1
|
Ma F, Jiang Y, Li B, Zeng Y, Shang H, Wang F, Sun Z. The Dynamic Accumulation Rules of Chemical Components during the Medicine Formation Period of Angelica sinensis and Chemometric Classifying Analysis for Different Bolting Times Using ATR-FTIR. Molecules 2023; 28:7292. [PMID: 37959713 PMCID: PMC10649412 DOI: 10.3390/molecules28217292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The dried roots of the perennial herb Angelica sinensis (Oliv.) Diels (AS) are commonly used as medicinal and edible resources. In commercial planting, early bolting and flowering (EB) of ca. 60% in the medicine formation period reduces root yield and quality, becoming a significant bottleneck in agricultural production. In the cultivation process, summer bolting (SB) occurs from June to July, and autumn bolting (AB) occurs in September. The AB root is often mistaken for the AS root due to its similar morphological characteristics. Few studies have involved whether the root of AB could be used as herbal medicine. This study explored and compared the accumulation dynamics of primary and secondary metabolites in AS and EB roots during the vegetative growth stage (from May to September) by light microscopy, ultraviolet spectrometry, and HPLC methods. Under a microscope, the amount of free starch granules and oil chamber in the AS root increased. On the contrary, they decreased further from EB-Jul to EB-Sep. By comparison, the wall of the xylem vessel was slightly thickened and stacked, and the cell walls of parenchyma and root cortex tissue were thickened in the EB root. Early underground bolting reduces soluble sugar, soluble protein, free amino acids, total C element, total N element, ferulic acid, and ligustilide accumulation, accompanied by the lignification of the root during the vegetative growth stage. Furthermore, a total of 55 root samples from different bolting types of AS root (29 samples), SB root (14 samples), and AB root (12 samples) were collected from Gansu Province during the harvesting period (October). The later the bolting occurred, the less difference there was between unbolted and bolted roots in terms of morphological appearance and efficacy components. Fourier transform infrared spectroscopy with the attenuated total reflection mode (ATR-FTIR) provides a "holistic" spectroscopic fingerprinting of all compositions in the tested sample. The ATR-FTIR spectrum of the AB root was similar to that of the AS root. However, the number and location of absorption peaks in the spectra of SB were different, and only one strong absorption peak at 1021 cm-1 was regarded as the characteristic peak of C-O stretching vibration in lignin. The ATR-FTIR spectra can be effectively differentiated based on their various characteristics using orthogonal partial least squares discrimination analysis (OPLS-DA). Results were assessed using multiple statistical techniques, including Spearman's correlation, principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and OPLS-DA. Among these methods, the ATR-FTIR data demonstrated the most effective outcomes in differentiating between viable and non-viable roots for their application in herbal medicine. Essential substances are ferulic acid and flavonoid, which are much more abundant in the AB root. It provides a material basis for the pharmacological action of the AB roots and a theoretical basis for improving their availability.
Collapse
Affiliation(s)
- Fang Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (F.M.); (Y.J.); (B.L.); (Y.Z.)
| | - Yuan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (F.M.); (Y.J.); (B.L.); (Y.Z.)
| | - Baoshan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (F.M.); (Y.J.); (B.L.); (Y.Z.)
| | - Yuxin Zeng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (F.M.); (Y.J.); (B.L.); (Y.Z.)
| | - Hushan Shang
- Dingxi Academy of Agricultural Sciences, Dingxi 743002, China; (H.S.); (F.W.)
| | - Fusheng Wang
- Dingxi Academy of Agricultural Sciences, Dingxi 743002, China; (H.S.); (F.W.)
| | - Zhirong Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (F.M.); (Y.J.); (B.L.); (Y.Z.)
| |
Collapse
|
2
|
Prats KA, Fanton AC, Brodersen CR, Furze ME. Starch depletion in the xylem and phloem ray parenchyma of grapevine stems under drought. AOB PLANTS 2023; 15:plad062. [PMID: 37899975 PMCID: PMC10601394 DOI: 10.1093/aobpla/plad062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/29/2023] [Indexed: 10/31/2023]
Abstract
While nonstructural carbohydrate (NSC) storage can support long-lived woody plants during abiotic stress, the timing and extent of their use are less understood, as are the thresholds for cell mortality as NSCs and water supplies are consumed. Here, we combine physiological and imaging tools to study the response of Vitis riparia to a 6-week experimental drought. We focused on the spatial and temporal dynamics of starch consumption and cell viability in the xylem and phloem of the stem. Starch dynamics were further corroborated with enzymatic starch digestion and X-ray microcomputed tomography imaging. Starch depletion in the stems of droughted plants was detected after 2 weeks and continued over time. We observed distinct differences in starch content and cell viability in the xylem and phloem. By the end of the drought, nearly all the starch was consumed in the phloem ray parenchyma (98 % decrease), and there were almost no metabolically active cells in the phloem. In contrast, less starch was consumed in the xylem ray parenchyma (30 % decrease), and metabolically active cells remained in the ray and vessel-associated parenchyma in the xylem. Our data suggest that the higher proportion of living cells in the phloem and cambium, combined with smaller potential NSC storage area, rapidly depleted starch, which led to cell death. In contrast, the larger cross-sectional area of the xylem ray parenchyma with higher NSC storage and lower metabolically active cell populations depleted starch at a slower pace. Why NSC source-sink relationships between xylem and phloem do not allow for a more uniform depletion of starch in ray parenchyma over time is unclear. Our data help to pinpoint the proximate and ultimate causes of plant death during prolonged drought exposure and highlight the need to consider the influence of within-organ starch dynamics and cell mortality on abiotic stress response.
Collapse
Affiliation(s)
- Kyra A Prats
- Department of Botany and Plant Pathology, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, IN 47907, USA
- Center for Plant Biology, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, IN 47907, USA
| | - Ana C Fanton
- Ecophysiologie et Génomique Fonctionnelle de la Vigne, INRAE, 210 Chemin de Leysotte, Villenave-d’Ornon 33140, France
| | - Craig R Brodersen
- School of the Environment, Yale University, 195 Prospect St, New Haven, CT 06511, USA
| | - Morgan E Furze
- Department of Botany and Plant Pathology, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, IN 47907, USA
- Center for Plant Biology, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, IN 47907, USA
- Department of Forestry and Natural Resources, Purdue University, 715 Mitch Daniels Blvd, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Differences in total phenolics, antioxidant activity and metabolic characteristics in peach fruits at different stages of ripening. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
4
|
Wingler A, Henriques R. Sugars and the speed of life-Metabolic signals that determine plant growth, development and death. PHYSIOLOGIA PLANTARUM 2022; 174:e13656. [PMID: 35243645 PMCID: PMC9314607 DOI: 10.1111/ppl.13656] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 05/27/2023]
Abstract
Plant growth and development depend on the availability of carbohydrates synthesised in photosynthesis (source activity) and utilisation of these carbohydrates for growth (sink activity). External conditions, such as temperature, nutrient availability and stress, can affect source as well as sink activity. Optimal utilisation of resources is under circadian clock control. This molecular timekeeper ensures that growth responses are adjusted to different photoperiod and temperature settings by modulating starch accumulation and degradation accordingly. For example, during the night, starch degradation is required to provide sugars for growth. Under favourable growth conditions, high sugar availability stimulates growth and development, resulting in an overall accelerated life cycle of annual plants. Key signalling components include trehalose-6-phosphate (Tre6P), which reflects sucrose availability and stimulates growth and branching when the conditions are favourable. Under sink limitation, Tre6P does, however, inhibit night-time starch degradation. Tre6P interacts with Sucrose-non-fermenting1-Related Kinase1 (SnRK1), a protein kinase that inhibits growth under starvation and stress conditions and delays development (including flowering and senescence). Tre6P inhibits SnRK1 activity, but SnRK1 increases the Tre6P to sucrose ratio under favourable conditions. Alongside Tre6P, Target of Rapamycin (TOR) stimulates processes such as protein synthesis and growth when sugar availability is high. In annual plants, an accelerated life cycle results in early leaf and plant senescence, thus shortening the lifespan. While the availability of carbohydrates in the form of sucrose and other sugars also plays an important role in seasonal life cycle events (phenology) of perennial plants, the sugar signalling pathways in perennials are less well understood.
Collapse
Affiliation(s)
- Astrid Wingler
- School of Biological, Earth & Environmental Sciences and Environmental Research InstituteUniversity College Cork, Distillery FieldsCork
| | - Rossana Henriques
- School of Biological, Earth & Environmental Sciences and Environmental Research InstituteUniversity College Cork, Distillery FieldsCork
| |
Collapse
|
5
|
Lambers H, Barrow NJ. The pervasive use of P 2 O 5 , K 2 O, CaO, MgO and other molecules that do not exist in soil or fertiliser bags. THE NEW PHYTOLOGIST 2021; 232:1901-1903. [PMID: 34482566 DOI: 10.1111/nph.17715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Hans Lambers
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - N J Barrow
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
6
|
Andrade A, Boero A, Escalante M, Llanes A, Arbona V, Gómez-Cádenas A, Alemano S. Comparative hormonal and metabolic profile analysis based on mass spectrometry provides information on the regulation of water-deficit stress response of sunflower (Helianthus annuus L.) inbred lines with different water-deficit stress sensitivity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:432-446. [PMID: 34715568 DOI: 10.1016/j.plaphy.2021.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/13/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Water-deficit stress is the most important abiotic stress restricting plant growth, development and yield. The effects of this stress, however, depend on genotypes, among other factors. This study assembles morpho-physiological and metabolic approaches to assess hormonal and metabolic profile changes, upon water-deficit stress, in the shoot and roots of two contrasting sunflower inbred lines, B59 (water-deficit stress sensitive) and B71 (water-deficit stress tolerant). The analyses were carried out using mass spectrometry and performing a multivariate statistical analysis to identify relationships between the analyzed variables. Water-deficit stress reduced all morpho-physiological parameters, except for root length in the tolerant inbred line. The hormonal pathways were active in mediating the seedling performance to imposed water-deficit stress in both lines, although with some differences between lines at the organ level. B59 displayed a diverse metabolite battery, including organic acids, organic compounds as well as sugars, mainly in the shoot, whereas B71 showed primary amino acids, organic acids and organic compounds predominantly in its roots. The discrimination between control and water-deficit stress conditions was possible thanks to potential biomarkers of stress treatment, e.g., proline, maleic acid and malonic acid. This study indicated that the studied organs of sunflower seedlings have different mechanisms of regulation under water-deficit stress. These findings could help to better understand the physio-biochemical pathways underlying stress tolerance in sunflower at early-growth stage.
Collapse
Affiliation(s)
- Andrea Andrade
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, UNRC, Instituto de Investigaciones Agrobiotecnológicas-Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), 5800, Río Cuarto, Córdoba, Argentina
| | - Aldana Boero
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, UNRC, Instituto de Investigaciones Agrobiotecnológicas-Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), 5800, Río Cuarto, Córdoba, Argentina
| | - Maximiliano Escalante
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), 5800, Río Cuarto, Córdoba, Argentina
| | - Analía Llanes
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, UNRC, Instituto de Investigaciones Agrobiotecnológicas-Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), 5800, Río Cuarto, Córdoba, Argentina
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, 12071, Spain
| | - Aurelio Gómez-Cádenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, 12071, Spain
| | - Sergio Alemano
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, UNRC, Instituto de Investigaciones Agrobiotecnológicas-Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), 5800, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
7
|
Marchev AS, Vasileva LV, Amirova KM, Savova MS, Balcheva-Sivenova ZP, Georgiev MI. Metabolomics and health: from nutritional crops and plant-based pharmaceuticals to profiling of human biofluids. Cell Mol Life Sci 2021; 78:6487-6503. [PMID: 34410445 PMCID: PMC8558153 DOI: 10.1007/s00018-021-03918-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/19/2022]
Abstract
During the past decade metabolomics has emerged as one of the fastest developing branches of “-omics” technologies. Metabolomics involves documentation, identification, and quantification of metabolites through modern analytical platforms in various biological systems. Advanced analytical tools, such as gas chromatography–mass spectrometry (GC/MS), liquid chromatography–mass spectroscopy (LC/MS), and non-destructive nuclear magnetic resonance (NMR) spectroscopy, have facilitated metabolite profiling of complex biological matrices. Metabolomics, along with transcriptomics, has an influential role in discovering connections between genetic regulation, metabolite phenotyping and biomarkers identification. Comprehensive metabolite profiling allows integration of the summarized data towards manipulation of biosynthetic pathways, determination of nutritional quality markers, improvement in crop yield, selection of desired metabolites/genes, and their heritability in modern breeding. Along with that, metabolomics is invaluable in predicting the biological activity of medicinal plants, assisting the bioactivity-guided fractionation process and bioactive leads discovery, as well as serving as a tool for quality control and authentication of commercial plant-derived natural products. Metabolomic analysis of human biofluids is implemented in clinical practice to discriminate between physiological and pathological state in humans, to aid early disease biomarker discovery and predict individual response to drug therapy. Thus, metabolomics could be utilized to preserve human health by improving the nutritional quality of crops and accelerating plant-derived bioactive leads discovery through disease diagnostics, or through increasing the therapeutic efficacy of drugs via more personalized approach. Here, we attempt to explore the potential value of metabolite profiling comprising the above-mentioned applications of metabolomics in crop improvement, medicinal plants utilization, and, in the prognosis, diagnosis and management of complex diseases.
Collapse
Affiliation(s)
- Andrey S Marchev
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria
| | - Liliya V Vasileva
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria
| | - Kristiana M Amirova
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria
| | - Martina S Savova
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria
| | - Zhivka P Balcheva-Sivenova
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria
| | - Milen I Georgiev
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria. .,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria.
| |
Collapse
|
8
|
Lénárt J, Gere A, Causon T, Hann S, Dernovics M, Németh O, Hegedűs A, Halász J. LC-MS based metabolic fingerprinting of apricot pistils after self-compatible and self-incompatible pollinations. PLANT MOLECULAR BIOLOGY 2021; 105:435-447. [PMID: 33296063 PMCID: PMC7892686 DOI: 10.1007/s11103-020-01098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE LC-MS based metabolomics approach revealed that putative metabolites other than flavonoids may significantly contribute to the sexual compatibility reactions in Prunus armeniaca. Possible mechanisms on related microtubule-stabilizing effects are provided. Identification of metabolites playing crucial roles in sexual incompatibility reactions in apricot (Prunus armeniaca L.) was the aim of the study. Metabolic fingerprints of self-compatible and self-incompatible apricot pistils were created using liquid chromatography coupled to time-of-flight mass spectrometry followed by untargeted compound search. Multivariate statistical analysis revealed 15 significant differential compounds among the total of 4006 and 1005 aligned metabolites in positive and negative ion modes, respectively. Total explained variance of 89.55% in principal component analysis (PCA) indicated high quality of differential expression analysis. The statistical analysis showed significant differences between genotypes and pollination time as well, which demonstrated high performance of the metabolic fingerprinting and revealed the presence of metabolites with significant influence on the self-incompatibility reactions. Finally, polyketide-based macrolides similar to peloruside A and a hydroxy sphingosine derivative are suggested to be significant differential metabolites in the experiment. These results indicate a strategy of pollen tubes to protect microtubules and avoid growth arrest involved in sexual incompatibility reactions of apricot.
Collapse
Affiliation(s)
- József Lénárt
- Department of Applied Chemistry, Faculty of Food Science, Szent István University, Villányi út 29-43, Budapest, 1118, Hungary
- Department of Genetics and Plant Breeding, Faculty of Horticultural Science, Szent István University, Ménesi út 44, Budapest, 1118, Hungary
| | - Attila Gere
- Department of Postharvest Sciences and Sensory Evaluation, Faculty of Food Science, Szent István University, Villányi út 29-43, 1118, Budapest, Hungary
| | - Tim Causon
- Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Stephan Hann
- Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Mihály Dernovics
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Olga Németh
- Department of Applied Chemistry, Faculty of Food Science, Szent István University, Villányi út 29-43, Budapest, 1118, Hungary
| | - Attila Hegedűs
- Department of Genetics and Plant Breeding, Faculty of Horticultural Science, Szent István University, Ménesi út 44, Budapest, 1118, Hungary
| | - Júlia Halász
- Department of Genetics and Plant Breeding, Faculty of Horticultural Science, Szent István University, Ménesi út 44, Budapest, 1118, Hungary.
| |
Collapse
|
9
|
Wade RN, Seed P, McLaren E, Wood E, Christin PA, Thompson K, Rees M, Osborne CP. The morphogenesis of fast growth in plants. THE NEW PHYTOLOGIST 2020; 228:1306-1315. [PMID: 32841398 DOI: 10.1111/nph.16892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Growth rate represents a fundamental axis of life history variation. Faster growth associated with C4 photosynthesis and annual life history has evolved multiple times, and the resulting diversity in growth is typically explained via resource acquisition and allocation. However, the underlying changes in morphogenesis remain unknown. We conducted a phylogenetic comparative experiment with 74 grass species, conceptualising morphogenesis as the branching and growth of repeating modules. We aimed to establish whether faster growth in C4 and annual grasses, compared with C3 and perennial grasses, came from the faster growth of individual modules or higher rates of module initiation. Morphogenesis produces fast growth in different ways in grasses using C4 and C3 photosynthesis, and in annual compared with perennial species. C4 grasses grow faster than C3 species through a greater enlargement of shoot modules and quicker secondary branching of roots. However, leaf initiation is slower and there is no change in shoot branching. Conversely, faster growth in annuals than perennials is achieved through greater branching and enlargement of shoots, and possibly faster root branching. The morphogenesis of fast growth depends on ecological context, with C4 grasses tending to promote resource capture under competition, and annuals enhancing branching to increase reproductive potential.
Collapse
Affiliation(s)
- Ruth N Wade
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Patrick Seed
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Eleanor McLaren
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ellie Wood
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Pascal-Antoine Christin
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ken Thompson
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Mark Rees
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Colin P Osborne
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
10
|
Marček T, Hamow KÁ, Végh B, Janda T, Darko E. Metabolic response to drought in six winter wheat genotypes. PLoS One 2019; 14:e0212411. [PMID: 30779775 PMCID: PMC6380608 DOI: 10.1371/journal.pone.0212411] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/02/2019] [Indexed: 12/13/2022] Open
Abstract
Wheat is one of the most important cereals, whose growth and development is strongly limited by drought. This study investigated the physiological and metabolic response of six winter wheat cultivars to drought with the emphasis on the induction of dominant metabolites affected by the treatment and genotypes or both. The plants were exposed to a moderate (non-lethal) drought stress, which was induced by withholding watering for six days under controlled greenhouse conditions. A decline in CO2 assimilation (Pn) and transpiration rate, stomata closure, a decrease in relative water content (RWC) and increase of malondialdehyde content were observed in drought-treated plants of all cultivars. These changes were most pronounced in Ellvis, while Soissons was able to retain the higher RWC and Pn. Among the studied metabolites, sugars (sucrose, glucose, fructose, several disaccharides), organic acids (malic acid, oxalic acids), amino acids (proline, threonine, gamma-aminobutyric acid (GABA), glutamine) and sugar alcohols such as myo-inositol accumulated to higher levels in the plants exposed to drought stress in comparison with the control. The accumulation of several metabolites in response to drought differed between the genotypes. Drought induced the production of sucrose, malic acid and oxalic acid, unknown organic acid 1, unknown disaccharide 1, 2 and 3, GABA, L-threonine, glutamic acid in four (Soissons, Žitarka, Antonija or Toborzó) out of six genotypes. In addition, Soissons, which was the most drought tolerant genotype, accumulated the highest amount of unknown disaccharide 5, galactonic and phosphoric acids. The two most drought sensitive cultivars, Srpanjka and Ellvis, demonstrated different metabolic adjustment in response to the stress treatment. Srpanjka responded to drought by increasing the amount of glucose and fructose originated from hydrolyses of sucrose and accumulating unidentified sugar alcohols 1 and 2. In Ellvis, drought caused inhibition of photosynthetic carbon metabolism, as evidence by the decreased Pn, gs, RWC and accumulation levels of sugar metabolites (sucrose, glucose and fructose). The results revealed the differences in metabolic response to drought among the genotypes, which drew attention on metabolites related with general response and on those metabolites which are part of specific response that may play an important role in drought tolerance.
Collapse
Affiliation(s)
- Tihana Marček
- Department of Food and Nutrition Research, Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Kamirán Áron Hamow
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Budapest, Hungary
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Balázs Végh
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Tibor Janda
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Eva Darko
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Martonvásár, Hungary
| |
Collapse
|
11
|
Kim YJ, Joo SC, Shi J, Hu C, Quan S, Hu J, Sukweenadhi J, Mohanan P, Yang DC, Zhang D. Metabolic dynamics and physiological adaptation of Panax ginseng during development. PLANT CELL REPORTS 2018; 37:393-410. [PMID: 29150823 DOI: 10.1007/s00299-017-2236-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 11/09/2017] [Indexed: 05/27/2023]
Abstract
The dynamics of metabolites from leaves to roots of Panax ginseng during development has revealed the tissue-specific and year-specific metabolic networks. Being an essential Oriental medicinal plant, ginseng (Panax ginseng Meyer) is a slow-growing perennial herb-accumulating pharmaceutically active metabolites such as ginsenosides in roots during growth. However, little is known about how ginseng plants survive in the harsh environments such as winter cold and summer heat for a longer period and accumulates those active metabolites as the plant grows. To understand the metabolic kinetics in both source and sink organs such as leaves and roots of ginseng plant, respectively, and to assess the changes in ginsenosides biosynthesis during ginseng growth, we investigated the metabolic profiles from leaves and roots of 1-, 4-, and 6-year-old field-grown ginseng plants. Using an integrated non-targeted metabolomic approach, we identified in total 348 primary and secondary metabolites, which provided us for the first time a global metabolomic assessment of ginseng during growth, and morphogenesis. Strikingly, the osmoprotectants and oxidized chemicals were highly accumulated in 4- and 6-year-old ginseng leaves suggested that ginseng develop a wide range of metabolic strategies to adapt unfavorable conditions as they mature. In 6-year-old plants, ginsenosides were decreased in leaves but increased in roots up to 1.2- to sixfold, supporting the view that there is a long-distance transport of ginsenosides from leaves to roots as ginseng plants mature. Our findings provide insights into the metabolic kinetics during the development of ginseng plant and this could complement the pharmacological importance of ginseng and its compounds according to their age.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, People's Republic of China.
| | - Sung Chul Joo
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, People's Republic of China
| | - Chaoyang Hu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, People's Republic of China
| | - Sheng Quan
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, People's Republic of China
| | - Jianping Hu
- Department of Energy Plant Research Laboratory and Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA
| | - Johan Sukweenadhi
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Padmanaban Mohanan
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Deok-Chun Yang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, People's Republic of China.
- Crop Biotech Institute and Department of Plant Molecular Systems Biotechnology, Kyung Hee University, Yongin, 446-701, Republic of Korea.
| |
Collapse
|
12
|
Aranda I, Sánchez-Gómez D, de Miguel M, Mancha JA, Guevara MA, Cadahía E, Fernández de Simón MB. Fagus sylvatica L. provenances maintain different leaf metabolic profiles and functional response. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2017. [DOI: 10.1016/j.actao.2017.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Burnett AC, Rogers A, Rees M, Osborne CP. Carbon source-sink limitations differ between two species with contrasting growth strategies. PLANT, CELL & ENVIRONMENT 2016; 39:2460-2472. [PMID: 0 DOI: 10.1111/pce.12801] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/02/2016] [Accepted: 07/11/2016] [Indexed: 05/08/2023]
Affiliation(s)
- Angela C. Burnett
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
| | - Alistair Rogers
- Environmental and Climate Sciences Department; Brookhaven National Laboratory; Upton NY 11973 USA
| | - Mark Rees
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
| | - Colin P. Osborne
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
| |
Collapse
|
14
|
de Miguel M, Guevara MÁ, Sánchez-Gómez D, de María N, Díaz LM, Mancha JA, Fernández de Simón B, Cadahía E, Desai N, Aranda I, Cervera MT. Organ-specific metabolic responses to drought in Pinus pinaster Ait. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 102:17-26. [PMID: 26897116 DOI: 10.1016/j.plaphy.2016.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/01/2016] [Accepted: 02/09/2016] [Indexed: 05/06/2023]
Abstract
Drought is an important driver of plant survival, growth, and distribution. Water deficit affects different pathways of metabolism, depending on plant organ. While previous studies have mainly focused on the metabolic drought response of a single organ, analysis of metabolic differences between organs is essential to achieve an integrated understanding of the whole plant response. In this work, untargeted metabolic profiling was used to examine the response of roots, stems, adult and juvenile needles from Pinus pinaster Ait. full-sib individuals, subjected to a moderate and long lasting drought period. Cyclitols content showed a significant alteration, in response to drought in all organs examined, but other metabolites increased or decreased differentially depending on the analyzed organ. While a high number of flavonoids were only detected in aerial organs, an induction of the glutathione pathway was mainly detected in roots. This result may reflect different antioxidant mechanisms activated in aerial organs and roots. Metabolic changes were more remarkable in roots than in the other organs, highlighting its prominent role in the response to water stress. Significant changes in flavonoids and ascorbate metabolism were also observed between adult and juvenile needles, consistent with previously proven differential functional responses between the two developmental stages. Genetic polymorphisms in candidate genes coding for a Myb1 transcription factor and a malate dehydrogenase (EC 1.1.1.37) were associated with different concentration of phenylalanine, phenylpropanoids and malate, respectively. The results obtained will support further research on metabolites and genes potentially involved in functional mechanisms related to drought tolerance in trees.
Collapse
Affiliation(s)
- Marina de Miguel
- INIA-CIFOR, Departamento de Ecología y Genética Forestal, Carretera de la Coruña Km 7.5, 28040, Madrid, Spain; Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain.
| | - M Ángeles Guevara
- INIA-CIFOR, Departamento de Ecología y Genética Forestal, Carretera de la Coruña Km 7.5, 28040, Madrid, Spain; Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain.
| | - David Sánchez-Gómez
- INIA-CIFOR, Departamento de Ecología y Genética Forestal, Carretera de la Coruña Km 7.5, 28040, Madrid, Spain.
| | - Nuria de María
- INIA-CIFOR, Departamento de Ecología y Genética Forestal, Carretera de la Coruña Km 7.5, 28040, Madrid, Spain; Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain.
| | - Luis Manuel Díaz
- INIA-CIFOR, Departamento de Ecología y Genética Forestal, Carretera de la Coruña Km 7.5, 28040, Madrid, Spain; Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain.
| | - Jose A Mancha
- INIA-CIFOR, Departamento de Ecología y Genética Forestal, Carretera de la Coruña Km 7.5, 28040, Madrid, Spain.
| | | | - Estrella Cadahía
- INIA-CIFOR, Departamento de Industrias Forestales, Carretera de La Coruña Km 7.5, 28040, Madrid, Spain.
| | - Nalini Desai
- Metabolon, Inc. 617 Davis Drive, Suite 400, Durham, 27713, NC, USA.
| | - Ismael Aranda
- INIA-CIFOR, Departamento de Ecología y Genética Forestal, Carretera de la Coruña Km 7.5, 28040, Madrid, Spain.
| | - María-Teresa Cervera
- INIA-CIFOR, Departamento de Ecología y Genética Forestal, Carretera de la Coruña Km 7.5, 28040, Madrid, Spain; Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain.
| |
Collapse
|
15
|
Atkinson RRL, Mockford EJ, Bennett C, Christin PA, Spriggs EL, Freckleton RP, Thompson K, Rees M, Osborne CP. C4 photosynthesis boosts growth by altering physiology, allocation and size. NATURE PLANTS 2016; 2:16038. [PMID: 27243645 DOI: 10.1038/nplants.2016.38] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
C4 photosynthesis is a complex set of leaf anatomical and biochemical adaptations that have evolved more than 60 times to boost carbon uptake compared with the ancestral C3 photosynthetic type(1-3). Although C4 photosynthesis has the potential to drive faster growth rates(4,5), experiments directly comparing C3 and C4 plants have not shown consistent effects(1,6,7). This is problematic because differential growth is a crucial element of ecological theory(8,9) explaining C4 savannah responses to global change(10,11), and research to increase C3 crop productivity by introducing C4 photosynthesis(12). Here, we resolve this long-standing issue by comparing growth across 382 grass species, accounting for ecological diversity and evolutionary history. C4 photosynthesis causes a 19-88% daily growth enhancement. Unexpectedly, during the critical seedling establishment stage, this enhancement is driven largely by a high ratio of leaf area to mass, rather than fast growth per unit leaf area. C4 leaves have less dense tissues, allowing more leaves to be produced for the same carbon cost. Consequently, C4 plants invest more in roots than C3 species. Our data demonstrate a general suite of functional trait divergences between C3 and C4 species, which simultaneously drive faster growth and greater investment in water and nutrient acquisition, with important ecological and agronomic implications.
Collapse
Affiliation(s)
- Rebecca R L Atkinson
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Emily J Mockford
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Christopher Bennett
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | | | - Elizabeth L Spriggs
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520-8105, USA
| | - Robert P Freckleton
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Ken Thompson
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Mark Rees
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Colin P Osborne
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
16
|
White AC, Rogers A, Rees M, Osborne CP. How can we make plants grow faster? A source-sink perspective on growth rate. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:31-45. [PMID: 26466662 DOI: 10.1093/jxb/erv447] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Growth is a major component of fitness in all organisms, an important mediator of competitive interactions in plant communities, and a central determinant of yield in crops. Understanding what limits plant growth is therefore of fundamental importance to plant evolution, ecology, and crop science, but each discipline views the process from a different perspective. This review highlights the importance of source-sink interactions as determinants of growth. The evidence for source- and sink-limitation of growth, and the ways in which regulatory molecular feedback systems act to maintain an appropriate source:sink balance, are first discussed. Evidence clearly shows that future increases in crop productivity depend crucially on a quantitative understanding of the extent to which sources or sinks limit growth, and how this changes during development. To identify bottlenecks limiting growth and yield, a holistic view of growth is required at the whole-plant scale, incorporating mechanistic interactions between physiology, resource allocation, and plant development. Such a holistic perspective on source-sink interactions will allow the development of a more integrated, whole-system level understanding of growth, with benefits across multiple disciplines.
Collapse
Affiliation(s)
- Angela C White
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Alistair Rogers
- Biological, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Mark Rees
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Colin P Osborne
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
17
|
Jandová K, Dostál P, Cajthaml T, Kameník Z. Intraspecific variability in allelopathy of Heracleum mantegazzianum is linked to the metabolic profile of root exudates. ANNALS OF BOTANY 2015; 115:821-31. [PMID: 25714817 PMCID: PMC4373284 DOI: 10.1093/aob/mcu265] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/01/2014] [Accepted: 12/12/2014] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS Allelopathy may drive invasions of some exotic plants, although empirical evidence for this theory remains largely inconclusive. This could be related to the large intraspecific variability of chemically mediated plant-plant interactions, which is poorly studied. This study addressed intraspecific variability in allelopathy of Heracleum mantegazzianum (giant hogweed), an invasive species with a considerable negative impact on native communities and ecosystems. METHODS Bioassays were carried out to test the alleopathic effects of H. mantegazzianum root exudates on germination of Arabidopsis thaliana and Plantago lanceolata. Populations of H. mantegazzianum from the Czech Republic were sampled and variation in the phytotoxic effects of the exudates was partitioned between areas, populations within areas, and maternal lines. The composition of the root exudates was determined by metabolic profiling using ultra-high-performance liquid chromatography with time-of-flight mass spectrometry, and the relationships between the metabolic profiles and the effects observed in the bioassays were tested using orthogonal partial least-squares analysis. KEY RESULTS Variance partitioning indicated that the highest variance in phytotoxic effects was within populations. The inhibition of germination observed in the bioassay for the co-occurring native species P. lanceolata could be predicted by the metabolic profiles of the root exudates of particular maternal lines. Fifteen compounds associated with this inhibition were tentatively identified. CONCLUSIONS The results present strong evidence that intraspecific variability needs to be considered in research on allelopathy, and suggest that metabolic profiling provides an efficient tool for studying chemically mediated plant-plant interactions whenever unknown metabolites are involved.
Collapse
Affiliation(s)
- Kateřina Jandová
- Faculty of Science, Institute for Environmental Studies, Charles University in Prague, Albertov 6, CZ-128 43 Prague 2, Czech Republic, Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Republic and Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic Faculty of Science, Institute for Environmental Studies, Charles University in Prague, Albertov 6, CZ-128 43 Prague 2, Czech Republic, Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Republic and Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Petr Dostál
- Faculty of Science, Institute for Environmental Studies, Charles University in Prague, Albertov 6, CZ-128 43 Prague 2, Czech Republic, Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Republic and Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Tomáš Cajthaml
- Faculty of Science, Institute for Environmental Studies, Charles University in Prague, Albertov 6, CZ-128 43 Prague 2, Czech Republic, Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Republic and Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic Faculty of Science, Institute for Environmental Studies, Charles University in Prague, Albertov 6, CZ-128 43 Prague 2, Czech Republic, Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Republic and Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Zdeněk Kameník
- Faculty of Science, Institute for Environmental Studies, Charles University in Prague, Albertov 6, CZ-128 43 Prague 2, Czech Republic, Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Republic and Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| |
Collapse
|
18
|
Atkinson RRL, Burrell MM, Rose KE, Osborne CP, Rees M. The dynamics of recovery and growth: how defoliation affects stored resources. Proc Biol Sci 2014; 281:20133355. [PMID: 24671974 PMCID: PMC3996606 DOI: 10.1098/rspb.2013.3355] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Growth rate varies widely among species and the trade-off between growth rate and storage or maintenance traits is a principal axis of variation between species. Many plant species have substantial root stores, but very little is known about how growth rate modifies responses of these stores to defoliation and other stresses. Species with different growth rates are predicted to respond in distinct ways, because of variation in the pre-defoliation allocation to storage. Here, we quantified the dynamics of stored carbohydrates in seven species with varying growth rate, following defoliation in a pot experiment. For faster growing species, there was significant reduction in carbohydrate concentration following defoliation, followed by relatively fast recovery, whereas for slower growing species, carbohydrate concentration levels remained relatively invariant across treatments. Results for total carbohydrates mirrored those for concentration, but were not as significant. Our findings were consistent with the idea that faster growing species respond more rapidly than slower growers to defoliation, through changes in carbohydrate pool concentrations. Growth rate as an indicator of life-history and ecological strategy may therefore be key to understanding post-defoliation recovery and storage strategies.
Collapse
Affiliation(s)
- R R L Atkinson
- Department of Animal and Plant Sciences, University of Sheffield, , Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | |
Collapse
|
19
|
Ogura T, Bamba T, Fukusaki E. Development of a practical metabolite identification technique for non-targeted metabolomics. J Chromatogr A 2013; 1301:73-9. [DOI: 10.1016/j.chroma.2013.05.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 05/11/2013] [Accepted: 05/23/2013] [Indexed: 11/25/2022]
|