1
|
Ballarin CS, Fontúrbel FE, Rech AR, Oliveira PE, Goés GA, Polizello DS, Oliveira PH, Hachuy-Filho L, Amorim FW. How many animal-pollinated angiosperms are nectar-producing? THE NEW PHYTOLOGIST 2024; 243:2008-2020. [PMID: 38952269 DOI: 10.1111/nph.19940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
The diversity of plant-pollinator interactions is grounded in floral resources, with nectar considered one of the main floral rewards plants produce for pollinators. However, a global evaluation of the number of animal-pollinated nectar-producing angiosperms and their distribution world-wide remains elusive. We compiled a thorough database encompassing 7621 plant species from 322 families to estimate the number and proportion of nectar-producing angiosperms reliant on animal pollination. Through extensive sampling of plant communities, we also explored the interplay between nectar production, floral resource diversity, latitudinal and elevational gradients, contemporary climate, and environmental characteristics. Roughly 223 308 animal-pollinated angiosperms are nectar-producing, accounting for 74.4% of biotic-pollinated species. Global distribution patterns of nectar-producing plants reveal a distinct trend along latitudinal and altitudinal gradients, with increased proportions of plants producing nectar in high latitudes and altitudes. Conversely, tropical communities in warm and moist climates exhibit greater floral resource diversity and a lower proportion of nectar-producing plants. These findings suggest that ecological trends driven by climate have fostered the diversification of floral resources in warmer and less seasonal climates, reducing the proportion of solely nectar-producing plants. Our study provides a baseline for understanding plant-pollinator relationships, plant diversification, and the distribution of plant traits.
Collapse
Affiliation(s)
- Caio S Ballarin
- Laboratório de Ecologia da Polinização e Interações - LEPI, Departamento de Biodiversidade e Bioestatística, Instituto de Biociências, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (IBB - UNESP), Rua Prof. Dr Antonio Celso Wagner Zanin, Botucatu, SP, CEP 18618-689, Brazil
- Programa de Pós-graduação em Biologia Vegetal, IBB - UNESP, Rua Prof. Dr Antonio Celso Wagner Zanin, Botucatu, SP, CEP 18618-689, Brazil
| | - Francisco E Fontúrbel
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Valparaíso, CEP 2373223, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, CEP 5090000, Chile
| | - André R Rech
- Programas de Pós-Graduação em Biologia Animal, Estudos Rurais e Ciências Florestais, Faculdade Interdisciplinar em Humanidades, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, CEP 39100-000, Brazil
| | - Paulo E Oliveira
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, MG, CEP 38405302, Brazil
| | - Guilherme Alcarás Goés
- Laboratório de Ecologia da Polinização e Interações - LEPI, Departamento de Biodiversidade e Bioestatística, Instituto de Biociências, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (IBB - UNESP), Rua Prof. Dr Antonio Celso Wagner Zanin, Botucatu, SP, CEP 18618-689, Brazil
- Laboratório de Restauração Florestal - LERF, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP), Botucatu, SP, CEP 18610-034, Brazil
| | - Diego S Polizello
- Laboratório de Ecologia da Polinização e Interações - LEPI, Departamento de Biodiversidade e Bioestatística, Instituto de Biociências, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (IBB - UNESP), Rua Prof. Dr Antonio Celso Wagner Zanin, Botucatu, SP, CEP 18618-689, Brazil
- Programa de Pós-graduação em Zoologia, IBB - UNESP, Rua Prof. Dr Antonio Celso Wagner Zanin, Botucatu, São Paulo, CEP 18618-689, Brazil
| | - Pablo H Oliveira
- Laboratório de Ecologia da Polinização e Interações - LEPI, Departamento de Biodiversidade e Bioestatística, Instituto de Biociências, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (IBB - UNESP), Rua Prof. Dr Antonio Celso Wagner Zanin, Botucatu, SP, CEP 18618-689, Brazil
- Programa de Pós-graduação em Zoologia, IBB - UNESP, Rua Prof. Dr Antonio Celso Wagner Zanin, Botucatu, São Paulo, CEP 18618-689, Brazil
| | - Leandro Hachuy-Filho
- Laboratório de Ecologia da Polinização e Interações - LEPI, Departamento de Biodiversidade e Bioestatística, Instituto de Biociências, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (IBB - UNESP), Rua Prof. Dr Antonio Celso Wagner Zanin, Botucatu, SP, CEP 18618-689, Brazil
- Programa de Pós-graduação em Zoologia, IBB - UNESP, Rua Prof. Dr Antonio Celso Wagner Zanin, Botucatu, São Paulo, CEP 18618-689, Brazil
| | - Felipe W Amorim
- Laboratório de Ecologia da Polinização e Interações - LEPI, Departamento de Biodiversidade e Bioestatística, Instituto de Biociências, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (IBB - UNESP), Rua Prof. Dr Antonio Celso Wagner Zanin, Botucatu, SP, CEP 18618-689, Brazil
- Programa de Pós-graduação em Biologia Vegetal, IBB - UNESP, Rua Prof. Dr Antonio Celso Wagner Zanin, Botucatu, SP, CEP 18618-689, Brazil
- Programa de Pós-graduação em Zoologia, IBB - UNESP, Rua Prof. Dr Antonio Celso Wagner Zanin, Botucatu, São Paulo, CEP 18618-689, Brazil
| |
Collapse
|
2
|
Stephens RE, Gallagher RV, Dun L, Cornwell W, Sauquet H. Insect pollination for most of angiosperm evolutionary history. THE NEW PHYTOLOGIST 2023; 240:880-891. [PMID: 37276503 DOI: 10.1111/nph.18993] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/30/2023] [Indexed: 06/07/2023]
Abstract
Most contemporary angiosperms (flowering plants) are insect pollinated, but pollination by wind, water or vertebrates occurs in many lineages. Though evidence suggests insect pollination may be ancestral in angiosperms, this is yet to be assessed across the full phylogeny. Here, we reconstruct the ancestral pollination mode of angiosperms and quantify the timing and environmental associations of pollination shifts. We use a robust, dated phylogeny and species-level sampling across all angiosperm families to model the evolution of pollination modes. Data on the pollination system or syndrome of 1160 species were collated from the primary literature. Angiosperms were ancestrally insect pollinated, and insects have pollinated angiosperms for c. 86% of angiosperm evolutionary history. Wind pollination evolved at least 42 times, with few reversals to animal pollination. Transitions between insect and vertebrate pollination were more frequent: vertebrate pollination evolved at least 39 times from an insect-pollinated ancestor with at least 26 reversals. The probability of wind pollination increases with habitat openness (measured by Leaf Area Index) and distance from the equator. Our reconstruction gives a clear overview of pollination macroevolution across angiosperms, highlighting the long history of interactions between insect pollinators and angiosperms still vital to biodiversity today.
Collapse
Affiliation(s)
- Ruby E Stephens
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW, 2000, Australia
| | - Rachael V Gallagher
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Lily Dun
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW, 2000, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Will Cornwell
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Hervé Sauquet
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW, 2000, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Yao K, Deng M, Lin L, Hu J, Yang X, Li Q, Feng Z. The fertilization process in Lithocarpus dealbatus (Fagaceae) and its implication on the sexual reproduction evolution of Fagales. PLANTA 2023; 258:23. [PMID: 37341801 DOI: 10.1007/s00425-023-04178-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023]
Abstract
MAIN CONCLUSION The pistillate flowers of Lithocarpus dealbatus show two pollen tube (PT) arresting sites (the style-joining and micropyle) within the pistil during the postpollination-prezygotic stage. The PT, arrested at the pre-ovule stage, enhanced PT competition allowing the most compatible PTs to enter the ovary to ensure the highest fertilization success. During the shift from animal pollination to wind pollination, plants require a series of changes in reproductive traits. The mode of pollination is striking labile in Fagaceae. Lithocarpus is insect pollinated and is closely related to wind-pollinated Quercus. Little is known about the sexual reproduction of Lithocarpus. This study aimed to reveal the sexual reproduction of Lithocarpus dealbatus and to explore the evolutionary pattern of the key sexual reproduction traits to better understand their possible role in labile pollination. We found that after pollination, L. dealbatus PTs grew slowly in the style reaching style-joining in mid-January of the second year; then PT growth was arrested at style-joining for four months. Only two to three PTs resumed growth in mid-May to reach the micropyle, where PT growth ceased for one month before one PT resumed growth and passed through the micropyle to the embryo sac. Fagaceae showed a generalized mating system. Vast pollen production, small-sized pollen grains, long stigmatic receptive time, and reduced perianth were compatible with beetle pollination syndrome, representing the plesiomorphic status in Fagaceae. A large stigmatic surface and dry pollen grains linked to wind pollination might be independently derived several times in fagaceous lineages. Beetle pollination syndrome can cope with the uncertainty of pollinators to ensure conspecific pollen capture, which represents pre-adaptation status and has a selective advantage when conditions change, favouring wind pollination. The arrest of the PT at style-joining is a unique mechanism in later derived fagaceous lineages to enhance PT competition and promote outcrossing.
Collapse
Affiliation(s)
- Kaiping Yao
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, Yunnan University, Kunming, 650504, Yunnan, China
- The Key Laboratory of Rare and Endangered Forest Plants of National Forestry and Grassland Administration and the Key Laboratory for Silviculture and Forest Resources Development of Yunnan Province, Yunnan, Academy of Forestry and Grassland, Kunming, 650201, Yunnan, China
| | - Min Deng
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China.
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, Yunnan University, Kunming, 650504, Yunnan, China.
- The Key Laboratory of Rare and Endangered Forest Plants of National Forestry and Grassland Administration and the Key Laboratory for Silviculture and Forest Resources Development of Yunnan Province, Yunnan, Academy of Forestry and Grassland, Kunming, 650201, Yunnan, China.
| | - Lin Lin
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, Yunnan University, Kunming, 650504, Yunnan, China
- The Key Laboratory of Rare and Endangered Forest Plants of National Forestry and Grassland Administration and the Key Laboratory for Silviculture and Forest Resources Development of Yunnan Province, Yunnan, Academy of Forestry and Grassland, Kunming, 650201, Yunnan, China
| | - Jinjin Hu
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xiaorui Yang
- Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Qiansheng Li
- Atlanta Botanical Garden, Atlanta, GA, 30309, USA.
| | - Zhuo Feng
- Institute of Palaeontology, Yunnan Key Laboratory of Earth System Science, Yunnan Key Laboratory for Palaeobiology, MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
4
|
Abrahamczyk S, Struck JH, Weigend M. The best of two worlds: ecology and evolution of ambophilous plants. Biol Rev Camb Philos Soc 2023; 98:391-420. [PMID: 36270973 DOI: 10.1111/brv.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022]
Abstract
Ambophily, the mixed mode of wind and insect pollination is still poorly understood, even though it has been known to science for over 130 years. While its presence has been repeatedly inferred, experimental data remain regrettably rare. No specific suite of morphological or ecological characteristics has yet been identified for ambophilous plants and their ecology and evolution remain uncertain. In this review we summarise and evaluate our current understanding of ambophily, primarily based on experimental studies. A total of 128 ambophilous species - including several agriculturally important crops - have been reported from most major habitat types worldwide, but this probably represents only a small subset of ambophilous species. Ambophilous species have evolved both from wind- and insect-pollinated ancestors, with insect-pollinated ancestors mostly representing pollination by small, generalist flower visitors. We compiled floral and reproductive traits for known ambophilous species and compared our results to traits of species pollinated either by wind or by small generalist insects only. Floral traits were found to be heterogeneous and strongly overlap especially with those of species pollinated by small generalist insects, which are also the prominent pollinator group for ambophilous plants. A few ambophilous species are only pollinated by specialised bees or beetles in addition to pollination by wind. The heterogeneity of floral traits and high similarity to generalist small insect-pollinated species lead us to conclude that ambophily is not a separate pollination syndrome but includes species belonging to different insect- as well as wind-pollination syndromes. Ambophily therefore should be regarded as a pollination mode. We found that a number of ecological factors promoted the evolution of ambophily, including avoidance of pollen limitation and self-pollination, spatial flower interference and population density. However, the individual ecological factors favouring the transition to ambophily vary among species depending on species distribution, habitat, population structure and reproductive system. Finally, a number of experimental studies in combination with observations of floral traits of living and fossil species and dated phylogenies may indicate evolutionary stability. In some clades ambophily has likely prevailed for millions of years, for example in the castanoid clade of the Fagaceae.
Collapse
Affiliation(s)
- Stefan Abrahamczyk
- Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191, Stuttgart, Germany
- Nees Institute for Biodiversity of Plants, University of Bonn, Meckenheimer Allee 170, 53113, Bonn, Germany
| | - Jan-Hendrik Struck
- Nees Institute for Biodiversity of Plants, University of Bonn, Meckenheimer Allee 170, 53113, Bonn, Germany
| | - Maximilian Weigend
- Nees Institute for Biodiversity of Plants, University of Bonn, Meckenheimer Allee 170, 53113, Bonn, Germany
| |
Collapse
|
5
|
Davis W, Endo M, Locke JCW. Spatially specific mechanisms and functions of the plant circadian clock. PLANT PHYSIOLOGY 2022; 190:938-951. [PMID: 35640123 PMCID: PMC9516738 DOI: 10.1093/plphys/kiac236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Like many organisms, plants have evolved a genetic network, the circadian clock, to coordinate processes with day/night cycles. In plants, the clock is a pervasive regulator of development and modulates many aspects of physiology. Clock-regulated processes range from the correct timing of growth and cell division to interactions with the root microbiome. Recently developed techniques, such as single-cell time-lapse microscopy and single-cell RNA-seq, are beginning to revolutionize our understanding of this clock regulation, revealing a surprising degree of organ, tissue, and cell-type specificity. In this review, we highlight recent advances in our spatial view of the clock across the plant, both in terms of how it is regulated and how it regulates a diversity of output processes. We outline how understanding these spatially specific functions will help reveal the range of ways that the clock provides a fitness benefit for the plant.
Collapse
Affiliation(s)
- William Davis
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Motomu Endo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - James C W Locke
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Pollinator supplementation mitigates pollination deficits in smallholder avocado (Persea americana Mill.) production systems in Kenya. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Zhu J, Cao Y, Yao J, He W, Guo X, Zhao J, Xu Q, Zhang X, Xu C. Estimation model and its trade-off strategy of Mangifera persiciforma Colletotrichum gloeosporioides degree based on leaf reflection spectrum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44288-44300. [PMID: 33847889 DOI: 10.1007/s11356-021-13697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Colletotrichum gloeosporioides is one of the most common and serious fungal diseases of the tree Mangifera persiciforma. Yet we lack an effective method to evaluate this ecological interaction accurately. Here, we measured the functional traits and leaf reflectance spectrum of the host plants under different disease degrees. The findings provide a fast and efficient method for large-scale and high-precision monitoring of C. gloeosporioides in M. persiciforma stands. Using the collected leaf reflection data, we set up a prediction model of the optimal disease degree. Firstly, we found that leaf functional traits of M. persiciforma generally consisted of low leaf thickness, low relative chlorophyll content, small specific leaf area, high leaf tissue density, high dry matter content, low stomatal density, and large stomatal area. Secondly, leaf reflectivity increases with damage of C. gloeosporioides, which corresponds to five main reflection peaks and five absorption valleys in the spectral reflectance curve of leaves at the same positions (350-1800 nm). Thirdly, with the increase of infection degree, red edge slope and yellow edge slope decrease, while green peak reflectance, red valley reflectance, and blue edge slope all increase. Blue shift was detected in the red edge, green peak, and red valley, while red shift appeared at the blue edge and yellow edge. Finally, the best predictive model was that based on green peak reflectance (y=3.6396-0.0693x, R2=0.5149, RMSE [root-mean-square error] =0.2735), with an R2=0.92 and RMSE=0.0042 between its predicted vs. observed values. Because of its high inversion accuracy, the model can be used to predict the invasion conditions of M. persiciforma by C. gloeosporioides. Our study demonstrated that when plants are infected by C. gloeosporioides, there was a strong trade-off relationship between leaf functional traits. On the global leaf economics spectrum, the leaves tended toward the "slow investment-return" end when infected by C. gloeosporioides.
Collapse
Affiliation(s)
- Jiyou Zhu
- Research Center for Urban Forestry of Beijing Forestry University, Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry Administration, Beijing Forestry University, Beijing, 100083, China
| | - Yujuan Cao
- Research Center for Urban Forestry of Beijing Forestry University, Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry Administration, Beijing Forestry University, Beijing, 100083, China
| | - Jiangming Yao
- College of Forestry, Guangxi University, Nanning, 530005, Guangxi, China
| | - Weijun He
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, Guangdong, China
| | - Xuan Guo
- Research Center for Urban Forestry of Beijing Forestry University, Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry Administration, Beijing Forestry University, Beijing, 100083, China
| | - Jiajia Zhao
- Research Center for Urban Forestry of Beijing Forestry University, Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry Administration, Beijing Forestry University, Beijing, 100083, China
| | - Qing Xu
- Research Center for Urban Forestry of Beijing Forestry University, Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry Administration, Beijing Forestry University, Beijing, 100083, China
| | - Xinna Zhang
- Research Center for Urban Forestry of Beijing Forestry University, Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry Administration, Beijing Forestry University, Beijing, 100083, China
| | - Chengyang Xu
- Research Center for Urban Forestry of Beijing Forestry University, Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry Administration, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
8
|
Timerman D, Barrett SCH. The biomechanics of pollen release: new perspectives on the evolution of wind pollination in angiosperms. Biol Rev Camb Philos Soc 2021; 96:2146-2163. [PMID: 34076950 DOI: 10.1111/brv.12745] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022]
Abstract
Evolutionary transitions from animal to wind pollination have occurred repeatedly during the history of the angiosperms, but the selective mechanisms remain elusive. Here, we propose that knowledge of pollen release biomechanics is critical for understanding the ecological and evolutionary processes underpinning this shift in pollination mode. Pollen release is the critical first stage of wind pollination (anemophily) and stamen properties are therefore likely to be under strong selection early in the transition. We describe current understanding of pollen release biomechanics to provide insights on the phenotypic and ecological drivers of wind pollination. Pollen release occurs when detachment forces dominate resistive forces retaining pollen within anthers. Detachment forces can be active or passive depending on whether they require energy input from the environment. Passive release is more widespread in anemophilous species and involves processes driven by steady or unsteady aerodynamic forces or turbulence-induced vibrations that shake pollen from anthers. We review empirical and theoretical studies suggesting that stamen vibration is likely to be a key mechanism of pollen release. The vibration response is governed by morphological and biomechanical properties of stamens, which may undergo divergent selection in the presence or absence of pollinators. Resistive forces have rarely been investigated for pollen within anthers, but are probably sensitive to environmental conditions and depend on flower age, varying systematically between animal- and wind-pollinated species. Animal and wind pollination are traditionally viewed as dichotomous alternatives because they are usually associated with strikingly different pollination syndromes. But this perspective has diverted attention from subtler, continuously varying traits which mediate the fluid dynamic process of pollen release. Reinterpreting the flower as a biomechanical entity that responds to fluctuating environmental forces may provide a promising way forward. We conclude by identifying several profitable areas for future research to obtain deeper insight into the evolution of wind pollination.
Collapse
Affiliation(s)
- David Timerman
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, M5S 3B2, Canada
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, M5S 3B2, Canada
| |
Collapse
|
9
|
Nelsen MP, Lücking R, Boyce CK, Lumbsch HT, Ree RH. The macroevolutionary dynamics of symbiotic and phenotypic diversification in lichens. Proc Natl Acad Sci U S A 2020; 117:21495-21503. [PMID: 32796103 PMCID: PMC7474681 DOI: 10.1073/pnas.2001913117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Symbioses are evolutionarily pervasive and play fundamental roles in structuring ecosystems, yet our understanding of their macroevolutionary origins, persistence, and consequences is incomplete. We traced the macroevolutionary history of symbiotic and phenotypic diversification in an iconic symbiosis, lichens. By inferring the most comprehensive time-scaled phylogeny of lichen-forming fungi (LFF) to date (over 3,300 species), we identified shifts among symbiont classes that broadly coincided with the convergent evolution of phylogenetically or functionally similar associations in diverse lineages (plants, fungi, bacteria). While a relatively recent loss of lichenization in Lecanoromycetes was previously identified, our work instead suggests lichenization was abandoned far earlier, interrupting what had previously been considered a direct switch between trebouxiophycean and trentepohlialean algal symbionts. Consequently, some of the most diverse clades of LFF are instead derived from nonlichenized ancestors and re-evolved lichenization with Trentepohliales algae, a clade that also facilitated lichenization in unrelated lineages of LFF. Furthermore, while symbiont identity and symbiotic phenotype influence the ecology and physiology of lichens, they are not correlated with rates of lineage birth and death, suggesting more complex dynamics underly lichen diversification. Finally, diversification patterns of LFF differed from those of wood-rotting and ectomycorrhizal taxa, likely reflecting contrasts in their fundamental biological properties. Together, our work provides a timeline for the ecological contributions of lichens, and reshapes our understanding of symbiotic persistence in a classic model of symbiosis.
Collapse
Affiliation(s)
- Matthew P Nelsen
- Department of Science and Education, Negaunee Integrative Research Center, The Field Museum, Chicago, IL 60605;
| | - Robert Lücking
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, 14195 Berlin, Germany
| | - C Kevin Boyce
- Department of Geological Sciences, Stanford University, Stanford, CA 94305
| | - H Thorsten Lumbsch
- Department of Science and Education, Negaunee Integrative Research Center, The Field Museum, Chicago, IL 60605
| | - Richard H Ree
- Department of Science and Education, Negaunee Integrative Research Center, The Field Museum, Chicago, IL 60605
| |
Collapse
|
10
|
Farré-Armengol G, Fernández-Martínez M, Filella I, Junker RR, Peñuelas J. Deciphering the Biotic and Climatic Factors That Influence Floral Scents: A Systematic Review of Floral Volatile Emissions. FRONTIERS IN PLANT SCIENCE 2020; 11:1154. [PMID: 32849712 PMCID: PMC7412988 DOI: 10.3389/fpls.2020.01154] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/15/2020] [Indexed: 06/02/2023]
Abstract
Currently, a global analysis of the information available on the relative composition of the floral scents of a very diverse variety of plant species is missing. Such analysis may reveal general patterns on the distribution and dominance of the volatile compounds that form these mixtures, and may also allow measuring the effects of factors such as the phylogeny, pollination vectors, and climatic conditions on the floral scents of the species. To fill this gap, we compiled published data on the relative compositions and emission rates of volatile organic compounds (VOCs) in the floral scents of 305 plant species from 66 families. We also gathered information on the groups of pollinators that visited the flowers and the climatic conditions in the areas of distribution of these species. This information allowed us to characterize the occurrence and relative abundances of individual volatiles in floral scents and the effects of biotic and climatic factors on floral scent. The monoterpenes trans-β-ocimene and linalool and the benzenoid benzaldehyde were the most abundant floral VOCs, in both ubiquity and predominance in the floral blends. Floral VOC richness and relative composition were moderately preserved traits across the phylogeny. The reliance on different pollinator groups and the climate also had important effects on floral VOC richness, composition, and emission rates of the species. Our results support the hypothesis that key compounds or compounds originating from specific biosynthetic pathways mediate the attraction of the main pollinators. Our results also indicate a prevalence of monoterpenes in the floral blends of plants that grow in drier conditions, which could link with the fact that monoterpene emissions protect plants against oxidative stresses throughout drought periods and their emissions are enhanced under moderate drought stress. Sesquiterpenes, in turn, were positively correlated with mean annual temperature, supporting that sesquiterpene emissions are dominated mainly by ambient temperature. This study is the first to quantitatively summarise data on floral-scent emissions and provides new insights into the biotic and climatic factors that influence floral scents.
Collapse
Affiliation(s)
- Gerard Farré-Armengol
- Department of Biosciences, University of Salzburg, Salzburg, Austria
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | | | - Iolanda Filella
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Robert R. Junker
- Department of Biosciences, University of Salzburg, Salzburg, Austria
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| |
Collapse
|
11
|
Timerman D, Barrett SCH. Comparative analysis of pollen release biomechanics in Thalictrum: implications for evolutionary transitions between animal and wind pollination. THE NEW PHYTOLOGIST 2019; 224:1121-1132. [PMID: 31172529 DOI: 10.1111/nph.15978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/29/2019] [Indexed: 05/11/2023]
Abstract
Transitions from animal to wind pollination have occurred repeatedly in flowering plants, driven by structural and biomechanical modifications to flowers. But the initial changes promoting wind pollination are poorly understood, especially those required to release pollen into airflows - the critical first stage of wind pollination. Using a wind tunnel, we performed a comparative study of pollen release biomechanics in 36 species of animal- and wind-pollinated Thalictrum. We quantified pollination syndromes and stamen natural frequency (fn ), a key vibration parameter, to determine if floral traits reliably predicted pollen release probability. We then investigated if pollen release was caused by wind-induced resonance vibration of stamens. We detected wind-induced stamen resonance in 91% of species and a strong effect of stamen acceleration on pollen release, inversely driven by fn . However, unlike fn , pollination syndromes did not reliably predict the probability of pollen release among species. Our results directly link fn to the capacity of stamens to release pollen by wind and suggest that structural mechanisms reducing fn are likely to be important for initiating transitions from animal to wind pollination. Our inability to predict the probability of pollen release based on pollination syndromes suggests diverse phenotypic trajectories from animal to wind pollination.
Collapse
Affiliation(s)
- David Timerman
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
12
|
Scott-Brown AS, Arnold SEJ, Kite GC, Farrell IW, Farman DI, Collins DW, Stevenson PC. Mechanisms in mutualisms: a chemically mediated thrips pollination strategy in common elder. PLANTA 2019; 250:367-379. [PMID: 31069523 DOI: 10.1007/s00425-019-03176-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
This study provides first evidence of a thrips species pollinating Sambucus nigra and describes how interactions are driven by plant biochemical signalling and moderated by temporal changes in floral chemistry. The concept of flower-feeding thrips as pollinating insects in temperate regions is rarely considered as they are more frequently regarded to be destructive florivores feeding on pollen and surrounding plant tissue. Combining laboratory and field-based studies we examined interactions between Sambucus nigra (elderflower) and Thrips major within their native range to ascertain the role of thrips in the pollination of this species and to determine if floral chemicals mediated flower visits. If thrips provide a pollination service to S. nigra, then this will likely manifest in traits that attract the pollinating taxa at temporally critical points in floral development. T. major were highly abundant in inflorescences of S. nigra, entering flowers when stigmas were pollen-receptive and anthers were immature. When thrips were excluded from the inflorescences, fruit-set failed. Linalool was the major component of the inflorescence headspace with peak abundance coinciding with the highest number of adult thrips visiting flowers. Thrips were absent in buds and their numbers declined again in senescing flowers inversely correlating with the concentration of cyanogenic glycosides recorded in the floral tissue. Our data show that S. nigra floral chemistry mediates the behaviour of pollen-feeding thrips by attracting adults in high numbers to the flowers at pre-anthesis stage, while producing deterrent compounds prior to fruit development. Taking an integrative approach to studying thrips behaviour and floral biology we provide a new insight into the previously ambiguously defined pollination strategies of S. nigra and provide evidence suggesting that the relationship between T. major and S. nigra is mutualistic.
Collapse
Affiliation(s)
| | - Sarah E J Arnold
- Natural Resources Institute, University of Greenwich, Chatham Maritime, ME4 4TB, UK
| | | | | | - Dudley I Farman
- Natural Resources Institute, University of Greenwich, Chatham Maritime, ME4 4TB, UK
| | | | - Philip C Stevenson
- Royal Botanic Gardens Kew, Richmond, TW9 3AB, UK
- Natural Resources Institute, University of Greenwich, Chatham Maritime, ME4 4TB, UK
| |
Collapse
|
13
|
Perrot T, Gaba S, Roncoroni M, Gautier JL, Saintilan A, Bretagnolle V. Experimental quantification of insect pollination on sunflower yield, reconciling plant and field scale estimates. Basic Appl Ecol 2019. [DOI: 10.1016/j.baae.2018.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Wang TN, Clifford MR, Martínez-Gómez J, Johnson JC, Riffell JA, Di Stilio VS. Scent matters: differential contribution of scent to insect response in flowers with insect vs. wind pollination traits. ANNALS OF BOTANY 2019; 123:289-301. [PMID: 30052759 PMCID: PMC6344221 DOI: 10.1093/aob/mcy131] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/19/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Growing experimental evidence that floral scent is a key contributor to pollinator attraction supports its investigation as a component of the suite of floral traits that result from pollinator-mediated selection. Yet, the fate of floral scent during the transition out of biotic into abiotic pollination has rarely been tested. In the case of wind pollination, this is due not only to its rarer incidence among flowering plants compared with insect pollination, but also to the scarcity of systems amenable to genus-level comparisons. Thalictrum (Ranunculaceae), with its multiple transitions from insect to wind pollination, offers a unique opportunity to test interspecific changes in floral fragrance and their potential impact on pollinator attraction. METHODS First, the Thalictrum phylogeny was revised and the ancestral character state of pollination mode was reconstructed. Then, volatile organic compounds (VOCs) that comprise the scent bouquets of flowers from 11 phylogenetically representative wind- and insect-pollinated species were characterized and compared. Finally, to test the hypothesis that scent from insect-pollinated flowers elicits a significantly greater response from potential pollinators than that from wind-pollinated flowers, electroantennograms (EAGs) were performed on Bombus impatiens using whole flower extracts. KEY RESULTS Phylogenetic reconstruction of the pollination mode recovered 8-10 transitions to wind pollination from an ancestral insect pollination state and two reversals to insect pollination. Biochemical and multivariate analysis showed that compounds are distinct by species and only partially segregate with pollination mode, with no significant phylogenetic signal on scent composition. Floral VOCs from insect-pollinated Thalictrum elicited a larger antennal response from potential insect pollinators than those from wind-pollinated congeners. CONCLUSIONS An evolutionary scenario is proposed where an ancestral ability of floral fragrance to elicit an insect response through the presence of specific compounds was independently lost during the multiple evolutionary transitions to wind pollination in Thalictrum.
Collapse
Affiliation(s)
- Theresa N Wang
- University of Washington, Department of Biology, Seattle, WA, USA
| | - Marie R Clifford
- University of Washington, Department of Biology, Seattle, WA, USA
| | - Jesús Martínez-Gómez
- University of Washington, Department of Biology, Seattle, WA, USA
- Department of Integrative Biology and University and Jepson Herbaria, University of California, Berkeley, CA, USA
| | - Jens C Johnson
- University of Washington, Department of Biology, Seattle, WA, USA
- Department of Geography, University of British Columbia, West Mall, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
15
|
Losada JM, Leslie AB. Why are the seed cones of conifers so diverse at pollination? ANNALS OF BOTANY 2018; 121:1319-1331. [PMID: 29528365 PMCID: PMC6007286 DOI: 10.1093/aob/mcy029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/16/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Form and function relationships in plant reproductive structures have long fascinated biologists. Although the intricate associations between specific pollinators and reproductive morphology have been widely explored among animal-pollinated plants, the evolutionary processes underlying the diverse morphologies of wind-pollinated plants remain less well understood. Here we study how this diversity may have arisen by focusing on two conifer species in the pine family that have divergent reproductive cone morphologies at pollination. METHODS Standard histology methods, artificial wind pollination assays and phylogenetic analyses were used in this study. KEY RESULTS A detailed study of cone ontogeny in these species reveals that variation in the rate at which their cone scales mature means that pollination occurs at different stages in their development, and thus in association with different specific morphologies. Pollination experiments nevertheless indicate that both species effectively capture pollen. CONCLUSIONS In wind-pollinated plants, morphological diversity may result from simple variation in development among lineages rather than selective pressures for any major differences in function or performance. This work also illustrates the broader importance of developmental context in understanding plant form and function relationships; because plant reproductive structures perform many different functions over their lifetime, subtle differences in development may dramatically alter the specific morphologies that they use to meet these demands.
Collapse
Affiliation(s)
- Juan M Losada
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
- Arnold Arboretum of Harvard University, Boston, MA, USA
| | - Andrew B Leslie
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| |
Collapse
|
16
|
Sutter L, Albrecht M, Jeanneret P. Landscape greening and local creation of wildflower strips and hedgerows promote multiple ecosystem services. J Appl Ecol 2017. [DOI: 10.1111/1365-2664.12977] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Louis Sutter
- Agroscope; Zurich Switzerland
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Zurich Switzerland
| | | | | |
Collapse
|
17
|
Custodio T, Comtois P, Araujo AC. Reproductive biology and pollination ecology of Triplaris gardneriana (Polygonaceae): a case of ambophily in the Brazilian Chaco. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:504-514. [PMID: 28145619 DOI: 10.1111/plb.12554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/30/2017] [Indexed: 06/06/2023]
Abstract
Triplaris gardneriana (Polygonaceae) is a dioecious pioneer tree reported as insect-pollinated, despite possessing traits related to anemophily. Here, we analyse the possible roles of insects and wind on the pollination of this species to establish whether the species is ambophilous. We carried out observations of floral biology, as well as on the frequency and behaviour of pollinators visiting flowers in a population of T. gardneriana in the Chaco vegetation of Brazil. We conducted experimental pollinations to determine the maternal fertility of female plants and whether they were pollen-limited, and we also conducted aerobiological experiments to provide evidence of how environmental factors influence atmospheric pollen dispersal. The population comprised an area of approximately 152.000 m2 and was composed of 603 female and 426 male plants (sex ratio = 0.59:0.41). We observed 48 species of insects visiting flowers of T. gardneriana, of which the bees Scaptotrigona depilis and Apis mellifera scutellata were the most effective pollinators. We recorded pollen grains dispersed by wind on 74% of the glass slides placed on females, located at different distances (1-10 m) from male plants. Airborne pollen concentration was negatively correlated with relative humidity and positively correlated with temperature. Our observations and experimental results provide the first evidence that T. gardneriana is an ambophilous species, with pollen dispersal resulting from both animal and wind pollination. This mixed pollination strategy may be adaptive in T. gardneriana providing reproductive assurance during colonisation of sites with different biotic and abiotic conditions.
Collapse
Affiliation(s)
- T Custodio
- Programa de Pós graduação em Ecologia e Conservação, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - P Comtois
- Laboratoire d'Aérobiologie Elzéar-Campahna, Département de Géographie, Université de Montréal, Québec, Canada
| | - A C Araujo
- Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| |
Collapse
|
18
|
Sutter L, Albrecht M. Synergistic interactions of ecosystem services: florivorous pest control boosts crop yield increase through insect pollination. Proc Biol Sci 2017; 283:rspb.2015.2529. [PMID: 26865304 DOI: 10.1098/rspb.2015.2529] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insect pollination and pest control are pivotal functions sustaining global food production. However, they have mostly been studied in isolation and how they interactively shape crop yield remains largely unexplored. Using controlled field experiments, we found strong synergistic effects of insect pollination and simulated pest control on yield quantity and quality. Their joint effect increased yield by 23%, with synergistic effects contributing 10%, while their single contributions were 7% and 6%, respectively. The potential economic benefit for a farmer from the synergistic effects (12%) was 1.8 times greater than their individual contributions (7% each). We show that the principal underlying mechanism was a pronounced pest-induced reduction in flower lifetime, resulting in a strong reduction in the number of pollinator visits a flower receives during its lifetime. Our findings highlight the importance of non-additive interactions among ecosystem services (ES) when valuating, mapping or predicting them and reveal fundamental implications for ecosystem management and policy aimed at maximizing ES for sustainable agriculture.
Collapse
Affiliation(s)
- Louis Sutter
- Institute for Sustainability Sciences, Agroscope, Reckenholzstrasse 191, Zurich 8046, Switzerland Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Matthias Albrecht
- Institute for Sustainability Sciences, Agroscope, Reckenholzstrasse 191, Zurich 8046, Switzerland
| |
Collapse
|
19
|
Welsford MR, Hobbhahn N, Midgley JJ, Johnson SD. Floral trait evolution associated with shifts between insect and wind pollination in the dioecious genusLeucadendron(Proteaceae). Evolution 2015; 70:126-39. [DOI: 10.1111/evo.12821] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 10/28/2015] [Accepted: 11/06/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Megan R. Welsford
- School of Life Sciences; University of KwaZulu-Natal; P. Bag X01 Scottsville 3209 Pietermaritzburg South Africa
| | - Nina Hobbhahn
- School of Life Sciences; University of KwaZulu-Natal; P. Bag X01 Scottsville 3209 Pietermaritzburg South Africa
| | - Jeremy J. Midgley
- Department of Biological Sciences; University of Cape Town; Rondebosch 7701 South Africa
| | - Steven D. Johnson
- School of Life Sciences; University of KwaZulu-Natal; P. Bag X01 Scottsville 3209 Pietermaritzburg South Africa
| |
Collapse
|
20
|
Farré-Armengol G, Filella I, Llusià J, Peñuelas J. Pollination mode determines floral scent. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Starr JR, Janzen FH, Ford BA. Three new, early diverging Carex (Cariceae, Cyperaceae) lineages from East and Southeast Asia with important evolutionary and biogeographic implications. Mol Phylogenet Evol 2015; 88:105-20. [DOI: 10.1016/j.ympev.2015.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/26/2015] [Accepted: 04/01/2015] [Indexed: 12/25/2022]
|
22
|
Diversity and evolution of pollinator rewards and protection by Macaranga (Euphorbiaceae) bracteoles. Evol Ecol 2015. [DOI: 10.1007/s10682-014-9750-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Bartomeus I, Potts SG, Steffan-Dewenter I, Vaissière BE, Woyciechowski M, Krewenka KM, Tscheulin T, Roberts SPM, Szentgyörgyi H, Westphal C, Bommarco R. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ 2014; 2:e328. [PMID: 24749007 PMCID: PMC3976118 DOI: 10.7717/peerj.328] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/12/2014] [Indexed: 11/20/2022] Open
Abstract
Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries' commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in some areas, but our results suggest the need of landscape-scale actions to enhance wild pollinator populations.
Collapse
Affiliation(s)
- Ignasi Bartomeus
- Department of Ecology, Swedish University of Agricultural Sciences , Uppsala , Sweden
| | - Simon G Potts
- School of Agriculture, Policy and Development, University of Reading , Reading , UK
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology and Tropical Biology, Biocentre, University of Würzburg , Würzburg , Germany
| | | | - Michal Woyciechowski
- Institute of Environmental Sciences, Jagiellonian University , Gronostajowa, Krakow , Poland
| | - Kristin M Krewenka
- Department of Crop Science, Agroecology, Georg-August-University , Göttingen , Germany
| | - Thomas Tscheulin
- School of Agriculture, Policy and Development, University of Reading , Reading , UK ; Department of Geography, University of the Aegean , Mytilene , Greece
| | - Stuart P M Roberts
- School of Agriculture, Policy and Development, University of Reading , Reading , UK
| | - Hajnalka Szentgyörgyi
- Institute of Environmental Sciences, Jagiellonian University , Gronostajowa, Krakow , Poland
| | - Catrin Westphal
- Department of Crop Science, Agroecology, Georg-August-University , Göttingen , Germany
| | - Riccardo Bommarco
- Department of Ecology, Swedish University of Agricultural Sciences , Uppsala , Sweden
| |
Collapse
|
24
|
Barrett SCH. The evolution of plant reproductive systems: how often are transitions irreversible? Proc Biol Sci 2013; 280:20130913. [PMID: 23825207 PMCID: PMC3712442 DOI: 10.1098/rspb.2013.0913] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/03/2013] [Indexed: 11/12/2022] Open
Abstract
Flowering plants are characterized by striking variation in reproductive systems, and the evolutionary lability of their sexual traits is often considered a major driver of lineage diversification. But, evolutionary transitions in reproductive form and function are never entirely unconstrained and many changes exhibit strong directionality. Here, I consider why this occurs by examining transitions in pollination, mating and sexual systems, some of which have been considered irreversible. Among pollination systems, shifts from bee to hummingbird pollination are rarely reversible, whereas transitions from animal to wind pollination are occasionally reversed. Specialized pollination systems can become destabilized through a loss of pollinator service resulting in a return to generalized pollination, or more commonly a reliance on self-pollination. Homomorphic and heteromorphic self-incompatibility systems have multiple origins but breakdown to self-compatibility occurs much more frequently with little evidence for subsequent gains, at least over short time-spans. Similarly, numerous examples of the shift from outcrossing to predominant self-fertilization are known, but cases of reversal are very limited supporting the view that autogamy usually represents an evolutionary dead-end. The evolution of dioecy from hermaphroditism has also been considered irreversible, although recent evidence indicates that the occurrence of sex inconstancy and hybridization can lead to the origin of derived sexual systems from dioecy. The directionality of many transitions clearly refutes the notion of unconstrained reproductive flexibility, but novel adaptive solutions generally do not retrace earlier patterns of trait evolution.
Collapse
Affiliation(s)
- Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada.
| |
Collapse
|
25
|
Jürgens A, Bischoff M, Sakai AK, Weller SG. Floral scent of four Hawaiian Schiedea species (Caryophyllaceae). BIOCHEM SYST ECOL 2012. [DOI: 10.1016/j.bse.2012.07.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Steenhuisen SL, Raguso RA, Johnson SD. Floral scent in bird- and beetle-pollinated Protea species (Proteaceae): chemistry, emission rates and function. PHYTOCHEMISTRY 2012; 84:78-87. [PMID: 22999809 DOI: 10.1016/j.phytochem.2012.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/14/2012] [Accepted: 08/19/2012] [Indexed: 06/01/2023]
Abstract
Evolutionary shifts between pollination systems are often accompanied by modifications of floral traits, including olfactory cues. We investigated the implications of a shift from passerine bird to beetle pollination in Protea for floral scent chemistry, and also explored the functional significance of Protea scent for pollinator attraction. Using headspace sampling and gas chromatography-mass spectrometry, we found distinct differences in the emission rates and chemical composition of floral scents between eight bird- and four beetle-pollinated species. The amount of scent emitted from inflorescences of beetle-pollinated species was, on average, about 10-fold greater than that of bird-pollinated species. Floral scent of bird-pollinated species consists mainly of small amounts of "green-leaf volatiles" and benzenoid compounds, including benzaldehyde, anisole and benzyl alcohol. The floral scent of beetle-pollinated species is dominated by emissions of linalool, a wide variety of other monoterpenes and the benzenoid methyl benzoate, which imparts a fruity odour to the human nose. The number of compounds recorded in the scent of beetle-pollinated species was, on average, greater than in bird-pollinated species (45 versus 29 compounds, respectively). Choice experiments using a Y-maze showed that a primary pollinator of Protea species, the cetoniine beetle Atrichelaphinis tigrina, strongly preferred the scent of inflorescences of the beetle-pollinated Protea simplex over those of the bird-pollinated sympatric congener, Protea roupelliae. This study shows that a shift from passerine bird- to insect-pollination can be associated with marked up-regulation and compositional changes in floral scent emissions.
Collapse
Affiliation(s)
- S-L Steenhuisen
- School of Life Sciences, University of KwaZulu-Natal, Post Bag X01, Scottsville, Pietermaritzburg 3209, South Africa.
| | | | | |
Collapse
|
27
|
NEUSCHULZ EIKEL, GRASS INGO, BOTZAT ALEXANDRA, JOHNSON STEVEND, FARWIG NINA. Persistence of flower visitors and pollination services of a generalist tree in modified forests. AUSTRAL ECOL 2012. [DOI: 10.1111/j.1442-9993.2012.02417.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Bommarco R, Marini L, Vaissière BE. Insect pollination enhances seed yield, quality, and market value in oilseed rape. Oecologia 2012; 169:1025-32. [PMID: 22311256 DOI: 10.1007/s00442-012-2271-6] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 01/23/2012] [Indexed: 11/28/2022]
Abstract
The relationships between landscape intensification, the abundance and diversity of pollinating insects, and their contributions to crop yield, quality, and market value are poorly studied, despite observed declines in wild and domesticated pollinators. Abundance and species richness of pollinating insects were estimated in ten fields of spring oilseed rape, Brassica napus var. SW Stratos™, located along a gradient of landscape compositions ranging from simple landscapes dominated by arable land to heterogeneous landscapes with extensive cover of semi-natural habitats. In each field, we assessed the contribution of wind and insect pollination to seed yield, seed quality (individual seed weight and oil and chlorophyll contents), and market value in a block experiment with four replicates and two treatments: (1) all flowers were accessible to insects, self and wind pollination, and (2) flowers enclosed in tulle net bags (mesh: 1 × 1 mm) were accessible only to wind and self pollination. Complex landscapes enhanced the overall abundance of wild insects as well as the abundance and species richness of hoverflies. This did not translate to a higher yield, probably due to consistent pollination by honey bees across all fields. However, the pollination experiment showed that insects increased seed weight per plant by 18% and market value by 20%. Seed quality was enhanced by insect pollination, rendering heavier seeds as well as higher oil and lower chlorophyll contents, clearly showing that insect pollination is required to reach high seed yield and quality in oilseed rape. Our study demonstrates considerable and previously underestimated contributions from pollinating insects to both the yield and the market value of oilseed rape.
Collapse
Affiliation(s)
- Riccardo Bommarco
- Department of Ecology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden.
| | | | | |
Collapse
|
29
|
Friedman J. Gone with the wind: understanding evolutionary transitions between wind and animal pollination in the angiosperms. THE NEW PHYTOLOGIST 2011; 191:911-913. [PMID: 21834912 DOI: 10.1111/j.1469-8137.2011.03845.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Jannice Friedman
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA (tel +1 919 660 7223; email )
| |
Collapse
|