1
|
de Oliveira HO, Siqueira JA, Medeiros DB, Fernie AR, Nunes-Nesi A, Araújo WL. Harnessing the dynamics of plant organic acids metabolism following abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 220:109465. [PMID: 39787814 DOI: 10.1016/j.plaphy.2024.109465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
Plants encounter various environmental stresses throughout development, including shade, high light, drought, hypoxia, extreme temperatures, and metal toxicity, all of which adversely affect growth and productivity. Organic acids (OAs), besides serving as intermediates in the tricarboxylic acid (TCA) cycle, play crucial roles in multiple metabolic pathways and cellular compartments, including mitochondrial metabolism, amino acid metabolism, the glyoxylate cycle, and the photosynthetic mechanisms of C4 and CAM plants. OAs contribute to stress tolerance by acting as root chelating agents, regulating ATP production, and providing reducing power for detoxifying reactive oxygen species (ROS). They also participate in the biosynthesis of solutes involved in stress signaling and osmoregulation, particularly during stomatal movements. This review explores how OAs regulate plant metabolism in response to specific abiotic stresses, emphasizing the increased production of malate, citrate, and succinate, which enhance resilience to water deficits, metal toxicity, and flooding. Since these mechanisms involve intricate metabolic networks, changes in OA metabolism present promising and underexplored potential for agriculture. Understanding these mechanisms could lead to innovative strategies for developing crops with greater resilience to climate change, whether through genetic manipulation or by selecting varieties with favorable metabolic responses to stress.
Collapse
Affiliation(s)
- Hellen Oliveira de Oliveira
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - João Antonio Siqueira
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - David B Medeiros
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil; Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
2
|
Daems S, Shameer S, Ceusters N, Sweetlove L, Ceusters J. Metabolic modelling identifies mitochondrial Pi uptake and pyruvate efflux as key aspects of daytime metabolism and proton homeostasis in crassulacean acid metabolism leaves. THE NEW PHYTOLOGIST 2024; 244:159-175. [PMID: 39113419 DOI: 10.1111/nph.20032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/15/2024] [Indexed: 09/17/2024]
Abstract
Crassulacean acid metabolism (CAM) leaves are characterized by nocturnal acidification and diurnal deacidification processes related with the timed actions of phosphoenolpyruvate carboxylase and Rubisco, respectively. How CAM leaves manage cytosolic proton homeostasis, particularly when facing massive diurnal proton effluxes from the vacuole, remains unclear. A 12-phase flux balance analysis (FBA) model was constructed for a mature malic enzyme-type CAM mesophyll cell in order to predict diel kinetics of intracellular proton fluxes. The charge- and proton-balanced FBA model identified the mitochondrial phosphate carrier (PiC, Pi/H+ symport), which provides Pi to the matrix to sustain ATP biosynthesis, as a major consumer of cytosolic protons during daytime (> 50%). The delivery of Pi to the mitochondrion, co-transported with protons, is required for oxidative phosphorylation and allows sufficient ATP to be synthesized to meet the high energy demand during CAM Phase III. Additionally, the model predicts that mitochondrial pyruvate originating from decarboxylation of malate is exclusively exported to the cytosol, probably via a pyruvate channel mechanism, to fuel gluconeogenesis. In this biochemical cycle, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) acts as another important cytosolic proton consumer. Overall, our findings emphasize the importance of mitochondria in CAM and uncover a hitherto unappreciated role in metabolic proton homeostasis.
Collapse
Affiliation(s)
- Stijn Daems
- Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, 2440, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, 3000, Belgium
| | - Sanu Shameer
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
- Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - Nathalie Ceusters
- Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, 2440, Belgium
| | - Lee Sweetlove
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Johan Ceusters
- Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, 2440, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, 3000, Belgium
- Centre for Environmental Sciences, Environmental Biology, UHasselt, Diepenbeek, 3590, Belgium
| |
Collapse
|
3
|
Karthick PV, Senthil A, Djanaguiraman M, Anitha K, Kuttimani R, Boominathan P, Karthikeyan R, Raveendran M. Improving Crop Yield through Increasing Carbon Gain and Reducing Carbon Loss. PLANTS (BASEL, SWITZERLAND) 2024; 13:1317. [PMID: 38794389 PMCID: PMC11124956 DOI: 10.3390/plants13101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 05/26/2024]
Abstract
Photosynthesis is a process where solar energy is utilized to convert atmospheric CO2 into carbohydrates, which forms the basis for plant productivity. The increasing demand for food has created a global urge to enhance yield. Earlier, the plant breeding program was targeting the yield and yield-associated traits to enhance the crop yield. However, the yield cannot be further improved without improving the leaf photosynthetic rate. Hence, in this review, various strategies to enhance leaf photosynthesis were presented. The most promising strategies were the optimization of Rubisco carboxylation efficiency, the introduction of a CO2 concentrating mechanism in C3 plants, and the manipulation of photorespiratory bypasses in C3 plants, which are discussed in detail. Improving Rubisco's carboxylation efficiency is possible by engineering targets such as Rubisco subunits, chaperones, and Rubisco activase enzyme activity. Carbon-concentrating mechanisms can be introduced in C3 plants by the adoption of pyrenoid and carboxysomes, which can increase the CO2 concentration around the Rubisco enzyme. Photorespiration is the process by which the fixed carbon is lost through an oxidative process. Different approaches to reduce carbon and nitrogen loss were discussed. Overall, the potential approaches to improve the photosynthetic process and the way forward were discussed in detail.
Collapse
Affiliation(s)
- Palanivelu Vikram Karthick
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (P.V.K.); (M.D.); (K.A.); (R.K.); (P.B.)
| | - Alagarswamy Senthil
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (P.V.K.); (M.D.); (K.A.); (R.K.); (P.B.)
| | - Maduraimuthu Djanaguiraman
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (P.V.K.); (M.D.); (K.A.); (R.K.); (P.B.)
| | - Kuppusamy Anitha
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (P.V.K.); (M.D.); (K.A.); (R.K.); (P.B.)
| | - Ramalingam Kuttimani
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (P.V.K.); (M.D.); (K.A.); (R.K.); (P.B.)
| | - Parasuraman Boominathan
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (P.V.K.); (M.D.); (K.A.); (R.K.); (P.B.)
| | - Ramasamy Karthikeyan
- Directorate of Crop Management, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Muthurajan Raveendran
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| |
Collapse
|
4
|
Ludwig M, Hartwell J, Raines CA, Simkin AJ. The Calvin-Benson-Bassham cycle in C 4 and Crassulacean acid metabolism species. Semin Cell Dev Biol 2024; 155:10-22. [PMID: 37544777 DOI: 10.1016/j.semcdb.2023.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
The Calvin-Benson-Bassham (CBB) cycle is the ancestral CO2 assimilation pathway and is found in all photosynthetic organisms. Biochemical extensions to the CBB cycle have evolved that allow the resulting pathways to act as CO2 concentrating mechanisms, either spatially in the case of C4 photosynthesis or temporally in the case of Crassulacean acid metabolism (CAM). While the biochemical steps in the C4 and CAM pathways are known, questions remain on their integration and regulation with CBB cycle activity. The application of omic and transgenic technologies is providing a more complete understanding of the biochemistry of C4 and CAM species and will also provide insight into the CBB cycle in these plants. As the global population increases, new solutions are required to increase crop yields and meet demands for food and other bioproducts. Previous work in C3 species has shown that increasing carbon assimilation through genetic manipulation of the CBB cycle can increase biomass and yield. There may also be options to improve photosynthesis in species using C4 photosynthesis and CAM through manipulation of the CBB cycle in these plants. This is an underexplored strategy and requires more basic knowledge of CBB cycle operation in these species to enable approaches for increased productivity.
Collapse
Affiliation(s)
- Martha Ludwig
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia.
| | - James Hartwell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | | | - Andrew J Simkin
- University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK; School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| |
Collapse
|
5
|
Davis SC, Ortiz-Cano HG. Lessons from the history of Agave: ecological and cultural context for valuation of CAM. ANNALS OF BOTANY 2023; 132:819-833. [PMID: 37279950 PMCID: PMC10799984 DOI: 10.1093/aob/mcad072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/12/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND SCOPE Crassulacean acid metabolism (CAM) is an intriguing physiological adaptation in plants that are widespread throughout many ecosystems. Despite the relatively recent mechanistic understanding of CAM in plant physiology, evidence from historical records suggests that ancient cultures in the Americas also recognized the value of CAM plants. Agave species, in particular, have a rich cultural legacy that provides a foundation for commercially valued products. Here, we review that legacy and potential relationships between ancient values and the needs of modern-day climate adaptation strategies. CONCLUSIONS There are many products that can be produced from Agave species, including food, sugar, fibre and medicines. Traditional knowledge about agricultural management and preparation of plant products can be combined with new ecophysiological knowledge and agronomic techniques to develop these resources in the borderland region of the southwestern USA and Mexico. Historical records of pre-Columbian practices in the Sonoran desert and remnants of centuries-old agriculture in Baja California and Sonora demonstrate the climate resilience of Agave agriculture. Commercial growth of both tequila and bacanora indicates the potential for large-scale production today, but also underscores the importance of adopting regenerative agricultural practices to accomplish environmentally sustainable production. Recent international recognition of the Appellation of Origin for several Agave species produced for spirits in Mexico might provide opportunities for agricultural diversification. In contrast, fibre is currently produced from several Agave species on many continents. Projections of growth with future climate change suggest that Agave spp. will be viable alternatives for commodity crops that suffer declines during drought and increased temperatures. Historical cultivation of Agave affirms that these CAM plants can supply sugar, soft and hard fibres, medicines and food supplements.
Collapse
Affiliation(s)
- Sarah C Davis
- Voinovich School of Leadership and Public Service, Ohio University, Building 22 The Ridges, Athens, OH 45701, USA
| | | |
Collapse
|
6
|
Hultine KR, Hernández-Hernández T, Williams DG, Albeke SE, Tran N, Puente R, Larios E. Global change impacts on cacti (Cactaceae): current threats, challenges and conservation solutions. ANNALS OF BOTANY 2023; 132:671-683. [PMID: 36861500 PMCID: PMC10799997 DOI: 10.1093/aob/mcad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/10/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The plant family Cactaceae provides some of the most striking examples of adaptive evolution, expressing undeniably the most spectacular New World radiation of succulent plants distributed across arid and semi-arid regions of the Americas. Cacti are widely regarded for their cultural, economic and ecological value, yet they are also recognized as one of the most threatened and endangered taxonomic groups on the planet. SCOPE This paper reviews current threats to species of cacti that have distributions in arid to semi-arid subtropical regions. Our review focuses primarily on four global change forces: (1) increases in atmospheric CO2 concentrations; (2) increases in mean annual temperatures and heat waves; (3) increases in the duration, frequency and intensity of droughts; and (4) and increases in competition and wildfire frequency from invasion by non-native species. We provide a broad range of potential priorities and solutions for stemming the extinction risk of cacti species and populations. CONCLUSIONS Mitigating ongoing and emerging threats to cacti will require not only strong policy initiatives and international cooperation, but also new and creative approaches to conservation. These approaches include determining species at risk from climate extremes, enhancing habitat quality after disturbance, approaches and opportunities for ex situ conservation and restoration, and the potential use of forensic tools for identifying plants that have been removed illegally from the wild and sold on open markets.
Collapse
Affiliation(s)
- Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ 85008, USA
| | - Tania Hernández-Hernández
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ 85008, USA
| | - David G Williams
- Department of Botany, University of Wyoming, Laramie, WY 82071, USA
| | - Shannon E Albeke
- Wyoming Geographic Information Science Center, University of Wyoming, Laramie, WY 82071, USA
| | - Newton Tran
- Center of Tree Science, Morton Arboretum, Lisle, IL 60532, USA
| | - Raul Puente
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ 85008, USA
| | - Eugenio Larios
- Programa Educativo de Licenciado en Ecología, Universidad Estatal de Sonora, Hermosillo, Sonora 83100, México
| |
Collapse
|
7
|
Sage RF, Edwards EJ, Heyduk K, Cushman JC. Crassulacean acid metabolism (CAM) at the crossroads: a special issue to honour 50 years of CAM research by Klaus Winter. ANNALS OF BOTANY 2023; 132:553-561. [PMID: 37856823 PMCID: PMC10799977 DOI: 10.1093/aob/mcad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Affiliation(s)
- Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5R3C6, Canada
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Karolina Heyduk
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada–Reno, Reno, NV 89557, USA
| |
Collapse
|
8
|
Billakurthi K, Hibberd JM. A rapid and robust leaf ablation method to visualize bundle sheath cells and chloroplasts in C 3 and C 4 grasses. PLANT METHODS 2023; 19:69. [PMID: 37408013 PMCID: PMC10324140 DOI: 10.1186/s13007-023-01041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND It has been proposed that engineering the C4 photosynthetic pathway into C3 crops could significantly increase yield. This goal requires an increase in the chloroplast compartment of bundle sheath cells in C3 species. To facilitate large-scale testing of candidate regulators of chloroplast development in the rice bundle sheath, a simple and robust method to phenotype this tissue in C3 species is required. RESULTS We established a leaf ablation method to accelerate phenotyping of rice bundle sheath cells. The bundle sheath cells and chloroplasts were visualized using light and confocal laser microscopy. Bundle sheath cell dimensions, chloroplast area and chloroplast number per cell were measured from the images obtained by confocal laser microscopy. Bundle sheath cell dimensions of maize were also measured and compared with rice. Our data show that bundle sheath width but not length significantly differed between C3 rice and C4 maize. Comparison of paradermal versus transverse bundle sheath cell width indicated that bundle sheath cells were intact after leaf ablation. Moreover, comparisons of planar chloroplast areas and chloroplast numbers per bundle sheath cell between wild-type and transgenic rice lines expressing the maize GOLDEN-2 (ZmG2) showed that the leaf ablation method allowed differences in chloroplast parameters to be detected. CONCLUSIONS Leaf ablation is a simple approach to accessing bundle sheath cell files in C3 species. We show that this method is suitable for obtaining parameters associated with bundle sheath cell size, chloroplast area and chloroplast number per cell.
Collapse
Affiliation(s)
- Kumari Billakurthi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, UK
| | - Julian M. Hibberd
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, UK
| |
Collapse
|
9
|
Suetsugu K, Sugita R, Yoshihara A, Okada H, Akita K, Nagata N, Tanoi K, Kobayashi K. Aerial roots of the leafless epiphytic orchid Taeniophyllum are specialized for performing crassulacean acid metabolism photosynthesis. THE NEW PHYTOLOGIST 2023; 238:932-937. [PMID: 36788446 DOI: 10.1111/nph.18812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
- The Institute for Advanced Research, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Ryohei Sugita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Radioisotope Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Akiko Yoshihara
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Hidehito Okada
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Kae Akita
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Noriko Nagata
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Keitaro Tanoi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Koichi Kobayashi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
10
|
Daems S, Ceusters N, Valcke R, Ceusters J. Effects of chilling on the photosynthetic performance of the CAM orchid Phalaenopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:981581. [PMID: 36507447 PMCID: PMC9732388 DOI: 10.3389/fpls.2022.981581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Crassulacean acid metabolism (CAM) is one of the three main metabolic adaptations for CO2 fixation found in plants. A striking feature for these plants is nocturnal carbon fixation and diurnal decarboxylation of malic acid to feed Rubisco with CO2 behind closed stomata, thereby saving considerable amounts of water. Compared to the effects of high temperatures, drought, and light, much less information is available about the effects of chilling temperatures on CAM plants. In addition a lot of CAM ornamentals are grown in heated greenhouses, urging for a deeper understanding about the physiological responses to chilling in order to increase sustainability in the horticultural sector. METHODS The present study focuses on the impact of chilling temperatures (10°C) for 3 weeks on the photosynthetic performance of the obligate CAM orchid Phalaenopsis 'Edessa'. Detailed assessments of the light reactions were performed by analyzing chlorophyll a fluorescence induction (OJIP) parameters and the carbon fixation reactions by measuring diel leaf gas exchange and diel metabolite patterns. RESULTS AND DISCUSSION Results showed that chilling already affected the light reactions after 24h. Whilst the potential efficiency of photosystem II (PSII) (Fv/Fm) was not yet influenced, a massive decrease in the performance index (PIabs) was noticed. This decrease did not depict an overall downregulation of PSII related energy fluxes since energy absorption and dissipation remained uninfluenced whilst the trapped energy and reduction flux were upregulated. This might point to the presence of short-term adaptation mechanisms to chilling stress. However, in the longer term the electron transport chain from PSII to PSI was affected, impacting both ATP and NADPH provision. To avoid over-excitation and photodamage plants showed a massive increase in thermal dissipation. These considerations are also in line with carbon fixation data showing initial signs of cold adaptation by achieving comparable Rubisco activity compared to unstressed plants but increasing daytime stomatal opening in order to capture a higher proportion of CO2 during daytime. However, in accordance with the light reactions data, Rubisco activity declined and stomatal conductance and CO2 uptake diminished to near zero levels after 3 weeks, indicating that plants were not successful in cold acclimation on the longer term.
Collapse
Affiliation(s)
- Stijn Daems
- Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Nathalie Ceusters
- Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, Belgium
| | - Roland Valcke
- Molecular and Physical Plant Physiology, UHasselt, Diepenbeek, Belgium
| | - Johan Ceusters
- Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
- Centre for Environmental Sciences, Environmental Biology, UHasselt, Diepenbeek, Belgium
| |
Collapse
|
11
|
Pradhan B, Panda D, Bishi SK, Chakraborty K, Muthusamy SK, Lenka SK. Progress and prospects of C 4 trait engineering in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:920-931. [PMID: 35727191 DOI: 10.1111/plb.13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Incorporating C4 photosynthetic traits into C3 crops is a rational approach for sustaining future demands for crop productivity. Using classical plant breeding, engineering this complex trait is unlikely to achieve its target. Therefore, it is critical and timely to implement novel biotechnological crop improvement strategies to accomplish this goal. However, a fundamental understanding of C3 , C4 , and C3 -C4 intermediate metabolism is crucial for the targeted use of biotechnological tools. This review assesses recent progress towards engineering C4 photosynthetic traits in C3 crops. We also discuss lessons learned from successes and failures of recent genetic engineering attempts in C3 crops, highlighting the pros and cons of using rice as a model plant for short-, medium- and long-term goals of genetic engineering. This review provides an integrated approach towards engineering improved photosynthetic efficiency in C3 crops for sustaining food, fibre and fuel production around the globe.
Collapse
Affiliation(s)
- B Pradhan
- Department of Agricultural Biotechnology, Faculty Centre for Integrated Rural Development and Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, India
| | - D Panda
- Department of Biodiversity & Conservation of Natural Resources, Central University of Odisha, Koraput, India
| | - S K Bishi
- School of Genomics and Molecular Breeding, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - K Chakraborty
- Department of Plant Physiology, ICAR-National Rice Research Institute, Cuttack, India
| | - S K Muthusamy
- Division of Crop Improvement, ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| | - S K Lenka
- Department of Plant Biotechnology, Gujarat Biotechnology University, Gujarat, India
| |
Collapse
|
12
|
Cuitun‐Coronado D, Rees H, Colmer J, Hall A, de Barros Dantas LL, Dodd AN. Circadian and diel regulation of photosynthesis in the bryophyte Marchantia polymorpha. PLANT, CELL & ENVIRONMENT 2022; 45:2381-2394. [PMID: 35611455 PMCID: PMC9546472 DOI: 10.1111/pce.14364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 05/10/2023]
Abstract
Circadian rhythms are 24-h biological cycles that align metabolism, physiology, and development with daily environmental fluctuations. Photosynthetic processes are governed by the circadian clock in both flowering plants and some cyanobacteria, but it is unclear how extensively this is conserved throughout the green lineage. We investigated the contribution of circadian regulation to aspects of photosynthesis in Marchantia polymorpha, a liverwort that diverged from flowering plants early in the evolution of land plants. First, we identified in M. polymorpha the circadian regulation of photosynthetic biochemistry, measured using two approaches (delayed fluorescence, pulse amplitude modulation fluorescence). Second, we identified that light-dark cycles synchronize the phase of 24 h cycles of photosynthesis in M. polymorpha, whereas the phases of different thalli desynchronize under free-running conditions. This might also be due to the masking of the underlying circadian rhythms of photosynthesis by light-dark cycles. Finally, we used a pharmacological approach to identify that chloroplast translation might be necessary for clock control of light-harvesting in M. polymorpha. We infer that the circadian regulation of photosynthesis is well-conserved amongst terrestrial plants.
Collapse
Affiliation(s)
- David Cuitun‐Coronado
- Department of Cell and Developmental BiologyJohn Innes CentreNorwichUK
- School of Biological SciencesUniversity of BristolBristolUK
| | | | | | | | | | - Antony N. Dodd
- Department of Cell and Developmental BiologyJohn Innes CentreNorwichUK
| |
Collapse
|
13
|
Burgos A, Miranda E, Vilaprinyo E, Meza-Canales ID, Alves R. CAM Models: Lessons and Implications for CAM Evolution. FRONTIERS IN PLANT SCIENCE 2022; 13:893095. [PMID: 35812979 PMCID: PMC9260309 DOI: 10.3389/fpls.2022.893095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The evolution of Crassulacean acid metabolism (CAM) by plants has been one of the most successful strategies in response to aridity. On the onset of climate change, expanding the use of water efficient crops and engineering higher water use efficiency into C3 and C4 crops constitute a plausible solution for the problems of agriculture in hotter and drier environments. A firm understanding of CAM is thus crucial for the development of agricultural responses to climate change. Computational models on CAM can contribute significantly to this understanding. Two types of models have been used so far. Early CAM models based on ordinary differential equations (ODE) reproduced the typical diel CAM features with a minimal set of components and investigated endogenous day/night rhythmicity. This line of research brought to light the preponderant role of vacuolar malate accumulation in diel rhythms. A second wave of CAM models used flux balance analysis (FBA) to better understand the role of CO2 uptake in flux distribution. They showed that flux distributions resembling CAM metabolism emerge upon constraining CO2 uptake by the system. We discuss the evolutionary implications of this and also how CAM components from unrelated pathways could have integrated along evolution.
Collapse
Affiliation(s)
- Asdrubal Burgos
- Laboratorio de Biotecnología, CUCBA, Universidad de Guadalajara, Guadalajara, Mexico
| | - Enoc Miranda
- Laboratorio de Biotecnología, CUCBA, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ester Vilaprinyo
- Institute of Biomedical Research of Lleida, IRBLleida, Lleida, Spain
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Iván David Meza-Canales
- Departamento de Ecología Aplicada, CUCBA, Universidad de Guadalajara, Guadalajara, Mexico
- Unidad de Biología Molecular, Genómica y Proteómica, ITRANS-CUCEI, Universidad de Guadalajara, Guadalajara, Mexico
| | - Rui Alves
- Institute of Biomedical Research of Lleida, IRBLleida, Lleida, Spain
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| |
Collapse
|
14
|
Habibi G. Changes in crassulacean acid metabolism expression, chloroplast ultrastructure, photochemical and antioxidant activity in the Aloe vera during acclimation to combined drought and salt stress. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 49:40-53. [PMID: 34780703 DOI: 10.1071/fp21008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
We determined time course changes of photochemical and antioxidant activity during the induction of strong crassulacean acid metabolism (CAM) in Aloe vera L. plants grown under salt and drought stress. We found that the strong CAM was induced during 25-30days of drought alone treatment. After 25-30days, we showed the withdrawal of strong CAM back to constitutive CAM background under the combination of simultaneous drought and salt stress, which coincided with the accumulation of malondialdehyde, and the decrease in the contents of endogenous nitric oxide (NO) and non-enzymatic antioxidants. At the same time, the chloroplast ultrastructure was damaged with a parallel accumulation of reactive oxygen species, and the whole photosynthetic electron transport flux was impaired by combined stress treatment. In conclusion, the changes in CAM expression parameters was attended by a similar pattern of antioxidant and photochemical change in Aloe plants subjected to only drought or combined stress.
Collapse
Affiliation(s)
- Ghader Habibi
- Department of Biology, Payame Noor University (PNU), PO BOX 19395-3697 Tehran, Iran
| |
Collapse
|
15
|
García-Caparrós P, De Filippis L, Gul A, Hasanuzzaman M, Ozturk M, Altay V, Lao MT. Oxidative Stress and Antioxidant Metabolism under Adverse Environmental Conditions: a Review. THE BOTANICAL REVIEW 2021; 87:421-466. [PMID: 0 DOI: 10.1007/s12229-020-09231-1] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 05/25/2023]
|
16
|
Medeiros DB, Aarabi F, Martinez Rivas FJ, Fernie AR. The knowns and unknowns of intracellular partitioning of carbon and nitrogen, with focus on the organic acid-mediated interplay between mitochondrion and chloroplast. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153521. [PMID: 34537467 DOI: 10.1016/j.jplph.2021.153521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The presence of specialized cellular compartments in higher plants express an extraordinary degree of intracellular organization, which provides efficient mechanisms to avoid misbalancing of the metabolism. This offers the flexibility by which plants can quickly acclimate to fluctuating environmental conditions. For that, a fine temporal and spatial regulation of metabolic pathways is required and involves several players e.g. organic acids. In this review we discuss different facets of the organic acid metabolism within plant cells with special focus to those related to the interactions between organic acids compartmentalization and the partitioning of carbon and nitrogen. The connections between organic acids and CO2 assimilation, tricarboxylic acid (TCA) cycle, amino acids metabolism, and redox status are highlighted. Moreover, the key enzymes and transporters as well as their function on the coordination of interorganellar metabolic exchanges are discussed.
Collapse
Affiliation(s)
- David B Medeiros
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany.
| | - Fayezeh Aarabi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
17
|
Wakamatsu A, Mori IC, Matsuura T, Taniwaki Y, Ishii R, Yoshida R. Possible roles for phytohormones in controlling the stomatal behavior of Mesembryanthemum crystallinum during the salt-induced transition from C 3 to crassulacean acid metabolism. JOURNAL OF PLANT PHYSIOLOGY 2021; 262:153448. [PMID: 34058643 DOI: 10.1016/j.jplph.2021.153448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
The halophyte ice plant (Mesembryanthemum crystallinum) converts its mode of photosynthesis from C3 to crassulacean acid metabolism (CAM) during severe water stress. During the transition to CAM, the plant induces CAM-related genes and changes its diurnal stomatal behavior to take up CO2 efficiently at night. However, limited information concerning this signaling exists. Here, we investigated the changes in the diurnal stomatal behavior of M. crystallinum during its shift in photosynthesis using a detached epidermis. M. crystallinum plants grown under C3 conditions opened their stomata during the day and closed them at night. However, CAM-induced plants closed their stomata during the day and opened them at night. Quantitative analysis of endogenous phytohormones revealed that trans-zeatin levels were high in CAM-induced plants. In contrast, the levels of jasmonic acid (JA) and JA-isoleucine were severely reduced in CAM-induced plants, specifically at night. CAM induction did not alter the levels of abscisic acid; however, inhibitors of abscisic acid synthesis suppressed CAM-induced stomatal closure. These results indicate that M. crystallinum regulates the diurnal balance of cytokinin and JA during CAM transition to alter stomatal behavior.
Collapse
Affiliation(s)
- Ayano Wakamatsu
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Izumi C Mori
- Institute of Plant Sciences and Resources, Okayama University, 2-20-1, Chuo, Kurashiki, 710-0046, Japan
| | - Takakazu Matsuura
- Institute of Plant Sciences and Resources, Okayama University, 2-20-1, Chuo, Kurashiki, 710-0046, Japan
| | - Yuichi Taniwaki
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Ryotaro Ishii
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Riichiro Yoshida
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, Kagoshima, 890-0065, Japan.
| |
Collapse
|
18
|
Winter K, Garcia M, Virgo A, Smith JAC. Low-level CAM photosynthesis in a succulent-leaved member of the Urticaceae, Pilea peperomioides. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:683-690. [PMID: 33287950 DOI: 10.1071/fp20151] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Pilea peperomioides Diels (Urticaceae) is a semi-succulent herbaceous species native to south-western China that has become popular in cultivation as an ornamental plant. To investigate whether this species possesses the capacity for CAM photosynthesis, measurements were made of CO2 gas exchange and titratable acidity in plants under both well-watered and water-deficit conditions. Plants were found to assimilate CO2 almost exclusively in the light via C3 photosynthesis. However, distinct transient reductions in the rate of net nocturnal CO2 release were consistently observed during the course of the dark period, and under water-deficit conditions one plant exhibited a brief period of net nocturnal CO2 uptake, providing unequivocal evidence of CAM activity. Furthermore, nocturnal increases in titratable acidity in both leaf laminas and petioles were observed in all plants exposed to wet-dry-wet cycles. This is the first report of CAM in the family Urticaceae. The results are discussed in relation to the phylogenetic position of Pilea and the partially shaded montane habitats in which this species is typically found. An updated list of all plant families currently known to contain species with CAM is presented.
Collapse
Affiliation(s)
- Klaus Winter
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama; and Corresponding author.
| | - Milton Garcia
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama
| | - Aurelio Virgo
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama
| | - J Andrew C Smith
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
19
|
Zhou X, Xue Y, Mao M, He Y, Adjei MO, Yang W, Hu H, Liu J, Feng L, Zhang H, Luo J, Li X, Sun L, Huang Z, Ma J. Metabolome and transcriptome profiling reveals anthocyanin contents and anthocyanin-related genes of chimeric leaves in Ananas comosus var. bracteatus. BMC Genomics 2021; 22:331. [PMID: 33962593 PMCID: PMC8105979 DOI: 10.1186/s12864-021-07642-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/22/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Ananas comosus var. bracteatus is a colorful plant used as a cut flower or landscape ornamental. The unique foliage color of this plant includes both green and red leaves and, as a trait of interest, deserves investigation. In order to explore the pigments behind the red section of the chimeric leaves, the green and red parts of chimeric leaves of Ananas comosus var. bracteatus were sampled and analyzed at phenotypic, cellular and molecular levels in this study. RESULTS The CIELAB results indicated that the a* values and L* values samples had significant differences between two parts. Freehand sections showed that anthocyanin presented limited accumulation in the green leaf tissues but obviously accumulation in the epidermal cells of red tissues. Transcriptomic and metabolomic analyses were performed by RNA-seq and LC-ESI-MS/MS. Among the 508 identified metabolites, 10 kinds of anthocyanins were detected, with 6 significantly different between the two samples. The cyanidin-3,5-O-diglucoside content that accounts for nearly 95.6% in red samples was significantly higher than green samples. RNA-Seq analyses showed that 11 out of 40 anthocyanin-related genes were differentially expressed between the green and red samples. Transcriptome and metabolome correlations were determined by nine quadrant analyses, and 9 anthocyanin-related genes, including MYB5 and MYB82, were correlated with 7 anthocyanin-related metabolites in the third quadrant in which genes and metabolites showing consistent change. Particularly, the PCCs between these two MYB genes and cyanidin-3,5-O-diglucoside were above 0.95. CONCLUSION Phenotypic colors are closely related to the tissue structures of different leaf parts of Ananas comosus var. bracteatus, and two MYB transcription factors might contribute to differences of anthocyanin accumulation in two parts of Ananas comosus var. bracteatus chimeric leaves. This study lay a foundation for further researches on functions of MYBs in Ananas comosus var. bracteatus and provides new insights to anthocyanin accumulation in different parts of chimeric leaves.
Collapse
Affiliation(s)
- Xuzixin Zhou
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yanbin Xue
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Meiqin Mao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yehua He
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Mark Owusu Adjei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Wei Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Hao Hu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jiawen Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Lijun Feng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Huiling Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jiaheng Luo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Lingxia Sun
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Zhuo Huang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jun Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
20
|
van Tongerlo E, Trouwborst G, Hogewoning SW, van Ieperen W, Dieleman JA, Marcelis LFM. Crassulacean acid metabolism species differ in the contribution of C 3 and C 4 carboxylation to end of day CO 2 fixation. PHYSIOLOGIA PLANTARUM 2021; 172:134-145. [PMID: 33305855 PMCID: PMC8246577 DOI: 10.1111/ppl.13312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Crassulacean acid metabolism (CAM) is a photosynthetic pathway that temporally separates the nocturnal CO2 uptake, via phosphoenolpyruvate carboxylase (PEPC, C4 carboxylation), from the diurnal refixation by Rubisco (C3 carboxylation). At the end of the day (CAM-Phase IV), when nocturnally stored CO2 has depleted, stomata reopen and allow additional CO2 uptake, which can be fixed by Rubisco or by PEPC. This work examined the CO2 uptake via C3 and C4 carboxylation in phase IV in the CAM species Phalaenopsis "Sacramento" and Kalanchoe blossfeldiana "Saja." Short blackout periods during phase IV caused a sharp drop in CO2 uptake in K. blossfeldiana but not in Phalaenopsis, indicating strong Rubisco activity only in K. blossfeldiana. Chlorophyll fluorescence revealed a progressive decrease in ΦPSII in Phalaenopsis, implying decreasing Rubisco activity, while ΦPSII remained constant in phase IV in K. blossfeldiana. However, short switching to 2% O2 indicated the presence of photorespiration and thus Rubisco activity in both species throughout phase IV. Lastly, in Phalaenopsis, accumulation of starch in phase IV occurred. These results indicate that in Phalaenopsis, PEPC was the main carboxylase in phase IV, although Rubisco remained active throughout the whole phase. This will lead to double carboxylation (futile cycling) but may help to avoid photoinhibition.
Collapse
Affiliation(s)
- Evelien van Tongerlo
- Horticulture and Product Physiology, Department of Plant SciencesWageningen University and ResearchWageningenThe Netherlands
| | | | | | - Wim van Ieperen
- Horticulture and Product Physiology, Department of Plant SciencesWageningen University and ResearchWageningenThe Netherlands
| | - Janneke A. Dieleman
- Greenhouse HorticultureWageningen University and ResearchWageningenThe Netherlands
| | - Leo F. M. Marcelis
- Horticulture and Product Physiology, Department of Plant SciencesWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
21
|
Schweiger AH, Nürk NM, Beckett H, Liede-Schumann S, Midgley GF, Higgins SI. The eco-evolutionary significance of rainfall constancy for facultative CAM photosynthesis. THE NEW PHYTOLOGIST 2021; 230:1653-1664. [PMID: 33533483 DOI: 10.1111/nph.17250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
A flexible use of the crassulacean acid metabolism (CAM) has been hypothesised to represent an intermediate stage along a C3 to full CAM evolutionary continuum, when relative contributions of C3 vs CAM metabolism are co-determined by evolutionary history and prevailing environmental constraints. However, evidence for such eco-evolutionary interdependencies is lacking. We studied these interdependencies for the leaf-succulent genus Drosanthemum (Aizoaceae, Southern African Succulent Karoo) by testing for relationships between leaf δ13 C diagnostic for CAM dependence (i.e. contribution of C3 and CAM to net carbon gain), and climatic variables related to temperature and precipitation and their temporal variation. We further quantified the effects of shared phylogenetic ancestry on CAM dependence and its relation to climate. CAM dependence is predicted by rainfall and its temporal variation, with high predictive power of rainfall constancy (temporal entropy). The predictive power of rainfall seasonality and temperature-related variables was negligible. Evolutionary history of the tested clades significantly affected the relationship between rainfall constancy and CAM dependence. We argue that higher CAM dependence might provide an adaptive advantage in increasingly unpredictable rainfall environments when the anatomic exaptation (succulence) is already present. These observations might shed light on the evolution of full CAM.
Collapse
Affiliation(s)
- Andreas H Schweiger
- Institute of Landscape and Plant Ecology, Department of Plant Ecology, University of Hohenheim, Ottilie-Zeller-Weg 2, Stuttgart, 70599, Germany
| | - Nicolai M Nürk
- Plant Systematics, University of Bayreuth, Universitätsstr. 30, Bayreuth, 95447, Germany
- Bayreuth Center of Ecology and Environmental Research, BayCEER, University of Bayreuth, Universitätsstr. 30, Bayreuth, 95447, Germany
| | - Heath Beckett
- Department of Botany and Zoology, Stellenbosch University, SUN, Stellenbosch, Western Cape, South Africa
| | - Sigrid Liede-Schumann
- Plant Systematics, University of Bayreuth, Universitätsstr. 30, Bayreuth, 95447, Germany
- Bayreuth Center of Ecology and Environmental Research, BayCEER, University of Bayreuth, Universitätsstr. 30, Bayreuth, 95447, Germany
| | - Guy F Midgley
- Department of Botany and Zoology, Stellenbosch University, SUN, Stellenbosch, Western Cape, South Africa
| | - Steven I Higgins
- Bayreuth Center of Ecology and Environmental Research, BayCEER, University of Bayreuth, Universitätsstr. 30, Bayreuth, 95447, Germany
- Plant Ecology, University of Bayreuth, Universitätsstr. 30, Bayreuth, 95447, Germany
| |
Collapse
|
22
|
Hnilickova H, Kraus K, Vachova P, Hnilicka F. Salinity Stress Affects Photosynthesis, Malondialdehyde Formation, and Proline Content in Portulaca oleracea L. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10050845. [PMID: 33922210 PMCID: PMC8145623 DOI: 10.3390/plants10050845] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 05/26/2023]
Abstract
In this investigation, the effect of salt stress on Portulaca oleracea L. was monitored at salinity levels of 100 and 300 mM NaCl. At a concentration of 100 mM NaCl there was a decrease in stomatal conductance (gs) simultaneously with an increase in CO2 assimilation (A) at the beginning of salt exposure (day 3). However, the leaf water potential (ψw), the substomatal concentration of CO2 (Ci), the maximum quantum yield of photosystem II (Fv/Fm), and the proline and malondialdehyde (MDA) content remained unchanged. Exposure to 300 mM NaCl caused a decrease in gs from day 3 and a decrease in water potential, CO2 assimilation, and Fv/Fm from day 9. There was a large increase in proline content and a significantly higher MDA concentration on days 6 and 9 of salt stress compared to the control group. After 22 days of exposure to 300 mM NaCl, there was a transition from the C4 cycle to crassulacean acid metabolism (CAM), manifested by a rapid increase in substomatal CO2 concentration and negative CO2 assimilation values. These results document the tolerance of P. oleracea to a lower level of salt stress and the possibility of its use in saline localities.
Collapse
|
23
|
Ceusters N, Borland AM, Ceusters J. How to resolve the enigma of diurnal malate remobilisation from the vacuole in plants with crassulacean acid metabolism? THE NEW PHYTOLOGIST 2021; 229:3116-3124. [PMID: 33159327 DOI: 10.1111/nph.17070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Opening of stomata in plants with crassulacean acid metabolism (CAM) is mainly shifted to the night period when atmospheric CO2 is fixed by phosphoenolpyruvate carboxylase and stored as malic acid in the vacuole. As such, CAM plants ameliorate transpirational water losses and display substantially higher water-use efficiency compared with C3 and C4 plants. In the past decade significant technical advances have allowed an unprecedented exploration of genomes, transcriptomes, proteomes and metabolomes of CAM plants and efforts are ongoing to engineer the CAM pathway in C3 plants. Whilst research efforts have traditionally focused on nocturnal carboxylation, less information is known regarding the drivers behind diurnal malate remobilisation from the vacuole that liberates CO2 to be fixed by RuBisCo behind closed stomata. To shed more light on this process, we provide a stoichiometric analysis to identify potentially rate-limiting steps underpinning diurnal malate mobilisation and help direct future research efforts. Within this remit we address three key questions: Q1 Does light-dependent assimilation of CO2 via RuBisCo dictate the rate of malate mobilisation? Q2: Do the enzymes responsible for malate decarboxylation limit daytime mobilisation from the vacuole? Q3: Does malate efflux from the vacuole set the pace of decarboxylation?
Collapse
Affiliation(s)
- Nathalie Ceusters
- Faculty of Engineering Technology, Department of Biosystems, Division of Crop Biotechnics, Campus Geel, KU Leuven, Kleinhoefstraat 4, Geel, 2440, Belgium
| | - Anne M Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne,, NE1 7RU, UK
| | - Johan Ceusters
- Faculty of Engineering Technology, Department of Biosystems, Division of Crop Biotechnics, Campus Geel, KU Leuven, Kleinhoefstraat 4, Geel, 2440, Belgium
- Centre for Environmental Sciences, Environmental Biology, UHasselt, Campus Diepenbeek, Agoralaan Building D, Diepenbeek, 3590, Belgium
| |
Collapse
|
24
|
Batista-Silva W, da Fonseca-Pereira P, Martins AO, Zsögön A, Nunes-Nesi A, Araújo WL. Engineering Improved Photosynthesis in the Era of Synthetic Biology. PLANT COMMUNICATIONS 2020; 1:100032. [PMID: 33367233 PMCID: PMC7747996 DOI: 10.1016/j.xplc.2020.100032] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/20/2020] [Accepted: 02/08/2020] [Indexed: 05/08/2023]
Abstract
Much attention has been given to the enhancement of photosynthesis as a strategy for the optimization of crop productivity. As traditional plant breeding is most likely reaching a plateau, there is a timely need to accelerate improvements in photosynthetic efficiency by means of novel tools and biotechnological solutions. The emerging field of synthetic biology offers the potential for building completely novel pathways in predictable directions and, thus, addresses the global requirements for higher yields expected to occur in the 21st century. Here, we discuss recent advances and current challenges of engineering improved photosynthesis in the era of synthetic biology toward optimized utilization of solar energy and carbon sources to optimize the production of food, fiber, and fuel.
Collapse
Affiliation(s)
- Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Paula da Fonseca-Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Wagner L. Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| |
Collapse
|
25
|
Hermida-Carrera C, Fares MA, Font-Carrascosa M, Kapralov MV, Koch MA, Mir A, Molins A, Ribas-Carbó M, Rocha J, Galmés J. Exploring molecular evolution of Rubisco in C 3 and CAM Orchidaceae and Bromeliaceae. BMC Evol Biol 2020; 20:11. [PMID: 31969115 PMCID: PMC6977233 DOI: 10.1186/s12862-019-1551-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 11/29/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The CO2-concentrating mechanism associated to Crassulacean acid metabolism (CAM) alters the catalytic context for Rubisco by increasing CO2 availability and provides an advantage in particular ecological conditions. We hypothesized about the existence of molecular changes linked to these particular adaptations in CAM Rubisco. We investigated molecular evolution of the Rubisco large (L-) subunit in 78 orchids and 144 bromeliads with C3 and CAM photosynthetic pathways. The sequence analyses were complemented with measurements of Rubisco kinetics in some species with contrasting photosynthetic mechanism and differing in the L-subunit sequence. RESULTS We identified potential positively selected sites and residues with signatures of co-adaptation. The implementation of a decision tree model related Rubisco specific variable sites to the leaf carbon isotopic composition of the species. Differences in the Rubisco catalytic traits found among C3 orchids and between strong CAM and C3 bromeliads suggested Rubisco had evolved in response to differing CO2 concentration. CONCLUSIONS The results revealed that the variability in the Rubisco L-subunit sequence in orchids and bromeliads is composed of coevolving sites under potential positive adaptive signal. The sequence variability was related to δ13C in orchids and bromeliads, however it could not be linked to the variability found in the kinetic properties of the studied species.
Collapse
Affiliation(s)
- Carmen Hermida-Carrera
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Ctra. Valldemossa km. 7.5, 07122 Palma, Illes Balears Spain
| | - Mario A. Fares
- Integrative and Systems Biology Group, Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas (CSIC–UPV), 46022 Valencia, Spain
- Department of Genetics, Trinity College Dublin, University of Dublin, Dublin 2, Ireland
| | - Marcel Font-Carrascosa
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Ctra. Valldemossa km. 7.5, 07122 Palma, Illes Balears Spain
| | - Maxim V. Kapralov
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU United Kingdom
| | - Marcus A. Koch
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Im Neuenheimer Feld 345, 9120 Heidelberg, Germany
| | - Arnau Mir
- Computational Biology and Bioinformatics Research Group, Department of Mathematics and Computer Science, Universitat de les Illes Balears, 07122 Palma, Illes Balears Spain
| | - Arántzazu Molins
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Ctra. Valldemossa km. 7.5, 07122 Palma, Illes Balears Spain
| | - Miquel Ribas-Carbó
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Ctra. Valldemossa km. 7.5, 07122 Palma, Illes Balears Spain
| | - Jairo Rocha
- Computational Biology and Bioinformatics Research Group, Department of Mathematics and Computer Science, Universitat de les Illes Balears, 07122 Palma, Illes Balears Spain
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Ctra. Valldemossa km. 7.5, 07122 Palma, Illes Balears Spain
| |
Collapse
|
26
|
Hultine KR, Dettman DL, English NB, Williams DG. Giant cacti: isotopic recorders of climate variation in warm deserts of the Americas. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6509-6519. [PMID: 31269200 DOI: 10.1093/jxb/erz320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
The plant family Cactaceae is considered among the most threatened groups of organisms on the planet. The threatened status of the cacti family has created a renewed interest in the highly evolved physiological and morphological traits that underpin their persistence in some of the harshest subtropical environments in the Americas. Among the most important anatomical features of cacti is the modification of leaves into spines, and previous work has shown that the stable isotope chemistry of cacti spines records potential variations in stem water balance, stress, and Crassulacean acid metabolism (CAM). We review the opportunities, challenges, and pitfalls in measuring δ 13C, δ 2H, and δ 18O ratios captured in spine tissues that potentially reflect temporal and spatial patterns of stomatal conductance, internal to atmospheric CO2 partial pressures, and subsequent patterns of photosynthetic gas exchange. We then evaluate the challenges in stable isotope analysis in spine tissues related to variation in CAM expression, stem water compartmentalization, and spine whole-tissue composition among other factors. Finally, we describe how the analysis of all three isotopes can be used in combination to provide potentially robust analysis of photosynthetic function in cacti, and other succulent-stemmed taxa across broad spatio-temporal environmental gradients.
Collapse
Affiliation(s)
- Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, USA
| | - David L Dettman
- Department of Geosciences, University of Arizona, Tucson, AZ, USA
- Estuary Research Center, Shimane University, Matsue, Shimane, Japan
| | - Nathan B English
- School of Health, Medical and Applied Sciences, Central Queensland University, Townsville, QLD, Australia
| | | |
Collapse
|
27
|
Wang J, Wang H, Deng T, Liu Z, Wang X. Time-coursed transcriptome analysis identifies key expressional regulation in growth cessation and dormancy induced by short days in Paulownia. Sci Rep 2019; 9:16602. [PMID: 31719639 PMCID: PMC6851391 DOI: 10.1038/s41598-019-53283-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/30/2019] [Indexed: 12/18/2022] Open
Abstract
Maintaining the viability of the apical shoot is critical for continued vertical growth in plants. Terminal shoot of tree species Paulownia cannot regrow in subsequent years. The short day (SD) treatment leads to apical growth cessation and dormancy. To understand the molecular basis of this, we further conducted global RNA-Seq based transcriptomic analysis in apical shoots to check regulation of gene expression. We obtained ~219 million paired-end 125-bp Illumina reads from five time-courses and de novo assembled them to yield 49,054 unigenes. Compared with the untreated control, we identified 1540 differentially expressed genes (DEGs) which were found to involve in 116 metabolic pathways. Expression of 87% of DEGs exhibited switch-on or switch-off pattern, indicating key roles in growth cessation. Most DEGs were enriched in the biological process of gene ontology categories and at later treatment stages. The pathways of auxin and circadian network were most affected and the expression of associated DEGs was characterised. During SD induction, auxin genes IAA, ARF and SAURs were down-regulated and circadian genes including PIF3 and PRR5 were up-regulated. PEPC in photosynthesis was constitutively upregulated, suggesting a still high CO2 concentrating activity; however, the converting CO2 to G3P in the Calvin cycle is low, supported by reduced expression of GAPDH encoding the catalysing enzyme for this step. This indicates a de-coupling point in the carbon fixation. The results help elucidate the molecular mechanisms for SD inducing dormancy and cessation in apical shoots.
Collapse
Affiliation(s)
- Jiayuan Wang
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Hongyan Wang
- School of life science, Liaoning University, Shenyang, 110000, China
| | - Tao Deng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhen Liu
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China.
| | - Xuewen Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China. .,Department of Genetics, University of Georgia, Athens, 30602, USA.
| |
Collapse
|
28
|
Ceusters N, Valcke R, Frans M, Claes JE, Van den Ende W, Ceusters J. Performance Index and PSII Connectivity Under Drought and Contrasting Light Regimes in the CAM Orchid Phalaenopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:1012. [PMID: 31447875 PMCID: PMC6691161 DOI: 10.3389/fpls.2019.01012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/18/2019] [Indexed: 05/27/2023]
Abstract
Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis characterized by improved water use efficiency mediated by major nocturnal CO2 fixation. Due to its inherent metabolic plasticity CAM represents a successful physiological strategy for plant adaptation to abiotic stress. The present study reports on the impact of drought stress and different light intensities (PPFD 50 and 200 μmol m-2 s-1) on the photosynthetic performance of the obligate CAM orchid Phalaenopsis "Edessa" by integrating diel gas exchange patterns with assessments of the light reactions by analyzing fast chlorophyll a fluorescence induction. Parameters such as PIabs (performance index), different energy fluxes per active reaction centre (RC) reflecting the electron flow from photosystem II to photosystem I and the energetic communication between PSII complexes defined as connectivity were considered for the first time in a CAM plant. A higher PS II connectivity for plants grown under low light (p ∼ 0.51) compared to plants grown under high light (p ∼ 0.31) brought about similar specific energy fluxes of light absorbance, dissipation and processing through the electron transport chain, irrespective of the light treatment. With a 25% higher maximum quantum yield and comparable biomass formation, low light grown plants indeed proved to process light energy more efficiently compared to high light grown plants. The performance index was identified as a very reliable and sensitive parameter to indicate the onset and progress of drought stress. Under restricted CO2 availability (due to closed stomata) leaves showed higher energy dissipation and partial inactivation of PSII reaction centres to reduce the energy input to the electron transport chain and as such aid in avoiding overexcitation and photodamage. Especially during CAM idling there is a discrepancy between continuous input of light energy but severely reduced availability of both water and CO2, which represents the ultimate electron acceptor. Taken together, our results show a unique flexibility of CAM plants to optimize the light reactions under different environmental conditions in a dual way by either attenuating or increasing energy flux.
Collapse
Affiliation(s)
- Nathalie Ceusters
- Department of Biosystems, Division of Crop Biotechnics, Research Group for Sustainable Crop Production & Protection, KU Leuven, Geel, Belgium
| | - Roland Valcke
- Molecular and Physical Plant Physiology, UHasselt, Diepenbeek, Belgium
| | - Mario Frans
- Department of Biosystems, Division of Crop Biotechnics, Research Group for Sustainable Crop Production & Protection, KU Leuven, Geel, Belgium
| | - Johan E. Claes
- Department of Microbial and Molecular Systems, Bioengineering Technology TC, KU Leuven, Geel, Belgium
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Johan Ceusters
- Department of Biosystems, Division of Crop Biotechnics, Research Group for Sustainable Crop Production & Protection, KU Leuven, Geel, Belgium
- Centre for Environmental Sciences, Environmental Biology, UHasselt, Diepenbeek, Belgium
| |
Collapse
|
29
|
Zheng L, Ceusters J, Van Labeke MC. Light quality affects light harvesting and carbon sequestration during the diel cycle of crassulacean acid metabolism in Phalaenopsis. PHOTOSYNTHESIS RESEARCH 2019; 141:195-207. [PMID: 30756292 DOI: 10.1007/s11120-019-00620-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/23/2019] [Indexed: 05/14/2023]
Abstract
Crassulacean acid metabolism (CAM) is a specialized photosynthetic pathway present in a variety of genera including many epiphytic orchids. CAM is under circadian control and can be subdivided into four discrete phases during a diel cycle. Inherent to this specific mode of metabolism, carbohydrate availability is a limiting factor for nocturnal CO2 uptake and biomass production. To evaluate the effects of light quality on the photosynthetic performance and diel changes in carbohydrates during the CAM cycle. Phalaenopsis plants were grown under four different light qualities (red, blue, red + blue and full spectrum white light) at a fluence of 100 µmol m-2 s-1 and a photoperiod of 12 h for 8 weeks. In contrast to monochromatic blue light, plants grown under monochromatic red light showed already a significant decline of the quantum efficiency (ΦPSII) after 5 days and of the maximum quantum yield (Fv/Fm) after 10 days under this treatment. This was also reflected in a compromised chlorophyll and carotenoid content and total diel CO2 uptake under red light in comparison with monochromatic blue and full spectrum white light. In particular, CO2 uptake during nocturnal phase I was affected under red illumination resulting in a reduced amount of vacuolar malate. In addition, red light caused the rate of decarboxylation of malate during the day to be consistently lower and malic acid breakdown persisted until 4 h after dusk. Because the intrinsic activity of PEPC was not affected, the restricted availability of storage carbohydrates such as starch was likely to cause these adverse effects under red light. Addition of blue to the red light spectrum restored the diel fluxes of carbohydrates and malate and resulted in a significant enhancement of the daily CO2 uptake, pigment concentration and biomass formation.
Collapse
Affiliation(s)
- Liang Zheng
- Department of Plants and Crops, Ghent University, Coupure links 653, 9000, Ghent, Belgium
- College of Water Resource and Civil Engineering, China Agricultural University, Qinghua east road 17, Beijing, 10083, People's Republic of China
| | - Johan Ceusters
- Department of Biosystems, Division of Crop Biotechnics, Research group for Sustainable Crop Production & Protection, KU Leuven, Campus Geel, Kleinhoefstraat 4, 2440, Geel, Belgium
- Centre for Environmental Sciences, Environmental Biology, UHasselt, Campus Diepenbeek, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | | |
Collapse
|
30
|
Ceusters N, Luca S, Feil R, Claes JE, Lunn JE, Van den Ende W, Ceusters J. Hierarchical clustering reveals unique features in the diel dynamics of metabolites in the CAM orchid Phalaenopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3269-3281. [PMID: 30972416 PMCID: PMC6598073 DOI: 10.1093/jxb/erz170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/01/2019] [Indexed: 05/03/2023]
Abstract
Crassulacean acid metabolism (CAM) is a major adaptation of photosynthesis that involves temporally separated phases of CO2 fixation and accumulation of organic acids at night, followed by decarboxylation and refixation of CO2 by the classical C3 pathway during the day. Transitory reserves such as soluble sugars or starch are degraded at night to provide the phosphoenolpyruvate (PEP) and energy needed for initial carboxylation by PEP carboxylase. The primary photosynthetic pathways in CAM species are well known, but their integration with other pathways of central C metabolism during different phases of the diel light-dark cycle is poorly understood. Gas exchange was measured in leaves of the CAM orchid Phalaenopsis 'Edessa' and leaves were sampled every 2 h during a complete 12-h light-12-h dark cycle for metabolite analysis. A hierarchical agglomerative clustering approach was employed to explore the diel dynamics and relationships of metabolites in this CAM species, and compare these with those in model C3 species. High levels of 3-phosphoglycerate (3PGA) in the light activated ADP-glucose pyrophosphorylase, thereby enhancing production of ADP-glucose, the substrate for starch synthesis. Trehalose 6-phosphate (T6P), a sugar signalling metabolite, was also correlated with ADP-glucose, 3PGA and PEP, but not sucrose, over the diel cycle. Whether or not this indicates a different function of T6P in CAM plants is discussed. T6P levels were low at night, suggesting that starch degradation is regulated primarily by circadian clock-dependent mechanisms. During the lag in starch degradation at dusk, carbon and energy could be supplied by rapid consumption of a large pool of aconitate that accumulates in the light. Our study showed similarities in the diel dynamics and relationships between many photosynthetic metabolites in CAM and C3 plants, but also revealed some major differences reflecting the specialized metabolic fluxes in CAM plants, especially during light-dark transitions and at night.
Collapse
Affiliation(s)
- Nathalie Ceusters
- KU Leuven, Department of Biosystems, Division of Crop Biotechnics, Research group for Sustainable Crop Production & Protection, Campus Geel, Kleinhoefstraat, Geel, Belgium
| | - Stijn Luca
- Ghent University, Department of Data Analysis and Mathematical Modelling, Coupure links, Gent, Belgium
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Johan E Claes
- KU Leuven, Department of Microbial and Molecular systems, Bioengineering Technology TC, Campus Geel, Kleinhoefstraat, Geel, Belgium
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Wim Van den Ende
- KU Leuven, Department of Biology, Laboratory of Molecular Plant Biology, Kasteelpark Arenberg, Leuven, Belgium
| | - Johan Ceusters
- KU Leuven, Department of Biosystems, Division of Crop Biotechnics, Research group for Sustainable Crop Production & Protection, Campus Geel, Kleinhoefstraat, Geel, Belgium
- UHasselt, Centre for Environmental Sciences, Environmental Biology, Campus Diepenbeek, Agoralaan Building D, Diepenbeek, Belgium
| |
Collapse
|
31
|
Niechayev NA, Pereira PN, Cushman JC. Understanding trait diversity associated with crassulacean acid metabolism (CAM). CURRENT OPINION IN PLANT BIOLOGY 2019; 49:74-85. [PMID: 31284077 DOI: 10.1016/j.pbi.2019.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that exploits a temporal CO2 pump with nocturnal CO2 uptake and concentration to reduce photorespiration, improve water-use efficiency (WUE), and optimize the adaptability of plants to climates with seasonal or intermittent water limitations. CAM plants display a plastic continuum in the extent to which species engage in net nocturnal CO2 uptake that ranges from 0 to 100%. CAM plants also display diverse enzyme and organic acid and carbohydrate storage systems, which likely reflect the multiple, independent evolutionary origins of CAM. CAM is often accompanied by a diverse set of anatomical traits, such as tissue succulence and water-storage and water-capture strategies to attenuate drought. Other co-adaptive traits, such as thick cuticles, epicuticular wax, low stomatal density, high stomatal responsiveness, and shallow rectifier-like roots limit water loss under conditions of water deficit. Recommendations for future research efforts to better explore and understand the diversity of traits associated with CAM and CAM Biodesign efforts are presented.
Collapse
Affiliation(s)
- Nicholas A Niechayev
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557-0330, United States
| | - Paula N Pereira
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557-0330, United States
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557-0330, United States.
| |
Collapse
|
32
|
Kubis A, Bar-Even A. Synthetic biology approaches for improving photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1425-1433. [PMID: 30715460 PMCID: PMC6432428 DOI: 10.1093/jxb/erz029] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/08/2019] [Indexed: 05/10/2023]
Abstract
The phenomenal increase in agricultural yields that we have witnessed in the last century has slowed down as we approach the limits of selective breeding and optimization of cultivation techniques. To support the yield increase required to feed an ever-growing population, we will have to identify new ways to boost the efficiency with which plants convert light into biomass. This challenge could potentially be tackled using state-of-the-art synthetic biology techniques to rewrite plant carbon fixation. In this review, we use recent studies to discuss and demonstrate different approaches for enhancing carbon fixation, including engineering Rubisco for higher activity, specificity, and activation; changing the expression level of enzymes within the Calvin cycle to avoid kinetic bottlenecks; introducing carbon-concentrating mechanisms such as inorganic carbon transporters, carboxysomes, and C4 metabolism; and rewiring photorespiration towards more energetically efficient routes or pathways that do not release CO2. We conclude by noting the importance of prioritizing and combining different approaches towards continuous and sustainable increase of plant productivities.
Collapse
Affiliation(s)
- Armin Kubis
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Correspondence:
| |
Collapse
|
33
|
Lim SD, Lee S, Choi WG, Yim WC, Cushman JC. Laying the Foundation for Crassulacean Acid Metabolism (CAM) Biodesign: Expression of the C 4 Metabolism Cycle Genes of CAM in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:101. [PMID: 30804970 PMCID: PMC6378705 DOI: 10.3389/fpls.2019.00101] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/22/2019] [Indexed: 05/21/2023]
Abstract
Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that exploits a temporal CO2 pump with nocturnal CO2 uptake and concentration to reduce photorespiration, improve water-use efficiency (WUE), and optimize the adaptability of plants to hotter and drier climates. Introducing the CAM photosynthetic machinery into C3 (or C4) photosynthesis plants (CAM Biodesign) represents a potentially breakthrough strategy for improving WUE while maintaining high productivity. To optimize the success of CAM Biodesign approaches, the functional analysis of individual C4 metabolism cycle genes is necessary to identify the essential genes for robust CAM pathway introduction. Here, we isolated and analyzed the subcellular localizations of 13 enzymes and regulatory proteins of the C4 metabolism cycle of CAM from the common ice plant in stably transformed Arabidopsis thaliana. Six components of the carboxylation module were analyzed including beta-carbonic anhydrase (McBCA2), phosphoenolpyruvate carboxylase (McPEPC1), phosphoenolpyruvate carboxylase kinase (McPPCK1), NAD-dependent malate dehydrogenase (McNAD-MDH1, McNAD-MDH2), and NADP-dependent malate dehydrogenase (McNADP-MDH1). In addition, seven components of the decarboxylation module were analyzed including NAD-dependent malic enzyme (McNAD-ME1, McNAD-ME2), NADP-dependent malic enzyme (McNADP-ME1, NADP-ME2), pyruvate, orthophosphate dikinase (McPPDK), pyruvate, orthophosphate dikinase-regulatory protein (McPPDK-RP), and phosphoenolpyruvate carboxykinase (McPEPCK). Ectopic overexpression of most C4-metabolism cycle components resulted in increased rosette diameter, leaf area, and leaf fresh weight of A. thaliana except for McNADP-MDH1, McPPDK-RP, and McPEPCK. Overexpression of most carboxylation module components resulted in increased stomatal conductance and dawn/dusk titratable acidity (TA) as an indirect measure of organic acid (mainly malate) accumulation in A. thaliana. In contrast, overexpression of the decarboxylating malic enzymes reduced stomatal conductance and TA. This comprehensive study provides fundamental insights into the relative functional contributions of each of the individual components of the core C4-metabolism cycle of CAM and represents a critical first step in laying the foundation for CAM Biodesign.
Collapse
Affiliation(s)
| | | | | | | | - John C. Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
34
|
Oliveira PMR, Rodrigues MA, Gonçalves AZ, Kerbauy GB. Exposure of Catasetum fimbriatum aerial roots to light coordinates carbon partitioning between source and sink organs in an auxin dependent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:341-347. [PMID: 30605871 DOI: 10.1016/j.plaphy.2018.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Light energy is essential for carbon metabolism in plants, as well as controlling the transport of metabolites between the organs. While terrestrial plants have a distinct structural and functional separation between the light exposed aerial parts and the non-exposed roots, epiphytic plants, such as orchids, have shoots and roots simultaneously fully exposed to light. The roots of orchids differ mainly from non-orchidaceous plants in their ability to photosynthesize. Since the roots of Catasetum fimbriatum can synthesize auxin which is acropetally transported to the shoot region, we decided to investigate whether: (1) light treatment of C. fimbriatum roots raises the auxin levels in the plant; and (2) distinct auxin concentrations can change the source-sink relationships, altering the amounts of sugars and organic acids in leaves, pseudobulbs and roots. Among the organs studied, the roots accumulated the highest concentrations of indole-3-acetic-acid (IAA); and when roots were exposed to light, IAA accumulated in the leaves. However, when polar auxin transport (PAT) was blocked with N-(1-Naphthyl)phthalamic acid (NPA) treatment, a significant accumulation of sugars and organic acids occurred in the pseudobulbs and leaves, respectively, suggesting that auxin flux from roots to shoots was involved in carbon partitioning of the aerial organs. Considering that C. fimbriatum plants lose all their leaves seasonally, it is possible the roots are a substituting influence on the growth and development of this orchid during its leafless period.
Collapse
Affiliation(s)
| | - Maria Aurineide Rodrigues
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Ana Zangirolame Gonçalves
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Gilberto Barbante Kerbauy
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
35
|
Huber J, Dettman DL, Williams DG, Hultine KR. Gas exchange characteristics of giant cacti species varying in stem morphology and life history strategy. AMERICAN JOURNAL OF BOTANY 2018; 105:1688-1702. [PMID: 30304560 DOI: 10.1002/ajb2.1166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Giant cacti species possess long cylindrical stems that store massive amounts of water and other resources to draw on for photosynthesis, growth, and reproduction during hot and dry conditions. Across all giant cacti taxa, stem photosynthetic surface area to volume ratio (S:V) varies by several fold. This broad morphological diversity leads to the hypothesis that giant cacti function along a predictable resource use continuum from a "safe" strategy reflected in low S:V, low relative growth rates (RGR), and low net assimilation rates (Anet ) to a high-risk strategy that is reflected in high S:V, RGR, and Anet . METHODS To test this hypothesis, whole-plant gas exchange, chlorophyll fluorescence, and whole-spine-tissue carbon isotope ratios (δ13 C) were measured in four giant cacti species varying in stem morphology and RGR. Measurements were conducted on five well-watered, potted plants per species. KEY RESULTS Under conditions of mild diel temperatures and low atmospheric vapor pressure deficit, Anet , transpiration (E), and stomatal conductance (Gs ) were significantly higher, and water-use efficiency (Anet : Gs ) was lower in fast-growing, multi-stemmed species compared to the slower growing, single-stemmed species. However, under warmer, less optimal conditions, gas exchange converged between stem types, and neither δ13 C nor chlorophyll fluorescence varied among species. CONCLUSIONS The results add to a growing body of evidence that succulent-stemmed plants function along a similar economic spectrum as leaf-bearing plants such that functional traits including stem RGR, longevity, morphology, and gas exchange are correlated across species with varying life-history strategies.
Collapse
Affiliation(s)
- John Huber
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, USA
- Department of Geosciences, University of Arizona, Tucson, AZ, USA
| | - David L Dettman
- Department of Geosciences, University of Arizona, Tucson, AZ, USA
| | | | - Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, USA
| |
Collapse
|
36
|
|
37
|
Males J. Concerted anatomical change associated with crassulacean acid metabolism in the Bromeliaceae. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:681-695. [PMID: 32291044 DOI: 10.1071/fp17071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 01/05/2018] [Indexed: 06/11/2023]
Abstract
Crassulacean acid metabolism (CAM) is a celebrated example of convergent evolution in plant ecophysiology. However, many unanswered questions surround the relationships among CAM, anatomy and morphology during evolutionary transitions in photosynthetic pathway. An excellent group in which to explore these issues is the Bromeliaceae, a diverse monocot family from the Neotropics in which CAM has evolved multiple times. Progress in the resolution of phylogenetic relationships among the bromeliads is opening new and exciting opportunities to investigate how evolutionary changes in leaf structure has tracked, or perhaps preceded, photosynthetic innovation. This paper presents an analysis of variation in leaf anatomical parameters across 163C3 and CAM bromeliad species, demonstrating a clear divergence in the fundamental aspects of leaf structure in association with the photosynthetic pathway. Most strikingly, the mean volume of chlorenchyma cells of CAM species is 22 times higher than that of C3 species. In two bromeliad subfamilies (Pitcairnioideae and Tillandsioideae), independent transitions from C3 to CAM are associated with increased cell succulence, whereas evolutionary trends in tissue thickness and leaf air space content differ between CAM origins. Overall, leaf anatomy is clearly and strongly coupled with the photosynthetic pathway in the Bromeliaceae, where the independent origins of CAM have involved significant anatomical restructuring.
Collapse
Affiliation(s)
- Jamie Males
- Department of Plant Sciences, University of Cambridge, Cambridge, UK. Email
| |
Collapse
|
38
|
Pikart FC, Marabesi MA, Mioto PT, Gonçalves AZ, Matiz A, Alves FRR, Mercier H, Aidar MPM. The contribution of weak CAM to the photosynthetic metabolic activities of a bromeliad species under water deficit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:297-303. [PMID: 29278846 DOI: 10.1016/j.plaphy.2017.12.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
The Crassulacean acid metabolism (CAM) can be a transitory strategy for saving water during unfavourable conditions, like a dry season. In some cases, CAM can also contribute to the maintenance of photosynthetic integrity, even if carbon gain and growth are impaired. CAM occurs in different intensities, being stronger or weaker depending on the degree of nocturnal malic acid accumulation. For example, Guzmania monostachia is an epiphytic tank bromeliad that shows an increase in its nocturnal organic acid accumulation and a variable CAM behaviour when exposed to water deficit. In this context, this study aimed at investigating whether the weak CAM displayed by this species may mitigate the harmful effects of water limitation on its photosynthetic activity. To this, bromeliads were submitted to well-watered and water deficit conditions. Guzmania monostachia plants under water deficiency conditions showed a reduction on atmospheric carbon assimilation without exhibiting changes in PSII integrity and carbohydrate production while showed an increase in nocturnal malic acid accumulation. Additionally, spots with high PSII efficiency in the leaf portion with a greater nocturnal malic acid accumulation were observed in plants exposed to water shortage conditions. These high-efficiency spots might be associated with a greater malate decarboxylation capacity. Also, the malic acid contributed to approximately 50% of the total carbon assimilated under water deficit. These results suggest that weak CAM may participate in photo-protection and it appears to meaningfully contribute to the overall carbon balance, being an important metabolic strategy to maintain plant fitness during water deficit periods.
Collapse
Affiliation(s)
- Filipe C Pikart
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, CEP 13083-970, Campinas, Brazil; Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, nº277, CEP 05508-090, São Paulo, Brazil.
| | - Mauro A Marabesi
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, CP 3005, CEP 01061-970, São Paulo, Brazil
| | - Paulo T Mioto
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, nº277, CEP 05508-090, São Paulo, Brazil; Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Reitor João David Ferreira Lima, s/n, 88040-900, Florianópolis, Brazil
| | - Ana Z Gonçalves
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, nº277, CEP 05508-090, São Paulo, Brazil
| | - Alejandra Matiz
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, nº277, CEP 05508-090, São Paulo, Brazil
| | - Frederico R R Alves
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, nº277, CEP 05508-090, São Paulo, Brazil; Laboratório de Fisiologia Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Avenida Esperança, s/n, Campus Samambaia, 74690-900, Goiânia, Brazil
| | - Helenice Mercier
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, nº277, CEP 05508-090, São Paulo, Brazil
| | - Marcos P M Aidar
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, CP 3005, CEP 01061-970, São Paulo, Brazil
| |
Collapse
|
39
|
Yu K, D'Odorico P, Carr DE, Personius A, Collins SL. The effect of nitrogen availability and water conditions on competition between a facultative CAM plant and an invasive grass. Ecol Evol 2017; 7:7739-7749. [PMID: 29043030 PMCID: PMC5632618 DOI: 10.1002/ece3.3296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/20/2017] [Accepted: 07/03/2017] [Indexed: 11/11/2022] Open
Abstract
Plants with crassulacean acid metabolism (CAM) are increasing their abundance in drylands worldwide. The drivers and mechanisms underlying the increased dominance of CAM plants and CAM expression (i.e., nocturnal carboxylation) in facultative CAM plants, however, remain poorly understood. We investigated how nutrient and water availability affected competition between Mesembryanthemum crystallinum (a model facultative CAM species) and the invasive C3 grass Bromus mollis that co-occur in California's coastal grasslands. Specifically we investigated the extent to which water stress, nutrients, and competition affect nocturnal carboxylation in M. crystallinum. High nutrient and low water conditions favored M. crystallinum over B. mollis, in contrast to high water conditions. While low water conditions induced nocturnal carboxylation in 9-week-old individuals of M. crystallinum, in these low water treatments, a 66% reduction in nutrient applied over the entire experiment did not further enhance nocturnal carboxylation. In high water conditions M. crystallinum both alone and in association with B. mollis did not perform nocturnal carboxylation, regardless of the nutrient levels. Thus, nocturnal carboxylation in M. crystallinum was restricted by strong competition with B. mollis in high water conditions. This study provides empirical evidence of the competitive advantage of facultative CAM plants over grasses in drought conditions and of the restricted ability of M. crystallinum to use their photosynthetic plasticity (i.e., ability to switch to CAM behavior) to compete with grasses in well-watered conditions. We suggest that a high drought tolerance could explain the increased dominance of facultative CAM plants in a future environment with increased drought and nitrogen deposition, while the potential of facultative CAM plants such as M. crystallinum to expand to wet environments is expected to be limited.
Collapse
Affiliation(s)
- Kailiang Yu
- Department of Environmental SciencesUniversity of VirginiaCharlottesvilleVAUSA
- Department of BiologyUniversity of UtahSalt Lake CityUTUSA
| | - Paolo D'Odorico
- Department of Environmental SciencesUniversity of VirginiaCharlottesvilleVAUSA
- Department of Environmental Science, Policy and ManagementUniversity of CaliforniaBerkeleyCAUSA
| | - David E. Carr
- Department of BiologyUniversity of UtahSalt Lake CityUTUSA
| | | | | |
Collapse
|
40
|
Pereira PN, Smith JAC, Mercier H. Nitrate enhancement of CAM activity in two Kalanchoë species is associated with increased vacuolar proton transport capacity. PHYSIOLOGIA PLANTARUM 2017; 160:361-372. [PMID: 28393374 DOI: 10.1111/ppl.12578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/24/2017] [Accepted: 03/05/2017] [Indexed: 06/07/2023]
Abstract
Among species that perform CAM photosynthesis, members of the genus Kalanchoë have been studied frequently to investigate the effect of environmental factors on the magnitude of CAM activity. In particular, different nitrogen sources have been shown to influence the rate of nocturnal CO2 fixation and organic-acid accumulation in several species of Kalanchoë. However, there has been little investigation of the interrelationship between nitrogen source (nitrate versus ammonium), concentration and the activity of the vacuolar proton pumps responsible for driving nocturnal organic-acid accumulation in these species. In the present study with Kalanchoë laxiflora and Kalanchoë delagoensis cultivated on different nitrogen sources, both species were found to show highest total nocturnal organic-acid accumulation and highest rates of ATP- and PPi-dependent vacuolar proton transport on 2.5 mM nitrate, whereas plants cultivated on 5.0 mM ammonium showed the lowest values. In both species malate was the principal organic-acid accumulated during the night, but the second-most accumulated organic-acid was fumarate for K. laxiflora and citrate for K. delagoensis. Higher ATP- and PPi-dependent vacuolar proton transport rates and greater nocturnal acid accumulation were observed in K. delagoensis compared with K. laxiflora. These results show that the effect of nitrogen source on CAM activity in Kalanchoë species is reflected in corresponding differences in activity of the tonoplast proton pumps responsible for driving sequestration of these acids in the vacuole of CAM-performing cells.
Collapse
Affiliation(s)
- Paula Natália Pereira
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, 05508-090, Brazil
| | | | - Helenice Mercier
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, 05508-090, Brazil
| |
Collapse
|
41
|
Yu K, D'Odorico P, Li W, He Y. Effects of competition on induction of crassulacean acid metabolism in a facultative CAM plant. Oecologia 2017; 184:351-361. [PMID: 28401290 DOI: 10.1007/s00442-017-3868-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/06/2017] [Indexed: 10/19/2022]
Abstract
Abiotic drivers of environmental stress have been found to induce CAM expression (nocturnal carboxylation) in facultative CAM species such as Mesembryanthemum crystallinum. The role played by biotic factors such as competition with non-CAM species in affecting CAM expression, however, remains largely understudied. This research investigated the effects of salt and water conditions on the competition between M. crystallinum and the C3 grass Bromus mollis with which it is found to coexist in California's coastal grasslands. We also investigated the extent to which CAM expression in M. crystallinum was affected by the intensity of the competition with B. mollis. We found that M. crystallinum had a competitive advantage over B. mollis in drought and saline conditions, while B. mollis exerted strong competitive effects on M. crystallinum in access to light and soil nutrients in high water conditions. This strong competitive effect even outweighed the favorable effects of salt or water additions in increasing the biomass and productivity of M. crystallinum in mixture. Regardless of salt conditions, M. crystallinum did not switch to CAM photosynthesis in response to this strong competitive effect from B. mollis. Disturbance (i.e., grass cutting) reduced the competitive pressure by B. mollis and allowed for CAM expression in M. crystallinum when it was grown mixed with B. mollis. We suggest that moderate competition with other functional groups can enhance CAM expression in M. crystallinum, thereby affecting its plasticity and ability to cope with biological stress.
Collapse
Affiliation(s)
- Kailiang Yu
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, 22904, USA.
| | - Paolo D'Odorico
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, 22904, USA
| | - Wei Li
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, 22904, USA.,State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A and F University, Yangling, 712100, China
| | - Yongli He
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, 22904, USA.,Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
42
|
Guralnick LJ, Gladsky K. Crassulacean acid metabolism as a continuous trait: variability in the contribution of Crassulacean acid metabolism (CAM) in populations of Portulacaria afra. Heliyon 2017; 3:e00293. [PMID: 28443322 PMCID: PMC5393293 DOI: 10.1016/j.heliyon.2017.e00293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/27/2017] [Accepted: 04/03/2017] [Indexed: 11/23/2022] Open
Abstract
Portulacaria afra L. is a dominant facultative CAM species growing in the Southeastern Cape of South Africa. P. afra is well adapted to regions of the Spekboom thicket in areas of limited and sporadic rainfall. P. afra populations occur in isolated drainages. We hypothesized the utilization of CAM would vary in the different populations in response to rainfall and temperature gradients. Carbon isotope composition can be used to determine the contribution of CAM in leaf tissue. P. afra leaves of populations were analyzed in transects running south to north and east to west in locations from the coast to elevations of 1400 m. Carbon isotope values ranged from -16.1‰ in Plutosvale to -21.0‰ to -22.7‰ in Port Alfred and Grahamstown populations respectively with some values reaching -25.2‰. These values indicated an estimated variable contribution of the CAM pathway ranging from 23% to almost 60%. The results indicate a much greater range of variability than previously reported. The carbon isotope values showed no direct correlation with rainfall or maximum or minimum day/night temperatures in the summer or winter for the different locations. The results indicated the microclimate may play a more significant role in determining CAM utilization. We present evidence that CAM is a continuous trait in P. afra and CAM is operating continuously at low levels during C3 photosynthesis which may explain the high variability in its carbon isotope composition. P. afra populations illustrate a large phenotypic plasticity and further studies may indicate genotypic differences between populations. This may be valuable in ascertaining the genetic contribution to its water use efficiency and possible use in engineering higher water use efficiency in C3 plants. The results revealed here may explain P. afra's ability to sequester carbon at high rates compared to more mesic species.
Collapse
|
43
|
Rodrigues MA, Hamachi L, Mioto PT, Purgatto E, Mercier H. Implications of leaf ontogeny on drought-induced gradients of CAM expression and ABA levels in rosettes of the epiphytic tank bromeliad Guzmania monostachia. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:400-411. [PMID: 27552178 DOI: 10.1016/j.plaphy.2016.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 05/11/2023]
Abstract
Guzmania monostachia is an epiphytic heteroblastic bromeliad that exhibits rosette leaves forming water-holding tanks at maturity. Different portions along its leaf blades can display variable degrees of crassulacean acid metabolism (CAM) up-regulation under drought. Since abscisic acid (ABA) can act as an important long-distance signal, we conducted a joint investigation of ontogenetic and drought impacts on CAM intensity and ABA levels in different leaf groups within the G. monostachia rosette. For this, three groups of leaves were analysed according to their position within the mature-tank rosette (i.e., younger, intermediate, and older leaves) to characterize the general growth patterns and magnitude of drought-modulated CAM expression. CAM activity was evaluated by analysing key molecules in the biochemical machinery of this photosynthetic pathway, while endogenous ABA content was comparatively measured in different portions of each leaf group after seven days under well-watered (control) or drought treatment. The results revealed that G. monostachia shows more uniform morphological characteristics along the leaves when in the atmospheric stage. The drought treatment of mature-tank rosettes generally induced in older leaves a more severe water loss, followed by the lowest CAM activity and a higher increase in ABA levels, while younger leaves showed an opposite response. Therefore, leaf groups at distinct ontogenetic stages within the tank rosette of G. monostachia responded to drought with variable degrees of water loss and CAM expression. ABA seems to participate in this tissue-compartmented response as a long-distance signalling molecule, transmitting the drought-induced signals originated in older leaves towards the younger ones.
Collapse
Affiliation(s)
- Maria Aurineide Rodrigues
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, SP, Brazil
| | - Leonardo Hamachi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, SP, Brazil
| | - Paulo Tamaso Mioto
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, SP, Brazil
| | - Eduardo Purgatto
- Departamento de Alimentos e Nutrição Experimental, Instituto de Ciências Farmacêuticas, Universidade de São Paulo, 05422-970, São Paulo, SP, Brazil
| | - Helenice Mercier
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, SP, Brazil.
| |
Collapse
|
44
|
Krause GH, Winter K, Krause B, Virgo A. Protection by light against heat stress in leaves of tropical crassulacean acid metabolism plants containing high acid levels. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:1061-1069. [PMID: 32480526 DOI: 10.1071/fp16093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/13/2016] [Indexed: 06/11/2023]
Abstract
Heat tolerance of plants exhibiting crassulacean acid metabolism (CAM) was determined by exposing leaf sections to a range of temperatures both in the dark and the light, followed by measuring chlorophyll a fluorescence (Fv/Fm and F0) and assessing visible tissue damage. Three CAM species, Clusia rosea Jacq., Clusia pratensis Seem. and Agave angustifolia Haw., were studied. In acidified tissues sampled at the end of the night and exposed to elevated temperatures in the dark, the temperature that caused a 50% decline of Fv/Fm (T50), was remarkably low (40-43°C in leaves of C. rosea). Conversion of chlorophyll to pheophytin indicated irreversible tissue damage caused by malic acid released from the vacuoles. By contrast, when acidified leaves were illuminated during heat treatments, T50 was up to 50-51°C. In de-acidified samples taken at the end of the light period, T50 reached ∼54°C, irrespective of whether temperature treatments were done in the dark or light. Acclimation of A. angustifolia to elevated daytime temperatures resulted in a rise of T50 from ∼54° to ∼57°C. In the field, high tissue temperatures always occur during sun exposure. Measurements of the heat tolerance of CAM plants that use heat treatments of acidified tissue in the dark do not provide relevant information on heat tolerance in an ecological context. However, in the physiological context, such studies may provide important clues on vacuolar properties during the CAM cycle (i.e. on the temperature relationships of malic acid storage and malic acid release).
Collapse
Affiliation(s)
- G Heinrich Krause
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Republic of Panama
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Republic of Panama
| | - Barbara Krause
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Republic of Panama
| | - Aurelio Virgo
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Republic of Panama
| |
Collapse
|
45
|
Heyduk K, Burrell N, Lalani F, Leebens-Mack J. Gas exchange and leaf anatomy of a C3-CAM hybrid, Yucca gloriosa (Asparagaceae). JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1369-79. [PMID: 26717954 PMCID: PMC4762382 DOI: 10.1093/jxb/erv536] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
While the majority of plants use the typical C3 carbon metabolic pathway, ~6% of angiosperms have adapted to carbon limitation as a result of water stress by employing a modified form of photosynthesis known as Crassulacean acid metabolism (CAM). CAM plants concentrate carbon in the cells by temporally separating atmospheric carbon acquisition from fixation into carbohydrates. CAM has been studied for decades, but the evolutionary progression from C3 to CAM remains obscure. In order to better understand the morphological and physiological characteristics associated with CAM photosynthesis, phenotypic variation was assessed in Yucca aloifolia, a CAM species, Yucca filamentosa, a C3 species, and Yucca gloriosa, a hybrid species derived from these two yuccas exhibiting intermediate C3-CAM characteristics. Gas exchange, titratable leaf acidity, and leaf anatomical traits of all three species were assayed in a common garden under well-watered and drought-stressed conditions. Yucca gloriosa showed intermediate phenotypes for nearly all traits measured, including the ability to acquire carbon at night. Using the variation found among individuals of all three species, correlations between traits were assessed to better understand how leaf anatomy and CAM physiology are related. Yucca gloriosa may be constrained by a number of traits which prevent it from using CAM to as high a degree as Y. aloifolia. The intermediate nature of Y. gloriosa makes it a promising system in which to study the evolution of CAM.
Collapse
Affiliation(s)
- Karolina Heyduk
- 2502 Miller Plant Sciences, Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Nia Burrell
- 2502 Miller Plant Sciences, Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Falak Lalani
- 2502 Miller Plant Sciences, Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Jim Leebens-Mack
- 2502 Miller Plant Sciences, Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
46
|
Rainha N, Medeiros VP, Ferreira C, Raposo A, Leite JP, Cruz C, Pacheco CA, Ponte D, Silva AB. Leaf malate and succinate accumulation are out of phase throughout the development of the CAM plant Ananas comosus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 100:47-51. [PMID: 26773544 DOI: 10.1016/j.plaphy.2015.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/29/2015] [Accepted: 12/31/2015] [Indexed: 06/05/2023]
Abstract
In plants with Crassulacean Acid Metabolism (CAM), organic acids, mainly malate are crucial intermediates for carbon fixation. In this research we studied the circadian oscillations of three organic anions (malate, citrate, and succinate) in Ananas comosus, assessing the effect of season and plant development stage. Seasonal and plant development dependencies were observed. The circadian oscillations of malate and citrate were typical of CAM pathways reported in the literature. Citrate content was quite stable (25-30 μmol g(-1) FW) along the day, with a seasonal effect. Succinate was shown to have both diurnal and seasonal oscillations and also a correlation with malate, since it accumulated during the afternoon when malate content was normally at a minimum, suggesting a possible mechanistic effect between both anions in CAM and/or respiratory metabolisms.
Collapse
Affiliation(s)
- N Rainha
- Instituto de Inovação Tecnológica dos Açores (INOVA), Estrada de São Gonçalo, 9504-540 Ponta Delgada, São Miguel, Açores, Portugal; Centro de Ecologia Evolução e Alterações Ambientais (cE3c), Universidade de Lisboa, Faculdade de Ciências, Campo Grande, 1749-016 Lisboa, Portugal.
| | - V P Medeiros
- Instituto de Inovação Tecnológica dos Açores (INOVA), Estrada de São Gonçalo, 9504-540 Ponta Delgada, São Miguel, Açores, Portugal
| | - C Ferreira
- Instituto de Inovação Tecnológica dos Açores (INOVA), Estrada de São Gonçalo, 9504-540 Ponta Delgada, São Miguel, Açores, Portugal
| | - A Raposo
- Instituto de Inovação Tecnológica dos Açores (INOVA), Estrada de São Gonçalo, 9504-540 Ponta Delgada, São Miguel, Açores, Portugal
| | - J P Leite
- Instituto de Inovação Tecnológica dos Açores (INOVA), Estrada de São Gonçalo, 9504-540 Ponta Delgada, São Miguel, Açores, Portugal
| | - C Cruz
- Centro de Ecologia Evolução e Alterações Ambientais (cE3c), Universidade de Lisboa, Faculdade de Ciências, Campo Grande, 1749-016 Lisboa, Portugal; Universidade de Lisboa, Faculdade de Ciências, Departamento de Biologia Vegetal, Campo Grande, 1749-016 Lisboa, Portugal
| | - C A Pacheco
- Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - D Ponte
- Instituto de Inovação Tecnológica dos Açores (INOVA), Estrada de São Gonçalo, 9504-540 Ponta Delgada, São Miguel, Açores, Portugal
| | - A B Silva
- Universidade de Lisboa, Faculdade de Ciências, Departamento de Biologia Vegetal, Campo Grande, 1749-016 Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Universidade de Lisboa, Faculdade de Ciências, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
47
|
Owen NA, Choncubhair ÓN, Males J, Del Real Laborde JI, Rubio-Cortés R, Griffiths H, Lanigan G. Eddy covariance captures four-phase crassulacean acid metabolism (CAM) gas exchange signature in Agave. PLANT, CELL & ENVIRONMENT 2016; 39:295-309. [PMID: 26177873 DOI: 10.1111/pce.12610] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/05/2015] [Indexed: 06/04/2023]
Abstract
Mass and energy fluxes were measured over a field of Agave tequilana in Mexico using eddy covariance (EC) methodology. Data were gathered over 252 d, including the transition from wet to dry periods. Net ecosystem exchanges (FN,EC ) displayed a crassulacean acid metabolism (CAM) rhythm that alternated from CO2 sink at night to CO2 source during the day, and partitioned canopy fluxes (FA,EC ) showed a characteristic four-phase CO2 exchange pattern. Results were cross-validated against diel changes in titratable acidity, leaf-unfurling rates, energy exchange fluxes and reported biomass yields. Projected carbon balance (g C m(-2) year(-1) , mean ± 95% confidence interval) indicated the site was a net sink of -333 ± 24, of which contributions from soil respiration were +692 ± 7, and FA,EC was -1025 ± 25. EC estimated biomass yield was 20.1 Mg (dry) ha(-1) year(-1) . Average integrated daily FA,EC was -234 ± 5 mmol CO2 m(-2) d(-1) and persisted almost unchanged after 70 d of drought conditions. Regression analyses were performed on the EC data to identify the best environmental predictors of FA . Results suggest that the carbon acquisition strategy of Agave offers productivity and drought resilience advantages over conventional semi-arid C3 and C4 bioenergy candidates.
Collapse
Affiliation(s)
- Nick A Owen
- Department of Plant Sciences, University of Cambridge, Cambridge, UK, CB2 3EA
| | | | - Jamie Males
- Department of Plant Sciences, University of Cambridge, Cambridge, UK, CB2 3EA
| | | | - Ramón Rubio-Cortés
- Rancho el Indio, Tequila Sauza, S. de R.L. de C.V., Tequila, Jalisco, Mexico
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge, UK, CB2 3EA
| | - Gary Lanigan
- Teagasc Environmental Research Centre, Johnstown Castle, County Wexford, Ireland
| |
Collapse
|
48
|
Rainha N, Medeiros VP, Câmara M, Faustino H, Leite JP, Barreto MDC, Cruz C, Pacheco CA, Ponte D, Bernardes da Silva A. Plasticity of crassulacean acid metabolism at subtropical latitudes: a pineapple case study. PHYSIOLOGIA PLANTARUM 2016; 156:29-39. [PMID: 26362993 DOI: 10.1111/ppl.12386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/19/2015] [Accepted: 07/17/2015] [Indexed: 06/05/2023]
Abstract
Plants with the crassulacean acid metabolism (CAM) express high-metabolic plasticity, to adjust to environmental stresses. This article hypothesizes that irradiance and nocturnal temperatures are the major limitations for CAM at higher latitudes such as the Azores (37°45'N). Circadian CAM expression in Ananas comosus L. Merr. (pineapple) was assessed by the diurnal pattern of leaf carbon fixation into l-malate at the solstices and equinoxes, and confirmed by determining maximal phosphoenolpyruvate carboxylase (PEPC) activity in plant material. Metabolic adjustments to environmental conditions were confirmed by gas exchange measurements, and integrated with environmental data to determine CAM's limiting factors: light and temperature. CAM plasticity was observed at the equinoxes, under similar photoperiods, but different environmental conditions. In spring, CAM expression was similar between vegetative and flowering plants, while in autumn, flowering (before anthesis) and fructifying (with fully developed fruit before ripening) plants accumulated more l-malate. Below 100 µmol m(-2) s(-1) , CAM phase I was extended, reducing CAM phase III during the day. Carbon fixation inhibition may occur by two major pathways: nocturnal temperature (<15°C) inhibiting PEPC activity and l-malate accumulation; and low irradiance influencing the interplay between CAM phase I and III, affecting carboxylation and decarboxylation. Both have important consequences for plant development in autumn and winter. Observations were confirmed by flowering time prediction using environmental data, emphasizing that CAM expression had a strong seasonal regulation due to a complex network response to light and temperature, allowing pineapple to survive in environments not suitable for high productivity.
Collapse
Affiliation(s)
- Nuno Rainha
- Instituto de Inovação Tecnológica dos Açores (INOVA), Ponta Delgada, Açores, Portugal
- Centro de Ecologia, Evolução e Alterações Climáticas (CE3C), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Violante P Medeiros
- Instituto de Inovação Tecnológica dos Açores (INOVA), Ponta Delgada, Açores, Portugal
- Departamento de Ciências Tecnológicas e Desenvolvimento, Universidade dos Açores, Ponta Delgada, Portugal
| | - Mariana Câmara
- Instituto de Inovação Tecnológica dos Açores (INOVA), Ponta Delgada, Açores, Portugal
| | - Hélder Faustino
- Instituto de Inovação Tecnológica dos Açores (INOVA), Ponta Delgada, Açores, Portugal
| | - João P Leite
- Instituto de Inovação Tecnológica dos Açores (INOVA), Ponta Delgada, Açores, Portugal
| | - Maria do Carmo Barreto
- Departamento de Ciências Tecnológicas e Desenvolvimento, Universidade dos Açores, Ponta Delgada, Portugal
| | - Cristina Cruz
- Centro de Ecologia, Evolução e Alterações Climáticas (CE3C), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Vegetal, Universidade de Lisboa, Faculdade de Ciências, Lisboa, Portugal
| | | | - Duarte Ponte
- Instituto de Inovação Tecnológica dos Açores (INOVA), Ponta Delgada, Açores, Portugal
- Departamento de Ciências Tecnológicas e Desenvolvimento, Universidade dos Açores, Ponta Delgada, Portugal
| | - Anabela Bernardes da Silva
- Departamento de Biologia Vegetal, Universidade de Lisboa, Faculdade de Ciências, Lisboa, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Universidade de Lisboa, Faculdade de Ciências, Lisboa, Portugal
| |
Collapse
|
49
|
Yu K, Foster A. Modeled hydraulic redistribution in tree-grass, CAM-grass, and tree-CAM associations: the implications of crassulacean acid metabolism (CAM). Oecologia 2015; 180:1113-25. [PMID: 26712135 DOI: 10.1007/s00442-015-3518-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/24/2015] [Indexed: 11/26/2022]
Abstract
Past studies have largely focused on hydraulic redistribution (HR) in trees, shrubs, and grasses, and recognized its role in interspecies interactions. HR in plants that conduct crassulacean acid metabolism (CAM), however, remains poorly investigated, as does the effect of HR on transpiration in different vegetation associations (i.e., tree-grass, CAM-grass, and tree-CAM associations). We have developed a mechanistic model to investigate the net direction and magnitude of HR at the patch scale for tree-grass, CAM-grass, and tree-CAM associations at the growing season to yearly timescale. The modeling results show that deep-rooted CAM plants in CAM-grass associations could perform hydraulic lift at a higher rate than trees in tree-grass associations in a relatively wet environment, as explained by a significant increase in grass transpiration rate in the shallow soil layer, balancing a lower transpiration rate by CAM plants. By comparison, trees in tree-CAM associations may perform hydraulic descent at a higher rate than those in tree-grass associations in a dry environment. Model simulations also show that hydraulic lift increases the transpiration of shallow-rooted plants, while hydraulic descent increases that of deep-rooted plants. CAM plants transpire during the night and thus perform HR during the day. Based on these model simulations, we suggest that the ability of CAM plants to perform HR at a higher rate may have different effects on the surrounding plant community than those of plants with C3 or C4 photosynthetic pathways (i.e., diurnal transpiration).
Collapse
Affiliation(s)
- Kailiang Yu
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, 22904, USA.
| | - Adrianna Foster
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
50
|
Habibi G, Ajory N. The effect of drought on photosynthetic plasticity in Marrubium vulgare plants growing at low and high altitudes. JOURNAL OF PLANT RESEARCH 2015; 128:987-994. [PMID: 26314352 DOI: 10.1007/s10265-015-0748-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/04/2015] [Indexed: 06/04/2023]
Abstract
Photosynthesis is a biological process most affected by water deficit. Plants have various photosynthetic mechanisms that are matched to specific climatic zones. We studied the photosynthetic plasticity of C3 plants at water deficit using ecotypes of Marrubium vulgare L. from high (2,200 m) and low (1,100 m) elevation sites in the Mishou-Dagh Mountains of Iran. Under experimental drought, high-altitude plants showed more tolerance to water stress based on most of the parameters studied as compared to the low-altitude plants. Increased tolerance in high-altitude plants was achieved by lower levels of daytime stomatal conductance (g s) and reduced damaging effect on maximal quantum yield of photosystem II (PSII) (F v /F m ) coupled with higher levels of carotenoids and non-photochemical quenching (NPQ). High-altitude plants exhibited higher water use efficiency (WUE) than that in low-altitude plants depending on the presence of thick leaves and the reduced daytime stomatal conductance. Additionally, we have studied the oscillation in H(+) content and diel gas exchange patterns to determine the occurrence of C3 or weak CAM (Crassulacean acid metabolism) in M. vulgare through 15 days drought stress. Under water-stressed conditions, low-altitude plants exhibited stomatal conductance and acid fluctuations characteristic of C3 photosynthesis, though high-altitude plants exhibited more pronounced increases in nocturnal acidity and phosphoenolpyruvate carboxylase (PEPC) activity, suggesting photosynthetic flexibility. These results indicated that the regulation of carotenoids, NPQ, stomatal conductance and diel patterns of CO2 exchange presented the larger differences among studied plants at different altitudes and seem to be the protecting mechanisms controlling the photosynthetic performance of M. vulgare plants under drought conditions.
Collapse
Affiliation(s)
- Ghader Habibi
- Department of Biology, Payame Noor University, PO BOX 19395-3697, Tehran, Iran.
| | - Neda Ajory
- Department of Biology, Payame Noor University, PO BOX 19395-3697, Tehran, Iran
| |
Collapse
|