1
|
Lake Diver DA, Savage JA. Weighing the risks and benefits of flowering early in the spring for the woody perennial Prunus pumila. AMERICAN JOURNAL OF BOTANY 2024; 111:e16417. [PMID: 39425253 PMCID: PMC11584043 DOI: 10.1002/ajb2.16417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 10/21/2024]
Abstract
PREMISE There are advantages to flowering early in the spring, including greater pollinator fidelity and longer fruit maturation time. But plant phenology has advanced in recent years, making many plants vulnerable to freezing damage from late frosts. METHODS To determine the costs and benefits of flowering early in the growing season, we exposed Prunus pumila plants to two freezing treatments and a delayed flowering treatment in subsequent years. Data were collected on ovary swelling, fruit production, and pollinator visitation on hand- and open-pollinated plants in all treatments. We also measured tissue damage after freeze events. RESULTS Our results suggest that flowering time and temperature affect reproductive success, with fewer fruits produced after hard freezes. The same was not true for light freezes, which had minimal impact on reproduction. Freezing damage to plants after a hard freeze did affect the number of dipteran pollinators but not the overall pollinator visitation rate. Despite the clear impact of freezing temperatures on plant reproduction, flowering early provided an advantage in that reproductive output decreased with delayed flowering. CONCLUSIONS Our findings suggest that Prunus pumila will retain the ability to attract pollinators and produce viable seeds if exposed to false spring conditions that involve a light freeze, but hard freezes may reduce yield by an order of magnitude. Although the advantages to flowering early may outweigh the risk of freezing damage under current conditions, it is possible that flower viability may be constrained under continued climate warming.
Collapse
|
2
|
Dötterl S, Gershenzon J. Chemistry, biosynthesis and biology of floral volatiles: roles in pollination and other functions. Nat Prod Rep 2023; 40:1901-1937. [PMID: 37661854 DOI: 10.1039/d3np00024a] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Covering: 2010 to 2023Floral volatiles are a chemically diverse group of plant metabolites that serve multiple functions. Their composition is shaped by environmental, ecological and evolutionary factors. This review will summarize recent advances in floral scent research from chemical, molecular and ecological perspectives. It will focus on the major chemical classes of floral volatiles, on notable new structures, and on recent discoveries regarding the biosynthesis and the regulation of volatile emission. Special attention will be devoted to the various functions of floral volatiles, not only as attractants for different types of pollinators, but also as defenses of flowers against enemies. We will also summarize recent findings on how floral volatiles are affected by abiotic stressors, such as increased temperatures and drought, and by other organisms, such as herbivores and flower-dwelling microbes. Finally, this review will indicate current research gaps, such as the very limited knowledge of the isomeric pattern of chiral compounds and its importance in interspecific interactions.
Collapse
Affiliation(s)
- Stefan Dötterl
- Department of Environment & Biodiversity, Paris Lodron University Salzburg, Hellbrunnerstr 34, 5020 Salzburg, Austria.
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| |
Collapse
|
3
|
Xu G, Zheng Q, Wei P, Zhang J, Liu P, Zhang H, Zhai N, Li X, Xu X, Chen Q, Cao P, Zhao J, Zhou H. Metabolic engineering of a 1,8-cineole synthase enhances aphid repellence and increases trichome density in transgenic tobacco (Nicotiana tabacum L.). PEST MANAGEMENT SCIENCE 2023; 79:3342-3353. [PMID: 37132116 DOI: 10.1002/ps.7520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND The green peach aphid (Myzus persicae Sulzer) is a harmful agricultural pest that causes severe crop damage by directly feeding or indirectly vectoring viruses. 1,8-cineole synthase (CINS) is a multiproduct enzyme that synthesizes monoterpenes, with 1,8-cineole dominating the volatile organic compound profile. However, the relationship between aphid preference and CINS remains elusive. RESULTS Here, we present evidence that SoCINS, a protein from garden sage (Salvia officinalis), enhanced aphid repellence and increased trichome density in transgenic tobacco. Our results demonstrated that overexpression of SoCINS (SoCINS-OE) led to the emission of 1,8-cineole at a level of up to 181.5 ng per g fresh leaf. Subcellular localization assay showed that SoCINS localized to chloroplasts. A Y-tube olfactometer assay and free-choice assays revealed that SoCINS-OE plants had a repellent effect on aphids, without incurring developmental or fecundity-related penalties. Intriguingly, the SoCINS-OE plants displayed an altered trichome morphology, showing increases in trichome density and in the relative proportion of glandular trichomes, as well as enlarged glandular cells. We also found that SoCINS-OE plants had significantly higher jasmonic acid (JA) levels than wild-type plants. Furthermore, application of 1,8-cineole elicited increased JA content and trichome density. CONCLUSION Our results demonstrate that SoCINS-OE plants have a repellent effect on aphids, and suggest an apparent link between 1,8-cineole, JA and trichome density. This study presents a viable and sustainable approach for aphid management by engineering the expression of 1,8-cineole synthase gene in plants, and underscores the potential usefulness of monoterpene synthase for pest control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guoyun Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| | - Qingxia Zheng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| | - Pan Wei
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| | - Jianfeng Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| | - Hui Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| | - Niu Zhai
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| | - Xiaoxu Li
- Tobacco Research Center, Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, P.R. China
| | - Xiangli Xu
- Tobacco Research Center, Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, P.R. China
| | - Qiansi Chen
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| | - Jian Zhao
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, P.R. China
| | - Huina Zhou
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| |
Collapse
|
4
|
Carvajal Acosta AN, Formenti L, Godschalx A, Katsanis A, Schapheer C, Mooney K, Villagra C, Rasmann S. Ecological convergence in phytochemistry and flower-insect visitor interactions along an Andean elevation gradient. Ecol Evol 2023; 13:e10418. [PMID: 37600487 PMCID: PMC10432872 DOI: 10.1002/ece3.10418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023] Open
Abstract
The diversity of specialized molecules produced by plants radiating along ecological gradients is thought to arise from plants' adaptations to local conditions. Therefore, closely related species growing in similar habitats should phylogenetically converge, or diverge, in response to similar climates, or similar interacting animal communities. We here asked whether closely related species in the genus Haplopappus (Asteraceae) growing within the same elevation bands in the Andes, converged to produce similar floral odors. To do so, we combine untargeted analysis of floral volatile organic compounds with insect olfactory bioassay in congeneric Haplopappus (Asteraceae) species growing within the same elevation bands along the Andean elevational gradient. We then asked whether the outcome of biotic interactions (i.e., pollination vs. seed predation) would also converge across species within the same elevation. We found that flower odors grouped according to their elevational band and that the main floral visitor preferred floral heads from low-elevation band species. Furthermore, the cost-benefit ratio of predated versus fertilized seeds was consistent within elevation bands, but increased with elevation, from 6:1 at low to 8:1 at high elevations. In the light of our findings, we propose that climate and insect community changes along elevation molded a common floral odor blend, best adapted for the local conditions. Moreover, we suggest that at low elevation where floral resources are abundant, the per capita cost of attracting seed predators is diluted, while at high elevation, sparse plants incur a higher herbivory cost per capita. Together, our results suggest that phytochemical convergence may be an important factor driving plant-insect interactions and their ecological outcomes along ecological gradients.
Collapse
Affiliation(s)
- Alma Nalleli Carvajal Acosta
- Department of EntomologyMichigan State UniversityEast LansingMichiganUSA
- Department of Ecology & Evolutionary BiologyUniversity of California, IrvineIrvineCaliforniaUSA
| | - Ludovico Formenti
- Institut für Ökologie und EvolutionUniversität BernBernSwitzerland
- Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | | | - Angelos Katsanis
- Department of Ecology & Evolutionary BiologyUniversity of California, IrvineIrvineCaliforniaUSA
| | - Constanza Schapheer
- Instituto de EntomologíaUniversidad Metropolitana de Ciencias de la EducaciónSantiagoChile
| | - Kailen Mooney
- Department of Ecology & Evolutionary BiologyUniversity of California, IrvineIrvineCaliforniaUSA
| | - Cristian Villagra
- Instituto de EntomologíaUniversidad Metropolitana de Ciencias de la EducaciónSantiagoChile
| | - Sergio Rasmann
- Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| |
Collapse
|
5
|
Detaling morphological traits of Trollius europeus L. flowers, nectary structure, and holocrine nectar secretion through combined light and electron microscopy. Micron 2022; 162:103345. [DOI: 10.1016/j.micron.2022.103345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022]
|
6
|
Kumar A, Srivastava P, Srivastava G, Sandeep, Kumar N, Chanotiya CS, Ghosh S. BAHD acetyltransferase contributes to wound-induced biosynthesis of oleo-gum resin triterpenes in Boswellia. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1403-1419. [PMID: 34165841 DOI: 10.1111/tpj.15388] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/13/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Triterpenes (30-carbon isoprene compounds) represent a large and highly diverse class of natural products that play various physiological functions in plants. The triterpene biosynthetic enzymes, particularly those catalyzing the late-stage regio-selective modifications are not well characterized. The bark of select Boswellia trees, e.g., B. serrata exudes specialized oleo-gum resin in response to wounding, which is enriched with boswellic acids (BAs), a unique class of C3α-epimeric pentacyclic triterpenes with medicinal properties. The bark possesses a network of resin secretory structures comprised of vertical and horizontal resin canals, and amount of BAs in bark increases considerably in response to wounding. To investigate BA biosynthetic enzymes, we conducted tissue-specific transcriptome profiling and identified a wound-responsive BAHD acetyltransferase (BsAT1) of B. serrata catalyzing the late-stage C3α-O-acetylation reactions in the BA biosynthetic pathway. BsAT1 catalyzed C3α-O-acetylation of αBA, βBA, and 11-keto-βBA in vitro and in planta assays to produce all the major C3α-O-acetyl-BAs (3-acetyl-αBA, 3-acetyl-βBA, and 3-acetyl-11-keto-βBA) found in B. serrata bark and oleo-gum resin. BsAT1 showed strict specificity for BA scaffold, whereas it did not acetylate the more common C3β-epimeric pentacyclic triterpenes. The analysis of steady-state kinetics using various BAs revealed distinct substrate affinity and catalytic efficiency. BsAT1 transcript expression coincides with increased levels of C3α-O-acetyl-BAs in bark in response to wounding, suggesting a role of BsAT1 in wound-induced biosynthesis of C3α-O-acetyl-BAs. Overall, the results provide new insights into the biosynthesis of principal chemical constituents of Boswellia oleo-gum resin.
Collapse
Affiliation(s)
- Aashish Kumar
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Payal Srivastava
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gaurav Srivastava
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Sandeep
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Narendra Kumar
- Plant Breeding and Genetic Resource Conservation Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Chandan S Chanotiya
- Phytochemistry Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Sumit Ghosh
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
7
|
Szenteczki MA, Godschalx AL, Galmán A, Espíndola A, Gibernau M, Alvarez N, Rasmann S. Spatial and temporal heterogeneity in pollinator communities maintains within‐species floral odour variation. OIKOS 2021. [DOI: 10.1111/oik.08445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Andrea Galmán
- Misión Biológica de Galicia (MBG‐CSIC), Pontevedra Galicia Spain
| | | | - Marc Gibernau
- CNRS – Univ. of Corsica, Laboratory Sciences for the Environment (SPE – UMR 6134), Natural Resources Project Ajaccio France
| | - Nadir Alvarez
- Geneva Natural History Museum Genève Switzerland
- Dept of Genetics and Evolution, Univ. of Geneva Geneva Switzerland
| | - Sergio Rasmann
- Inst. de Biologie, Univ. de Neuchâtel Neuchâtel Switzerland
| |
Collapse
|
8
|
Extreme diversification of floral volatiles within and among species of Lithophragma (Saxifragaceae). Proc Natl Acad Sci U S A 2019; 116:4406-4415. [PMID: 30765532 DOI: 10.1073/pnas.1809007116] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A major challenge in evolutionary biology is to understand how complex traits of multiple functions have diversified and codiversified across interacting lineages and geographic ranges. We evaluate intra- and interspecific variation in floral scent, which is a complex trait of documented importance for mutualistic and antagonistic interactions between plants, pollinators, and herbivores. We performed a large-scale, phylogenetically structured study of an entire plant genus (Lithophragma, Saxifragaceae), of which several species are coevolving with specialized pollinating floral parasites of the moth genus Greya (Prodoxidae). We sampled 94 Lithophragma populations distributed across all 12 recognized Lithophragma species and subspecies, and four populations of related saxifragaceous species. Our results reveal an unusually high diversity of floral volatiles among populations, species, and clades within the genus. Moreover, we found unexpectedly major changes at each of these levels in the biosynthetic pathways used by local populations in their floral scents. Finally, we detected significant, but variable, genus- and species-level patterns of ecological convergence in the floral scent signal, including an impact of the presence and absence of two pollinating Greya moth species. We propose that one potential key to understanding floral scent variation in this hypervariable genus is its geographically diverse interactions with the obligate specialized Greya moths and, in some species and sites, more generalized copollinators.
Collapse
|
9
|
López CQ, Corral P, Lorrain-Lorrette B, Martinez-Swatson K, Michoux F, Simonsen HT. Use of a temporary immersion bioreactor system for the sustainable production of thapsigargin in shoot cultures of Thapsia garganica. PLANT METHODS 2018; 14:79. [PMID: 30202426 PMCID: PMC6128993 DOI: 10.1186/s13007-018-0346-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Thapsigargin and nortrilobolide are sesquiterpene lactones found in the Mediterranean plant Thapsia garganica L. Thapsigargin is a potent inhibitor of the sarco/endoplasmic reticulum calcium ATPase pump, inducing apoptosis in mammalian cells. This mechanism has been used to develop a thapsigargin-based cancer drug first by GenSpera and later Inspyr Therapeutics (Westlake Village, California). However, a stable production of thapsigargin is not established. RESULTS In vitro regeneration from leaf explants, shoot multiplication and rooting of T. garganica was obtained along with the production of thapsigargins in temporary immersion bioreactors (TIBs). Thapsigargin production was enhanced using reduced nutrient supply in combination with methyl jasmonate elicitation treatments. Shoots grown in vitro were able to produce 0.34% and 2.1% dry weight of thapsigargin and nortrilobolide, respectively, while leaves and stems of wild T. garganica plants contain only between 0.1 and 0.5% of thapsigargin and below detectable levels of nortrilobolide. In addition, a real-time reverse transcription PCR (qRT-PCR) study was performed to study the regulatory role of the biosynthetic genes HMG-CoA reductase (HMGR), farnesyl diphosphate synthase (FPPS), epikunzeaol synthase (TgTPS2) and the cytochrome P450 (TgCYP76AE2) of stem, leaf and callus tissues. Nadi staining showed that the thapsigargins are located in secretory ducts within these tissues. CONCLUSIONS Shoot regeneration, rooting and biomass growth from leaf explants of T. garganica were achieved, together with a high yield in vitro production of thapsigargin in TIBs.
Collapse
Affiliation(s)
- Carmen Quiñonero López
- Department of Biotechnology and Biomedicine, Faculty of Bioengineering, Technical University of Denmark, Lyngby, Denmark
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Henrik Toft Simonsen
- Department of Biotechnology and Biomedicine, Faculty of Bioengineering, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
10
|
Chapurlat E, Anderson J, Ågren J, Friberg M, Sletvold N. Diel pattern of floral scent emission matches the relative importance of diurnal and nocturnal pollinators in populations of Gymnadenia conopsea. ANNALS OF BOTANY 2018; 121:711-721. [PMID: 29360931 PMCID: PMC5853007 DOI: 10.1093/aob/mcx203] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Floral scent is considered an integral component of pollination syndromes, and its composition and timing of emission are thus expected to match the main pollinator type and time of activity. While floral scent differences among plant species with different pollination systems can be striking, studies on intraspecific variation are sparse, which limits our understanding of the role of pollinators in driving scent divergence. METHODS Here, we used dynamic headspace sampling to quantify floral scent emission and composition during the day and at night in the natural habitat of six Scandinavian populations of the fragrant orchid Gymnadenia conopsea. We tested whether diel scent emission and composition match pollinator type by comparing four populations in southern Sweden, where nocturnal pollinators are more important for plant reproductive success than are diurnal pollinators, with two populations in central Norway, where the opposite is true. To determine to what extent scent patterns quantified in the field reflected plasticity, we also measured scent emission in a common growth chamber environment. KEY RESULTS Both scent composition and emission rates differed markedly between day and night, but only the latter varied significantly among populations. The increase in scent emission rate at night was considerably stronger in the Swedish populations compared with the Norwegian populations. These patterns persisted when plants were transferred to a common environment, suggesting a genetic underpinning of the scent variation. CONCLUSIONS The results are consistent with a scenario where spatial variation in relative importance of nocturnal and diurnal pollinators has resulted in selection for different scent emission rhythms. Our study highlights the importance of adding a characterization of diel variation of scent emission rates to comparative studies of floral scent, which so far have often focused on scent composition only.
Collapse
Affiliation(s)
- Elodie Chapurlat
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen, Sweden
- For correspondence. E-mail
| | - Joseph Anderson
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen, Sweden
| | - Jon Ågren
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen, Sweden
| | - Magne Friberg
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen, Sweden
| | - Nina Sletvold
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen, Sweden
| |
Collapse
|
11
|
Delle-Vedove R, Schatz B, Dufay M. Understanding intraspecific variation of floral scent in light of evolutionary ecology. ANNALS OF BOTANY 2017; 120:1-20. [PMID: 28873948 PMCID: PMC5737645 DOI: 10.1093/aob/mcx055] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 03/29/2017] [Indexed: 05/29/2023]
Abstract
Background and Aims Among the various floral traits involved in pollinator attraction and potentially under selection mediated by pollinators, floral scent/fragrance has been less investigated than other components of floral phenotype. Whether or not pollinator-mediated selection impacts floral scents depends on the heritability of scent/fragrance and the occurrence of some variation within species. Although most studies have investigated how scent varies among species, growing amounts of data are available on variation at the intraspecific level. Methods The results of 81 studies investigating intraspecific variation of floral scents in 132 taxa were reviewed. For each study, whether variation was found in either identity, proportion or absolute quantities of volatile organic compounds (VOCs) was recorded, as well as information with the potential to explain variation, such as methodology, plant origin or pollination biology. Key Results Variation was found for almost all investigated species, both among individuals (among and sometimes within populations) and within individuals across different temporal scales. Cases in which such variation is a possible result of pollinator-mediated selection were analysed, by discussing separately selection related to variation in pollinator identity/behaviour among populations or across time, deceit pollination and sex-specific selection. Not surprisingly, in many cases, pollinator-mediated selection alone does not explain the observed variation in floral scent. This led us to review current knowledge on less investigated factors, such as selection mediated by natural enemies, genetic drift and gene flow, environmental constraints, phylogenetic inertia, or biochemical constraints that could be invoked to explain scent variation. Conclusions This review highlights the great potential of analysing floral scent variation and including it in integrated studies of floral phenotypes. We also have identified the current gaps in our understanding of this complex signal and we propose several methodological and conceptual future directions in this research area.
Collapse
Affiliation(s)
- Roxane Delle-Vedove
- Universite de Lille, CNRS UMR 8198 Evo-Eco-Paleo, 59655 Villeneuve d'Ascq Cedex, France
| | - Bertrand Schatz
- CEFE (Centre d’Ecologie Fonctionnelle et Evolutive), UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919 route de Mende, 34293 Montpellier, France
| | - Mathilde Dufay
- Universite de Lille, CNRS UMR 8198 Evo-Eco-Paleo, 59655 Villeneuve d'Ascq Cedex, France
| |
Collapse
|
12
|
Borges RM. On the Air: Broadcasting and Reception of Volatile Messages in Brood-Site Pollination Mutualisms. SIGNALING AND COMMUNICATION IN PLANTS 2016. [DOI: 10.1007/978-3-319-33498-1_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Nielsen LJ, Møller BL. Scent emission profiles from Darwin's orchid--Angraecum sesquipedale: Investigation of the aldoxime metabolism using clustering analysis. PHYTOCHEMISTRY 2015; 120:3-18. [PMID: 26603277 DOI: 10.1016/j.phytochem.2015.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 10/12/2015] [Accepted: 10/16/2015] [Indexed: 06/05/2023]
Abstract
The display of scent is crucial for plants in attracting pollinating insects to flowers and ensuring successful pollination and reproduction. The large number of aldoxime volatile species present in the scent of the Madagascan orchid Angraecum sesquipedale has been suggested to play a primary role in attracting the sphingid moth Xanthopan morgani praedicta. By solid phase micro-extraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS), we monitored the scent release from different flowers of a single orchid, day and night throughout the entire flowering period. In separate experiments, the diurnal release was monitored in 3h intervals and the tissue specific release from the different floral parts was tracked. Numerous novel compounds related to the aldoxime metabolism not previously detected in A. sesquipedale were identified and positioned into a proposed pathway for aldoxime metabolism. From the results, we hypothesize that (E/Z)-phenylacetaldoxime and its derivatives could be important attractants for the pollinating moth X. morgani praedicta. By applying an untargeted Partitioning Around Medoids (PAM) cluster analysis to the metabolite profiles in the scent, the proposed pathways for the formation of aldoximes were substantiated. With this study, we demonstrate the powerful utility of a bioinformatics tool to aid in the elucidation of the routes of formation for volatiles and provide a benchmark and guidelines for future detailed observations of hawkmoth pollination of Angraecum species, and in particular A. sesquipedale, in the wild.
Collapse
Affiliation(s)
- Lasse Janniche Nielsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Copenhagen, Frederiksberg, Denmark; VILLUM Research Center of Excellence "Plant Plasticity", University of Copenhagen, Thorvaldsensvej 40, DK-1871 Copenhagen, Frederiksberg, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Copenhagen, Frederiksberg, Denmark; VILLUM Research Center of Excellence "Plant Plasticity", University of Copenhagen, Thorvaldsensvej 40, DK-1871 Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
14
|
Phillips RD, Bohman B, Anthony JM, Krauss SL, Dixon KW, Peakall R. Mismatch in the distribution of floral ecotypes and pollinators: insights into the evolution of sexually deceptive orchids. J Evol Biol 2015; 28:601-12. [PMID: 25619237 DOI: 10.1111/jeb.12593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 12/09/2014] [Accepted: 01/20/2015] [Indexed: 01/01/2023]
Abstract
Plants are predicted to show floral adaptation to geographic variation in the most effective pollinator, potentially leading to reproductive isolation and genetic divergence. Many sexually deceptive orchids attract just a single pollinator species, limiting opportunities to experimentally investigate pollinator switching. Here, we investigate Drakaea concolor, which attracts two pollinator species. Using pollinator choice tests, we detected two morphologically similar ecotypes within D. concolor. The common ecotype only attracted Zaspilothynnus gilesi, whereas the rare ecotype also attracted an undescribed species of Pogonothynnus. The rare ecotype occurred at populations nested within the distribution of the common ecotype, with no evidence of ecotypes occurring sympatrically. Surveying for pollinators at over 100 sites revealed that ecotype identity was not correlated with wasp availability, with most orchid populations only attracting the rare Z. gilesi. Using microsatellite markers, genetic differentiation among populations was very low (GST = 0.011) regardless of ecotype, suggestive of frequent gene flow. Taken together, these results may indicate that the ability to attract Pogonothynnus has evolved recently, but this ecotype is yet to spread. The nested distribution of ecotypes, rather than the more typical formation of ecotypes in allopatry, illustrates that in sexually deceptive orchids, pollinator switching could occur throughout a species' range, resulting from multiple potentially suitable but unexploited pollinators occurring in sympatry. This unusual case of sympatric pollinators highlights D. concolor as a promising study system for further understanding the process of pollinator switching from ecological, chemical and genetic perspectives.
Collapse
Affiliation(s)
- R D Phillips
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia; Kings Park and Botanic Garden, The Botanic Garden and Parks Authority, West Perth, 6005, Western Australia, Australia; School of Plant Biology, The University of Western Australia, Nedlands, 6009, Western Australia, Australia
| | | | | | | | | | | |
Collapse
|
15
|
Witkowska-Banaszczak E. The genus Trollius-review of pharmacological and chemical research. Phytother Res 2015; 29:475-500. [PMID: 25573081 DOI: 10.1002/ptr.5277] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/30/2014] [Accepted: 11/25/2014] [Indexed: 11/11/2022]
Abstract
Three species of the genus Trollius (Ranunculaceae) are traditionally used to treat upper respiratory tract infections, pharyngitis, tonsillitis, bronchitis, cold with fever, acute tympanitis, aphthae, mouth sore, hemorrhage and pain of gums, acute lymphangitis and acute periostitis. However, only a few studies support its traditional use. These are studies of the biological activity of extracts and/or compounds of selected species of Trollius, but there are no clinical studies proving the effectiveness or possible toxic effects. Until now, the following activity of extracts and/or compounds from certain species of Trollius used in traditional medicine has been proven: antiviral, antibacterial, antiinflammatory and antioxidant. The review showed that flavonoids, mainly C-glycosides, were characteristic of the species Trollius. Furthermore, other main groups of compounds are carotenoids, organic acids, terpenes, alkaloids, sterols, lactones and carbohydrates. The essential oil mainly contains compounds from the group of benzenoids, nitrogen-containing compounds, monoterpenoids and sesquiterpenoids, irregular terpenes and macrocyclic epoxide.
Collapse
|
16
|
Borzak CL, Potts BM, Davies NW, O'Reilly-Wapstra JM. Population divergence in the ontogenetic trajectories of foliar terpenes of a Eucalyptus species. ANNALS OF BOTANY 2015; 115:159-170. [PMID: 25434028 PMCID: PMC4284115 DOI: 10.1093/aob/mcu222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/27/2014] [Accepted: 09/26/2014] [Indexed: 06/02/2023]
Abstract
BACKGROUND AND AIMS The development of plant secondary metabolites during early life stages can have significant ecological and evolutionary implications for plant-herbivore interactions. Foliar terpenes influence a broad range of ecological interactions, including plant defence, and their expression may be influenced by ontogenetic and genetic factors. This study investigates the role of these factors in the expression of foliar terpene compounds in Eucalyptus globulus seedlings. METHODS Seedlings were sourced from ten families each from three genetically distinct populations, representing relatively high and low chemical resistance to mammalian herbivory. Cotyledon-stage seedlings and consecutive leaf pairs of true leaves were harvested separately across an 8-month period, and analysed for eight monoterpene compounds and six sesquiterpene compounds. KEY RESULTS Foliar terpenes showed a series of dynamic changes with ontogenetic trajectories differing between populations and families, as well as between and within the two major terpene classes. Sesquiterpenes changed rapidly through ontogeny and expressed opposing trajectories between compounds, but showed consistency in pattern between populations. Conversely, changed expression in monoterpene trajectories was population- and compound-specific. CONCLUSIONS The results suggest that adaptive opportunities exist for changing levels of terpene content through ontogeny, and evolution may exploit the ontogenetic patterns of change in these compounds to create a diverse ontogenetic chemical mosaic with which to defend the plant. It is hypothesized that the observed genetically based patterns in terpene ontogenetic trajectories reflect multiple changes in the regulation of genes throughout different terpene biosynthetic pathways.
Collapse
Affiliation(s)
- Christina L Borzak
- School of Biological Sciences and National Centre for Future Forest Industries, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia and Central Science Laboratory, University of Tasmania, Private Bag 74, Hobart, Tasmania, 7001, Australia
| | - Brad M Potts
- School of Biological Sciences and National Centre for Future Forest Industries, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia and Central Science Laboratory, University of Tasmania, Private Bag 74, Hobart, Tasmania, 7001, Australia
| | - Noel W Davies
- School of Biological Sciences and National Centre for Future Forest Industries, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia and Central Science Laboratory, University of Tasmania, Private Bag 74, Hobart, Tasmania, 7001, Australia
| | - Julianne M O'Reilly-Wapstra
- School of Biological Sciences and National Centre for Future Forest Industries, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia and Central Science Laboratory, University of Tasmania, Private Bag 74, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
17
|
Song B, Chen G, Stöcklin J, Peng DL, Niu Y, Li ZM, Sun H. A new pollinating seed-consuming mutualism between Rheum nobile and a fly fungus gnat, Bradysia sp., involving pollinator attraction by a specific floral compound. THE NEW PHYTOLOGIST 2014; 203:1109-1118. [PMID: 24861151 DOI: 10.1111/nph.12856] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/17/2014] [Indexed: 06/03/2023]
Abstract
Pollinating seed-consuming mutualisms are regarded as exemplary models for studying coevolution, but they are extremely rare. In these systems, olfactory cues have been thought to play an important role in facilitating encounters between partners. We present a new pollinating seed-consuming mutualism from the high Himalayas between the endemic herb, Rheum nobile, and a fly fungus gnat, Bradysia sp. Seed production resulting from pollination by Bradysia flies and seed consumption by their larvae were measured to determine the outcome of this interaction. Floral scent analyses and behavioural tests were conducted to investigate the role of olfactory cues in pollinator attraction. Rheum nobile is self-compatible, but it depends mainly on Bradysia sp. females for pollination. Seed production resulting from pollination by adult flies is substantially higher than subsequent seed consumption by their larvae. Behavioural tests showed that an unusual floral compound, 2-methyl butyric acid methyl ester, emitted by plants only during anthesis, was attractive to female flies. Our results indicate that the R. nobile-Bradysia sp. interaction represents a new pollinating seed-consuming mutualism, and that a single unusual compound is the specific signal in the floral scent of R. nobile that plays a key role in attracting its pollinator.
Collapse
Affiliation(s)
- Bo Song
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Gao Chen
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Jürg Stöcklin
- Section of Plant Ecology, Institute of Botany, University of Basel, Schönbeinstrasse 6, Basel, 4056, Switzerland
| | - De-Li Peng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Niu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Zhi-Min Li
- School of Life Science, Yunnan Normal University, Kunming, 650500, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| |
Collapse
|
18
|
Bohman B, Phillips RD, Menz MHM, Berntsson BW, Flematti GR, Barrow RA, Dixon KW, Peakall R. Discovery of pyrazines as pollinator sex pheromones and orchid semiochemicals: implications for the evolution of sexual deception. THE NEW PHYTOLOGIST 2014; 203:939-952. [PMID: 24697806 DOI: 10.1111/nph.12800] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
Sexually deceptive orchids employ floral volatiles to sexually lure their specific pollinators. How and why this pollination system has evolved independently on multiple continents remains unknown, although preadaptation is considered to have been important. Understanding the chemistry of sexual deception is a crucial first step towards solving this mystery. The combination of gas chromatography-electroantennographic detection (GC-EAD), GC-MS, synthesis and field bioassays allowed us to identify the volatiles involved in the interaction between the orchid Drakaea glyptodon and its sexually attracted male thynnine wasp pollinator, Zaspilothynnus trilobatus. Three alkylpyrazines and one novel hydroxymethyl pyrazine were identified as the sex pheromone of Z. trilobatus and are also used by D. glyptodon for pollinator attraction. Given that our findings revealed a new chemical system for plants, we surveyed widely across representative orchid taxa for the presence of these compounds. With one exception, our chemical survey failed to detect pyrazines in related genera. Collectively, no evidence for preadaptation was found. The chemistry of sexual deception is more diverse than previously known. Our results suggest that evolutionary novelty may have played a key role in the evolution of sexual deception and highlight the value of investigating unusual pollination systems for advancing our understanding of the role of chemistry in evolution.
Collapse
Affiliation(s)
- Björn Bohman
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia; Research School of Chemistry, The Australian National University, Canberra, ACT, 0200, Australia; School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, 6009, Australia
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Evidence for early intracellular accumulation of volatile compounds during spadix development in Arum italicum L. and preliminary data on some tropical Aroids. Naturwissenschaften 2014; 101:623-35. [PMID: 24925357 DOI: 10.1007/s00114-014-1197-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
Staining and histochemistry of volatile organic compounds (VOCs) were performed at different inflorescence developmental stages on nine aroid species; one temperate, Arum italicum and eight tropical from the genera Caladium, Dieffenbachia and Philodendron. Moreover, a qualitative and quantitative analysis of VOCs constituting the scent of A. italicum, depending on the stage of development of inflorescences was also conducted. In all nine species, vesicles were observed in the conical cells of either the appendix or the stamens (thecae) and the staminodes. VOCs were localised in intracellular vesicles from the early stages of inflorescence development until their release during receptivity of gynoecium. This localisation was observed by the increase of both number and diameter of the vesicles during 1 week before receptivity. Afterwards, vesicles were fewer and smaller but rarely absent. In A. italicum, staining and gas chromatography analyses confirmed that the vesicles contained terpenes. The quantitatively most important ones were the sesquiterpenes, but monoterpenes were not negligible. Indeed, the quantities of terpenes matched the vesicles' size evolution during 1 week. Furthermore, VOCs from different biosynthetic pathways (sesquiterpenes and alkanes) were at their maximum quantity 2 days before gynoecium receptivity (sesquiterpenes and alkanes) or during receptivity (isobutylamine, monoterpenes, skatole and p-cresol). VOCs seemed to be emitted during gynoecium receptivity and/or during thermogenesis, and FADs are accumulated after thermogenesis in the spadix. These complex dynamics of the different VOCs could indicate specialisation of some VOCs and cell machinery to attract pollinators on the one hand and to repulse/protect against phytophagous organisms and pathogens after pollination on the other hand.
Collapse
|
20
|
Marinho CR, Souza CD, Barros TC, Teixeira SP. Scent glands in legume flowers. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:215-226. [PMID: 23574349 DOI: 10.1111/plb.12000] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/11/2012] [Indexed: 06/02/2023]
Abstract
Scent glands, or osmophores, are predominantly floral secretory structures that secrete volatile substances during anthesis, and therefore act in interactions with pollinators. The Leguminosae family, despite being the third largest angiosperm family, with a wide geographical distribution and diversity of habits, morphology and pollinators, has been ignored with respect to these glands. Thus, we localised and characterised the sites of fragrance production and release in flowers of legumes, in which scent plays an important role in pollination, and also tested whether there are relationships between the structure of the scent gland and the pollinator habit: diurnal or nocturnal. Flowers in pre-anthesis and anthesis of 12 legume species were collected and analysed using immersion in neutral red, olfactory tests and anatomical studies (light and scanning electron microscopy). The main production site of floral scent is the perianth, especially the petals. The scent glands are distributed in a restricted way in Caesalpinia pulcherrima, Anadenanthera peregrina, Inga edulis and Parkia pendula, constituting mesophilic osmophores, and in a diffuse way in Bauhinia rufa, Hymenaea courbaril, Erythrostemon gilliesii, Poincianella pluviosa, Pterodon pubescens, Platycyamus regnellii, Mucuna urens and Tipuana tipu. The glands are comprised of cells of the epidermis and mesophyll that secrete mainly terpenes, nitrogen compounds and phenols. Relationships between the presence of osmophores and type of anthesis (diurnal and nocturnal) and the pollinator were not found. Our data on scent glands in Leguminosae are original and detail the type of diffuse release, which has been very poorly studied.
Collapse
Affiliation(s)
- C R Marinho
- Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - C D Souza
- Programa de Pós-Graduação em Biologia Comparada, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - T C Barros
- Programa de Pós-Graduação em Biologia Comparada, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - S P Teixeira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
21
|
Jullien F, Moja S, Bony A, Legrand S, Petit C, Benabdelkader T, Poirot K, Fiorucci S, Guitton Y, Nicolè F, Baudino S, Magnard JL. Isolation and functional characterization of a τ-cadinol synthase, a new sesquiterpene synthase from Lavandula angustifolia. PLANT MOLECULAR BIOLOGY 2014; 84:227-41. [PMID: 24078339 DOI: 10.1007/s11103-013-0131-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 09/15/2013] [Indexed: 05/12/2023]
Abstract
In this paper we characterize three sTPSs: a germacrene D (LaGERDS), a (E)-β-caryophyllene (LaCARS) and a τ-cadinol synthase (LaCADS). τ-cadinol synthase is reported here for the first time and its activity was studied in several biological models including transiently or stably transformed tobacco species. Three dimensional structure models of LaCADS and Ocimum basilicum γ-cadinene synthase were built by homology modeling using the template structure of Gossypium arboreum δ-cadinene synthase. The depiction of their active site organization provides evidence of the global influence of the enzymes on the formation of τ-cadinol: instead of a unique amino-acid, the electrostatic properties and solvent accessibility of the whole active site in LaCADS may explain the stabilization of the cadinyl cation intermediate. Quantitative PCR performed from leaves and inflorescences showed two patterns of expression. LaGERDS and LaCARS were mainly expressed during early stages of flower development and, at these stages, transcript levels paralleled the accumulation of the corresponding terpene products (germacrene D and (E)-β-caryophyllene). By contrast, the expression level of LaCADS was constant in leaves and flowers. Phylogenetic analysis provided informative results on potential duplication process leading to sTPS diversification in lavender.
Collapse
|
22
|
Chartier M, Pélozuelo L, Buatois B, Bessière JM, Gibernau M. Geographical variations of odour and pollinators, and test for local adaptation by reciprocal transplant of two EuropeanArumspecies. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Marion Chartier
- Joint Research Unit Ecology of Guiana Forests; CNRS-UMR 8172 Campus agronomique, BP 316, 97379 Kourou cedex France
- Laboratory of Evolution and Biological Diversity; Bât. 4R1, Université Paul Sabatier; 118 route de Narbonne 31062 Toulouse cedex 9 France
| | - Laurent Pélozuelo
- Laboratory of Functional Ecology and Environment; Bât. 4R1, Université Paul Sabatier; 118 route de Narbonne 31062 Toulouse cedex 9 France
| | - Bruno Buatois
- Center for Functional and Evolutive Ecology; Université Montpellier 2; 1919 route de Mende 34293 Montpellier France
| | - Jean-Marie Bessière
- Center for Functional and Evolutive Ecology; Université Montpellier 2; 1919 route de Mende 34293 Montpellier France
| | - Marc Gibernau
- Joint Research Unit Ecology of Guiana Forests; CNRS-UMR 8172 Campus agronomique, BP 316, 97379 Kourou cedex France
| |
Collapse
|
23
|
Bellot S, Renner SS. Pollination and mating systems of Apodanthaceae and the distribution of reproductive traits in parasitic angiosperms. AMERICAN JOURNAL OF BOTANY 2013; 100:1083-1094. [PMID: 23703856 DOI: 10.3732/ajb.1200627] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PREMISE OF THE STUDY The most recent reviews of the reproductive biology and sexual systems of parasitic angiosperms were published 17 yr ago and reported that dioecy might be associated with parasitism. We use current knowledge on parasitic lineages and their sister groups, and data on the reproductive biology and sexual systems of Apodanthaceae, to readdress the question of possible trends in the reproductive biology of parasitic angiosperms. • METHODS Fieldwork in Zimbabwe and Iran produced data on the pollinators and sexual morph frequencies in two species of Apodanthaceae. Data on pollinators, dispersers, and sexual systems in parasites and their sister groups were compiled from the literature. • KEY RESULTS With the possible exception of some Viscaceae, most of the ca. 4500 parasitic angiosperms are animal-pollinated, and ca. 10% of parasites are dioecious, but the gain and loss of dioecy across angiosperms is too poorly known to infer a statistical correlation. The studied Apodanthaceae are dioecious and pollinated by nectar- or pollen-foraging Calliphoridae and other flies. • CONCLUSIONS Sister group comparisons so far do not reveal any reproductive traits that evolved (or were lost) concomitant with a parasitic life style, but the lack of wind pollination suggests that this pollen vector may be maladaptive in parasites, perhaps because of host foliage or flowers borne close to the ground.
Collapse
Affiliation(s)
- Sidonie Bellot
- Systematic Botany and Mycology, University of Munich (LMU), Menzinger Str. 67 80638 Munich, Germany.
| | | |
Collapse
|
24
|
Parachnowitsch AL, Burdon RCF, Raguso RA, Kessler A. Natural selection on floral volatile production in Penstemon digitalis: highlighting the role of linalool. PLANT SIGNALING & BEHAVIOR 2013; 8:e22704. [PMID: 23221753 PMCID: PMC3745574 DOI: 10.4161/psb.22704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 10/29/2012] [Accepted: 10/29/2012] [Indexed: 05/29/2023]
Abstract
Natural selection is thought to have shaped the evolution of floral scent; however, unlike other floral characters, we have a rudimentary knowledge of how phenotypic selection acts on scent. We found that floral scent was under stronger selection than corolla traits such as flower size and flower color in weakly scented Penstemon digitalis. Our results suggest that to understand evolution in floral phenotypes, including scent in floral selection, studies are crucial. For P. digitalis, linalool was the direct target of selection in the scent bouquet. Therefore, we determined the enantiomeric configuration of linalool because interacting insects may perceive the enantiomers differentially. We found that P. digitalis produces only (S)-(+)-linalool and, more interestingly, it is also taken up into the nectar. Because the nectar is scented and flavored with (S)-(+)-linalool, it may be an important cue for pollinators visiting P. digitalis flowers.
Collapse
Affiliation(s)
- Amy L. Parachnowitsch
- Plant Ecology and Evolution; Evolutionary Biology Centre; Uppsala University; Uppsala, Sweden
| | - Rosalie C. F. Burdon
- Plant Ecology and Evolution; Evolutionary Biology Centre; Uppsala University; Uppsala, Sweden
| | - Robert A. Raguso
- Department of Neurobiology and Behavior; Cornell University; Ithaca, NY USA
| | - André Kessler
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca, NY USA
| |
Collapse
|
25
|
Ibanez S. Optimizing size thresholds in a plant–pollinator interaction web: towards a mechanistic understanding of ecological networks. Oecologia 2012; 170:233-42. [DOI: 10.1007/s00442-012-2290-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
|
26
|
Louca S, Ibanez S, Piau D, Després L. Specialized nursery pollination mutualisms as evolutionary traps stabilized by antagonistic traits. J Theor Biol 2012; 296:65-83. [PMID: 22178640 DOI: 10.1016/j.jtbi.2011.11.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 10/11/2011] [Accepted: 11/30/2011] [Indexed: 12/01/2022]
Abstract
We examine the conditions for the transition from antagonism to mutualism between plants and their specialists nursery pollinators in a reference case which is the Trollius europaeus-Chiastocheta interaction. The mechanistic model we developed shows that a specialization of T. europaeus on Chiastocheta could be the result of an attempt to escape over-exploitation by closing its flower. The pressure for such an escape increases with the parasite's frequency and its pollination efficiency but decreases in the presence of alternative pollinators. The resulting specialization is a priori an unstable one, leading either to strong evolutionary oscillations, or to evolutionary suicide due to over-exploitation of the plants. It becomes stable if the plants develop a defense mechanism to regulate their parasite's population size and limit seed-exploitation. The development of a counter-measure by the latter can destabilize the mutualism depending on the costs linked to such a trait. On the other hand, we find that a specialization on a purely mutualistic basis would require a preexisting high diversity of flower-opening within the population.
Collapse
Affiliation(s)
- Stilianos Louca
- Laboratoire d'Ecologie Alpine, UMR CNRS 5553, Université Joseph Fourier, BP 53, 38041 Grenoble CEDEX 9, France.
| | | | | | | |
Collapse
|
27
|
Steiner KE, Kaiser R, Dötterl S. Strong phylogenetic effects on floral scent variation of oil-secreting orchids in South Africa. AMERICAN JOURNAL OF BOTANY 2011; 98:1663-79. [PMID: 21965135 DOI: 10.3732/ajb.1100141] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
PREMISE OF THE STUDY Evolution involves the interplay between natural selection and phylogenetic constraint. This is particularly evident among the flowering plants where form and diversity of flowers attest to the importance of both pollinator-mediated selection and phylogenetic constraint. Although this has been studied mostly using visible floral characters, invisible volatile chemicals emitted by the flowers should be subject to these same evolutionary forces. Unfortunately, most analyses of floral volatiles have over-emphasized the importance of natural selection and underplayed phylogenetic constraint without quantifying their respective roles in the evolution and composition of floral scents. METHODS We used multivariate analyses to test the relative importance of pollinators vs. phylogeny in determining the composition of floral scents among oil-secreting orchids in southern Africa. Floral scents of 42 oil-secreting taxa/ecotypes distributed among 12 subclades in the tribe Diseae were sampled using headspace adsorption and gas chromatography-mass spectroscopy. KEY RESULTS We identified 257 scent compounds distributed over nine different compound classes, with the majority of scents dominated by aliphatic or benzenoid compounds. The only significant predictor of floral scent among these orchids above the species level was phylogeny. Nevertheless, in two of the clades there were differences in scent profiles at the species and ecotype level that corresponded to different pollinators and were thus suggestive of pollinator-mediated selection. CONCLUSIONS Scent variation was greater than expected and phylogeny was more important than pollinator-mediated selection in predicting the composition of floral scents of oil-secreting orchids, despite the specialized nature of the pollinator reward system.
Collapse
Affiliation(s)
- Kim E Steiner
- Botany Department, California Academy of Sciences, San Francisco, 94118, USA.
| | | | | |
Collapse
|
28
|
Soler C, Hossaert-McKey M, Buatois B, Bessière JM, Schatz B, Proffit M. Geographic variation of floral scent in a highly specialized pollination mutualism. PHYTOCHEMISTRY 2011; 72:74-81. [PMID: 21109272 DOI: 10.1016/j.phytochem.2010.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 10/16/2010] [Accepted: 10/19/2010] [Indexed: 05/30/2023]
Abstract
Floral scents are important signals for communication between plants and pollinators. Several studies have focused on interspecific variation of these signals, but little is known about intraspecific variation in flower scent, particularly for species with wide geographic distributions. In the highly specific mutualism between Ficus species and their pollinating wasps, chemical mediation is crucial for partner encounter. Several studies show that scents, i.e. blends of volatiles, are species-specific, but no studies address interpopulation variation of scents in fig pollination mutualisms, which often have broad geographic distributions. In this study, using absorption/desorption headspace techniques, we analyzed variation in floral scent composition among three populations of each of two widely distributed Asian Ficus species. We identified more than 100 different volatile organic compounds, predominantly terpenes. In both species, significant differences were found between scent bouquets of East Asian and Indian populations. These differences are discussed in relation to geographical barriers that could disrupt gene exchange between these two areas, thereby isolating Indian populations from those of Eastern Asia.
Collapse
Affiliation(s)
- Catherine Soler
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR CNRS 5175, Montpellier, France.
| | | | | | | | | | | |
Collapse
|