1
|
Liu Y, Liu P, Gao L, Li Y, Ren X, Jia J, Wang L, Zheng X, Tong Y, Pei H, Lu Z. Epigenomic identification of vernalization cis-regulatory elements in winter wheat. Genome Biol 2024; 25:200. [PMID: 39080779 PMCID: PMC11290141 DOI: 10.1186/s13059-024-03342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Winter wheat undergoes vernalization, a process activated by prolonged exposure to low temperatures. During this phase, flowering signals are generated and transported to the apical meristems, stimulating the transition to the inflorescence meristem while inhibiting tiller bud elongation. Although some vernalization genes have been identified, the key cis-regulatory elements and precise mechanisms governing this process in wheat remain largely unknown. RESULTS In this study, we construct extensive epigenomic and transcriptomic profiling across multiple tissues-leaf, axillary bud, and shoot apex-during the vernalization of winter wheat. Epigenetic modifications play a crucial role in eliciting tissue-specific responses and sub-genome-divergent expressions during vernalization. Notably, we observe that H3K27me3 primarily regulates vernalization-induced genes and has limited influence on vernalization-repressed genes. The integration of these datasets enables the identification of 10,600 putative vernalization-related regulatory elements including distal accessible chromatin regions (ACRs) situated 30Kb upstream of VRN3, contributing to the construction of a comprehensive regulatory network. Furthermore, we discover that TaSPL7/15, integral components of the aging-related flowering pathway, interact with the VRN1 promoter and VRN3 distal regulatory elements. These interactions finely regulate their expressions, consequently impacting the vernalization process and flowering. CONCLUSIONS Our study offers critical insights into wheat vernalization's epigenomic dynamics and identifies the putative regulatory elements crucial for developing wheat germplasm with varied vernalization characteristics. It also establishes a vernalization-related transcriptional network, and uncovers that TaSPL7/15 from the aging pathway participates in vernalization by directly binding to the VRN1 promoter and VRN3 distal regulatory elements.
Collapse
Affiliation(s)
- Yanhong Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Pan Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lifeng Gao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yushan Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueni Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jizeng Jia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Xu Zheng
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yiping Tong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongcui Pei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zefu Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
2
|
Bastias CC, Estarague A, Vile D, Gaignon E, Lee CR, Exposito-Alonso M, Violle C, Vasseur F. Ecological trade-offs drive phenotypic and genetic differentiation of Arabidopsis thaliana in Europe. Nat Commun 2024; 15:5185. [PMID: 38890286 PMCID: PMC11189578 DOI: 10.1038/s41467-024-49267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Plant diversity is shaped by trade-offs between traits related to competitive ability, propagule dispersal, and stress resistance. However, we still lack a clear understanding of how these trade-offs influence species distribution and population dynamics. In Arabidopsis thaliana, recent genetic analyses revealed a group of cosmopolitan genotypes that successfully recolonized Europe from its center after the last glaciation, excluding older (relict) lineages from the distribution except for their north and south margins. Here, we tested the hypothesis that cosmopolitans expanded due to higher colonization ability, while relicts persisted at the margins due to higher tolerance to competition and/or stress. We compared the phenotypic and genetic differentiation between 71 European genotypes originating from the center, and the south and north margins. We showed that a trade-off between plant fecundity and seed mass shapes the differentiation of A. thaliana in Europe, suggesting that the success of the cosmopolitan groups could be explained by their high dispersal ability. However, at both north and south margins, we found evidence of selection for alleles conferring low dispersal but highly competitive and stress-resistance abilities. This study sheds light on the role of ecological trade-offs as evolutionary drivers of the distribution and dynamics of plant populations.
Collapse
Affiliation(s)
- Cristina C Bastias
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.
- Área de Ecología, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Córdoba, Spain.
| | - Aurélien Estarague
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Denis Vile
- LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Elza Gaignon
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Cheng-Ruei Lee
- Institute of Ecology and Evolutionary Biology & Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | | | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | |
Collapse
|
3
|
Rodríguez Del Río Á, Monteagudo A, Contreras-Moreira B, Kiss T, Mayer M, Karsai I, Igartua E, Casas AM. Diversity of gene expression responses to light quality in barley. Sci Rep 2023; 13:17143. [PMID: 37816785 PMCID: PMC10564772 DOI: 10.1038/s41598-023-44263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Light quality influence on barley development is poorly understood. We exposed three barley genotypes with either sensitive or insensitive response to two light sources producing different light spectra, fluorescent bulbs, and metal halide lamps, keeping constant light intensity, duration, and temperature. Through RNA-seq, we identified the main genes and pathways involved in the genotypic responses. A first analysis identified genotypic differences in gene expression of development-related genes, including photoreceptors and flowering time genes. Genes from the vernalization pathway of light quality-sensitive genotypes were affected by fluorescent light. In particular, vernalization-related repressors reacted differently: HvVRN2 did not experience relevant changes, whereas HvOS2 expression increased under fluorescent light. To identify the genes primarily related to light quality responses, and avoid the confounding effect of plant developmental stage, genes influenced by development were masked in a second analysis. Quantitative expression levels of PPD-H1, which influenced HvVRN1 and HvFT1, explained genotypic differences in development. Upstream mechanisms (light signaling and circadian clock) were also altered, but no specific genes linking photoreceptors and the photoperiod pathway were identified. The variety of light-quality sensitivities reveals the presence of possible mechanisms of adaptation of winter and facultative barley to latitudinal variation in light quality, which deserves further research.
Collapse
Affiliation(s)
- Álvaro Rodríguez Del Río
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain
- Centro de Biotecnología y Genómica de Plantas, UPM/INIA-CSIC, Madrid, Spain
| | - Arantxa Monteagudo
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain
| | - Bruno Contreras-Moreira
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
| | - Tibor Kiss
- Centre for Agriculture Research ELKH (ATK), Martonvásár, Hungary
- Center for Research and Development, Food and Wine Center of Excellence, Eszterházy Károly Catholic University, Eger, Hungary
| | - Marianna Mayer
- Centre for Agriculture Research ELKH (ATK), Martonvásár, Hungary
| | - Ildikó Karsai
- Centre for Agriculture Research ELKH (ATK), Martonvásár, Hungary
| | - Ernesto Igartua
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain.
| | - Ana M Casas
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain
| |
Collapse
|
4
|
Markusch H, Michl-Holzinger P, Obermeyer S, Thorbecke C, Bruckmann A, Babl S, Längst G, Osakabe A, Berger F, Grasser KD. Elongation factor 1 is a component of the Arabidopsis RNA polymerase II elongation complex and associates with a subset of transcribed genes. THE NEW PHYTOLOGIST 2023; 238:113-124. [PMID: 36627730 DOI: 10.1111/nph.18724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Elongation factors modulate the efficiency of mRNA synthesis by RNA polymerase II (RNAPII) in the context of chromatin, thus contributing to implement proper gene expression programmes. The zinc-finger protein elongation factor 1 (ELF1) is a conserved transcript elongation factor (TEF), whose molecular function so far has not been studied in plants. Using biochemical approaches, we examined the interaction of Arabidopsis ELF1 with DNA and histones in vitro and with the RNAPII elongation complex in vivo. In addition, cytological assays demonstrated the nuclear localisation of the protein, and by means of double-mutant analyses, interplay with genes encoding other elongation factors was explored. The genome-wide distribution of ELF1 was addressed by chromatin immunoprecipitation. ELF1 isolated from Arabidopsis cells robustly copurified with RNAPII and various other elongation factors including SPT4-SPT5, SPT6, IWS1, FACT and PAF1C. Analysis of a CRISPR-Cas9-mediated gene editing mutant of ELF1 revealed distinct genetic interactions with mutants deficient in other elongation factors. Moreover, ELF1 associated with genomic regions actively transcribed by RNAPII. However, ELF1 occupied only c. 33% of the RNAPII transcribed loci with preference for inducible rather than constitutively expressed genes. Collectively, these results establish that Arabidopsis ELF1 shares several characteristic attributes with RNAPII TEFs.
Collapse
Affiliation(s)
- Hanna Markusch
- Cell Biology & Plant Biochemistry, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Philipp Michl-Holzinger
- Cell Biology & Plant Biochemistry, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Simon Obermeyer
- Cell Biology & Plant Biochemistry, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Claudia Thorbecke
- Cell Biology & Plant Biochemistry, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Astrid Bruckmann
- Institute for Biochemistry I, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Sabrina Babl
- Institute for Biochemistry III, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Gernot Längst
- Institute for Biochemistry III, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Akihisa Osakabe
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Klaus D Grasser
- Cell Biology & Plant Biochemistry, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| |
Collapse
|
5
|
Torres E, García-Fernández A, Iñigo D, Lara-Romero C, Morente-López J, Prieto-Benítez S, Rubio Teso ML, Iriondo JM. Facilitated Adaptation as A Conservation Tool in the Present Climate Change Context: A Methodological Guide. PLANTS (BASEL, SWITZERLAND) 2023; 12:1258. [PMID: 36986946 PMCID: PMC10053585 DOI: 10.3390/plants12061258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Climate change poses a novel threat to biodiversity that urgently requires the development of adequate conservation strategies. Living organisms respond to environmental change by migrating to locations where their ecological niche is preserved or by adapting to the new environment. While the first response has been used to develop, discuss and implement the strategy of assisted migration, facilitated adaptation is only beginning to be considered as a potential approach. Here, we present a review of the conceptual framework for facilitated adaptation, integrating advances and methodologies from different disciplines. Briefly, facilitated adaptation involves a population reinforcement that introduces beneficial alleles to enable the evolutionary adaptation of a focal population to pressing environmental conditions. To this purpose, we propose two methodological approaches. The first one (called pre-existing adaptation approach) is based on using pre-adapted genotypes existing in the focal population, in other populations, or even in closely related species. The second approach (called de novo adaptation approach) aims to generate new pre-adapted genotypes from the diversity present in the species through artificial selection. For each approach, we present a stage-by-stage procedure, with some techniques that can be used for its implementation. The associated risks and difficulties of each approach are also discussed.
Collapse
Affiliation(s)
- Elena Torres
- Departamento de Biotecnología-Biología Vegetal, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Alfredo García-Fernández
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - Diana Iñigo
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - Carlos Lara-Romero
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - Javier Morente-López
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
- Grupo de Investigación de Ecología y Evolución en Islas, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 Tenerife, Spain
| | - Samuel Prieto-Benítez
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
- Ecotoxicology of Air Pollution, Environmental Department, CIEMAT, 28040 Madrid, Spain
| | - María Luisa Rubio Teso
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - José M. Iriondo
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| |
Collapse
|
6
|
Michaud O, Krahmer J, Galbier F, Lagier M, Galvão VC, Ince YÇ, Trevisan M, Knerova J, Dickinson P, Hibberd JM, Zeeman SC, Fankhauser C. Abscisic acid modulates neighbor proximity-induced leaf hyponasty in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:542-557. [PMID: 36135791 PMCID: PMC9806605 DOI: 10.1093/plphys/kiac447] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/08/2022] [Indexed: 05/27/2023]
Abstract
Leaves of shade-avoiding plants such as Arabidopsis (Arabidopsis thaliana) change their growth pattern and position in response to low red to far-red ratios (LRFRs) encountered in dense plant communities. Under LRFR, transcription factors of the phytochrome-interacting factor (PIF) family are derepressed. PIFs induce auxin production, which is required for promoting leaf hyponasty, thereby favoring access to unfiltered sunlight. Abscisic acid (ABA) has also been implicated in the control of leaf hyponasty, with gene expression patterns suggesting that LRFR regulates the ABA response. Here, we show that LRFR leads to a rapid increase in ABA levels in leaves. Changes in ABA levels depend on PIFs, which regulate the expression of genes encoding isoforms of the enzyme catalyzing a rate-limiting step in ABA biosynthesis. Interestingly, ABA biosynthesis and signaling mutants have more erect leaves than wild-type Arabidopsis under white light but respond less to LRFR. Consistent with this, ABA application decreases leaf angle under white light; however, this response is inhibited under LRFR. Tissue-specific interference with ABA signaling indicates that an ABA response is required in different cell types for LRFR-induced hyponasty. Collectively, our data indicate that LRFR triggers rapid PIF-mediated ABA production. ABA plays a different role in controlling hyponasty under white light than under LRFR. Moreover, ABA exerts its activity in multiple cell types to control leaf position.
Collapse
Affiliation(s)
| | - Johanna Krahmer
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Génopode Building, Lausanne CH-1015, Switzerland
| | - Florian Galbier
- Plant Biochemistry, Department of Biology, ETH Zürich, Universität-Str. 2, CH-8092 Zürich, Switzerland
| | | | | | | | - Martine Trevisan
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Génopode Building, Lausanne CH-1015, Switzerland
| | - Jana Knerova
- Department of Plant Sciences, Downing Street, Cambridge, University of Cambridge, CB2 3EA, UK
| | - Patrick Dickinson
- Department of Plant Sciences, Downing Street, Cambridge, University of Cambridge, CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, Downing Street, Cambridge, University of Cambridge, CB2 3EA, UK
| | - Samuel C Zeeman
- Plant Biochemistry, Department of Biology, ETH Zürich, Universität-Str. 2, CH-8092 Zürich, Switzerland
| | | |
Collapse
|
7
|
Estarague A, Vasseur F, Sartori K, Bastias CC, Cornet D, Rouan L, Beurier G, Exposito-Alonso M, Herbette S, Bresson J, Vile D, Violle C. Into the range: a latitudinal gradient or a center-margins differentiation of ecological strategies in Arabidopsis thaliana? ANNALS OF BOTANY 2022; 129:343-356. [PMID: 34918027 PMCID: PMC8835660 DOI: 10.1093/aob/mcab149] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS Determining within-species large-scale variation in phenotypic traits is central to elucidate the drivers of species' ranges. Intraspecific comparisons offer the opportunity to understand how trade-offs and biogeographical history constrain adaptation to contrasted environmental conditions. Here we test whether functional traits, ecological strategies from the CSR scheme and phenotypic plasticity in response to abiotic stress vary along a latitudinal or a center- margins gradient within the native range of Arabidopsis thaliana. METHODS We experimentally examined the phenotypic outcomes of plant adaptation at the center and margins of its geographic range using 30 accessions from southern, central and northern Europe. We characterized the variation of traits related to stress tolerance, resource use, colonization ability, CSR strategy scores, survival and fecundity in response to high temperature (34 °C) or frost (- 6 °C), combined with a water deficit treatment. KEY RESULTS We found evidence for both a latitudinal and a center-margins differentiation for the traits under scrutiny. Age at maturity, leaf dry matter content, specific leaf area and leaf nitrogen content varied along a latitudinal gradient. Northern accessions presented a greater survival to stress than central and southern accessions. Leaf area, C-scores, R-scores and fruit number followed a center-margins differentiation. Central accessions displayed a higher phenotypic plasticity than northern and southern accessions for most studied traits. CONCLUSIONS Traits related to an acquisitive/conservative resource-use trade-off followed a latitudinal gradient. Traits associated with a competition/colonization trade-off differentiated along the historic colonization of the distribution range and then followed a center-margins differentiation. Our findings pinpoint the need to consider the joint effect of evolutionary history and environmental factors when examining phenotypic variation across the distribution range of a species.
Collapse
Affiliation(s)
- Aurélien Estarague
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, F-34293, Montpellier, France
- Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), INRAE, Montpellier SupAgro, UMR759, F-34060, Montpellier, France
| | - François Vasseur
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, F-34293, Montpellier, France
| | - Kevin Sartori
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, F-34293, Montpellier, France
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Denis Cornet
- CIRAD, UMR AGAP Institut, F-34398, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France
| | - Lauriane Rouan
- CIRAD, UMR AGAP Institut, F-34398, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France
| | - Gregory Beurier
- CIRAD, UMR AGAP Institut, F-34398, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Justine Bresson
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, F-34293, Montpellier, France
| | - Denis Vile
- Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), INRAE, Montpellier SupAgro, UMR759, F-34060, Montpellier, France
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, F-34293, Montpellier, France
| |
Collapse
|
8
|
Xu J, Wang JJ, Xue HW, Zhang GH. Leaf direction: Lamina joint development and environmental responses. PLANT, CELL & ENVIRONMENT 2021; 44:2441-2454. [PMID: 33866581 DOI: 10.1111/pce.14065] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Plant architecture plays a major role in canopy photosynthesis and biomass production, and plants adjust their growth (and thus architecture) in response to changing environments. Leaf angle is one of the most important traits in rice (Oryza sativa L.) plant architecture, because leaf angle strongly affects leaf direction and rice production, with more-erect leaves being advantageous for high-density plantings. The degree of leaf bending depends on the morphology of the lamina joint, which connects the leaf and the sheath. In this review, we discuss cell morphology in different lamina joint tissues and describe the underlying genetic network that governs this morphology and thus regulates leaf direction. Furthermore, we focus on the mechanism by how environmental factors influence rice leaf angle. Our review provides a theoretical framework for the future genetic improvement of rice leaf orientation and plant architecture.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jia-Jia Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Hong-Wei Xue
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Guang-Heng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
9
|
Anstett DN, Branch HA, Angert AL. Regional differences in rapid evolution during severe drought. Evol Lett 2021; 5:130-142. [PMID: 33868709 PMCID: PMC8045920 DOI: 10.1002/evl3.218] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/06/2020] [Accepted: 01/15/2021] [Indexed: 11/09/2022] Open
Abstract
Climate change is increasing drought intensity, threatening biodiversity. Rapid evolution of drought adaptations might be required for population persistence, particularly in rear-edge populations that may already be closer to physiological limits. Resurrection studies are a useful tool to assess adaptation to climate change, yet these studies rarely encompass the geographic range of a species. Here, we sampled 11 populations of scarlet monkeyflower (Mimulus cardinalis), collecting seeds across the plants' northern, central, and southern range to track trait evolution from the lowest to the greatest moisture anomaly over a 7-year period. We grew families generated from these populations across well-watered and terminal drought treatments in a greenhouse and quantified five traits associated with dehydration escape and avoidance. When considering pre-drought to peak-drought phenotypes, we find that later date of flowering evolved across the range of M. cardinalis, suggesting a shift away from dehydration escape. Instead, traits consistent with dehydration avoidance evolved, with smaller and/or thicker leaves evolving in central and southern regions. The southern region also saw a loss of plasticity in these leaf traits by the peak of the drought, whereas flowering time remained plastic across all regions. This observed shift in traits from escape to avoidance occurred only in certain regions, revealing the importance of geographic context when examining adaptations to climate change.
Collapse
Affiliation(s)
- Daniel N Anstett
- Biodiversity Research Centre and Department of Botany University of British Columbia Vancouver British Columbia V6T 1Z4 Canada
| | - Haley A Branch
- Biodiversity Research Centre and Department of Botany University of British Columbia Vancouver British Columbia V6T 1Z4 Canada
| | - Amy L Angert
- Biodiversity Research Centre and Department of Botany University of British Columbia Vancouver British Columbia V6T 1Z4 Canada.,Department of Zoology University of British Columbia Vancouver British Columbia V6T 1Z4 Canada
| |
Collapse
|
10
|
Messerman AF, Leal M. Inter- and intraspecific variation in juvenile metabolism and water loss among five biphasic amphibian species. Oecologia 2020; 194:371-382. [PMID: 33057838 DOI: 10.1007/s00442-020-04780-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022]
Abstract
Population persistence is informed by the ability of individuals to cope with local abiotic conditions, which is commonly mediated by physiological traits. Among biphasic amphibians, juveniles-which are infrequently studied but play a key role in amphibian population dynamics-are the first life stage to experience terrestrial conditions following the aquatic larval stage. To illuminate phenotypic variation that may allow juveniles to survive the physiological challenges presented by this transition, we examined respiratory surface area water loss (RSAWL) and standard metabolic rates (SMR) among juveniles reared under common larval conditions for five salamander species (Ambystoma annulatum, A. maculatum, A. opacum, A. talpoideum, and A. texanum) collected across ~ 200 km of latitude in Missouri, USA. We found that SMR described 34% of variation in RSAWL, suggesting that physiological water conservation may be limited by energetic regulation among these species, and vice versa. On average, species differed in juvenile SMR and residual values of RSAWL (corrected for body size/shape) by 0.04 mL [Formula: see text] and 0.16, respectively, possibly because of distinct species ecologies. For example, A. annulatum had higher SMR and RSAWL compared to broadly distributed study species, potentially associated with a relatively narrow range of environmental conditions experienced across the small geographic distribution of A. annulatum. Latitude correlated negatively with temperature and precipitation, and positively with RSAWL, suggesting that variation in RSAWL may be adaptive to local conditions. We provide evidence that species differences likely have a genetic basis, reflecting selection favoring species divergence to effectively use distinct microhabitats.
Collapse
Affiliation(s)
- Arianne F Messerman
- Department of Biology, University of Miami, 1301 Memorial Drive, 113 Cox Science Building, Coral Gables, FL, 33146, USA.
| | - Manuel Leal
- Division of Biological Sciences, Univeristy of Missouri, 612 Hitt Street, 105 Tucker Hall, Columbia, MO, 65211, USA
| |
Collapse
|
11
|
Blonder B, Escobar S, Kapás RE, Michaletz ST. Low predictability of energy balance traits and leaf temperature metrics in desert, montane and alpine plant communities. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13643] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Benjamin Blonder
- Rocky Mountain Biological Laboratory Crested Butte CO USA
- Environmental Change Institute School of Geography and the Environment University of Oxford Oxford UK
- Department of Environmental Science, Policy, and Management University of California Berkeley CA USA
| | | | - Rozália E. Kapás
- Rocky Mountain Biological Laboratory Crested Butte CO USA
- Department of Physical Geography Stockholm University Stockholm Sweden
| | - Sean T. Michaletz
- Rocky Mountain Biological Laboratory Crested Butte CO USA
- Earth and Environmental Sciences Division Los Alamos National Laboratory Los Alamos NM USA
- Department of Botany and Biodiversity Research Centre University of British Columbia Vancouver BC Canada
| |
Collapse
|
12
|
Gupta S, Rosenthal DM, Stinchcombe JR, Baucom RS. The remarkable morphological diversity of leaf shape in sweet potato (Ipomoea batatas): the influence of genetics, environment, and G×E. THE NEW PHYTOLOGIST 2020; 225:2183-2195. [PMID: 31652341 DOI: 10.1111/nph.16286] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
Leaf shape, a spectacularly diverse plant trait, varies across taxonomic levels, geography and in response to environmental differences. However, comprehensive intraspecific analyses of leaf shape variation across variable environments is surprisingly absent. Here, we performed a multilevel analysis of leaf shape using diverse accessions of sweet potato (Ipomoea batatas), and uncovered the role of genetics, environment, and G×E on this important trait. We examined leaf shape using a variety of morphometric analyses, and complement this with a transcriptomic survey to identify gene expression changes associated with shape variation. Additionally, we examined the role of genetics and environment on leaf shape by performing field studies in two geographically separate common gardens. We showed that extensive leaf shape variation exists within I. batatas, and identified promising candidate genes associated with this variation. Interestingly, when considering traditional measures, we found that genetic factors are largely responsible for most of leaf shape variation, but that the environment is highly influential when using more quantitative measures via leaf outlines. This extensive and multilevel examination of leaf shape shows an important role of genetics underlying a potentially important agronomic trait, and highlights that the environment can be a strong influence when using more quantitative measures of leaf shape.
Collapse
Affiliation(s)
- Sonal Gupta
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48105, USA
| | - David M Rosenthal
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Regina S Baucom
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48105, USA
| |
Collapse
|
13
|
Clark JS, Poore AGB, Doblin MA. Shaping up for stress: Physiological flexibility is key to survivorship in a habitat-forming macroalga. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:346-355. [PMID: 30388674 DOI: 10.1016/j.jplph.2018.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/09/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Organisms from all domains of life can have highly variable morphologies, with this plasticity suggested to increase fitness and survivability under stressful conditions. Predicting how organisms will adapt to environmental change requires an understanding of how variable morphologies perform under environmental stress. Morphological plasticity has been documented within marine macroalgae inhabiting environmental gradients, however the functional consequences of this variation has been rarely tested. In this study, form-function was assessed in the habitat-forming, intertidal macroalga Hormosira banksii. Morphological variation was quantified on two spatial scales (tidal gradient versus latitudinal gradient) and the performance tested (relative water content and photosynthetic efficiency) of morphological variants during heat and desiccation stress. At regional scales, individuals at the warm distributional edge were overall smaller in size, and had smaller vesicles (higher surface area to volume ratio; SA:VOL) than those from central populations. At local scales, individuals high on the shore were generally shorter and had larger vesicles than those low on the shore. Vesicle morphology (SA:VOL) was found to predict relative water content and photosynthetic performance during desiccation and rehydration. Differences in SA:VOL of vesicles between heights on the shore may reflect water requirements needed to maintain tissue hydration for photosynthesis during low tide. Warm-edge populations showed increased thermal sensitivity as indicated by decreased photosynthetic yield of PSII and delays in recovery after desiccation. Sensitivities to higher temperatures amongst warm-edge populations are potentially due to smaller fluctuations in regional temperatures as well as their morphology. This study provides a mechanistic understanding of the morphological variation among H. banksii populations. It suggests that H. banksii has a high degree of morphological plasticity reflecting local climate, topography and environmental conditions, with this morphological variation having functional consequences. Morphological variation across local and regional scales will be important for resilience of this species to future climate warming.
Collapse
Affiliation(s)
- Jennifer S Clark
- Climate Change Cluster (C3), University of Technology Sydney, P.O. Box 123, Broadway, New South Wales, 2007, Australia.
| | - Alistair G B Poore
- Evolution and Ecology Research Centre, School of Biological Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia.
| | - Martina A Doblin
- Climate Change Cluster (C3), University of Technology Sydney, P.O. Box 123, Broadway, New South Wales, 2007, Australia.
| |
Collapse
|
14
|
Ozaki H, Oguchi R, Hikosaka K. Dependence of functional traits related to growth rates and their CO 2 response on multiple habitat climate factors across Arabidopsis thaliana populations. JOURNAL OF PLANT RESEARCH 2018; 131:987-999. [PMID: 30046937 DOI: 10.1007/s10265-018-1058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
The values of many plant traits are often different even within a species as a result of local adaptation. Here, we studied how multiple climate variables influence trait values in Arabidopsis thaliana grown under common conditions. We examined 9 climate variables and 29 traits related to vegetative growth rate in 44 global A. thaliana accessions grown at ambient or elevated CO2 concentration ([CO2]) and applied a multiple regression analysis. We found that genetic variations in the traits related to growth rates were associated with various climate variables. At ambient [CO2], plant size was positively correlated with precipitation in the original habitat. This may be a result of larger biomass investment in roots at the initial stage in plants adapting to a lower precipitation. Stomatal conductance and photosynthetic nitrogen use efficiency were negatively correlated with vapor pressure deficit, probably as a result of the trade-off between photosynthetic water- and nitrogen-use efficiency. These results suggest that precipitation and air humidity influence belowground and aboveground traits, respectively. Elevated [CO2] altered climate dependences in some of the studied traits. The CO2 response of relative growth rate was negatively correlated with altitude, indicating that plants inhabiting a higher altitude have less plasticity to changing [CO2]. These results are useful not only for understanding evolutionary process but also to predict the plant species that are favored under future global change.
Collapse
Affiliation(s)
- Hiroshi Ozaki
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan.
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Riichi Oguchi
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Kouki Hikosaka
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| |
Collapse
|
15
|
Muir CD, Angert AL. Grow with the flow: a latitudinal cline in physiology is associated with more variable precipitation in Erythranthe cardinalis. J Evol Biol 2017; 30:2189-2203. [PMID: 28977720 DOI: 10.1111/jeb.13184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/24/2017] [Accepted: 09/28/2017] [Indexed: 01/19/2023]
Abstract
Local adaptation is commonly observed in nature: organisms perform well in their natal environment, but poorly outside it. Correlations between traits and latitude, or latitudinal clines, are among the most common pieces of evidence for local adaptation, but identifying the traits under selection and the selective agents is challenging. Here, we investigated a latitudinal cline in growth and photosynthesis across 16 populations of the perennial herb Erythranthe cardinalis (Phrymaceae). Using machine learning methods, we identify interannual variation in precipitation as a likely selective agent: southern populations from more variable environments had higher photosynthetic rates and grew faster. We hypothesize that selection may favour a more annualized life history - grow now rather than save for next year - in environments where severe droughts occur more often. Thus, our study provides insight into how species may adapt if Mediterranean climates become more variable due to climate change.
Collapse
Affiliation(s)
- C D Muir
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - A L Angert
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, BC, Canada.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Lewandowska-Sabat AM, Fjellheim S, Olsen JE, Rognli OA. Local Populations of Arabidopsis thaliana Show Clear Relationship between Photoperiodic Sensitivity of Flowering Time and Altitude. FRONTIERS IN PLANT SCIENCE 2017; 8:1046. [PMID: 28659966 PMCID: PMC5469908 DOI: 10.3389/fpls.2017.01046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/31/2017] [Indexed: 05/26/2023]
Abstract
Adaptation of plants to local conditions that vary substantially within their geographic range is essential for seasonal timing of flowering, a major determinant of plant reproductive success. This study investigates photoperiodic responses in natural populations of Arabidopsis thaliana from high northern latitudes and their significance for local adaptation. Thirty lineages from ten local A. thaliana populations, representing different locations across an altitudinal gradient (2-850 m a.s.l.) in Norway, were grown under uniform controlled conditions, and used to screen for responses to five different photoperiods. We studied relationships between variation in photoperiodic sensitivity of flowering time, altitude, and climatic factors associated with the sites of origin. We found that variation in response to photoperiod is significantly correlated with altitude and climatic variables associated with the sites of origin of the populations. Populations originating from lower altitudes showed stronger photoperiodic sensitivity than populations from higher altitudes. Our results indicate that the altitudinal climatic gradient generates clinal variation in adaptive traits in A. thaliana.
Collapse
|
17
|
Burgess AJ, Retkute R, Herman T, Murchie EH. Exploring Relationships between Canopy Architecture, Light Distribution, and Photosynthesis in Contrasting Rice Genotypes Using 3D Canopy Reconstruction. FRONTIERS IN PLANT SCIENCE 2017; 8:734. [PMID: 28567045 PMCID: PMC5434157 DOI: 10.3389/fpls.2017.00734] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/20/2017] [Indexed: 05/19/2023]
Abstract
The arrangement of leaf material is critical in determining the light environment, and subsequently the photosynthetic productivity of complex crop canopies. However, links between specific canopy architectural traits and photosynthetic productivity across a wide genetic background are poorly understood for field grown crops. The architecture of five genetically diverse rice varieties-four parental founders of a multi-parent advanced generation intercross (MAGIC) population plus a high yielding Philippine variety (IR64)-was captured at two different growth stages using a method for digital plant reconstruction based on stereocameras. Ray tracing was employed to explore the effects of canopy architecture on the resulting light environment in high-resolution, whilst gas exchange measurements were combined with an empirical model of photosynthesis to calculate an estimated carbon gain and total light interception. To further test the impact of different dynamic light patterns on photosynthetic properties, an empirical model of photosynthetic acclimation was employed to predict the optimal light-saturated photosynthesis rate (Pmax ) throughout canopy depth, hypothesizing that light is the sole determinant of productivity in these conditions. First, we show that a plant type with steeper leaf angles allows more efficient penetration of light into lower canopy layers and this, in turn, leads to a greater photosynthetic potential. Second the predicted optimal Pmax responds in a manner that is consistent with fractional interception and leaf area index across this germplasm. However, measured Pmax , especially in lower layers, was consistently higher than the optimal Pmax indicating factors other than light determine photosynthesis profiles. Lastly, varieties with more upright architecture exhibit higher maximum quantum yield of photosynthesis indicating a canopy-level impact on photosynthetic efficiency.
Collapse
Affiliation(s)
- Alexandra J. Burgess
- Division of Plant and Crop Sciences, School of Biosciences, University of NottinghamLoughborough, UK
- Crops For the FutureSemenyih, Malaysia
| | - Renata Retkute
- School of Life Sciences, The University of WarwickCoventry, UK
| | - Tiara Herman
- School of Biosciences, University of Nottingham Malaysia CampusSemenyih, Malaysia
| | - Erik H. Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of NottinghamLoughborough, UK
| |
Collapse
|
18
|
Moustafa MF, Hesham AEL, Quraishi MS, Alrumman SA. Variations in genetic and chemical constituents of Ziziphus spina-christi L. populations grown at various altitudinal zonation up to 2227 m height. J Genet Eng Biotechnol 2016; 14:349-362. [PMID: 30647633 PMCID: PMC6299872 DOI: 10.1016/j.jgeb.2016.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/05/2016] [Accepted: 09/20/2016] [Indexed: 11/18/2022]
Abstract
Altitudinal gradient-defined specific environmental conditions could lead to genetics and chemical variations among individuals of the same species. By using RAPD, ISSR, GC-MS and HPLC analysis, the genetic and chemical diversity of Ziziphus spina-christi plants at various altitudinal gradient namely; Abha (2227.86 m), Dala Valley (1424 m), Rakhma Valley (1000 m), Raheb Valley (505 m) and Al-Marbh (147 m) were estimated. RAPD markers revealed that the highest similarity value (40.22%) was between Raheb Valley and Al-Marbh while the lowest similarity (10.08%) was between Abha and Raheb Valley. Based on ISSR markers the highest similarity value (61.54%) was also between Raheb Valley and Al-Marbh, while the lowest similarity (26.84%) was between Abha and Rakhma Valley. GC-MS results showed the presence of various phytochemical constituents in each population. The dendrogram based on chemical compounds separated the Z. spina-christi grown at the highest elevations (Abha) from the populations in lower elevations. HPLC analysis showed that the leaves of Z. spina-christi plant contain considerable amount of vitamins including B1, B12, B2 and folic acid. In conclusion, there is a close relation between altitudinal gradients, genetic diversity and chemical constituents of the leaves of Z. spina-christi plants.
Collapse
Affiliation(s)
- Mahmoud F. Moustafa
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Botany Department, Faculty of Science, South Valley University, Qena, Egypt
| | - Abd El-Latif Hesham
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Genetics Department, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Manal S. Quraishi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Sulaiman A. Alrumman
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
19
|
Ferris KG, Barnett LL, Blackman BK, Willis JH. The genetic architecture of local adaptation and reproductive isolation in sympatry within the Mimulus guttatus species complex. Mol Ecol 2016; 26:208-224. [PMID: 27439150 DOI: 10.1111/mec.13763] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/05/2023]
Abstract
The genetic architecture of local adaptation has been of central interest to evolutionary biologists since the modern synthesis. In addition to classic theory on the effect size of adaptive mutations by Fisher, Kimura and Orr, recent theory addresses the genetic architecture of local adaptation in the face of ongoing gene flow. This theory predicts that with substantial gene flow between populations local adaptation should proceed primarily through mutations of large effect or tightly linked clusters of smaller effect loci. In this study, we investigate the genetic architecture of divergence in flowering time, mating system-related traits, and leaf shape between Mimulus laciniatus and a sympatric population of its close relative M. guttatus. These three traits are probably involved in M. laciniatus' adaptation to a dry, exposed granite outcrop environment. Flowering time and mating system differences are also reproductive isolating barriers making them 'magic traits'. Phenotypic hybrids in this population provide evidence of recent gene flow. Using next-generation sequencing, we generate dense SNP markers across the genome and map quantitative trait loci (QTLs) involved in flowering time, flower size and leaf shape. We find that interspecific divergence in all three traits is due to few QTL of large effect including a highly pleiotropic QTL on chromosome 8. This QTL region contains the pleiotropic candidate gene TCP4 and is involved in ecologically important phenotypes in other Mimulus species. Our results are consistent with theory, indicating that local adaptation and reproductive isolation with gene flow should be due to few loci with large and pleiotropic effects.
Collapse
Affiliation(s)
- Kathleen G Ferris
- Department of Biology, Duke University, 125 Science Drive, Durham, NC, 27705, USA
| | - Laryssa L Barnett
- Department of Biology, Duke University, 125 Science Drive, Durham, NC, 27705, USA
| | - Benjamin K Blackman
- Department of Biology, University of Virginia, 485 McCormick Road, Charlottesville, VA, 22904, USA
| | - John H Willis
- Department of Biology, Duke University, 125 Science Drive, Durham, NC, 27705, USA
| |
Collapse
|
20
|
Adams WW, Stewart JJ, Cohu CM, Muller O, Demmig-Adams B. Habitat Temperature and Precipitation of Arabidopsis thaliana Ecotypes Determine the Response of Foliar Vasculature, Photosynthesis, and Transpiration to Growth Temperature. FRONTIERS IN PLANT SCIENCE 2016; 7:1026. [PMID: 27504111 PMCID: PMC4959142 DOI: 10.3389/fpls.2016.01026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 06/30/2016] [Indexed: 05/20/2023]
Abstract
Acclimatory adjustments of foliar vascular architecture, photosynthetic capacity, and transpiration rate in Arabidopsis thaliana ecotypes (Italian, Polish [Col-0], Swedish) were characterized in the context of habitat of origin. Temperatures of the habitat of origin decreased linearly with increasing habitat latitude, but habitat precipitation was greatest in Italy, lowest in Poland, and intermediate in Sweden. Plants of the three ecotypes raised under three different growth temperature regimes (low, moderate, and high) exhibited highest photosynthetic capacities, greatest leaf thickness, highest chlorophyll a/b ratio and levels of β-carotene, and greatest levels of wall ingrowths in phloem transfer cells, and, in the Col-0 and Swedish ecotypes, of phloem per minor vein in plants grown at the low temperature. In contrast, vein density and minor vein tracheary to sieve element ratio increased with increasing growth temperature - most strongly in Col-0 and least strongly in the Italian ecotype - and transpirational water loss correlated with vein density and number of tracheary elements per minor vein. Plotting of these vascular features as functions of climatic conditions in the habitat of origin suggested that temperatures during the evolutionary history of the ecotypes determined acclimatory responses of the foliar phloem and photosynthesis to temperature in this winter annual that upregulates photosynthesis in response to lower temperature, whereas the precipitation experienced during the evolutionary history of the ecotypes determined adjustment of foliar vein density, xylem, and transpiration to temperature. In particular, whereas photosynthetic capacity, leaf thickness, and foliar minor vein phloem features increased linearly with increasing latitude and decreasing temperature of the habitats of origin in response to experimental growth at low temperature, transpiration rate, foliar vein density, and minor vein tracheary element numbers and cross-sectional areas increased linearly with decreasing precipitation level in the habitats of origin in response to experimental growth at high temperature. This represents a situation where temperature acclimation of the apparent capacity for water flux through the xylem and transpiration rate in a winter annual responded differently from that of photosynthetic capacity, in contrast to previous reports of strong relationships between hydraulic conductance and photosynthesis in other studies.
Collapse
Affiliation(s)
- William W. Adams
- Department of Ecology and Evolutionary Biology, University of Colorado BoulderBoulder, CO, USA
| | | | | | | | | |
Collapse
|
21
|
Schulte LJ, Clark JL, Novak SJ, Jeffries SK, Smith JF. Speciation within Columnea section Angustiflora (Gesneriaceae): islands, pollinators and climate. Mol Phylogenet Evol 2015; 84:125-44. [PMID: 25582068 DOI: 10.1016/j.ympev.2014.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 12/12/2014] [Accepted: 12/16/2014] [Indexed: 12/01/2022]
Abstract
Despite many advances in evolutionary biology, understanding the proximate mechanisms that lead to speciation for many taxonomic groups remains elusive. Phylogenetic analyses provide a means to generate well-supported estimates of species relationships. Understanding how genetic isolation (restricted gene flow) occurred in the past requires not only a well-supported molecular phylogenetic analysis, but also an understanding of when character states that define species may have changed. In this study, phylogenetic trees resolve species level relationships for fourteen of the fifteen species within Columnea section Angustiflorae (Gesneriaceae). The distributions of sister species pairs are compared and ancestral character states are reconstructed using Bayesian stochastic mapping. Climate variables were also assessed and shifts in ancestral climate conditions were mapped using SEEVA. The relationships between morphological character states and climate variables were assessed with correlation analyses. These results indicate that species in section Angustiflorae have likely diverged as a result of allopatric, parapatric, and sympatric speciation, with both biotic and abiotic forces driving morphological and phenological divergence.
Collapse
Affiliation(s)
- Lacie J Schulte
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID 83725-1515, USA
| | - John L Clark
- University of Alabama, Department of Biological Sciences, Box 870345, Tuscaloosa, AL 35487, USA
| | - Stephen J Novak
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID 83725-1515, USA
| | - Shandra K Jeffries
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID 83725-1515, USA
| | - James F Smith
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID 83725-1515, USA.
| |
Collapse
|
22
|
Zhang N, Zhao J, Lens F, de Visser J, Menamo T, Fang W, Xiao D, Bucher J, Basnet RK, Lin K, Cheng F, Wang X, Bonnema G. Morphology, carbohydrate composition and vernalization response in a genetically diverse collection of Asian and European turnips (Brassica rapa subsp. rapa). PLoS One 2014; 9:e114241. [PMID: 25474111 PMCID: PMC4256417 DOI: 10.1371/journal.pone.0114241] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 11/04/2014] [Indexed: 11/29/2022] Open
Abstract
Brassica rapa displays enormous morphological diversity, with leafy vegetables, turnips and oil crops. Turnips (Brassica rapa subsp. rapa) represent one of the morphotypes, which form tubers and can be used to study the genetics underlying storage organ formation. In the present study we investigated several characteristics of an extensive turnip collection comprising 56 accessions from both Asia (mainly Japanese origin) and Europe. Population structure was calculated using data from 280 evenly distributed SNP markers over 56 turnip accessions. We studied the anatomy of turnip tubers and measured carbohydrate composition of the mature turnip tubers of a subset of the collection. The variation in 16 leaf traits, 12 tuber traits and flowering time was evaluated in five independent experiments for the entire collection. The effect of vernalization on flowering and tuber formation was also investigated. SNP marker profiling basically divided the turnip accessions into two subpopulations, with admixture, generally corresponding with geographical origin (Europe or Asia). The enlarged turnip tuber consists of both hypocotyl and root tissue, but the proportion of the two tissues differs between accessions. The ratio of sucrose to fructose and glucose differed among accessions, while generally starch content was low. The evaluated traits segregated in both subpopulations, with leaf shape, tuber colour and number of shoots per tuber explaining most variation between the two subpopulations. Vernalization resulted in reduced flowering time and smaller tubers for the Asian turnips whereas the European turnips were less affected by vernalization.
Collapse
Affiliation(s)
- Ningwen Zhang
- Wageningen UR Plant Breeding, Wageningen, The Netherlands
| | - Jianjun Zhao
- Wageningen UR Plant Breeding, Wageningen, The Netherlands
- Horticultural College, Hebei Agricultural University, Baoding, China
| | - Frederic Lens
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Joan de Visser
- Wageningen UR Plant Breeding, Wageningen, The Netherlands
| | | | - Wen Fang
- Wageningen UR Plant Breeding, Wageningen, The Netherlands
| | - Dong Xiao
- Wageningen UR Plant Breeding, Wageningen, The Netherlands
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Johan Bucher
- Wageningen UR Plant Breeding, Wageningen, The Netherlands
| | | | - Ke Lin
- Wageningen UR Plant Breeding, Wageningen, The Netherlands
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guusje Bonnema
- Wageningen UR Plant Breeding, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
23
|
Wolfe MD, Tonsor SJ. Adaptation to spring heat and drought in northeastern Spanish Arabidopsis thaliana. THE NEW PHYTOLOGIST 2014; 201:323-334. [PMID: 24117851 DOI: 10.1111/nph.12485] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/02/2013] [Indexed: 05/23/2023]
Abstract
The extent to which a species' environmental range reflects adaptive differentiation remains an open question. Environmental gradients can lead to adaptive divergence when differences in stressors among sites along the gradient place conflicting demands on the balance of stress responses. The extent to which this is accomplished through stress tolerance vs stress avoidance is also an open question. We present results from a controlled environment study of 48 lineages of Arabidopsis thaliana collected along a gradient in northeastern Spain across which temperatures increase and precipitation decreases with decreasing elevation. We tested the extent to which clinal adaptive divergence in heat and drought is explained through tolerance and avoidance traits by subjecting plants to a dynamic growth chamber cycle of increasing heat and drought stress analogous to low elevation spring in northeastern Spain. Lineages collected at low elevation were the most fit and fitness scaled with elevation of origin. Higher fitness was associated with earlier bolting, greater early allocation to increased numbers of inflorescences, reduction in rosette leaf photosynthesis and earlier fruit ripening. We propose that this is a syndrome of avoidance through early flowering accompanied by restructuring of the organism that adapts A. thaliana to low-elevation Mediterranean climates.
Collapse
Affiliation(s)
- Marnin D Wolfe
- Department of Biological Sciences, University of Pittsburgh, 162 Crawford Hall, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Stephen J Tonsor
- Department of Biological Sciences, University of Pittsburgh, 162 Crawford Hall, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
24
|
Co-variation between seed dormancy, growth rate and flowering time changes with latitude in Arabidopsis thaliana. PLoS One 2013; 8:e61075. [PMID: 23717385 PMCID: PMC3662791 DOI: 10.1371/journal.pone.0061075] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/05/2013] [Indexed: 01/20/2023] Open
Abstract
Life-history traits controlling the duration and timing of developmental phases in the life cycle jointly determine fitness. Therefore, life-history traits studied in isolation provide an incomplete view on the relevance of life-cycle variation for adaptation. In this study, we examine genetic variation in traits covering the major life history events of the annual species Arabidopsis thaliana: seed dormancy, vegetative growth rate and flowering time. In a sample of 112 genotypes collected throughout the European range of the species, both seed dormancy and flowering time follow a latitudinal gradient independent of the major population structure gradient. This finding confirms previous studies reporting the adaptive evolution of these two traits. Here, however, we further analyze patterns of co-variation among traits. We observe that co-variation between primary dormancy, vegetative growth rate and flowering time also follows a latitudinal cline. At higher latitudes, vegetative growth rate is positively correlated with primary dormancy and negatively with flowering time. In the South, this trend disappears. Patterns of trait co-variation change, presumably because major environmental gradients shift with latitude. This pattern appears unrelated to population structure, suggesting that changes in the coordinated evolution of major life history traits is adaptive. Our data suggest that A. thaliana provides a good model for the evolution of trade-offs and their genetic basis.
Collapse
|
25
|
Quilot-Turion B, Leppälä J, Leinonen PH, Waldmann P, Savolainen O, Kuittinen H. Genetic changes in flowering and morphology in response to adaptation to a high-latitude environment in Arabidopsis lyrata. ANNALS OF BOTANY 2013; 111:957-68. [PMID: 23519836 PMCID: PMC3631339 DOI: 10.1093/aob/mct055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/29/2013] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS The adaptive plastic reactions of plant populations to changing climatic factors, such as winter temperatures and photoperiod, have changed during range shifts after the last glaciation. Timing of flowering is an adaptive trait regulated by environmental cues. Its genetics has been intensively studied in annual plants, but in perennials it is currently not well characterized. This study examined the genetic basis of differentiation in flowering time, morphology, and their plastic responses to vernalization in two locally adapted populations of the perennial Arabidopsis lyrata: (1) to determine whether the two populations differ in their vernalization responses for flowering phenology and morphology; and (2) to determine the genomic areas governing differentiation and vernalization responses. METHODS Two A. lyrata populations, from central Europe and Scandinavia, were grown in growth-chamber conditions with and without cold treatment. A QTL analysis was performed to find genomic regions that interact with vernalization. KEY RESULTS The population from central Europe flowered more rapidly and invested more in inflorescence growth than the population from alpine Scandinavia, especially after vernalization. The alpine population had consistently a low number of inflorescences and few flowers, suggesting strong constraints due to a short growing season, but instead had longer leaves and higher leaf rosettes. QTL mapping in the F2 population revealed genomic regions governing differentiation in flowering time and morphology and, in some cases, the allelic effects from the two populations on a trait were influenced by vernalization (QTL × vernalization interactions). CONCLUSIONS The results indicate that many potentially adaptive genetic changes have occurred during colonization; the two populations have diverged in their plastic responses to vernalization in traits closely connected to fitness through changes in many genomic areas.
Collapse
|
26
|
Bours R, Muthuraman M, Bouwmeester H, van der Krol A. OSCILLATOR: A system for analysis of diurnal leaf growth using infrared photography combined with wavelet transformation. PLANT METHODS 2012; 8:29. [PMID: 22867627 PMCID: PMC3489599 DOI: 10.1186/1746-4811-8-29] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/20/2012] [Indexed: 05/08/2023]
Abstract
BACKGROUND Quantification of leaf movement is an important tool for characterising the effects of environmental signals and the circadian clock on plant development. Analysis of leaf movement is currently restricted by the attachment of sensors to the plant or dependent upon visible light for time-lapse photography. The study of leaf growth movement rhythms in mature plants under biological relevant conditions, e.g. diurnal light and dark conditions, is therefore problematic. RESULTS Here we present OSCILLATOR, an affordable system for the analysis of rhythmic leaf growth movement in mature plants. The system contains three modules: (1) Infrared time-lapse imaging of growing mature plants (2) measurement of projected distances between leaf tip and plant apex (leaf tip tracking growth-curves) and (3) extraction of phase, period and amplitude of leaf growth oscillations using wavelet analysis. A proof-of-principle is provided by characterising parameters of rhythmic leaf growth movement of different Arabidopsis thaliana accessions as well as of Petunia hybrida and Solanum lycopersicum plants under diurnal conditions. The amplitude of leaf oscillations correlated to published data on leaf angles, while amplitude and leaf length did not correlate, suggesting a distinct leaf growth profile for each accession. Arabidopsis mutant accession Landsberg erecta displayed a late phase (timing of peak oscillation) compared to other accessions and this trait appears unrelated to the ERECTA locus. CONCLUSIONS OSCILLATOR is a low cost and easy to implement system that can accurately and reproducibly quantify rhythmic growth of mature plants for different species under diurnal light/dark cycling.
Collapse
Affiliation(s)
- Ralph Bours
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Manickam Muthuraman
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Alexander van der Krol
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| |
Collapse
|
27
|
Valluru R, Link J, Claupein W. Consequences of early chilling stress in two Triticum species: plastic responses and adaptive significance. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:641-51. [PMID: 22309058 DOI: 10.1111/j.1438-8677.2011.00540.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Phenotypic plasticity of two primitive wheat species (Triticum monococcum L. and Triticum dicoccum S.) was studied in response to early chilling stress. Selection pressure differentials, gradients and plasticity costs on plant morphogenesis, growth and reserve carbohydrate consumption were estimated. Regression analysis was applied to investigate differential developmental changes and patterns between treatments. Four-day-old seedlings of T. monococcum and T. dicoccum, differing in plant stature and reserve carbohydrates, were given an early chilling temperature (4 °C for 42 day) and compared with control plants grown at 23 °C. Early chilling stress resulted in a significant increase in leaf mass ratio (LMR) and relative growth rate (RGR), a reduction in flag leaf size, total biomass, specific leaf area (SLA) and reserve carbohydrate storage at flowering, together with advanced onset of flowering. Selection pressure within the early chilling environment favoured early flowering, smaller SLA, higher LMR and lower reserve carbohydrates, suggesting the observed responses were adaptive. Furthermore, a regression of daily cumulative plant biomass derived from a crop growth simulation model (CERES-Wheat) on crop vegetation period revealed a divergent developmental pattern in early-chilled plants. Using selection pressure gradient analysis, we found similar responses among these traits, except for SLA and sucrose, indicating that these two traits have indirect effects on fitness. Thus, the total effects of SLA and reserve sucrose on relative fitness seem to be buffered via the rapid growth rate in chilled plants. While lower SLA may reduce early chilling stress effects at an individual leaf level, a higher LMR and use of reserve carbohydrates indicated that compensatory growth of chilled plants during the recovery period relied on the concerted action of altered resource allocation and reserve carbohydrate consumption. However, a significant cost of plasticity was evident only for flowering time, LMR and fructan levels in the early chilling environment. Our results demonstrate that morphological and intrinsic developmental (ontogenetic) patterns in two Triticum species respond to early chilling stress.
Collapse
Affiliation(s)
- R Valluru
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany.
| | | | | |
Collapse
|
28
|
Vile D, Pervent M, Belluau M, Vasseur F, Bresson J, Muller B, Granier C, Simonneau T. Arabidopsis growth under prolonged high temperature and water deficit: independent or interactive effects? PLANT, CELL & ENVIRONMENT 2012; 35:702-18. [PMID: 21988660 DOI: 10.1111/j.1365-3040.2011.02445.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
High temperature (HT) and water deficit (WD) are frequent environmental constraints restricting plant growth and productivity. These stresses often occur simultaneously in the field, but little is known about their combined impacts on plant growth, development and physiology. We evaluated the responses of 10 Arabidopsis thaliana natural accessions to prolonged elevated air temperature (30 °C) and soil WD applied separately or in combination. Plant growth was significantly reduced under both stresses and their combination was even more detrimental to plant performance. The effects of the two stresses were globally additive, but some traits responded specifically to one but not the other stress. Root allocation increased in response to WD, while reproductive allocation, hyponasty and specific leaf area increased under HT. All the traits that varied in response to combined stresses also responded to at least one of them. Tolerance to WD was higher in small-sized accessions under control temperature and HT and in accessions with high biomass allocation to root under control conditions. Accessions that originate from sites with higher temperature have less stomatal density and allocate less biomass to the roots when cultivated under HT. Independence and interaction between stresses as well as the relationships between traits and stress responses are discussed.
Collapse
Affiliation(s)
- Denis Vile
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, UMR 759, INRA-SUPAGRO, F-34060 Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lee CR, Mitchell-Olds T. Quantifying effects of environmental and geographical factors on patterns of genetic differentiation. Mol Ecol 2011; 20:4631-42. [PMID: 21999331 DOI: 10.1111/j.1365-294x.2011.05310.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Elucidating the factors influencing genetic differentiation is an important task in biology, and the relative contribution from natural selection and genetic drift has long been debated. In this study, we used a regression-based approach to simultaneously estimate the quantitative contributions of environmental adaptation and isolation by distance on genetic variation in Boechera stricta, a wild relative of Arabidopsis. Patterns of discrete and continuous genetic differentiation coexist within this species. For the discrete differentiation between two major genetic groups, environment has larger contribution than geography, and we also identified a significant environment-by-geography interaction effect. Elsewhere in the species range, we found a latitudinal cline of genetic variation reflecting only isolation by distance. To further confirm the effect of environmental selection on genetic divergence, we identified the specific environmental variables predicting local genotypes in allopatric and sympatric regions. Water availability was identified as the possible cause of differential local adaptation in both geographical regions, confirming the role of environmental adaptation in driving and maintaining genetic differentiation between the two major genetic groups. In addition, the environment-by-geography interaction is further confirmed by the finding that water availability is represented by different environmental factors in the allopatric and sympatric regions. In conclusion, this study shows that geographical and environmental factors together created stronger and more discrete genetic differentiation than isolation by distance alone, which only produced a gradual, clinal pattern of genetic variation. These findings emphasize the importance of environmental selection in shaping patterns of species-wide genetic variation in the natural environment.
Collapse
Affiliation(s)
- Cheng-Ruei Lee
- Department of Biology, Duke University, PO Box 90338, Durham, NC 27708, USA
| | | |
Collapse
|
30
|
Sakr MM, Almaghrabi OA. Effect of sowing dates and vernalization on Beta vulgaris L. cv. Univers C-leaf structure. Saudi J Biol Sci 2011; 18:267-72. [PMID: 23961134 DOI: 10.1016/j.sjbs.2011.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 04/23/2011] [Accepted: 04/24/2011] [Indexed: 12/29/2022] Open
Abstract
This research was conducted to study the effect of three different sowing dates (15th October, 15th November and 15th December) and two vernalization treatments (5 °C and -20 °C) on leaf structure of Beta vulgaris L. cv. Univers. The obtained data are summarized as follows: The maximum values of the most studied parameters; lower epidermis + spongy tissue thickness, midrib, mesophyll tissue, vascular bundle, collenchymatous tissue and number of xylem vessels per arm were found as a result of 15th October sowing date treatment compared with the two other sowing dates. Furthermore, effect of the cooling treatments varied according to the recorded character, sowing date and cooling degree. Most of the vernalization treatments at early sowing dates increased the mesophyll tissue, midrib, number of vascular bundles per transverse section, vascular bundle thickness and number of xylem arms per transverse section. The two studied cooling treatments at 15th October sowing date increased both stomatal index and average number of stomata: average number of epidermis cells compared with the control. Furthermore, 15th October under -20 °C treatment led to small epidermal cells and stomata formation, straight epidermal cell walls and closed stomata in comparison to the control.
Collapse
Affiliation(s)
- Mohammed M Sakr
- Department of Science, Teachers College, King Abdul-Aziz University, P.O. Box 15758, Jeddah 21454, Saudi Arabia
| | | |
Collapse
|
31
|
Montesinos-Navarro A, Wig J, Pico FX, Tonsor SJ. Arabidopsis thaliana populations show clinal variation in a climatic gradient associated with altitude. THE NEW PHYTOLOGIST 2011; 189:282-94. [PMID: 20880224 DOI: 10.1111/j.1469-8137.2010.03479.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
• Understanding the adaptive basis of life history variation is a central goal in evolutionary ecology. The use of model species enables the combination of molecular mechanistic knowledge with ecological and evolutionary questions, but the study of life history variation in natural environments is required to merge these disciplines. • Here, we tested for clinal variation in life history and associated traits along an environmental and altitudinal gradient in the model species Arabidopsis thaliana. Seventeen natural populations of A. thaliana were geo-referenced in north-eastern Spain on a gradient in which precipitation increases but maximum spring temperature and minimum winter temperature decrease with altitude. • One hundred and eighty-nine genotypes from the 17 populations were grown under uniform controlled conditions. Variations in traits related to biomass allocation, fecundity, phenology and vegetative growth were tested for relationships with the altitude and climatic variables associated with the home sites. Above-ground mass, number of rosette leaves at bolting, developmental time and seed weight increased with the home site's altitude. Root allocation, vegetative growth during winter and number of seeds decreased with altitude. • We suggest that the differences among home sites provide clues to the variation in adaptive strategies associated with the climatic gradient. We compared these results with adaptations and clinal relationships reported for other species and with molecular mechanisms described in Arabidopsis.
Collapse
|
32
|
Poncet BN, Herrmann D, Gugerli F, Taberlet P, Holderegger R, Gielly L, Rioux D, Thuiller W, Aubert S, Manel S. Tracking genes of ecological relevance using a genome scan in two independent regional population samples of Arabis alpina. Mol Ecol 2010; 19:2896-907. [PMID: 20609082 DOI: 10.1111/j.1365-294x.2010.04696.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Understanding the genetic basis of adaptation in response to environmental variation is fundamental as adaptation plays a key role in the extension of ecological niches to marginal habitats and in ecological speciation. Based on the assumption that some genomic markers are correlated to environmental variables, we aimed to detect loci of ecological relevance in the alpine plant Arabis alpina L. sampled in two regions, the French (99 locations) and the Swiss (109 locations) Alps. We used an unusually large genome scan [825 amplified fragment length polymorphism loci (AFLPs)] and four environmental variables related to temperature, precipitation and topography. We detected linkage disequilibrium among only 3.5% of the considered AFLP loci. A population structure analysis identified no admixture in the study regions, and the French and Swiss Alps were differentiated and therefore could be considered as two independent regions. We applied generalized estimating equations (GEE) to detect ecologically relevant loci separately in the French and Swiss Alps. We identified 78 loci of ecological relevance (9%), which were mainly related to mean annual minimum temperature. Only four of these loci were common across the French and Swiss Alps. Finally, we discuss that the genomic characterization of these ecologically relevant loci, as identified in this study, opens up new perspectives for studying functional ecology in A. alpina, its relatives and other alpine plant species.
Collapse
Affiliation(s)
- Bénédicte N Poncet
- Laboratoire d'Ecologie Alpine (LECA), CNRS UMR 5553, Grenoble Université, BP 53, 2233 Rue de la Piscine, 38041 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
van Zanten M, Basten Snoek L, van Eck-Stouten E, Proveniers MCG, Torii KU, Voesenek LACJ, Peeters AJM, Millenaar FF. Ethylene-induced hyponastic growth in Arabidopsis thaliana is controlled by ERECTA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:83-95. [PMID: 19796369 DOI: 10.1111/j.1365-313x.2009.04035.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants can respond quickly and profoundly to detrimental changes in their environment. For example, Arabidopsis thaliana can induce an upward leaf movement response through differential petiole growth (hyponastic growth) to outgrow complete submergence. This response is induced by accumulation of the phytohormone ethylene in the plant. Currently, only limited information is available on how this response is molecularly controlled. In this study, we utilized quantitative trait loci (QTL) analysis of natural genetic variation among Arabidopsis accessions to isolate novel factors controlling constitutive petiole angles and ethylene-induced hyponastic growth. Analysis of mutants in various backgrounds and complementation analysis of naturally occurring mutant accessions provided evidence that the leucin-rich repeat receptor-like Ser/Thr kinase gene, ERECTA, controls ethylene-induced hyponastic growth. Moreover, ERECTA controls leaf positioning in the absence of ethylene treatment. Our data demonstrate that this is not due to altered ethylene production or sensitivity.
Collapse
Affiliation(s)
- Martijn van Zanten
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
van Zanten M, Voesenek LA, Peeters AJ, Millenaar FF. Hormone- and light-mediated regulation of heat-induced differential petiole growth in Arabidopsis. PLANT PHYSIOLOGY 2009; 151:1446-58. [PMID: 19741046 PMCID: PMC2773053 DOI: 10.1104/pp.109.144386] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/07/2009] [Indexed: 05/18/2023]
Abstract
Plants react quickly and profoundly to changes in their environment. A sudden increase in temperature, for example, induces differential petiole growth-driven upward leaf movement (hyponastic growth) in Arabidopsis (Arabidopsis thaliana). We show that accessions that face the strongest fluctuations in diurnal temperature in their natural habitat are least sensitive for heat-induced hyponastic growth. This indicates that heat-induced hyponastic growth is a trait subject to natural selection. The response is induced with kinetics remarkably similar to ethylene- and low light-induced hyponasty in several accessions. Using pharmacological assays, transcript analysis, and mutant analyses, we demonstrate that ethylene and the photoreceptor protein phytochrome B are negative regulators of heat-induced hyponastic growth and that low light, phytochrome A, auxin, polar auxin transport, and abscisic acid are positive regulators of heat-induced hyponastic growth. Furthermore, auxin, auxin polar transport, phytochrome A, phytochrome B, and cryptochromes are required for a fast induction of heat-induced hyponastic growth.
Collapse
Affiliation(s)
| | | | - Anton J.M. Peeters
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|