1
|
Guo ZH, Hu TH, Hamdan MF, Li M, Wang R, Xu J, Lung SC, Liang W, Shi J, Zhang D, Chye ML. A promoter polymorphism defines distinct roles in anther development for Col-0 and Ler-0 alleles of Arabidopsis ACYL-COA BINDING PROTEIN3. THE NEW PHYTOLOGIST 2024; 243:1424-1439. [PMID: 38922886 DOI: 10.1111/nph.19924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Acyl-CoA-Binding Proteins (ACBPs) bind acyl-CoA esters and function in lipid metabolism. Although acbp3-1, the ACBP3 mutant in Arabidopsis thaliana ecotype Col-0, displays normal floral development, the acbp3-2 mutant from ecotype Ler-0 characterized herein exhibits defective adaxial anther lobes and improper sporocyte formation. To understand these differences and identify the role of ERECTA in ACBP3 function, the acbp3 mutants and acbp3-erecta (er) lines were analyzed by microscopy for anther morphology and high-performance liquid chromatography for lipid composition. Defects in Landsberg anther development were related to the ERECTA-mediated pathway because the progenies of acbp3-2 × La-0 and acbp3-1 × er-1 in Col-0 showed normal anthers, contrasting to that of acbp3-2 in Ler-0. Polymorphism in the regulatory region of ACBP3 enabled its function in anther development in Ler-0 but not Col-0 which harbored an AT-repeat insertion. ACBP3 expression and anther development in acbp3-2 were restored using ACBP3pro (Ler)::ACBP3 not ACBP3pro (Col)::ACBP3. SPOROCYTELESS (SPL), a sporocyte formation regulator activated ACBP3 transcription in Ler-0 but not Col-0. For anther development, the ERECTA-related role of ACBP3 is required in Ler-0, but not Col-0. The disrupted promoter regulatory region for SPL binding in Col-0 eliminates the role of ACBP3 in anther development.
Collapse
Affiliation(s)
- Ze-Hua Guo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Tai-Hua Hu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mohd Fadhli Hamdan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Minghui Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruifeng Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- The Core Facility and Service Center (CFSC), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572024, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572024, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572024, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
2
|
Du W, Huang H, Kong W, Jiang W, Pang Y. Over-expression of Medicago Acyl-CoA-binding 2 genes enhance salt and drought tolerance in Arabidopsis. Int J Biol Macromol 2024; 268:131631. [PMID: 38631584 DOI: 10.1016/j.ijbiomac.2024.131631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Acyl-CoA-binding proteins (ACBPs) are mainly involved in acyl-CoA ester binding and trafficking in eukaryotic cells, and they function in lipid metabolism, membrane biosynthesis, cellular signaling, stress response, disease resistance, and other biological activities in plants. However, the roles of ACBP family members in Medicago remain unclear. In this study, a total of eight ACBP genes were identified in the genome of Medicago truncatula and Medicago sativa, and they were clustered into four sub-families (Class I-IV). Many cis-acting elements related to abiotic response were identified in the promoter region of these ACBP genes, in particular light-responsive elements. These ACBP genes exhibited distinct expression pattern in various tissues, and the expression level of MtACBP1/MsACBP1 and MtACBP2/MsACBP2 gene pairs were significantly increased under NaCl treatment. Subcellular localization analysis showed that MtACBP1/MsACBP1 and MtACBP2/MsACBP2 were localized in the endoplasmic reticulum of tobacco epidermal cells. Arabidopsis seedlings over-expressing MtACBP2/MsACBP2 displayed increased root length than the wild type under short light, Cu2+, ABA, PEG, and NaCl treatments. Over-expression of MtACBP2/MsACBP2 also significantly enhanced Arabidopsis tolerance under NaCl and PEG treatments in mature plants. Collectively, our study identified salt and drought responsive ACBP genes in Medicago and verified their functions in increasing resistance against salt and drought stresses.
Collapse
Affiliation(s)
- Wenxuan Du
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haijun Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weiye Kong
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Chang H, Ma M, Gu M, Li S, Li M, Guo G, Xing G. Acyl-CoA-binding protein (ACBP) genes involvement in response to abiotic stress and exogenous hormone application in barley (Hordeum vulgare L.). BMC PLANT BIOLOGY 2024; 24:236. [PMID: 38561660 PMCID: PMC10985865 DOI: 10.1186/s12870-024-04944-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Acyl-CoA-Binding proteins (ACBPs) function as coenzyme A transporters and play important roles in regulating plant growth and development in response to abiotic stress and phytohormones, as well as in membrane repair. To date, the ACBP family has not been a comprehensively characterized in barley (Hordeum vulgare L.). RESULTS Eight ACBP genes were identified in the barley genome and named as HvACBP1-8. The analysis of the proteins structure and promoter elements of HvACBP suggested its potential functions in plant growth, development, and stress response. These HvACBPs are expressed in specific tissues and organs following induction by abiotic stressors such as drought, salinity, UV-B exposure, temperature extremes, and exposure to exogenous phytohormones. The HvACBP7 and HvACBP8 amino acid sequences were conserved during the domestication of Tibetan Qingke barley. CONCLUSIONS Acyl-CoA-binding proteins may play important roles in barley growth and environmental adaptation. This study provides foundation for further analyses of the biological functions of HvACBPs in the barley stress response.
Collapse
Grants
- 2023CYJSTX03-19 Modern Agro-Industry Technology Research System of Shanxi Province, China
- 2023CYJSTX03-19 Modern Agro-Industry Technology Research System of Shanxi Province, China
- 2023CYJSTX03-19 Modern Agro-Industry Technology Research System of Shanxi Province, China
- 2023CYJSTX03-19 Modern Agro-Industry Technology Research System of Shanxi Province, China
- 2023CYJSTX03-19 Modern Agro-Industry Technology Research System of Shanxi Province, China
- 202204010910001-06 National Laboratory for Minor Crops Germplasm Innovation and Molecular Breeding, China (in preparation)
- 202204010910001-06 National Laboratory for Minor Crops Germplasm Innovation and Molecular Breeding, China (in preparation)
- 202204010910001-06 National Laboratory for Minor Crops Germplasm Innovation and Molecular Breeding, China (in preparation)
- 202204010910001-06 National Laboratory for Minor Crops Germplasm Innovation and Molecular Breeding, China (in preparation)
- 202204010910001-06 National Laboratory for Minor Crops Germplasm Innovation and Molecular Breeding, China (in preparation)
- 202204010910001-06 National Laboratory for Minor Crops Germplasm Innovation and Molecular Breeding, China (in preparation)
- 202204010910001-06 National Laboratory for Minor Crops Germplasm Innovation and Molecular Breeding, China (in preparation)
- CARS-05 China Agriculture Research System of MOF and MORA
- CARS-05 China Agriculture Research System of MOF and MORA
- CARS-05 China Agriculture Research System of MOF and MORA
- CARS-05 China Agriculture Research System of MOF and MORA
Collapse
Affiliation(s)
- Huayu Chang
- Hou Ji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
- Key laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Minhu Ma
- Hou Ji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
- Key laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Mingzhou Gu
- Hou Ji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
| | - Shanshan Li
- Key laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Mengrun Li
- Hou Ji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
| | - Ganggang Guo
- Key laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Guofang Xing
- Hou Ji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China.
| |
Collapse
|
4
|
Leyland B, Novichkova E, Dolui AK, Jallet D, Daboussi F, Legeret B, Li Z, Li-Beisson Y, Boussiba S, Khozin-Goldberg I. Acyl-CoA binding protein is required for lipid droplet degradation in the diatom Phaeodactylum tricornutum. PLANT PHYSIOLOGY 2024; 194:958-981. [PMID: 37801606 DOI: 10.1093/plphys/kiad525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/28/2023] [Accepted: 07/15/2023] [Indexed: 10/08/2023]
Abstract
Diatoms (Bacillariophyceae) accumulate neutral storage lipids in lipid droplets during stress conditions, which can be rapidly degraded and recycled when optimal conditions resume. Since nutrient and light availability fluctuate in marine environments, storage lipid turnover is essential for diatom dominance of marine ecosystems. Diatoms have garnered attention for their potential to provide a sustainable source of omega-3 fatty acids. Several independent proteomic studies of lipid droplets isolated from the model oleaginous pennate diatom Phaeodactylum tricornutum have identified a previously uncharacterized protein with an acyl-CoA binding (ACB) domain, Phatrdraft_48778, here referred to as Phaeodactylum tricornutum acyl-CoA binding protein (PtACBP). We report the phenotypic effects of CRISPR-Cas9 targeted genome editing of PtACBP. ptacbp mutants were defective in lipid droplet and triacylglycerol degradation, as well as lipid and eicosapentaenoic acid synthesis, during recovery from nitrogen starvation. Transcription of genes responsible for peroxisomal β-oxidation, triacylglycerol lipolysis, and eicosapentaenoic acid synthesis was inhibited. A lipid-binding assay using a synthetic ACB domain from PtACBP indicated preferential binding specificity toward certain polar lipids. PtACBP fused to eGFP displayed an endomembrane-like pattern, which surrounded the periphery of lipid droplets. PtACBP is likely responsible for intracellular acyl transport, affecting cell division, development, photosynthesis, and stress response. A deeper understanding of the molecular mechanisms governing storage lipid turnover will be crucial for developing diatoms and other microalgae as biotechnological cell factories.
Collapse
Affiliation(s)
- Ben Leyland
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| | - Ekaterina Novichkova
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| | - Achintya Kumar Dolui
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| | - Denis Jallet
- Toulouse Biotechnology Institute Bio & Chemical Engineering, Institut National de la Recherche Agronomique, Institute National Des Sciences Appliquees, Le Centre national de la recherche scientifique, Toulouse 31077, France
| | - Fayza Daboussi
- Toulouse Biotechnology Institute Bio & Chemical Engineering, Institut National de la Recherche Agronomique, Institute National Des Sciences Appliquees, Le Centre national de la recherche scientifique, Toulouse 31077, France
| | - Bertrand Legeret
- Aix-Marseille University, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Zhongze Li
- Aix-Marseille University, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Yonghua Li-Beisson
- Aix-Marseille University, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Sammy Boussiba
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| | - Inna Khozin-Goldberg
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| |
Collapse
|
5
|
Hu P, Ren Y, Xu J, Luo W, Wang M, Song P, Guan Y, Hu H, Li C. Identification of acyl-CoA-binding protein gene in Triticeae species reveals that TaACBP4A-1 and TaACBP4A-2 positively regulate powdery mildew resistance in wheat. Int J Biol Macromol 2023; 246:125526. [PMID: 37379955 DOI: 10.1016/j.ijbiomac.2023.125526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Plant acyl-CoA-binding proteins (ACBPs), which contain the conserved ACB domain, participate in multiple biological processes, however, there are few reports on wheat ACBPs. In this study, the ACBP genes from nine different species were identified comprehensively. The expression patterns of TaACBP genes in multiple tissues and under various biotic stresses were determined by qRT-PCR. The function of selected TaACBP genes was studied by virus-induced gene silencing. A total of 67 ACBPs were identified from five monocotyledonous and four dicotyledonous species and divided into four classes. Tandem duplication analysis of the ACBPs suggested that tandem duplication events occurred in Triticum dicoccoides, but there was no tandem duplication event in wheat ACBP genes. Evolutionary analysis suggested that the TdACBPs may have experienced gene introgression during tetraploid evolution, while TaACBP gene loss events occurred during hexaploid wheat evolution. The expression pattern showed that all the TaACBP genes were expressed, and most of them were responsive to induction by Blumeria graminis f. sp. tritici or Fusarium graminearum. Silencing of TaACBP4A-1 and TaACBP4A-2 increased powdery mildew susceptibility in the common wheat BainongAK58. Furthermore, TaACBP4A-1, which belonged to class III, physically interacted with autophagy-related ubiquitin-like protein TaATG8g in yeast cells. This study provided a valuable reference for further investigations into the functional and molecular mechanisms of the ACBP gene family.
Collapse
Affiliation(s)
- Ping Hu
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China.
| | - Yueming Ren
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Jun Xu
- College of Landscape Architecture and Horticulture, Henan Institute of Science and Technology, Xinxiang, China
| | - Wanglong Luo
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Mengfei Wang
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Puwen Song
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China.
| | - Yuanyuan Guan
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Haiyan Hu
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China.
| | - Chengwei Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China.
| |
Collapse
|
6
|
Lu L, Yang H, Xu Y, Zhang L, Wu J, Yi H. Laser capture microdissection-based spatiotemporal transcriptomes uncover regulatory networks during seed abortion in seedless Ponkan (Citrus reticulata). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:642-661. [PMID: 37077034 DOI: 10.1111/tpj.16251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Seed abortion is an important process in the formation of seedless characteristics in citrus fruits. However, the molecular regulatory mechanism underlying citrus seed abortion is poorly understood. Laser capture microdissection-based RNA-seq combined with Pacbio-seq was used to profile seed development in the Ponkan cultivars 'Huagan No. 4' (seedless Ponkan) (Citrus reticulata) and 'E'gan No. 1' (seeded Ponkan) (C. reticulata) in two types of seed tissue across three developmental stages. Through comparative transcriptome and dynamic phytohormone analyses, plant hormone signal, cell division and nutrient metabolism-related processes were revealed to play critical roles in the seed abortion of 'Huagan No. 4'. Moreover, several genes may play indispensable roles in seed abortion of 'Huagan No. 4', such as CrWRKY74, CrWRKY48 and CrMYB3R4. Overexpression of CrWRKY74 in Arabidopsis resulted in severe seed abortion. By analyzing the downstream regulatory network, we further determined that CrWRKY74 participated in seed abortion regulation by inducing abnormal programmed cell death. Of particular importance is that a preliminary model was proposed to depict the regulatory networks underlying seed abortion in citrus. The results of this study provide novel insights into the molecular mechanism across citrus seed development, and reveal the master role of CrWRKY74 in seed abortion of 'Huagan No. 4'.
Collapse
Affiliation(s)
- Liqing Lu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Haijian Yang
- Fruit Tree Research Institute of Chongqing Academy of Agricultural Sciences, Chongqing, 401329, P.R. China
| | - Yanhui Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Li Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Juxun Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hualin Yi
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
7
|
Fan B, Liao K, Wang LN, Shi LL, Zhang Y, Xu LJ, Zhou Y, Li JF, Chen YQ, Chen QF, Xiao S. Calcium-dependent activation of CPK12 facilitates its cytoplasm-to-nucleus translocation to potentiate plant hypoxia sensing by phosphorylating ERF-VII transcription factors. MOLECULAR PLANT 2023; 16:979-998. [PMID: 37020418 DOI: 10.1016/j.molp.2023.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/26/2023] [Accepted: 04/02/2023] [Indexed: 06/08/2023]
Abstract
Calcium-dependent protein kinases (CDPKs/CPKs) are key regulators of plant stress signaling that translate calcium signals into cellular responses by phosphorylating diverse substrate proteins. However, the molecular mechanism by which plant cells relay calcium signals in response to hypoxia remains elusive. Here, we show that one member of the CDPK family in Arabidopsis thaliana, CPK12, is rapidly activated during hypoxia through calcium-dependent phosphorylation of its Ser-186 residue. Phosphorylated CPK12 shuttles from the cytoplasm to the nucleus, where it interacts with and phosphorylates the group VII ethylene-responsive transcription factors (ERF-VII) that are core regulators of plant hypoxia sensing, to enhance their stabilities. Consistently, CPK12 knockdown lines show attenuated tolerance of hypoxia, whereas transgenic plants overexpressing CPK12 display improved hypoxia tolerance. Nonethelss, loss of function of five ERF-VII proteins in an erf-vii pentuple mutant could partially suppress the enhanced hypoxia-tolerance phenotype of CPK12-overexpressing lines. Moreover, we also discovered that phosphatidic acid and 14-3-3κ protein serve as positive and negative modulators of the CPK12 cytoplasm-to-nucleus translocation, respectively. Taken together, these findings uncover a CPK12-ERF-VII regulatory module that is key to transducing calcium signals from the cytoplasm into the nucleus to potentiate hypoxia sensing in plants.
Collapse
Affiliation(s)
- Biao Fan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ke Liao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Lin-Na Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Li-Li Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ling-Jing Xu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ying Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian-Feng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yue-Qin Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qin-Fang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
8
|
Chen Y, Fu M, Li H, Wang L, Liu R, Liu Z. Molecular Characterization of the Acyl-CoA-Binding Protein Genes Reveals Their Significant Roles in Oil Accumulation and Abiotic Stress Response in Cotton. Genes (Basel) 2023; 14:genes14040859. [PMID: 37107617 PMCID: PMC10137972 DOI: 10.3390/genes14040859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Members of the acyl-CoA-binding protein (ACBP) gene family play vital roles in diverse processes related to lipid metabolism, growth and development, and environmental response. Plant ACBP genes have been well-studied in a variety of species including Arabidopsis, soybean, rice and maize. However, the identification and functions of ACBP genes in cotton remain to be elucidated. In this study, a total of 11 GaACBP, 12 GrACBP, 20 GbACBP, and 19 GhACBP genes were identified in the genomes of Gossypium arboreum, Gossypium raimondii, Gossypium babardense, and Gossypium hirsutum, respectively, and grouped into four clades. Forty-nine duplicated gene pairs were identified in Gossypium ACBP genes, and almost all of which have undergone purifying selection during the long evolutionary process. In addition, expression analyses showed that most of the GhACBP genes were highly expressed in the developing embryos. Furthermore, GhACBP1 and GhACBP2 were induced by salt and drought stress based on a real-time quantitative PCR (RT-qPCR) assay, indicating that these genes may play an important role in salt- and drought-stress tolerance. This study will provide a basic resource for further functional analysis of the ACBP gene family in cotton.
Collapse
Affiliation(s)
- Yizhen Chen
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Mingchuan Fu
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Hao Li
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Liguo Wang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Renzhong Liu
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhanji Liu
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
9
|
Ling J, Li L, Lin L, Xie H, Zheng Y, Wan X. Genome-wide identification of acyl-CoA binding proteins and possible functional prediction in legumes. Front Genet 2023; 13:1057160. [PMID: 36704331 PMCID: PMC9871394 DOI: 10.3389/fgene.2022.1057160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Acyl-CoA-binding proteins (ACBPs), members of a vital housekeeping protein family, are present in various animal and plant species. They are divided into four classes: small ACBPs (class I), ankyrin-repeat ACBPs (class II), large ACBPs (class III), and kelch-ACBPs (class IV). Plant ACBPs play a pivotal role in intracellular transport, protection, and pool formation of acyl-CoA esters, promoting plant development and stress response. Even though legume crops are important for vegetable oils, proteins, vegetables and green manure, legume ACBPs are not well investigated. To comprehensively explore the functions of ACBPs in nine legumes (Lotus japonicus, Medicago truncatula, Glycine max, Vigna angularis, Vigna radiata, Phaseolus vulgaris, Arachis hypogaea, Arachis duranensis, and Arachis ipaensis), we conducted genome-wide identification of the ACBP gene family. Our evolutionary analyses included phylogenetics, gene structure, the conserved motif, chromosomal distribution and homology, subcellular localization, cis-elements, and interacting proteins. The results revealed that ACBP Orthologs of nine legumes had a high identity in gene structure and conserved motif. However, subcellular localization, cis-acting elements, and interaction protein analyses revealed potentially different functions from previously reported. The predicted results were also partially verified in Arachis hypogaea. We believe that our findings will help researchers understand the roles of ACBPs in legumes and encourage them to conduct additional research.
Collapse
|
10
|
Jiang L, Geng D, Zhi F, Li Z, Yang Y, Wang Y, Shen X, Liu X, Yang Y, Xu Y, Tang Y, Du R, Ma F, Guan Q, Zhang J. A genome-wide association study provides insights into fatty acid synthesis and metabolism in Malus fruits. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7467-7476. [PMID: 36112134 DOI: 10.1093/jxb/erac372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
As a precursor of aromatic compounds, fatty acids play important roles in apple fruit quality; however, the genetic and molecular basis underlying fatty acid synthesis and metabolism is largely unknown. In this study, we conducted a genome-wide association study (GWAS) of seven fatty acids using genomic data of 149 Malus accessions and identified 232 significant signals (-log10P>5) associated with 99 genes from GWAS of four fatty acids across 2 years. Among these, a significant GWAS signal associated with linoleic acid was identified in the transcriptional regulator SUPERMAN-like (SUP) MD13G1209600 at chromosome 13 of M. × domestica. Transient overexpression of MdSUP increased the contents of linoleic and linolenic acids and of three aromatic components in the fruit. Our study provides genetic and molecular information for improving the flavor and nutritional value of apple.
Collapse
Affiliation(s)
- Lijuan Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Dali Geng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Fang Zhi
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zhongxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yusen Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yunlong Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xiuyun Liu
- Institute of Vocational Technology, Shanghai 200000, China
| | - Yanqing Yang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yange Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yanlong Tang
- College of Economics and Management, Northwest A&F University, Yangling 712100, China
| | - Rui Du
- College of Innovation and Experiment, Northwest A&F University, Yangling 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Jing Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
11
|
Hamdan MF, Lung SC, Guo ZH, Chye ML. Roles of acyl-CoA-binding proteins in plant reproduction. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2918-2936. [PMID: 35560189 DOI: 10.1093/jxb/erab499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/11/2021] [Indexed: 06/15/2023]
Abstract
Acyl-CoA-binding proteins (ACBPs) constitute a well-conserved family of proteins in eukaryotes that are important in stress responses and development. Past studies have shown that ACBPs are involved in maintaining, transporting and protecting acyl-CoA esters during lipid biosynthesis in plants, mammals, and yeast. ACBPs show differential expression and various binding affinities for acyl-CoA esters. Hence, ACBPs can play a crucial part in maintaining lipid homeostasis. This review summarizes the functions of ACBPs during the stages of reproduction in plants and other organisms. A comprehensive understanding on the roles of ACBPs during plant reproduction may lead to opportunities in crop improvement in agriculture.
Collapse
Affiliation(s)
- Mohd Fadhli Hamdan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ze-Hua Guo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
12
|
Shin S, Chairattanawat C, Yamaoka Y, Yang Q, Lee Y, Hwang JU. Early seed development requires the A-type ATP-binding cassette protein ABCA10. PLANT PHYSIOLOGY 2022; 189:360-374. [PMID: 35166840 PMCID: PMC9070825 DOI: 10.1093/plphys/kiac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/06/2022] [Indexed: 05/11/2023]
Abstract
A-type ATP-binding cassette (ABCA) proteins transport lipids and lipid-based molecules in humans, and their malfunction is associated with various inherited diseases. Although plant genomes encode many ABCA transporters, their molecular and physiological functions remain largely unknown. Seeds are rapidly developing organs that rely on the biosynthesis and transport of large quantities of lipids to generate new membranes and storage lipids. In this study, we characterized the Arabidopsis (Arabidopsis thaliana) ABCA10 transporter, which is selectively expressed in female gametophytes and early developing seeds. By 3 d after flowering (DAF), seeds from the abca10 loss-of-function mutant exhibited a smaller chalazal endosperm than those of the wild-type. By 4 DAF, their endosperm nuclei occupied a smaller area than those of the wild-type. The endosperm nuclei of the mutants also failed to distribute evenly inside the seed coat and stayed aggregated instead, possibly due to inadequate expansion of abca10 endosperm. This endosperm defect might have retarded abca10 embryo development. At 7 DAF, a substantial portion of abca10 embryos remained at the globular or earlier developmental stages, whereas wild-type embryos were at the torpedo or later stages. ABCA10 is likely involved in lipid metabolism, as ABCA10 overexpression induced the overaccumulation of triacylglycerol but did not change the carbohydrate or protein contents in seeds. In agreement, ABCA10 localized to the endoplasmic reticulum (ER), the major site of lipid biosynthesis. Our results reveal that ABCA10 plays an essential role in early seed development, possibly by transporting substrates for lipid metabolism to the ER.
Collapse
Affiliation(s)
- Seungjun Shin
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | | | - Yasuyo Yamaoka
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Qianying Yang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Youngsook Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | | |
Collapse
|
13
|
Interactions between plant lipid-binding proteins and their ligands. Prog Lipid Res 2022; 86:101156. [DOI: 10.1016/j.plipres.2022.101156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/05/2021] [Accepted: 01/14/2022] [Indexed: 01/11/2023]
|
14
|
Plant Acyl-CoA-Binding Proteins-Their Lipid and Protein Interactors in Abiotic and Biotic Stresses. Cells 2021; 10:cells10051064. [PMID: 33946260 PMCID: PMC8146436 DOI: 10.3390/cells10051064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Plants are constantly exposed to environmental stresses during their growth and development. Owing to their immobility, plants possess stress-sensing abilities and adaptive responses to cope with the abiotic and biotic stresses caused by extreme temperatures, drought, flooding, salinity, heavy metals and pathogens. Acyl-CoA-binding proteins (ACBPs), a family of conserved proteins among prokaryotes and eukaryotes, bind to a variety of acyl-CoA esters with different affinities and play a role in the transport and maintenance of subcellular acyl-CoA pools. In plants, studies have revealed ACBP functions in development and stress responses through their interactions with lipids and protein partners. This review summarises the roles of plant ACBPs and their lipid and protein interactors in abiotic and biotic stress responses.
Collapse
|
15
|
Usman B, Zhao N, Nawaz G, Qin B, Liu F, Liu Y, Li R. CRISPR/Cas9 Guided Mutagenesis of Grain Size 3 Confers Increased Rice ( Oryza sativa L.) Grain Length by Regulating Cysteine Proteinase Inhibitor and Ubiquitin-Related Proteins. Int J Mol Sci 2021; 22:ijms22063225. [PMID: 33810044 PMCID: PMC8004693 DOI: 10.3390/ijms22063225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/21/2022] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas9)-mediated genome editing has become an important way for molecular breeding in crop plants. To promote rice breeding, we edited the Grain Size 3 (GS3) gene for obtaining valuable and stable long-grain rice mutants. Furthermore, isobaric tags for the relative and absolute quantitation (iTRAQ)-based proteomic method were applied to determine the proteome-wide changes in the GS3 mutants compared with wild type (WT). Two target sites were designed to construct the vector, and the Agrobacterium-mediated method was used for rice transformation. Specific mutations were successfully introduced, and the grain length (GL) and 1000-grain weight (GWT) of the mutants were increased by 31.39% and 27.15%, respectively, compared with WT. The iTRAQ-based proteomic analysis revealed that a total of 31 proteins were differentially expressed in the GS3 mutants, including 20 up-regulated and 11 down-regulated proteins. Results showed that differentially expressed proteins (DEPs) were mainly related to cysteine synthase, cysteine proteinase inhibitor, vacuolar protein sorting-associated, ubiquitin, and DNA ligase. Furthermore, functional analysis revealed that DEPs were mostly enriched in cellular process, metabolic process, binding, transmembrane, structural, and catalytic activities. Pathway enrichment analysis revealed that DEPs were mainly involved in lipid metabolism and oxylipin biosynthesis. The protein-to-protein interaction (PPI) network found that proteins related to DNA damage-binding, ubiquitin-40S ribosomal, and cysteine proteinase inhibitor showed a higher degree of interaction. The homozygous mutant lines featured by stable inheritance and long-grain phenotype were obtained using the CRISPR/Cas9 system. This study provides a convenient and effective way of improving grain yield, which could significantly accelerate the breeding process of long-grain japonica parents and promote the development of high-yielding rice.
Collapse
Affiliation(s)
- Babar Usman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (B.U.); (N.Z.); (G.N.); (B.Q.); (F.L.)
| | - Neng Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (B.U.); (N.Z.); (G.N.); (B.Q.); (F.L.)
| | - Gul Nawaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (B.U.); (N.Z.); (G.N.); (B.Q.); (F.L.)
| | - Baoxiang Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (B.U.); (N.Z.); (G.N.); (B.Q.); (F.L.)
| | - Fang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (B.U.); (N.Z.); (G.N.); (B.Q.); (F.L.)
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Y.L.); (R.L.); Tel.: +86-20-8528-1908 (Y.L.); +86-136-0009-4135 (R.L.)
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (B.U.); (N.Z.); (G.N.); (B.Q.); (F.L.)
- Correspondence: (Y.L.); (R.L.); Tel.: +86-20-8528-1908 (Y.L.); +86-136-0009-4135 (R.L.)
| |
Collapse
|
16
|
Meng W, Xu L, Du ZY, Wang F, Zhang R, Song X, Lam SM, Shui G, Li Y, Chye ML. RICE ACYL-COA-BINDING PROTEIN6 Affects Acyl-CoA Homeostasis and Growth in Rice. RICE (NEW YORK, N.Y.) 2020; 13:75. [PMID: 33159253 PMCID: PMC7647982 DOI: 10.1186/s12284-020-00435-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/21/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUNDS Acyl-coenzyme A (CoA) esters are important intermediates in lipid metabolism with regulatory properties. Acyl-CoA-binding proteins bind and transport acyl-CoAs to fulfill these functions. RICE ACYL-COA-BINDING PROTEIN6 (OsACBP6) is currently the only one peroxisome-localized plant ACBP that has been proposed to be involved in β-oxidation in transgenic Arabidopsis. The role of the peroxisomal ACBP (OsACBP6) in rice (Oryza sativa) was investigated. RESULTS Here, we report on the function of OsACBP6 in rice. The osacbp6 mutant showed diminished growth with reduction in root meristem activity and leaf growth. Acyl-CoA profiling and lipidomic analysis revealed an increase in acyl-CoA content and a slight triacylglycerol accumulation caused by the loss of OsACBP6. Comparative transcriptomic analysis discerned the biological processes arising from the loss of OsACBP6. Reduced response to oxidative stress was represented by a decline in gene expression of a group of peroxidases and peroxidase activities. An elevation in hydrogen peroxide was observed in both roots and shoots/leaves of osacbp6. Taken together, loss of OsACBP6 not only resulted in a disruption of the acyl-CoA homeostasis but also peroxidase-dependent reactive oxygen species (ROS) homeostasis. In contrast, osacbp6-complemented transgenic rice displayed similar phenotype to the wild type rice, supporting a role for OsACBP6 in the maintenance of the acyl-CoA pool and ROS homeostasis. Furthermore, quantification of plant hormones supported the findings observed in the transcriptome and an increase in jasmonic acid level occurred in osacbp6. CONCLUSIONS In summary, OsACBP6 appears to be required for the efficient utilization of acyl-CoAs. Disruption of OsACBP6 compromises growth and led to provoked defense response, suggesting a correlation of enhanced acyl-CoAs content with defense responses.
Collapse
Affiliation(s)
- Wei Meng
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Lijian Xu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Zhi-Yan Du
- Department of Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Fang Wang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Rui Zhang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xingshun Song
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Lipidall Technologies Company Limited, Changzhou, 213000, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuhua Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
17
|
Aznar-Moreno JA, Venegas-Calerón M, Du ZY, Garcés R, Tanner JA, Chye ML, Martínez-Force E, Salas JJ. Characterization and function of a sunflower (Helianthus annuus L.) Class II acyl-CoA-binding protein. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110630. [PMID: 33180709 DOI: 10.1016/j.plantsci.2020.110630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 05/13/2023]
Abstract
Acyl-CoA-binding proteins (ACBP) bind to long-chain acyl-CoA esters and phospholipids, enhancing the activity of different acyltransferases in animals and plants. Nevertheless, the role of these proteins in the synthesis of triacylglycerols (TAGs) remains unclear. Here, we cloned a cDNA encoding HaACBP1, a Class II ACBP from sunflower (Helianthus annuus), one of the world's most important oilseed crop plants. Transcriptome analysis of this gene revealed strong expression in developing seeds from 16 to 30 days after flowering. The recombinant protein (rHaACBP1) was expressed in Escherichia coli and purified to be studied by in vitro isothermal titration calorimetry and for phospholipid binding. Its high affinity for saturated palmitoyl-CoA (16:0-CoA; KD 0.11 μM) and stearoyl-CoA (18:0-CoA; KD 0.13 μM) esters suggests that rHaACBP1 could act in acyl-CoA transfer pathways that involve saturated acyl derivatives. Furthermore, rHaACBP1 also binds to both oleoyl-CoA (18:1-CoA; KD 6.4 μM) and linoleoyl-CoA (18:2-CoA; KD 21.4 μM) esters, the main acyl-CoA substrates used to synthesise the TAGs that accumulate in sunflower seeds. Interestingly, rHaACBP1 also appears to bind to different species of phosphatidylcholines (dioleoyl-PC and dilinoleoyl-PC), glycerolipids that are also involved in TAG synthesis, and while it interacts with dioleoyl-PA, this is less prominent than its binding to the PC derivative. Expression of rHaACBP in yeast alters its fatty acid composition, as well as the composition and size of the host acyl-CoA pool. These results suggest that HaACBP1 may potentially fulfil a role in the transport and trafficking of acyl-CoAs during sunflower seed development.
Collapse
Affiliation(s)
- Jose A Aznar-Moreno
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Mónica Venegas-Calerón
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Ctra. de Utrera Km 1, 41013, Sevilla, Spain
| | - Zhi-Yan Du
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Rafael Garcés
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Ctra. de Utrera Km 1, 41013, Sevilla, Spain
| | - Julian A Tanner
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Enrique Martínez-Force
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Ctra. de Utrera Km 1, 41013, Sevilla, Spain
| | - Joaquín J Salas
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Ctra. de Utrera Km 1, 41013, Sevilla, Spain.
| |
Collapse
|
18
|
Sun S, Yi C, Ma J, Wang S, Peirats-Llobet M, Lewsey MG, Whelan J, Shou H. Analysis of Spatio-Temporal Transcriptome Profiles of Soybean ( Glycine max) Tissues during Early Seed Development. Int J Mol Sci 2020; 21:E7603. [PMID: 33066688 PMCID: PMC7589660 DOI: 10.3390/ijms21207603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 01/17/2023] Open
Abstract
Soybean (Glycine max) is an important crop providing oil and protein for both human and animal consumption. Knowing which biological processes take place in specific tissues in a temporal manner will enable directed breeding or synthetic approaches to improve seed quantity and quality. We analyzed a genome-wide transcriptome dataset from embryo, endosperm, endothelium, epidermis, hilum, outer and inner integument and suspensor at the global, heart and cotyledon stages of soybean seed development. The tissue specificity of gene expression was greater than stage specificity, and only three genes were differentially expressed in all seed tissues. Tissues had both unique and shared enriched functional categories of tissue-specifically expressed genes associated with them. Strong spatio-temporal correlation in gene expression was identified using weighted gene co-expression network analysis, with the most co-expression occurring in one seed tissue. Transcription factors with distinct spatiotemporal gene expression programs in each seed tissue were identified as candidate regulators of expression within those tissues. Gene ontology (GO) enrichment of orthogroup clusters revealed the conserved functions and unique roles of orthogroups with similar and contrasting expression patterns in transcript abundance between soybean and Arabidopsis during embryo proper and endosperm development. Key regulators in each seed tissue and hub genes connecting those networks were characterized by constructing gene regulatory networks. Our findings provide an important resource for describing the structure and function of individual soybean seed compartments during early seed development.
Collapse
Affiliation(s)
- Shuo Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; (S.S.); (J.M.)
| | - Changyu Yi
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia; (C.Y.); (M.P.-L.)
| | - Jing Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; (S.S.); (J.M.)
| | - Shoudong Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China;
| | - Marta Peirats-Llobet
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia; (C.Y.); (M.P.-L.)
| | - Mathew G. Lewsey
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Victoria 3086, Australia;
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, Victoria 3086, Australia
| | - James Whelan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; (S.S.); (J.M.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia; (C.Y.); (M.P.-L.)
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; (S.S.); (J.M.)
| |
Collapse
|
19
|
Jin J, Guo ZH, Hao Q, Chye ML. Crystal structure of the rice acyl-CoA-binding protein OsACBP2 in complex with C18:3-CoA reveals a novel pattern of binding to acyl-CoA esters. FEBS Lett 2020; 594:3568-3575. [PMID: 32888212 DOI: 10.1002/1873-3468.13923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/29/2022]
Abstract
Acyl-CoA-binding proteins (ACBPs) are a family of proteins that bind acyl-CoA esters at a conserved acyl-CoA-binding domain. ACBPs maintain intracellular acyl-CoA pools to regulate lipid metabolism. Here, we report on the structure of rice OsACBP2 in complex with C18:3-CoA ester. The residues Y33, K34 and K56 of OsACBP2 play a crucial role in binding the CoA group, while residues N23, L27, K52 and Y55 in one molecule of OsACBP2 cooperate with L27, L28, A59 and A62 from another anchoring the fatty acyl group. Multiangle light scattering assays indicate that OsACBP2 binds C18:3-CoA as a monomer. The first complex structure of a plant ACBP binding with C18:3-CoA is therefore presented, providing a novel model for the interaction between an acyl-CoA ester and the acyl-CoA-binding domain(s).
Collapse
Affiliation(s)
- Jing Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ze-Hua Guo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Quan Hao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.,State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, N.T, China
| |
Collapse
|
20
|
Wan X, Wu S, Li Z, An X, Tian Y. Lipid Metabolism: Critical Roles in Male Fertility and Other Aspects of Reproductive Development in Plants. MOLECULAR PLANT 2020; 13:955-983. [PMID: 32434071 DOI: 10.1016/j.molp.2020.05.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/20/2020] [Accepted: 05/14/2020] [Indexed: 05/18/2023]
Abstract
Fatty acids and their derivatives are essential building blocks for anther cuticle and pollen wall formation. Disruption of lipid metabolism during anther and pollen development often leads to genic male sterility (GMS). To date, many lipid metabolism-related GMS genes that are involved in the formation of anther cuticle, pollen wall, and subcellular organelle membranes in anther wall layers have been identified and characterized. In this review, we summarize recent progress on characterizing lipid metabolism-related genes and their roles in male fertility and other aspects of reproductive development in plants. On the basis of cloned GMS genes controlling biosynthesis and transport of anther cutin, wax, sporopollenin, and tryphine in Arabidopsis, rice, and maize as well as other plant species, updated lipid metabolic networks underlying anther cuticle development and pollen wall formation were proposed. Through bioinformatics analysis of anther RNA-sequencing datasets from three maize inbred lines (Oh43, W23, and B73), a total of 125 novel lipid metabolism-related genes putatively involved in male fertility in maize were deduced. More, we discuss the pathways regulating lipid metabolism-related GMS genes at the transcriptional and post-transcriptional levels. Finally, we highlight recent findings on lipid metabolism-related genes and their roles in other aspects of plant reproductive development. A comprehensive understanding of lipid metabolism, genes involved, and their roles in plant reproductive development will facilitate the application of lipid metabolism-related genes in gene editing, haploid and callus induction, molecular breeding and hybrid seed production in crops.
Collapse
Affiliation(s)
- Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| | - Suowei Wu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Ziwen Li
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xueli An
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Youhui Tian
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| |
Collapse
|
21
|
Amiruddin N, Chan PL, Azizi N, Morris PE, Chan KL, Ong PW, Rosli R, Masura SS, Murphy DJ, Sambanthamurthi R, Haslam RP, Chye ML, Harwood JL, Low ETL. Characterization of Oil Palm Acyl-CoA-Binding Proteins and Correlation of Their Gene Expression with Oil Synthesis. PLANT & CELL PHYSIOLOGY 2020; 61:735-747. [PMID: 31883014 DOI: 10.1093/pcp/pcz237] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 12/22/2019] [Indexed: 05/18/2023]
Abstract
Acyl-CoA-binding proteins (ACBPs) are involved in binding and trafficking acyl-CoA esters in eukaryotic cells. ACBPs contain a well-conserved acyl-CoA-binding domain. Their various functions have been characterized in the model plant Arabidopsis and, to a lesser extent, in rice. In this study, genome-wide detection and expression analysis of ACBPs were performed on Elaeis guineensis (oil palm), the most important oil crop in the world. Seven E. guineensis ACBPs were identified and classified into four groups according to their deduced amino acid domain organization. Phylogenetic analysis showed conservation of this family with other higher plants. All seven EgACBPs were expressed in most tissues while their differential expression suggests various functions in specific tissues. For example, EgACBP3 had high expression in inflorescences and stalks while EgACBP1 showed strong expression in leaves. Because of the importance of E. guineensis as an oil crop, expression of EgACBPs was specifically examined during fruit development. EgACBP3 showed high expression throughout mesocarp development, while EgACBP1 had enhanced expression during rapid oil synthesis. In endosperm, both EgACBP1 and EgACBP3 exhibited increased expression during seed development. These results provide important information for further investigations on the biological functions of EgACBPs in various tissues and, in particular, their roles in oil synthesis.
Collapse
Affiliation(s)
- Nadzirah Amiruddin
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor 43000, Malaysia
| | - Pek-Lan Chan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor 43000, Malaysia
| | - Norazah Azizi
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor 43000, Malaysia
| | - Priscilla Elizabeth Morris
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor 43000, Malaysia
| | - Kuang-Lim Chan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor 43000, Malaysia
| | - Pei Wen Ong
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor 43000, Malaysia
| | - Rozana Rosli
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor 43000, Malaysia
| | - Subhi Siti Masura
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor 43000, Malaysia
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd CF37 1DL, UK
| | - Ravigadevi Sambanthamurthi
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor 43000, Malaysia
| | - Richard P Haslam
- Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - John L Harwood
- School of Biosciences, University of Cardiff, Cardiff CF10 3AX, UK
| | - Eng-Ti Leslie Low
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor 43000, Malaysia
| |
Collapse
|
22
|
Zhou Y, Tan WJ, Xie LJ, Qi H, Yang YC, Huang LP, Lai YX, Tan YF, Zhou DM, Yu LJ, Chen QF, Chye ML, Xiao S. Polyunsaturated linolenoyl-CoA modulates ERF-VII-mediated hypoxia signaling in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:330-348. [PMID: 31595698 DOI: 10.1111/jipb.12875] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 05/20/2023]
Abstract
In plants, submergence from flooding causes hypoxia, which impairs energy production and affects plant growth, productivity, and survival. In Arabidopsis, hypoxia induces nuclear localization of the group VII ethylene-responsive transcription factor RELATED TO AP2.12 (RAP2.12), following its dissociation from the plasma membrane-anchored ACYL-COA BINDING PROTEIN1 (ACBP1) and ACBP2. Here, we show that polyunsaturated linolenoyl-CoA (18:3-CoA) regulates RAP2.12 release from the plasma membrane. Submergence caused a significant increase in 18:3-CoA, but a significant decrease in 18:0-, 18:1-, and 18:2-CoA. Application of 18:3-CoA promoted nuclear accumulation of the green fluorescent protein (GFP) fusions RAP2.12-GFP, HYPOXIA-RESPONSIVE ERF1-GFP, and RAP2.3-GFP, and enhanced transcript levels of hypoxia-responsive genes. Plants with decreased ACBP1 and ACBP2 (acbp1 ACBP2-RNAi, produced by ACBP2 RNA interference in the acbp1 mutant) had reduced tolerance to hypoxia and impaired 18:3-CoA-induced expression of hypoxia-related genes. In knockout mutants and overexpression lines of LONG-CHAIN ACYL-COA SYNTHASE2 (LACS2) and FATTY ACID DESATURASE 3 (FAD3), the acyl-CoA pool size and 18:3-CoA levels were closely related to ERF-VII-mediated signaling and hypoxia tolerance. These findings demonstrate that polyunsaturation of long-chain acyl-CoAs functions as important mechanism in the regulation of plant hypoxia signaling, by modulating ACBP-ERF-VII dynamics.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wei-Juan Tan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Li-Juan Xie
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hua Qi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yi-Cong Yang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Li-Ping Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yong-Xia Lai
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yi-Fang Tan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - De-Mian Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lu-Jun Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qin-Fang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
23
|
Liao P, Leung KP, Lung SC, Panthapulakkal Narayanan S, Jiang L, Chye ML. Subcellular Localization of Rice Acyl-CoA-Binding Proteins ACBP4 and ACBP5 Supports Their Non-redundant Roles in Lipid Metabolism. FRONTIERS IN PLANT SCIENCE 2020; 11:331. [PMID: 32265974 PMCID: PMC7105888 DOI: 10.3389/fpls.2020.00331] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/05/2020] [Indexed: 05/03/2023]
Abstract
Acyl-CoA-binding proteins (ACBPs), conserved at the acyl-CoA-binding domain, can bind acyl-CoA esters as well as transport them intracellularly. Six ACBPs co-exist in each model plant, dicot Arabidopsis thaliana (thale cress) and monocot Oryza sativa (rice). Although Arabidopsis ACBPs have been studied extensively, less is known about the rice ACBPs. OsACBP4 is highly induced by salt treatment, but down-regulated following pathogen infection, while OsACBP5 is up-regulated by both wounding and pathogen treatment. Their differential expression patterns under various stress treatments suggest that they may possess non-redundant functions. When expressed from the CaMV35S promoter, OsACBP4 and OsACBP5 were subcellularly localized to different endoplasmic reticulum (ER) domains in transgenic Arabidopsis. As these plants were not stress-treated, it remains to be determined if OsACBP subcellular localization would change following treatment. Given that the subcellular localization of proteins may not be reliable if not expressed in the native plant, this study addresses OsACBP4:GFP and OsACBP5:DsRED expression from their native promoters to verify their subcellular localization in transgenic rice. The results indicated that OsACBP4:GFP was targeted to the plasma membrane besides the ER, while OsACBP5:DsRED was localized at the apoplast, in contrast to their only localization at the ER in transgenic Arabidopsis. Differences in tagged-protein localization in transgenic Arabidopsis and rice imply that protein subcellular localization studies are best investigated in the native plant. Likely, initial targeting to the ER in a non-native plant could not be followed up properly to the final destination(s) unless it occurred in the native plant. Also, monocot (rice) protein targeting may not be optimally processed in a transgenic dicot (Arabidopsis), perhaps arising from the different processing systems for routing between them. Furthermore, changes in the subcellular localization of OsACBP4:GFP and OsACBP5:DsRED were not detectable following salt and pathogen treatment, respectively. These results suggest that OsACBP4 is likely involved in the intracellular shuttling of acyl-CoA esters and/or other lipids between the plasma membrane and the ER, while OsACBP5 appears to participate in the extracellular transport of acyl-CoA esters and/or other lipids, suggesting that they are non-redundant proteins in lipid trafficking.
Collapse
Affiliation(s)
- Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
- State Key Laboratory of Agrobiotechnology, CUHK, New Territories, China
| | - King Pong Leung
- Centre for Cell and Development Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, New Territories, China
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
| | | | - Liwen Jiang
- Centre for Cell and Development Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, New Territories, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
- State Key Laboratory of Agrobiotechnology, CUHK, New Territories, China
- *Correspondence: Mee-Len Chye,
| |
Collapse
|
24
|
Guo Z, Ye Z, Haslam RP, Michaelson LV, Napier JA, Chye M. Arabidopsis cytosolic acyl-CoA-binding proteins function in determining seed oil composition. PLANT DIRECT 2019; 3:e00182. [PMID: 31844833 PMCID: PMC6892995 DOI: 10.1002/pld3.182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/14/2019] [Accepted: 10/24/2019] [Indexed: 05/04/2023]
Abstract
As plant seed oils provide animals with essential fatty acids (FAs), genes that regulate plant lipid metabolism have been used in genetic manipulation to improve dietary seed oil composition and benefit human health. Herein, the Arabidopsis thaliana cytosolic acyl-CoA-binding proteins (AtACBPs), AtACBP4, AtACBP5, and AtACBP6 were shown to play a role in determining seed oil content by analysis of atacbp (atacbp4, atacbp5, atacbp6, atacbp4atacbp5, atacbp4atacbp6, atacbp5atacbp6, and atacbp4atacbp5atacbp6) seed oil content in comparison with the Col-0 wild type (WT). Triacylglycerol (TAG) composition in electrospray ionization-mass spectrometer (ESI-MS) analysis on atacbp6 seed oil showed a reduction (-50%) of C58-TAGs in comparison with the WT. Investigations on fatty acid composition of atacbp mutants indicated that 18:2-FA accumulated in atacbp6 and 18:3-FA in atacbp4, both at the expense of 20:1-FA. As TAG composition can be modified by acyl editing through phosphatidylcholines (PC) and lysophosphatidylcholines (LPC), total PC and LPC content in atacbp6 mature seeds was determined and ESI-MS analysis revealed that LPC had increased (+300%) at the expense of PC. Among all the 14 tested PC species, all (34:1-, 34:2-, 34:3-, 34:4-, 34:5-, 34:6-, 36:2-, 36:3-, 36:5-, 36:6-, 38:2-, 38:3-, and 38:4-PCs) but 36:4-PC were lower in atacbp6 than the WT. In contrast, all LPC species (16:0-, 18:1-, 18:2-, 18:3-, and 20:1-LPC) examined were elevated in atacbp6. LPC abundance also increased in atacbp4atacbp5, but not atacbp4 and atacbp5. Interestingly, when LPC composition in atacbp4atacbp5 was compared with atacbp4 and atacbp5, significant differences were observed between atacbp4atacbp5 and each single mutant, implying that AtACBP4 and AtACBP5 play combinatory roles by affecting LPC (but not PC) biosynthesis. Furthermore, PC-related genes such as those encoding acyl-CoA:lysophphosphatidylcholine acyltransferase (LPCAT1) and phospholipase A2 alpha (PLA2α) were upregulated in atacbp6 developing seeds. A model on the role of AtACBP6 in modulating TAG through regulating LPCAT1 and PLA2α expression is proposed. Taken together, cytosolic AtACBPs appear to affect unsaturated TAG content and are good candidates for engineering oil crops to enhance seed oil composition.
Collapse
Affiliation(s)
- Ze‐Hua Guo
- School of Biological SciencesThe University of Hong KongHong KongChina
| | - Zi‐Wei Ye
- School of Biological SciencesThe University of Hong KongHong KongChina
| | | | | | | | - Mee‐Len Chye
- School of Biological SciencesThe University of Hong KongHong KongChina
- State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
25
|
Guo ZH, Haslam RP, Michaelson LV, Yeung EC, Lung SC, Napier JA, Chye ML. The overexpression of rice ACYL-CoA-BINDING PROTEIN2 increases grain size and bran oil content in transgenic rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1132-1147. [PMID: 31437323 DOI: 10.1111/tpj.14503] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/27/2019] [Accepted: 08/05/2019] [Indexed: 05/18/2023]
Abstract
As Oryza sativa (rice) seeds represent food for over three billion people worldwide, the identification of genes that enhance grain size and composition is much desired. Past reports have indicated that Arabidopsis thaliana acyl-CoA-binding proteins (ACBPs) are important in seed development but did not affect seed size. Herein, rice OsACBP2 was demonstrated not only to play a role in seed development and germination, but also to influence grain size. OsACBP2 mRNA accumulated in embryos and endosperm of germinating seeds in qRT-PCR analysis, while β-glucuronidase (GUS) assays on OsACBP2pro::GUS rice transformants showed GUS expression in embryos, as well as the scutellum and aleurone layer of germinating seeds. Deletion analysis of the OsACBP2 5'-flanking region revealed five copies of the seed cis-element, Skn-I-like motif (-1486/-1482, -956/-952, -939/-935, -826/-822, and -766/-762), and the removal of any adversely affected expression in seeds, thereby providing a molecular basis for OsACBP2 expression in seeds. When OsACBP2 function was investigated using osacbp2 mutants and transgenic rice overexpressing OsACBP2 (OsACBP2-OE), osacbp2 was retarded in germination, while OsACBP2-OEs performed better than the wild-type and vector-transformed controls, in germination, seedling growth, grain size and grain weight. Transmission electron microscopy of OsACBP2-OE mature seeds revealed an accumulation of oil bodies in the scutellum cells, while confocal laser scanning microscopy indicated oil accumulation in OsACBP2-OE aleurone tissues. Correspondingly, OsACBP2-OE seeds showed gain in triacylglycerols and long-chain fatty acids over the vector-transformed control. As dietary rice bran contains beneficial bioactive components, OsACBP2 appears to be a promising candidate for enriching seed nutritional value.
Collapse
Affiliation(s)
- Ze-Hua Guo
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Richard P Haslam
- Department of Plant Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Louise V Michaelson
- Department of Plant Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Edward C Yeung
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4,, Canada
| | - Shiu-Cheung Lung
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Johnathan A Napier
- Department of Plant Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Mee-Len Chye
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
26
|
Liao P, Woodfield HK, Harwood JL, Chye ML, Scofield S. Comparative Transcriptomics Analysis of Brassica napus L. during Seed Maturation Reveals Dynamic Changes in Gene Expression between Embryos and Seed Coats and Distinct Expression Profiles of Acyl-CoA-Binding Proteins for Lipid Accumulation. PLANT & CELL PHYSIOLOGY 2019; 60:2812-2825. [PMID: 31504915 PMCID: PMC6896696 DOI: 10.1093/pcp/pcz169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/18/2019] [Indexed: 05/18/2023]
Abstract
Production of vegetable oils is a vital agricultural resource and oilseed rape (Brassica napus) is the third most important oil crop globally. Although the regulation of lipid biosynthesis in oilseeds is still not fully defined, the acyl-CoA-binding proteins (ACBPs) have been reported to be involved in such metabolism, including oil accumulation, in several plant species. In this study, progressive changes in gene expression in embryos and seed coats at different stages of seed development were comprehensively investigated by transcriptomic analyses in B. napus, revealing dynamic changes in the expression of genes involved in lipid biosynthesis. We show that genes encoding BnACBP proteins show distinct changes in expression at different developmental stages of seed development and show markedly different expression between embryos and seed coats. Both isoforms of the ankyrin-repeat BnACBP2 increased during the oil accumulation period of embryo development. By contrast, the expression of the three most abundant isoforms of the small molecular mass BnACBP6 in embryos showed progressive reduction, despite having the highest overall expression level. In seed coats, BnACBP3, BnACBP4 and BnACBP5 expression remained constant during development, whereas the two major isoforms of BnACBP6 increased, contrasting with the data from embryos. We conclude that genes related to fatty acid and triacylglycerol biosynthesis showing dynamic expression changes may regulate the lipid distribution in embryos and seed coats of B. napus and that BnACBP2 and BnACBP6 are potentially important for oil accumulation.
Collapse
Affiliation(s)
- Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
- Corresponding authors: John L. Harwood, E-mail, ; Fax, 00-44-2920-874116; Mee-Len Chye, E-mail, ; Fax, 852-28583477
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Corresponding authors: John L. Harwood, E-mail, ; Fax, 00-44-2920-874116; Mee-Len Chye, E-mail, ; Fax, 852-28583477
| | - Simon Scofield
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
27
|
Wang J, Lin W, Yin Z, Wang L, Dong S, An J, Lin Z, Yu H, Shi L, Lin S, Chen S. Comprehensive evaluation of fuel properties and complex regulation of intracellular transporters for high oil production in developing seeds of Prunus sibirica for woody biodiesel. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:6. [PMID: 30622648 PMCID: PMC6318995 DOI: 10.1186/s13068-018-1347-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/24/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Based on our previous studies of 17 Prunus sibirica germplasms, one plus tree with high quality and quantity of seed oils has emerged as novel potential source of biodiesel. To better develop P. sibirica seed oils as woody biodiesel, a concurrent exploration of oil content, FA composition, biodiesel yield and fuel properties as well as prediction model construction for fuel properties was conducted on developing seeds to determine the optimal seed harvest time for producing high-quality biodiesel. Oil synthesis required supply of carbon source, energy and FA, but their transport mechanisms still remains enigmatic. Our recent 454 sequencing of P. sibirica could provide long-read sequences to identify membrane transporters for a better understanding of regulatory mechanism for high oil production in developing seeds. RESULTS To better develop the seed oils of P. sibirica as woody biodiesel, we firstly focused on a temporal and comparative evaluation of growth tendency, oil content, FA composition, biodiesel yield and fuel properties as well as model construction for biodiesel property prediction in different developing seeds from P. sibirica plus tree (accession AS-80), revealing that the oils from developing seeds harvested after 60 days after flowering (DAF) could be as novel potential feedstock for producing biodiesel with ideal fuel property. To gain new insight into membrane transport mechanism for high oil yield in developing seeds of P. sibirica, we presented a global analysis of transporter based on our recent 454 sequencing data of P. sibirica. We annotated a total of 116 genes for membrane-localized transporters at different organelles (plastid, endoplasmatic reticulum, tonoplast, mitochondria and peroxisome), of which some specific transporters were identified to be involved in carbon allocation, metabolite transport and energy supply for oil synthesis by both RT-PCR and qRT-PCR. Importantly, the transporter-mediated model was well established for high oil synthesis in developing P. sibirica seeds. Our findings could help to reveal molecular mechanism of increased oil production and may also present strategies for engineering oil accumulation in oilseed plants. CONCLUSIONS This study presents a temporal and comparative evaluation of developing P. sibirica seed oils as a potential feedstock for producing high-quality biodiesel and a global identification for membrane transporters was to gain better insights into regulatory mechanism of high oil production in developing seeds of P. sibirica. Our findings may present strategies for developing woody biodiesel resources and engineering oil accumulation.
Collapse
Affiliation(s)
- Jia Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Weijun Lin
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Zhongdong Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Libing Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - ShuBin Dong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Jiyong An
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Zixin Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Haiyan Yu
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - Lingling Shi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Shanzhi Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
28
|
Wang X, Liang H, Guo D, Guo L, Duan X, Jia Q, Hou X. Integrated analysis of transcriptomic and proteomic data from tree peony ( P. ostii) seeds reveals key developmental stages and candidate genes related to oil biosynthesis and fatty acid metabolism. HORTICULTURE RESEARCH 2019; 6:111. [PMID: 31645965 PMCID: PMC6804530 DOI: 10.1038/s41438-019-0194-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/10/2019] [Accepted: 08/15/2019] [Indexed: 05/04/2023]
Abstract
Tree peony (Paeonia section Moutan DC.) seeds are an excellent source of beneficial natural compounds that promote health, and they contain high levels of alpha-linolenic acid (ALA). In recent years, tree peony has been emerging as an oil crop. Therefore, combined analysis of the transcriptome and proteome of tree peony (P. ostii) seeds at 25, 32, 39, 53, 67, 81, 88, 95, and 109 days after pollination (DAP) was conducted to better understand the transcriptional and translational regulation of seed development and oil biosynthesis. A total of 38,482 unigenes and 2841 proteins were identified. A total of 26,912 differentially expressed genes (DEGs) and 592 differentially expressed proteins (DEPs) were clustered into three groups corresponding to the rapid growth, seed inclusion enrichment and conversion, and late dehydration and mature stages of seed development. Fifteen lipid metabolism pathways were identified at both the transcriptome and proteome levels. Pathway enrichment analysis revealed that a period of rapid fatty acid biosynthesis occurred at 53-88 DAP. Furthermore, 211 genes and 35 proteins associated with the fatty acid metabolism pathway, 63 genes and 11 proteins associated with the biosynthesis of unsaturated fatty acids (UFAs), and 115 genes and 24 proteins associated with ALA metabolism were identified. Phylogenetic analysis revealed that 16 putative fatty acid desaturase (FAD)-encoding genes clustered into four FAD groups, eight of which exhibited the highest expression at 53 DAP, suggesting that they play an important role in ALA accumulation. RT-qPCR analysis indicated that the temporal expression patterns of oil biosynthesis genes were largely similar to the RNA-seq results. The expression patterns of fatty acid metabolism- and seed development-related proteins determined by MRM were also highly consistent with the results obtained in the proteomic analysis. Correlation analysis indicated significant differences in the number and abundance of DEGs and DEPs but a high level of consistency in expression patterns and metabolic pathways. The results of the present study represent the first combined transcriptomic and proteomic analysis of tree peony seeds and provide insight into tree peony seed development and oil accumulation.
Collapse
Affiliation(s)
- Xiaojing Wang
- College of Agriculture / College of Tree Peony, Henan University of Science and Technology, Luoyang, 471023 China
| | - Haiying Liang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634-0318 USA
| | - Dalong Guo
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 China
| | - Lili Guo
- College of Agriculture / College of Tree Peony, Henan University of Science and Technology, Luoyang, 471023 China
| | - Xiangguang Duan
- College of Agriculture / College of Tree Peony, Henan University of Science and Technology, Luoyang, 471023 China
| | - Qishi Jia
- College of Agriculture / College of Tree Peony, Henan University of Science and Technology, Luoyang, 471023 China
| | - Xiaogai Hou
- College of Agriculture / College of Tree Peony, Henan University of Science and Technology, Luoyang, 471023 China
| |
Collapse
|
29
|
Raboanatahiry N, Wang B, Yu L, Li M. Functional and Structural Diversity of Acyl-coA Binding Proteins in Oil Crops. Front Genet 2018; 9:182. [PMID: 29872448 PMCID: PMC5972291 DOI: 10.3389/fgene.2018.00182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/01/2018] [Indexed: 12/16/2022] Open
Abstract
Diversities in structure and function of ACBP were discussed in this review. ACBP are important proteins that could transport newly synthesized fatty acid, activated into -coA, from plastid to endoplasmic reticulum, where oil in the form of triacylglycerol occurs. ACBP were detected in various animal and plants species, which indicated their importance in biological function. In fact, involvement of ACBP in important process such as lipid metabolism, regulation of enzyme and gene expression, and in response to plant stresses has been proven in several studies. In this review, findings on ACBP of 11 well-known oil crops were reviewed to comprehend diversity, comparative analyses on ACBP structure were made, and link between structure and function, tissue expression and subcellular location of ACBP were also observed. Incomplete reports in some species were mentioned, which might be encouraging to start or to perform deeper studies. Similar characteristics were found in paralogs ACBP, and orthologs ACBP had different functions, despite the high identity in amino acid sequence. At the end, it is confirmed that ortholog proteins could not necessarily display the same function, even from closely related species.
Collapse
Affiliation(s)
- Nadia Raboanatahiry
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
| | - Baoshan Wang
- College of Life Science, Shandong Normal University, Jinan, China
| | - Longjiang Yu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
| |
Collapse
|
30
|
Lung SC, Liao P, Yeung EC, Hsiao AS, Xue Y, Chye ML. Arabidopsis ACYL-COA-BINDING PROTEIN1 interacts with STEROL C4-METHYL OXIDASE1-2 to modulate gene expression of homeodomain-leucine zipper IV transcription factors. THE NEW PHYTOLOGIST 2018; 218:183-200. [PMID: 29288621 DOI: 10.1111/nph.14965] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/20/2017] [Indexed: 05/18/2023]
Abstract
Fatty acids (FAs) and sterols constitute building blocks of eukaryotic membranes and lipid signals. Co-regulation of FA and sterol synthesis is mediated by sterol regulatory element-binding proteins in animals but remains elusive in plants. We reported recently that Arabidopsis ACYL-COA-BINDING PROTEIN1 (ACBP1) modulates sterol synthesis via protein-protein interaction with STEROL C4-METHYL OXIDASE1-1 (SMO1-1). Herein, ACBP1 was demonstrated to co-express and interact with SMO1-2 by yeast two-hybrid, co-localization, pull-down, co-immunoprecipitation and β-glucuronidase assays. SMO1-2 silenced in acbp1 was used in phenotyping, GC-MS and expression profiling. ACBP1 co-expressed with SMO1-2 in embryo sacs, pollen and trichomes, corroborating with cooperative tissue-specific functions unseen with SMO1-1. SMO1-2 silencing in acbp1 impaired seed development, male and female gamete transmission, and pollen function. Genes encoding homeodomain-leucine zipper IV transcription factors (HDG5, HDG10, HDG11 and GLABRA2), which potentially bind phospholipids/sterols, were transcribed aberrantly. GLABRA2 targets (MYB23, MUM4 and PLDα1) were misregulated, causing glabra2-resembling trichome, seed coat mucilage and oil-accumulating phenotypes. Together with altered sterol and FA compositions upon ACBP1 mutation and/or SMO1-2 silencing, ACBP1-SMO1 interaction appears to mediate homeostatic co-regulation of FAs and sterols, which serve as lipid modulators for gene expression of homeodomain-leucine zipper IV transcription factors.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Edward C Yeung
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - An-Shan Hsiao
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yan Xue
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
31
|
Qiao K, Wang M, Takano T, Liu S. Overexpression of Acyl-CoA-Binding Protein 1 ( ChACBP1) From Saline-Alkali-Tolerant Chlorella sp. Enhances Stress Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:1772. [PMID: 30555504 PMCID: PMC6282033 DOI: 10.3389/fpls.2018.01772] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/14/2018] [Indexed: 05/05/2023]
Abstract
A large proportion of the world's arable land is saline-alkali land, and this is becoming an urgent environmental problem for agriculture. One approach to address this problem is to develop new varieties of stress-resistant plants through genetic engineering. The algae (Chlorella sp.) JB6, which was previously isolated from saline-alkali land, was found to exhibit strong NaHCO3 tolerance. Here, we explored saline-alkali-tolerance genes in this alga that might be useful for producing abiotic stress-resistant transgenic plants. We identified a gene encoding acyl-CoA-binding protein 1 (ACBP1) from JB6 by screening a full-length cDNA library in yeast under NaHCO3 stress. Northern blot analyses showed that the ChACBP1 mRNA levels were significantly up-regulated under abiotic stresses such as salinity, oxidation, heavy metals, and low temperature stresses. The recombinant ChACBP1 protein was found to bind phosphatidylcholine in vitro. Green fluorescent protein-labeled ChACBP1 was localized to the cytosol. Overexpression of ChACBP1 in yeast and Arabidopsis increased their resistance to high salinity, oxidation, heavy metals, and low temperature stresses. These results suggested that ChACBP1 may mediate plant abiotic stress adaptation through phospholipid metabolism. Thus, ChACBP1 may be useful to genetically improve the tolerance of plants to saline-alkali soil.
Collapse
Affiliation(s)
- Kun Qiao
- The State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin’an, China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Min Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| | - Tetsuo Takano
- Asian Natural Environment Science Center (ANESC), University of Tokyo, Tokyo, Japan
| | - Shenkui Liu
- The State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin’an, China
- *Correspondence: Shenkui Liu,
| |
Collapse
|
32
|
Ye ZW, Chen QF, Chye ML. Arabidopsis thaliana Acyl-CoA-binding protein ACBP6 interacts with plasmodesmata-located protein PDLP8. PLANT SIGNALING & BEHAVIOR 2017; 12:e1359365. [PMID: 28786767 PMCID: PMC5616145 DOI: 10.1080/15592324.2017.1359365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 05/22/2023]
Abstract
In Arabidopsis thaliana, six acyl-CoA-binding proteins (ACBPs), designated as AtACBP1 to AtACBP6, have been identified to function in various events related to plant stress and development. The 10-kDa AtACBP6 is the smallest in this protein family, and recombinant AtACBP6 interacts with lipids in vitro by binding to acyl-CoA esters and phosphatidylcholine. Using anti-AtACBP6 antibodies in immunoelectron microscopy, we have localized AtACBP6 in the Arabidopsis phloem. The detection of immunogold grains in the plasmodesmata suggested that AtACBP6 could move from the companion cells to the sieve elements via the plasmodesmata. As AtACBP6 has been identified in a membrane-based interactome analysis to be a potential protein partner of Plasmodesmata-Localized Protein, PDLP8, AtACBP6-PDLP8 interaction was investigated herein utilizing isothermal titration calorimetry, as well as pull-down and bimolecular fluorescence complementation assays (BiFC). Notably, BiFC data revealed that AtACBP6-PDLP8 interaction occurred at the plasma membrane, which was unexpected as AtACBP6 has been previously identified in the cytosol. AtACBP6 expression was generally higher than PDLP8 in β-glucuronidase (GUS) assays on transgenic Arabidopsis transformed with AtACBP6 or PDLP8 promoter-driven GUS, consistent with qRT-PCR and microarray results. Furthermore, western blot analysis using anti-AtACBP6 antibodies showed a reduction in AtACBP6 expression in the pdlp8 T-DNA insertional mutant, suggesting that PDLP8 may possibly influence AtACBP6 accumulation in the sieve elements, probably in the plasmodesmata, where PDLP8 is confined and to where AtACBP6 has been immunodetected.
Collapse
Affiliation(s)
- Zi-Wei Ye
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Qin-Fang Chen
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
33
|
Lung SC, Liao P, Yeung EC, Hsiao AS, Xue Y, Chye ML. Acyl-CoA-Binding Protein ACBP1 Modulates Sterol Synthesis during Embryogenesis. PLANT PHYSIOLOGY 2017; 174:1420-1435. [PMID: 28500265 PMCID: PMC5490911 DOI: 10.1104/pp.17.00412] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/09/2017] [Indexed: 05/10/2023]
Abstract
Fatty acids (FAs) and sterols are primary metabolites that exert interrelated functions as structural and signaling lipids. Despite their common syntheses from acetyl-coenzyme A, homeostatic cross talk remains enigmatic. Six Arabidopsis (Arabidopsis thaliana) acyl-coenzyme A-binding proteins (ACBPs) are involved in FA metabolism. ACBP1 interacts with PHOSPHOLIPASE Dα1 and regulates phospholipid composition. Here, its specific role in the negative modulation of sterol synthesis during embryogenesis is reported. ACBP1, likely in a liganded state, interacts with STEROL C4-METHYL OXIDASE1-1 (SMO1-1), a rate-limiting enzyme in the sterol pathway. Proembryo abortion in the double mutant indicated that the ACBP1-SMO1-1 interaction is synthetic lethal, corroborating with their strong promoter activities in developing ovules. Gas chromatography-mass spectrometry revealed quantitative and compositional changes in FAs and sterols upon overexpression or mutation of ACBP1 and/or SMO1-1 Aberrant levels of these metabolites may account for the downstream defect in lipid signaling. GLABRA2 (GL2), encoding a phospholipid/sterol-binding homeodomain transcription factor, was up-regulated in developing seeds of acbp1, smo1-1, and ACBP1+/-smo1-1 in comparison with the wild type. Consistent with the corresponding transcriptional alteration of GL2 targets, high-oil, low-mucilage phenotypes of gl2 were phenocopied in ACBP1+/-smo1-1 Thus, ACBP1 appears to modulate the metabolism of two important lipid classes (FAs and sterols) influencing cellular signaling.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Pan Liao
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Edward C Yeung
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - An-Shan Hsiao
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yan Xue
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
34
|
Guo ZH, Chan WHY, Kong GKW, Hao Q, Chye ML. The first plant acyl-CoA-binding protein structures: the close homologues OsACBP1 and OsACBP2 from rice. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2017; 73:438-448. [PMID: 28471368 DOI: 10.1107/s2059798317004193] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/14/2017] [Indexed: 12/13/2022]
Abstract
Acyl-CoA-binding proteins (ACBPs) are a family of proteins that facilitate the binding of long-chain acyl-CoA esters at a conserved acyl-CoA-binding domain. ACBPs act to form intracellular acyl-CoA pools, transport acyl-CoA esters and regulate lipid metabolism. In the model plant Arabidopsis thaliana, a family of six ACBPs has been demonstrated to function in stress and development. Six ACBPs (OsACBPs) have also been identified in Oryza sativa (rice), but they are not as well characterized as those in Arabidopsis thaliana. To understand the need in rice for the two 10 kDa ACBPs, namely OsACBP1 and OsACBP2, which share 79% sequence identity, their crystal structures were elucidated and their affinities toward acyl-CoA esters were compared using isothermal titration calorimetry. OsACBP2 was found to display a higher binding affinity for unsaturated acyl-CoA esters than OsACBP1. A difference between the two proteins is observed at helix 3 and is predicted to lead to different ligand-binding modes in terms of the shape of the binding pocket and the residues that are involved. OsACBP1 thus resembles bovine ACBP, while OsACBP2 is similar to human liver ACBP, in both structure and binding affinity. This is the first time that ACBP structures have been reported from plants, and suggests that OsACBP1 and OsACBP2 are not redundant in function despite their high sequence identity and general structural similarity.
Collapse
Affiliation(s)
- Ze Hua Guo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wallace H Y Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Geoffrey K W Kong
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Quan Hao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Mee Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
35
|
Ye ZW, Xu J, Shi J, Zhang D, Chye ML. Kelch-motif containing acyl-CoA binding proteins AtACBP4 and AtACBP5 are differentially expressed and function in floral lipid metabolism. PLANT MOLECULAR BIOLOGY 2017; 93:209-225. [PMID: 27826761 DOI: 10.1007/s11103-016-0557-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 10/30/2016] [Indexed: 05/14/2023]
Abstract
We herein demonstrated two of the Arabidopsis acyl-CoA-binding proteins (ACBPs), AtACBP4 and AtACBP5, both function in floral lipid metabolism and they may possibly play complementary roles in Arabidopsis microspore-to-pollen development. Histological analysis on transgenic Arabidopsis expressing β-glucuronidase driven from the AtACBP4 and AtACBP5 promoters, as well as, qRTPCR analysis revealed that AtACBP4 was expressed at stages 11-14 in the mature pollen, while AtACBP5 was expressed at stages 7-10 in the microspores and tapetal cells. Immunoelectron microscopy using AtACBP4- or AtACBP5-specific antibodies further showed that AtACBP4 and AtACBP5 were localized in the cytoplasm. Chemical analysis of bud wax and cutin using gas chromatographyflame ionization detector and GC-mass spectrometry analyses revealed the accumulation of cuticular waxes and cutin monomers in acbp4, acbp5 and acbp4acbp5 buds in comparison to the wild type (Col-0). Fatty acid profiling demonstrated a decline in stearic acid and an increase in linolenic acid in acbp4 and acbp4acbp5 buds, respectively, over Col-0. Analysis of inflorescences from acbp4 and acbp5 revealed that there was an increase of AtACBP5 expression in acbp4, and an increase of AtACBP4 expression in acbp5. Deletion analysis of the AtACBP4 and AtACBP5 5'-flanking regions indicated the minimal promoter activity for AtACBP4 (-145/+103) and AtACBP5 (-181/+81). Electrophoretic mobility shift assays identified a pollen-specific cis-acting element POLLEN1 (AGAAA) mapped at AtACBP4 (-157/-153) which interacted with nuclear proteins from flower and this was substantiated by DNase I footprinting. In Arabidopsis thaliana, six acyl-CoA-binding proteins (ACBPs), designated as AtACBP1 to AtACBP6, have been identified to function in plant stress and development. AtACBP4 and AtACBP5 represent the two largest proteins in the AtACBP family. Despite having kelch-motifs and sharing a common cytosolic subcellular localization, AtACBP4 and AtACBP5 differ in spatial and temporal expression. Histological analysis on transgenic Arabidopsis expressing β-glucuronidase driven from the respective AtACBP4 and AtACBP5 promoters, as well as, qRT-PCR analysis revealed that AtACBP4 was expressed at stages 11-14 in mature pollen, while AtACBP5 was expressed at stages 7-10 in the microspores and tapetal cells. Immunoelectron microscopy using AtACBP4- or AtACBP5-specific antibodies further showed that AtACBP4 and AtACBP5 were localized in the cytoplasm. Chemical analysis of bud wax and cutin using gas chromatography-flame ionization detector and GC-mass spectrometry analyses revealed the accumulation of cuticular waxes and cutin monomers in acbp4, acbp5 and acbp4acbp5 buds, in comparison to the wild type. Analysis of inflorescences from acbp4 and acbp5 revealed that there was an increase of AtACBP5 expression in acbp4, and an increase of AtACBP4 expression in acbp5. Deletion analysis of the AtACBP4 and AtACBP5 5'-flanking regions indicated the minimal promoter region for AtACBP4 (-145/+103) and AtACBP5 (-181/+81). Electrophoretic mobility shift assays identified a pollen-specific cis-acting element POLLEN1 (AGAAA) within AtACBP4 (-157/-153) which interacted with nuclear proteins from flower and this was substantiated by DNase I footprinting. These results suggest that AtACBP4 and AtACBP5 both function in floral lipidic metabolism and they may play complementary roles in Arabidopsis microspore-to-pollen development.
Collapse
Affiliation(s)
- Zi-Wei Ye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jie Xu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
36
|
Ye ZW, Lung SC, Hu TH, Chen QF, Suen YL, Wang M, Hoffmann-Benning S, Yeung E, Chye ML. Arabidopsis acyl-CoA-binding protein ACBP6 localizes in the phloem and affects jasmonate composition. PLANT MOLECULAR BIOLOGY 2016; 92:717-730. [PMID: 27645136 DOI: 10.1007/s11103-016-0541-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/07/2016] [Indexed: 05/20/2023]
Abstract
Arabidopsis thaliana ACYL-COA-BINDING PROTEIN6 (AtACBP6) encodes a cytosolic 10-kDa AtACBP. It confers freezing tolerance in transgenic Arabidopsis, possibly by its interaction with lipids as indicated by the binding of acyl-CoA esters and phosphatidylcholine to recombinant AtACBP6. Herein, transgenic Arabidopsis transformed with an AtACBP6 promoter-driven β-glucuronidase (GUS) construct exhibited strong GUS activity in the vascular tissues. Immunoelectron microscopy using anti-AtACBP6 antibodies showed AtACBP6 localization in the phloem especially in the companion cells and sieve elements. Also, the presence of gold grains in the plasmodesmata indicated its potential role in systemic trafficking. The AtACBP6 protein, but not its mRNA, was found in phloem exudate of wild-type Arabidopsis. Fatty acid profiling using gas chromatography-mass spectrometry revealed an increase in the jasmonic acid (JA) precursor, 12-oxo-cis,cis-10,15-phytodienoic acid (cis-OPDA), and a reduction in JA and/or its derivatives in acbp6 phloem exudates in comparison to the wild type. Quantitative real-time PCR showed down-regulation of COMATOSE (CTS) in acbp6 rosettes suggesting that AtACBP6 affects CTS function. AtACBP6 appeared to affect the content of JA and/or its derivatives in the sieve tubes, which is consistent with its role in pathogen-defense and in its wound-inducibility of AtACBP6pro::GUS. Taken together, our results suggest the involvement of AtACBP6 in JA-biosynthesis in Arabidopsis phloem tissues.
Collapse
Affiliation(s)
- Zi-Wei Ye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Tai-Hua Hu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Qin-Fang Chen
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yung-Lee Suen
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Susanne Hoffmann-Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Edward Yeung
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
37
|
Lung SC, Chye ML. Deciphering the roles of acyl-CoA-binding proteins in plant cells. PROTOPLASMA 2016; 253:1177-95. [PMID: 26340904 DOI: 10.1007/s00709-015-0882-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/21/2015] [Indexed: 05/18/2023]
Abstract
Lipid trafficking is vital for metabolite exchange and signal communications between organelles and endomembranes. Acyl-CoA-binding proteins (ACBPs) are involved in the intracellular transport, protection, and pool formation of acyl-CoA esters, which are important intermediates and regulators in lipid metabolism and cellular signaling. In this review, we highlight recent advances in our understanding of plant ACBP families from a cellular and developmental perspective. Plant ACBPs have been extensively studied in Arabidopsis thaliana (a dicot) and to a lesser extent in Oryza sativa (a monocot). Thus far, they have been detected in the plasma membrane, vesicles, endoplasmic reticulum, Golgi apparatus, apoplast, cytosol, nuclear periphery, and peroxisomes. In combination with biochemical and molecular genetic tools, the widespread subcellular distribution of respective ACBP members has been explicitly linked to their functions in lipid metabolism during development and in response to stresses. At the cellular level, strong expression of specific ACBP homologs in specialized cells, such as embryos, stem epidermis, guard cells, male gametophytes, and phloem sap, is of relevance to their corresponding distinct roles in organ development and stress responses. Other interesting patterns in their subcellular localization and spatial expression that prompt new directions in future investigations are discussed.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
38
|
Plant acyl-CoA-binding proteins: An emerging family involved in plant development and stress responses. Prog Lipid Res 2016; 63:165-81. [DOI: 10.1016/j.plipres.2016.06.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/25/2016] [Accepted: 06/26/2016] [Indexed: 01/22/2023]
|
39
|
Li N, Xu C, Li-Beisson Y, Philippar K. Fatty Acid and Lipid Transport in Plant Cells. TRENDS IN PLANT SCIENCE 2016; 21:145-158. [PMID: 26616197 DOI: 10.1016/j.tplants.2015.10.011] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/29/2015] [Accepted: 10/15/2015] [Indexed: 05/18/2023]
Abstract
Fatty acids (FAs) and lipids are essential - not only as membrane constituents but also for growth and development. In plants and algae, FAs are synthesized in plastids and to a large extent transported to the endoplasmic reticulum for modification and lipid assembly. Subsequently, lipophilic compounds are distributed within the cell, and thus are transported across most membrane systems. Membrane-intrinsic transporters and proteins for cellular FA/lipid transfer therefore represent key components for delivery and dissemination. In addition to highlighting their role in lipid homeostasis and plant performance, different transport mechanisms for land plants and green algae - in the model systems Arabidopsis thaliana, Chlamydomonas reinhardtii - are compared, thereby providing a current perspective on protein-mediated FA and lipid trafficking in photosynthetic cells.
Collapse
Affiliation(s)
- Nannan Li
- Research Center of Bioenergy and Bioremediation (RCBB), College of Resources and Environment, Southwest University, Beibei District, Chongqing, 400715, P.R. China
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, 50 Bell Avenue, Upton, NY 11973-5000, USA
| | - Yonghua Li-Beisson
- Institute of Environmental Biology and Biotechnology, The French Atomic and Alternative Energy Commission, Unité Mixte de Recherche 7265, Commissariat à l'Energie Atomique (CEA) Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Katrin Philippar
- Department of Biology I, Ludwig-Maximilians-University München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
40
|
Abstract
Acyl-CoA-binding proteins (ACBPs) play a pivotal role in fatty acid metabolism because they can transport medium- and long-chain acyl-CoA esters. In eukaryotic cells, ACBPs are involved in intracellular trafficking of acyl-CoA esters and formation of a cytosolic acyl-CoA pool. In addition to these ubiquitous functions, more specific non-redundant roles of plant ACBP subclasses are implicated by the existence of multigene families with variable molecular masses, ligand specificities, functional domains (e.g. protein-protein interaction domains), subcellular locations and gene expression patterns. In this chapter, recent progress in the characterization of ACBPs from the model dicot plant, Arabidopsis thaliana, and the model monocot, Oryza sativa, and their emerging roles in plant growth and development are discussed. The functional significance of respective members of the plant ACBP families in various developmental and physiological processes such as seed development and germination, stem cuticle formation, pollen development, leaf senescence, peroxisomal fatty acid β-oxidation and phloem-mediated lipid transport is highlighted.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
41
|
Lung SC, Chye ML. The binding versatility of plant acyl-CoA-binding proteins and their significance in lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:1409-1421. [PMID: 26747650 DOI: 10.1016/j.bbalip.2015.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 11/18/2022]
Abstract
Acyl-CoA esters are the activated form of fatty acids and play important roles in lipid metabolism and the regulation of cell functions. They are bound and transported by nonenzymic proteins such as the acyl-CoA-binding proteins (ACBPs). Although plant ACBPs were so named by virtue of amino acid homology to existing yeast and mammalian counterparts, recent studies revealed that ligand specificities of plant ACBPs are not restricted to acyl-CoA esters. Arabidopsis and rice ACBPs also interact with phospholipids, and their affinities to different acyl-CoA species and phospholipid classes vary amongst isoforms. Their ligands also include heavy metals. Interactors of plant ACBPs are further diversified due to the evolution of protein-protein interacting domains. This review summarizes our current understanding of plant ACBPs with a focus on their binding versatility. Their broad ligand range is of paramount significance in serving a multitude of functions during development and stress responses as discussed herein. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
42
|
Abstract
A gene family encoding six members of acyl-CoA-binding proteins (ACBP) exists in Arabidopsis and they are designated as AtACBP1-AtACBP6. They have been observed to play pivotal roles in plant lipid metabolism, consistent to the abilities of recombinant AtACBP in binding different medium- and long-chain acyl-CoA esters in vitro. While AtACBP1 and AtACBP2 are membrane-associated proteins with ankyrin repeats and AtACBP3 contains a signaling peptide for targeting to the apoplast, AtACBP4, AtACBP5 and AtACBP6 represent the cytosolic forms in the AtACBP family. They were verified to be subcellularly localized in the cytosol using diverse experimental methods, including cell fractionation followed by western blot analysis, immunoelectron microscopy and confocal laser-scanning microscopy using autofluorescence-tagged fusions. AtACBP4 (73.2 kDa) and AtACBP5 (70.1 kDa) are the largest, while AtACBP6 (10.4 kDa) is the smallest. Their binding affinities to oleoyl-CoA esters suggested that they can potentially transfer oleoyl-CoA esters from the plastids to the endoplasmic reticulum, facilitating the subsequent biosynthesis of non-plastidial membrane lipids in Arabidopsis. Recent studies on ACBP, extended from a dicot (Arabidopsis) to a monocot, revealed that six ACBP are also encoded in rice (Oryza sativa). Interestingly, three small rice ACBP (OsACBP1, OsACBP2 and OsACBP3) are present in the cytosol in comparison to one (AtACBP6) in Arabidopsis. In this review, the combinatory and distinct roles of the cytosolic AtACBP are discussed, including their functions in pollen and seed development, light-dependent regulation and substrate affinities to acyl-CoA esters.
Collapse
|
43
|
Hsiao AS, Yeung EC, Ye ZW, Chye ML. The Arabidopsis cytosolic Acyl-CoA-binding proteins play combinatory roles in pollen development. PLANT & CELL PHYSIOLOGY 2015; 56:322-33. [PMID: 25395473 DOI: 10.1093/pcp/pcu163] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In Arabidopsis, six acyl-CoA-binding proteins (ACBPs) have been identified and they have been demonstrated to function in plant stress responses and development. Three of these AtACBPs (AtACBP4-AtACBP6) are cytosolic proteins and all are expressed in floral organs as well as in other tissues. The roles of cytosolic AtACBPs in floral development were addressed in this study. To this end, a T-DNA insertional knockout mutant of acbp5 was characterized before use in crosses with the already available acbp4 and acbp6 T-DNA knockout mutants to examine their independent and combinatory functions in floral development. The single-gene knockout mutations did not cause any significant phenotypic changes, while phenotypic deficiencies affecting siliques and pollen were observed in the double mutants (acbp4acbp6 and acbp5acbp6) and the acbp4acbp5acbp6 triple mutant. Vacuole accumulation in the acbp4acbp6, acbp5acbp6 and acbp4acbp5acbp6 pollen was the most severe abnormality occurring in the double and triple mutants. Furthermore, scanning electron microscopy and transmission electron microscopy revealed exine and oil body defects in the acbp4acbp5acbp6 mutant, which also displayed reduced ability in in vitro pollen germination. Transgenic Arabidopsis expressing β-glucuronidase (GUS) driven from the various AtACBP promoters indicated that AtACBP6pro::GUS expression overlapped with AtACBP4pro::GUS expression in pollen grains and with AtACBP5pro::GUS expression in the microspores and tapetal cells. Taken together, these results suggest that the three cytosolic AtACBPs play combinatory roles in acyl-lipid metabolism during pollen development.
Collapse
Affiliation(s)
- An-Shan Hsiao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Edward C Yeung
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N1N4, Canada
| | - Zi-Wei Ye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
44
|
Abstract
Oxygen is an indispensable substrate for many biochemical reactions in plants, including energy metabolism (respiration). Despite its importance, plants lack an active transport mechanism to distribute oxygen to all cells. Therefore, steep oxygen gradients occur within most plant tissues, which can be exacerbated by environmental perturbations that further reduce oxygen availability. Plants possess various responses to cope with spatial and temporal variations in oxygen availability, many of which involve metabolic adaptations to deal with energy crises induced by low oxygen. Responses are induced gradually when oxygen concentrations decrease and are rapidly reversed upon reoxygenation. A direct effect of the oxygen level can be observed in the stability, and thus activity, of various transcription factors that control the expression of hypoxia-induced genes. Additional signaling pathways are activated by the impact of oxygen deficiency on mitochondrial and chloroplast functioning. Here, we describe the molecular components of the oxygen-sensing pathway.
Collapse
Affiliation(s)
- Joost T van Dongen
- Institute of Biology I, Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany;
| | | |
Collapse
|
45
|
DU ZY, Chen MX, Chen QF, Gu JD, Chye ML. Expression of Arabidopsis acyl-CoA-binding proteins AtACBP1 and AtACBP4 confers Pb(II) accumulation in Brassica juncea roots. PLANT, CELL & ENVIRONMENT 2015; 38:101-17. [PMID: 24906022 DOI: 10.1111/pce.12382] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/07/2014] [Accepted: 05/22/2014] [Indexed: 05/20/2023]
Abstract
In Arabidopsis thaliana, the expression of two genes encoding acyl-CoA-binding proteins (ACBPs) AtACBP1 and AtACBP4, were observed to be induced by lead [Pb(II)] in shoots and roots in qRT-PCR analyses. Quantitative GUS (β-glucuronidase) activity assays confirmed induction of AtACBP1pro::GUS by Pb(II). Electrophoretic mobility shift assays (EMSAs) revealed that Pas elements in the 5'-flanking region of AtACBP1 were responsive to Pb(II) treatment. AtACBP1 and AtACBP4 were further compared in Pb(II) uptake using Brassica juncea, a potential candidate for phytoremediation given its rapid growth, large roots, high biomass and good capacity to accumulate heavy metals. Results from atomic absorption analyses on transgenic B. juncea expressing AtACBP1 or AtACBP4 indicated Pb(II) accumulation in roots. Subsequent Pb(II)-tracing assays demonstrated Pb(II) accumulation in the cytosol of root tips and vascular tissues of transgenic B. juncea AtACBP1-overexpressors (OXs) and AtACBP4-OXs and transgenic Arabidopsis AtACBP1-OXs. Transgenic Arabidopsis AtACBP1-OXs sequestered Pb(II) in the trichomes and displayed tolerance to hydrogen peroxide (H2 O2 ) treatment. In addition, AtACBP1 and AtACBP4 were H2 O2 -induced in the roots of wild-type Arabidopsis, while lipid hydroperoxide (LOOH) measurements of B. juncea AtACBP1-OX and AtACBP4-OX roots suggested that AtACBP1 and AtACBP4 can protect lipids against Pb(II)-induced lipid peroxidation.
Collapse
Affiliation(s)
- Zhi-Yan DU
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|
46
|
Arabidopsis cytosolic acyl-CoA-binding proteins ACBP4, ACBP5 and ACBP6 have overlapping but distinct roles in seed development. Biosci Rep 2014; 34:e00165. [PMID: 25423293 PMCID: PMC4274664 DOI: 10.1042/bsr20140139] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Eukaryotic cytosolic ACBPs (acyl-CoA-binding proteins) bind acyl-CoA esters and maintain a cytosolic acyl-CoA pool, but the thermodynamics of their protein–lipid interactions and physiological relevance in plants are not well understood. Arabidopsis has three cytosolic ACBPs which have been identified as AtACBP4, AtACBP5 and AtACBP6, and microarray data indicated that all of them are expressed in seeds; AtACBP4 is expressed in early embryogenesis, whereas AtACBP5 is expressed later. ITC (isothermal titration calorimetry) in combination with transgenic Arabidopsis lines were used to investigate the roles of these three ACBPs from Arabidopsis thaliana. The dissociation constants, stoichiometry and enthalpy change of AtACBP interactions with various acyl-CoA esters were determined using ITC. Strong binding of recombinant (r) AtACBP6 with long-chain acyl-CoA (C16- to C18-CoA) esters was observed with dissociation constants in the nanomolar range. However, the affinity of rAtACBP4 and rAtACBP5 to these acyl-CoA esters was much weaker (dissociation constants in the micromolar range), suggesting that they interact with acyl-CoA esters differently from rAtACBP6. When transgenic Arabidopsis expressing AtACBP6pro::GUS was generated, strong GUS (β-glucuronidase) expression in cotyledonary-staged embryos and seedlings prompted us to measure the acyl-CoA contents of the acbp6 mutant. This mutant accumulated higher levels of C18:1-CoA and C18:1- and C18:2-CoAs in cotyledonary-staged embryos and seedlings, respectively, in comparison with the wild type. The acbp4acbp5acbp6 mutant showed the lightest seed weight and highest sensitivity to abscisic acid during germination, suggesting their physiological functions in seeds. The binding affinities of the three Arabidopsis cytosolic ACBPs (AtACBP4, AtACBP5 and AtACBP6) with acyl-CoA esters were investigated by ITC. When the biological significance of these AtACBPs was analysed using mutants, results indicated their overlapping functions in seed acyl-lipid metabolism.
Collapse
|
47
|
Zhang J, Li J, Garcia-Ruiz H, Bates PD, Mirkov TE, Wang X. A stearoyl-acyl carrier protein desaturase, NbSACPD-C, is critical for ovule development in Nicotiana benthamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:489-502. [PMID: 25155407 DOI: 10.1111/tpj.12649] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/13/2014] [Accepted: 08/18/2014] [Indexed: 05/09/2023]
Abstract
Stearoyl-acyl carrier protein desaturase (SACPD) activity is essential for production of the major unsaturated fatty acids (UFAs) in plant lipids. We report here the characterization of three SACPD genes from Nicotiana benthamiana, NbSACPD-A, -B, and -C. All three genes share high similarity to AtSSI2/FAB2 (Suppressor of Salicylic acid-Insensitivity2/Fatty Acid Biosynthesis2), the primary SACPD isoform in Arabidopsis. Knocking down the expression of individual or combinations of NbSACPDs by an artificial microRNA approach resulted in significantly reduced accumulation of 18C UFAs and elevated levels of 18:0-FA (Fatty acids) in leaves, indicating that all three genes participated in fatty acid desaturation. The triple knockdown (KD) plants displayed severe growth phenotypes, including spontaneous cell death and dwarfing. While no vegetative morphologic abnormality was observed in NbSACPD-A, -B, or -C KD plants, strikingly, NbSACPD-C KD plants produced small fruits with aborted ovules. Reciprocal crosses with wild-type and NbSACPD-C KD plants revealed that knocking down NbSACPD-C expression caused female, but not male, sterility. Furthermore, arrested ovule development and significantly altered lipid composition in ovaries were observed in NbSACPD-C KD plants, consistent with the predominant NbSACPD-C expression in ovules. The ovule development defect was fully complemented by coexpressing an amiRNA-resistant NbSACPD-C variant in the NbSACPD-C KD background, further supporting a specific requirement for NbSACPD-C in female fertility. Our results thus indicated that NbSACPD-C plays a critical role maintaining membrane lipid composition in ovule development for female fertility in N. benthamiana, complementing and extending prior understanding on the well-demonstrated roles of SACPDs in biotic and abiotic stresses.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | | | | | | | | | | |
Collapse
|
48
|
Xue Y, Xiao S, Kim J, Lung SC, Chen L, Tanner JA, Suh MC, Chye ML. Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5473-83. [PMID: 25053648 PMCID: PMC4157719 DOI: 10.1093/jxb/eru304] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The membrane-anchored Arabidopsis thaliana ACYL-COA-BINDING PROTEIN1 (AtACBP1) plays important roles in embryogenesis and abiotic stress responses, and interacts with long-chain (LC) acyl-CoA esters. Here, AtACBP1 function in stem cuticle formation was investigated. Transgenic Arabidopsis transformed with an AtACBP1pro::GUS construct revealed β-glucuronidase (GUS) expression on the stem (but not leaf) surface, suggesting a specific role in stem cuticle formation. Isothermal titration calorimetry results revealed that (His)6-tagged recombinant AtACBP1 interacts with LC acyl-CoA esters (18:1-, 18:2-, and 18:3-CoAs) and very-long-chain (VLC) acyl-CoA esters (24:0-, 25:0-, and 26:0-CoAs). VLC fatty acids have been previously demonstrated to act as precursors in wax biosynthesis. Gas chromatography (GC)-flame ionization detector (FID) and GC-mass spectrometry (MS) analyses revealed that an acbp1 mutant showed a reduction in stem and leaf cuticular wax and stem cutin monomer composition in comparison with the wild type (Col-0). Consequently, the acbp1 mutant showed fewer wax crystals on the stem surface in scanning electron microscopy and an irregular stem cuticle layer in transmission electron microscopy in comparison with the wild type. Also, the mutant stems consistently showed a decline in expression of cuticular wax and cutin biosynthetic genes in comparison with the wild type, and the mutant leaves were more susceptible to infection by the necrotrophic pathogen Botrytis cinerea. Taken together, these findings suggest that AtACBP1 participates in Arabidopsis stem cuticle formation by trafficking VLC acyl-CoAs.
Collapse
Affiliation(s)
- Yan Xue
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Shi Xiao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Juyoung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Liang Chen
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Julian A Tanner
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
49
|
Hsiao AS, Haslam RP, Michaelson LV, Liao P, Napier JA, Chye ML. Gene expression in plant lipid metabolism in Arabidopsis seedlings. PLoS One 2014; 9:e107372. [PMID: 25264899 PMCID: PMC4180049 DOI: 10.1371/journal.pone.0107372] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/09/2014] [Indexed: 11/18/2022] Open
Abstract
Events in plant lipid metabolism are important during seedling establishment. As it has not been experimentally verified whether lipid metabolism in 2- and 5-day-old Arabidopsis thaliana seedlings is diurnally-controlled, quantitative real-time PCR analysis was used to investigate the expression of target genes in acyl-lipid transfer, β-oxidation and triacylglycerol (TAG) synthesis and hydrolysis in wild-type Arabidopsis WS and Col-0. In both WS and Col-0, ACYL-COA-BINDING PROTEIN3 (ACBP3), DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1) and DGAT3 showed diurnal control in 2- and 5-day-old seedlings. Also, COMATOSE (CTS) was diurnally regulated in 2-day-old seedlings and LONG-CHAIN ACYL-COA SYNTHETASE6 (LACS6) in 5-day-old seedlings in both WS and Col-0. Subsequently, the effect of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) from the core clock system was examined using the cca1lhy mutant and CCA1-overexpressing (CCA1-OX) lines versus wild-type WS and Col-0, respectively. Results revealed differential gene expression in lipid metabolism between 2- and 5-day-old mutant and wild-type WS seedlings, as well as between CCA1-OX and wild-type Col-0. Of the ACBPs, ACBP3 displayed the most significant changes between cca1lhy and WS and between CCA1-OX and Col-0, consistent with previous reports that ACBP3 is greatly affected by light/dark cycling. Evidence of oil body retention in 4- and 5-day-old seedlings of the cca1lhy mutant in comparison to WS indicated the effect of cca1lhy on storage lipid reserve mobilization. Lipid profiling revealed differences in primary lipid metabolism, namely in TAG, fatty acid methyl ester and acyl-CoA contents amongst cca1lhy, CCA1-OX, and wild-type seedlings. Taken together, this study demonstrates that lipid metabolism is subject to diurnal regulation in the early stages of seedling development in Arabidopsis.
Collapse
Affiliation(s)
- An-Shan Hsiao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Richard P. Haslam
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Louise V. Michaelson
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Johnathan A. Napier
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- * E-mail:
| |
Collapse
|
50
|
Meng W, Hsiao AS, Gao C, Jiang L, Chye ML. Subcellular localization of rice acyl-CoA-binding proteins (ACBPs) indicates that OsACBP6::GFP is targeted to the peroxisomes. THE NEW PHYTOLOGIST 2014; 203:469-482. [PMID: 24738983 DOI: 10.1111/nph.12809] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/12/2014] [Indexed: 05/08/2023]
Abstract
Acyl-CoA-binding proteins (ACBPs) show conservation at the acyl-CoA-binding (ACB) domain which facilitates binding to acyl-CoA esters. In Arabidopsis thaliana, six ACBPs participate in development and stress responses. Rice (Oryza sativa) also contains six genes encoding ACBPs. We investigated differences in subcellular localization between monocot rice and eudicot A. thaliana ACBPs. The subcellular localization of the six OsACBPs was achieved via transient expression of green fluorescence protein (GFP) fusions in tobacco (Nicotiana tabacum) epidermal cells, and stable transformation of A. thaliana. As plant ACBPs had not been reported in the peroxisomes, OsACBP6::GFP localization was confirmed by transient expression in rice sheath cells. The function of OsACBP6 was investigated by overexpressing 35S::OsACBP6 in the peroxisomal abc transporter1 (pxa1) mutant defective in peroxisomal fatty acid β-oxidation. As predicted, OsACBP1::GFP and OsACBP2::GFP were localized to the cytosol, and OsACBP4::GFP and OsACBP5::GFP to the endoplasmic reticulum (ER). However, OsACBP3::GFP displayed subcellular multi-localization while OsACBP6::GFP was localized to the peroxisomes. 35S::OsACBP6-OE/pxa1 lines showed recovery in indole-3-butyric acid (IBA) peroxisomal β-oxidation, wound-induced VEGETATIVE STORAGE PROTEIN1 (VSP1) expression and jasmonic acid (JA) accumulation. These findings indicate a role for OsACBP6 in peroxisomal β-oxidation, and suggest that rice ACBPs are involved in lipid degradation in addition to lipid biosynthesis.
Collapse
Affiliation(s)
- Wei Meng
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - An-Shan Hsiao
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Caiji Gao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|