, Huang Y, Pei D. CRISPR/Cas9 edited HSFA6a and HSFA6b of Arabidopsis thaliana offers ABA and osmotic stress insensitivity by modulation of ROS homeostasis. PLANT SIGNALING & BEHAVIOR 2020; 15:1816321. [PMID: 32936726 PMCID: PMC7671043 DOI: 10.1080/15592324.2020.1816321] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 05/21/2023]
Abstract
The role of Heat Shock Transcription Factor 6 (HSFA6a & HSFA6b) in response to abiotic stresses such as ABA, drought, salinity, drought, and osmotic stress is individually well established. Unfortunately, the functional redundancy between the HSFA6a and HSFA6b as well as the consequences of simultaneous editing of both in response to aforementioned stresses remains elusive. Therefore, this study was designed with the aim of addressing whether there is any functional redundancy between HSFA6a and HSFA6b as well as to decipher their role in abiotic stresses tolerance in Arabidopsis thaliana, by using the CRISPR-Cas9. We have generated the single (hsfa6a and hsfa6b) as well as double mutants (hsfa6a/hsfa6b-1 and hsfa6a/hsfa6b-2) of HSFA6a and HSFA6b with higher frequencies of deletion, insertion, and substitution. The phenotypic characterization of generated double and single mutants under abiotic stresses such as ABA, mannitol, and NaCl identified double mutants more tolerant to subjected abiotic stresses than those of their single mutants. It warrants mentioning that we have identified that HSFA6a and HSFA6b also involved in other major ABA responses, including ABA-inhibited seed germination, stomatal movement, and water loss. In addition to the above, the simultaneous editing of HSFA6a and HSFA6b lead to a reduced ROS accumulation, accompanied by increased expression of much abiotic stress and ABA-responsive genes, including involved in regulation of ROS level. In conclusion, these results suggest that HSFA6a and HSFA6b may offer abiotic stress tolerance by regulating the ROS homeostasis in plants.
Collapse
Affiliation(s)
- Wang Wenjing
- Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan, China
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, Henan, China
| | - Qingbin Chen
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, Henan, China
| | - Prashant Kumar Singh
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, Henan, China
- Department of Biotechnology, Pachhunga University College, Mizoram University, Aizawl, India
| | - Yuanyuan Huang
- Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan, China
| | - Dongli Pei
- Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan, China
- CONTACT Dongli Pei Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, Henan, 476000, China
| |
Collapse
|
41
|
A natriuretic peptide from Arabidopsis thaliana (AtPNP-A) can modulate catalase 2 activity. Sci Rep 2020; 10:19632. [PMID: 33184368 PMCID: PMC7665192 DOI: 10.1038/s41598-020-76676-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Analogues of vertebrate natriuretic peptides (NPs) present in plants, termed plant natriuretic peptides (PNPs), comprise a novel class of hormones that systemically affect salt and water balance and responses to plant pathogens. Several lines of evidence indicate that Arabidopsis thaliana PNP (AtPNP-A) affects cellular redox homeostasis, which is also typical for the signaling of its vertebrate analogues, but the molecular mechanism(s) of this effect remains elusive. Here we report identification of catalase 2 (CAT2), an antioxidant enzyme, as an interactor of AtPNP-A. The full-length AtPNP-A recombinant protein and the biologically active fragment of AtPNP-A bind specifically to CAT2 in surface plasmon resonance (SPR) analyses, while a biologically inactive scrambled peptide does not. In vivo bimolecular fluorescence complementation (BiFC) showed that CAT2 interacts with AtPNP-A in chloroplasts. Furthermore, CAT2 activity is lower in homozygous atpnp-a knockdown compared with wild type plants, and atpnp-a knockdown plants phenocopy CAT2-deficient plants in their sensitivity to elevated H2O2, which is consistent with a direct modulatory effect of the PNP on the activity of CAT2 and hence H2O2 homeostasis. Our work underlines the critical role of AtPNP-A in modulating the activity of CAT2 and highlights a mechanism of fine-tuning plant responses to adverse conditions by PNPs.
Collapse
|
42
|
Bárzana G, Carvajal M. Genetic regulation of water and nutrient transport in water stress tolerance in roots. J Biotechnol 2020; 324:134-142. [PMID: 33038476 DOI: 10.1016/j.jbiotec.2020.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/29/2020] [Accepted: 10/05/2020] [Indexed: 01/11/2023]
Abstract
Drought stress is one of the major abiotic factors affecting the growth and development of crops. The primary effect of drought is the alteration of water and nutrient uptake and transport by roots, related essentially with aquaporins and ion transporters of the plasma membrane. Therefore, the efficiency of water and nutrient transport across cell layers is a main factor in tolerance mechanisms. The regulation of this transport under water stress - in relation to the differing degrees of tolerance of crops and the effect of arbuscular mycorrhizae, together with signaling mechanisms - is reviewed here. Three different phases in the response to stress (immediate, short-term and long-term), involving different signals and levels of gene regulation, are highlighted.
Collapse
Affiliation(s)
- Gloria Bárzana
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, E-30100, Murcia, Spain
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, E-30100, Murcia, Spain.
| |
Collapse
|
43
|
Zhao PX, Miao ZQ, Zhang J, Chen SY, Liu QQ, Xiang CB. Arabidopsis MADS-box factor AGL16 negatively regulates drought resistance via stomatal density and stomatal movement. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6092-6106. [PMID: 32594177 DOI: 10.1093/jxb/eraa303] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/19/2020] [Indexed: 05/26/2023]
Abstract
Drought is one of the most important environmental factors limiting plant growth and productivity. The molecular mechanisms underlying plant drought resistance are complex and not yet fully understood. Here, we show that the Arabidopsis MADS-box transcription factor AGL16 acts as a negative regulator in drought resistance by regulating stomatal density and movement. Loss-of-AGL16 mutants were more resistant to drought stress and had higher relative water content, which was attributed to lower leaf stomatal density and more sensitive stomatal closure due to higher leaf ABA levels compared with the wild type. AGL16-overexpressing lines displayed the opposite phenotypes. AGL16 is preferentially expressed in guard cells and down-regulated in response to drought stress. The expression of CYP707A3 and AAO3 in ABA metabolism and SDD1 in stomatal development was altered in agl16 and overexpression lines, making them potential targets of AGL16. Using chromatin immunoprecipitation, transient transactivation, yeast one-hybrid, and electrophoretic mobility shift assays, we demonstrated that AGL16 was able to bind the CArG motifs in the promoters of the CYP707A3, AAO3, and SDD1 and regulate their transcription, leading to altered leaf stomatal density and ABA levels. Taking our findings together, AGL16 acts as a negative regulator of drought resistance by modulating leaf stomatal density and ABA accumulation.
Collapse
Affiliation(s)
- Ping-Xia Zhao
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, China
| | - Zi-Qing Miao
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, China
| | - Jing Zhang
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, China
| | - Si-Yan Chen
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, China
| | - Qian-Qian Liu
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, China
| | - Cheng-Bin Xiang
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, China
| |
Collapse
|
44
|
Huang HE, Ho MH, Chang H, Chao HY, Ger MJ. Overexpression of plant ferredoxin-like protein promotes salinity tolerance in rice (Oryza sativa). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:136-146. [PMID: 32750653 DOI: 10.1016/j.plaphy.2020.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 05/02/2023]
Abstract
High-salinity stress is one of the major limiting factors on crop productivity. Physiological strategies against high-salinity stress include generation of reactive oxygen species (ROS), induction of stress-related genes expression, accumulation of abscisic acid (ABA) and up-regulation of antiporters. ROS are metabolism by-products and involved in signal transduction pathway. Constitutive expression of plant ferrodoxin-like protein (PFLP) gene enhances pathogen-resistance activities and root-hair growth through promoting ROS generation. However, the function of PFLP in abiotic stress responses is unclear. In this study, PFLP-1 and PFLP-2-transgenic rice plants were generated to elucidate the role of PFLP under salinity stress. PFLP overexpression significantly increased salt tolerance in PFLP-transgenic rice plants compared with non-transgenic plants (Oryza sativa japonica cv. Tainung 67, designated as TNG67). In high-salinity conditions, PFLP-transgenic plants exhibited earlier ROS production, higher antioxidant enzyme activities, higher ABA accumulation, up-regulated expression of stress-related genes (OsRBOHa, Cu/Zn SOD, OsAPX, OsNCED2, OsSOS1, OsCIPK24, OsCBL4, and OsNHX2), and leaf sodium ion content was lower compared with TNG67 plant. In addition, transgenic lines maintained electron transport rates and contained lower malondialdhyde (MDA) content than TNG67 plant did under salt-stress conditions. Overall results indicated salinity tolerance was improved by PFLP overexpression in transgenic rice plant. The PFLP gene is a potential candidate for improving salinity tolerance for valuable agricultural crops.
Collapse
Affiliation(s)
- Hsiang-En Huang
- Department of Life Sciences, National Taitung University, Taitung, 95002, Taiwan.
| | - Mei-Hsuan Ho
- Institute of Biotechnology, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| | - Hsiang Chang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, 30015, Taiwan.
| | - Hsien-Yu Chao
- Institute of Biotechnology, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| | - Mang-Jye Ger
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| |
Collapse
|
45
|
Pang Q, Zhang T, Zhang A, Lin C, Kong W, Chen S. Proteomics and phosphoproteomics revealed molecular networks of stomatal immune responses. PLANTA 2020; 252:66. [PMID: 32979085 DOI: 10.1007/s00425-020-03474-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/15/2020] [Indexed: 05/20/2023]
Abstract
Dynamic protein and phosphoprotein profiles uncovered the overall regulation of stomata movement against pathogen invasion and phosphorylation states of proteins involved in ABA, SA, calcium and ROS signaling, which may modulate the stomatal immune response. Stomatal openings represent a major route of pathogen entry into the plant, and plants have evolved mechanisms to regulate stomatal aperture as innate immune response against bacterial invasion. However, the mechanisms underlying stomatal immunity are not fully understood. Taking advantage of high-throughput liquid chromatography mass spectrometry (LC-MS), we performed label-free proteomic and phosphoproteomic analyses of enriched guard cells in response to a bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. In total, 495 proteins and 1229 phosphoproteins were identified as differentially regulated. These proteins are involved in a variety of signaling pathways, including abscisic acid and salicylic acid hormone signaling, calcium and reactive oxygen species signaling. We also showed that dynamic changes of phosphoprotein WRKY transcription factors may play a crucial role in regulating stomata movement in plant immunity. The identified proteins/phosphoproteins and the pathways form interactive molecular networks to regulate stomatal immunity. This study has provided new insights into the multifaceted mechanisms of stomatal immunity. The differential proteins and phosphoproteins are potential targets for engineering or breeding of crops for enhanced pathogen defense.
Collapse
Affiliation(s)
- Qiuying Pang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Tong Zhang
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Aiqin Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Chuwei Lin
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Wenwen Kong
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA.
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA.
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
46
|
Response of Downy Oak (Quercus pubescens Willd.) to Climate Change: Transcriptome Assembly, Differential Gene Analysis and Targeted Metabolomics. PLANTS 2020; 9:plants9091149. [PMID: 32899727 PMCID: PMC7570186 DOI: 10.3390/plants9091149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 01/15/2023]
Abstract
Global change scenarios in the Mediterranean basin predict a precipitation reduction within the coming hundred years. Therefore, increased drought will affect forests both in terms of adaptive ecology and ecosystemic services. However, how vegetation might adapt to drought is poorly understood. In this report, four years of climate change was simulated by excluding 35% of precipitation above a downy oak forest. RNASeq data allowed us to assemble a genome-guided transcriptome. This led to the identification of differentially expressed features, which was supported by the characterization of target metabolites using a metabolomics approach. We provided 2.5 Tb of RNASeq data and the assembly of the first genome guided transcriptome of Quercus pubescens. Up to 5724 differentially expressed transcripts were obtained; 42 involved in plant response to drought. Transcript set enrichment analysis showed that drought induces an increase in oxidative pressure that is mitigated by the upregulation of ubiquitin-like protein protease, ferrochelatase, oxaloacetate decarboxylase and oxo-acid-lyase activities. Furthermore, the downregulation of auxin biosynthesis and transport, carbohydrate storage metabolism were observed as well as the concomitant accumulation of metabolites, such as oxalic acid, malate and isocitrate. Our data suggest that early metabolic changes in the resistance of Q. pubescens to drought involve a tricarboxylic acid (TCA) cycle shunt through the glyoxylate pathway, galactose metabolism by reducing carbohydrate storage and increased proteolytic activity.
Collapse
|
47
|
Yu SG, Kim JH, Cho NH, Oh TR, Kim WT. Arabidopsis RING E3 ubiquitin ligase JUL1 participates in ABA-mediated microtubule depolymerization, stomatal closure, and tolerance response to drought stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:824-842. [PMID: 32314432 DOI: 10.1111/tpj.14775] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 05/20/2023]
Abstract
Ubiquitination is a critical post-translational protein modification that has been implicated in diverse cellular processes, including abiotic stress responses, in plants. In the present study, we identified and characterized a T-DNA insertion mutant in the At5g10650 locus. Compared to wild-type Arabidopsis plants, at5g10650 progeny were hyposensitive to ABA at the germination stage. At5g10650 possessed a single C-terminal C3HC4-type Really Interesting New Gene (RING) motif, which was essential for ABA-mediated germination and E3 ligase activity in vitro. At5g10650 was closely associated with microtubules and microtubule-associated proteins in Arabidopsis and tobacco leaf cells. Localization of At5g10650 to the nucleus was frequently observed. Unexpectedly, At5g10650 was identified as JAV1-ASSOCIATED UBIQUITIN LIGASE1 (JUL1), which was recently reported to participate in the jasmonate signaling pathway. The jul1 knockout plants exhibited impaired ABA-promoted stomatal closure. In addition, stomatal closure could not be induced by hydrogen peroxide and calcium in jul1 plants. jul1 guard cells accumulated wild-type levels of H2 O2 after ABA treatment. These findings indicated that JUL1 acts downstream of H2 O2 and calcium in the ABA-mediated stomatal closure pathway. Typical radial arrays of microtubules were maintained in jul1 guard cells after exposure to ABA, H2 O2 , and calcium, which in turn resulted in ABA-hyposensitive stomatal movements. Finally, jul1 plants were markedly more susceptible to drought stress than wild-type plants. Overall, our results suggest that the Arabidopsis RING E3 ligase JUL1 plays a critical role in ABA-mediated microtubule disorganization, stomatal closure, and tolerance to drought stress.
Collapse
Affiliation(s)
- Seong Gwan Yu
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Jong Hum Kim
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Na Hyun Cho
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Tae Rin Oh
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Woo Taek Kim
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| |
Collapse
|
48
|
Klejchová M, Hills A, Blatt MR. Predicting the unexpected in stomatal gas exchange: not just an open-and-shut case. Biochem Soc Trans 2020; 48:881-889. [PMID: 32453378 PMCID: PMC7329339 DOI: 10.1042/bst20190632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022]
Abstract
Plant membrane transport, like transport across all eukaryotic membranes, is highly non-linear and leads to interactions with characteristics so complex that they defy intuitive understanding. The physiological behaviour of stomatal guard cells is a case in point in which, for example, mutations expected to influence stomatal closing have profound effects on stomatal opening and manipulating transport across the vacuolar membrane affects the plasma membrane. Quantitative mathematical modelling is an essential tool in these circumstances, both to integrate the knowledge of each transport process and to understand the consequences of their manipulation in vivo. Here, we outline the OnGuard modelling environment and its use as a guide to predicting the emergent properties arising from the interactions between non-linear transport processes. We summarise some of the recent insights arising from OnGuard, demonstrate its utility in interpreting stomatal behaviour, and suggest ways in which the OnGuard environment may facilitate 'reverse-engineering' of stomata to improve water use efficiency and carbon assimilation.
Collapse
Affiliation(s)
- Martina Klejchová
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, U.K
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, U.K
| | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, U.K
| |
Collapse
|
49
|
Guo K, Li Z, Tian H, Du X, Liu Z, Huang H, Wang P, Ye Z, Zhang X, Tu L. Cytosolic Ascorbate Peroxidases Plays a Critical Role in Photosynthesis by Modulating Reactive Oxygen Species Level in Stomatal Guard Cell. FRONTIERS IN PLANT SCIENCE 2020; 11:446. [PMID: 32457767 PMCID: PMC7221183 DOI: 10.3389/fpls.2020.00446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/25/2020] [Indexed: 05/25/2023]
Abstract
Photosynthetic rate is one of the key factors limiting yield of cotton. Reactive oxygen species (ROS) generated by abiotic stress imposes numerous detrimental effects and causes tremendous loss of yield. It is worth to study whether ROS scavenging enzymes could affect yield through regulating photosynthetic rate in cotton. In this study, we created transgenic cotton with changes of endogenous ROS by overexpressing or suppressing the expression of cytosolic ascorbate peroxidases (APXs), which are hydrogen peroxide (H2O2) scavenging enzymes in plants. The suppression of cytosolic APXs by RNAi brings about a great influence on plant growth and development. Plant height and leaf size declined, and yield-related traits including single boll weight, seed weight, seed size, and lint weight dropped significantly, in IAO lines (cytosolic APX-suppressed lines). The stunted plant growth was due to the decrease of plant photosynthetic rate. The evidences showed that increased ROS level in guard cells inhibited stomatal opening and suppressed the absorption of CO2 and H2O in IAO line. The decrease of water content and the increase of water loss rate in leaf exacerbated the decline of photosynthetic rate in cytosolic APX-suppressed lines. Based on these results, it implies that cytosolic APXs as a whole play an important role in maintaining REDOX balance to regulate photosynthetic rate and yield in cotton.
Collapse
Affiliation(s)
- Kai Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Zhonghua Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Hanxue Tian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xueqiong Du
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhen Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Hui Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Pengcheng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhengxiu Ye
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
50
|
Wang HQ, Sun LP, Wang LX, Fang XW, Li ZQ, Zhang FF, Hu X, Qi C, He JM. Ethylene mediates salicylic-acid-induced stomatal closure by controlling reactive oxygen species and nitric oxide production in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110464. [PMID: 32234220 DOI: 10.1016/j.plantsci.2020.110464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 05/20/2023]
Abstract
Both salicylic acid (SA) and ethylene induce stomatal closure and positively regulate stomatal immunity, but their interactions in guard cell signaling are unclear. Here, we observed that SA induced the expression of ethylene biosynthetic genes; the production of ethylene, reactive oxygen species (ROS) and nitric oxide (NO); and stomatal closure in Arabidopsis thaliana. However, SA-induced stomatal closure was inhibited by an ethylene biosynthetic inhibitor and mutations in ethylene biosynthetic genes, ethylene-signaling genes [RESPONSE TO ANTAGONIST 1 (RAN1), ETHYLENE RESPONSE 1 (ETR1), ETHYLENE INSENSITIVE 2 (EIN2), EIN3 and ARABIDOPSIS RESPONSE REGULATOR 2 (ARR2)], NADPH oxidase genes [ATRBOHD and ATRBOHF], and nitrate reductase genes (NIA1 and NIA2). Furthermore, SA-triggered ROS production in guard cells was impaired in ran1, etr1, AtrbohD and AtrbohF, but not in ein2, ein3 or arr2. SA-triggered NO production was impaired in all ethylene-signaling mutants tested and in nia1 and nia2. The stomata of mutants for CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) showed constitutive ROS and NO production and closure. These results indicate that ethylene mediates SA-induced stomatal closure by activating ATRBOHD/F-mediated ROS synthesis in an RAN1-, ETR1- and CTR1-dependent manner. This in turn induces NIA1/2-mediated NO production and subsequent stomatal closure via the ETR1, EIN2, EIN3 and ARR2-dependent pathway(s).
Collapse
Affiliation(s)
- Hui-Qin Wang
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Li-Ping Sun
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Li-Xiao Wang
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiao-Wei Fang
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhong-Qi Li
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Fang-Fang Zhang
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xin Hu
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Cheng Qi
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Jun-Min He
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|