1
|
Jacobson KA, Gao ZG, Matricon P, Eddy MT, Carlsson J. Adenosine A 2A receptor antagonists: from caffeine to selective non-xanthines. Br J Pharmacol 2022; 179:3496-3511. [PMID: 32424811 PMCID: PMC9251831 DOI: 10.1111/bph.15103] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 12/12/2022] Open
Abstract
A long evolution of knowledge of the psychostimulant caffeine led in the 1960s to another purine natural product, adenosine and its A2A receptor. Adenosine is a short-lived autocrine/paracrine mediator that acts pharmacologically at four different adenosine receptors in a manner opposite to the pan-antagonist caffeine and serves as an endogenous allostatic regulator. Although detrimental in the developing brain, caffeine appears to be cerebroprotective in aging. Moderate caffeine consumption in adults, except in pregnancy, may also provide benefit in pain, diabetes, and kidney and liver disorders. Inhibition of A2A receptors is one of caffeine's principal effects and we now understand this interaction at the atomic level. The A2A receptor has become a prototypical example of utilizing high-resolution structures of GPCRs for the rational design of chemically diverse drug molecules. The previous focus on discovery of selective A2A receptor antagonists for neurodegenerative diseases has expanded to include immunotherapy for cancer, and clinical trials have ensued. LINKED ARTICLES: This article is part of a themed issue on Structure Guided Pharmacology of Membrane Proteins (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.14/issuetoc.
Collapse
Affiliation(s)
- Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pierre Matricon
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Matthew T. Eddy
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Jens Carlsson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Abstract
The purine alkaloid caffeine is the most widely consumed psychostimulant drug in the world and has multiple beneficial pharmacological activities, for example, in neurodegenerative diseases. However, despite being an extensively studied bioactive natural product, the mechanistic understanding of caffeine's pharmacological effects is incomplete. While several molecular targets of caffeine such as adenosine receptors and phosphodiesterases have been known for decades and inspired numerous medicinal chemistry programs, new protein interactions of the xanthine are continuously discovered providing potentially improved pharmacological understanding and a molecular basis for future medicinal chemistry. In this Perspective, we gather knowledge on the confirmed protein interactions, structure activity relationship, and chemical biology of caffeine on well-known and upcoming targets. The diversity of caffeine's molecular activities on receptors and enzymes, many of which are abundant in the CNS, indicates a complex interplay of several mechanisms contributing to neuroprotective effects and highlights new targets as attractive subjects for drug discovery.
Collapse
Affiliation(s)
- Giuseppe Faudone
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Silvia Arifi
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
3
|
Polis B, Karasik D, Samson AO. Alzheimer's disease as a chronic maladaptive polyamine stress response. Aging (Albany NY) 2021; 13:10770-10795. [PMID: 33811757 PMCID: PMC8064158 DOI: 10.18632/aging.202928] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/27/2021] [Indexed: 12/21/2022]
Abstract
Polyamines are nitrogen-rich polycationic ubiquitous bioactive molecules with diverse evolutionary-conserved functions. Their activity interferes with numerous genes' expression resulting in cell proliferation and signaling modulation. The intracellular levels of polyamines are precisely controlled by an evolutionary-conserved machinery. Their transient synthesis is induced by heat stress, radiation, and other traumatic stimuli in a process termed the polyamine stress response (PSR). Notably, polyamine levels decline gradually with age; and external supplementation improves lifespan in model organisms. This corresponds to cytoprotective and reactive oxygen species scavenging properties of polyamines. Paradoxically, age-associated neurodegenerative disorders are characterized by upsurge in polyamines levels, indicating polyamine pleiotropic, adaptive, and pathogenic roles. Specifically, arginase overactivation and arginine brain deprivation have been shown to play an important role in Alzheimer's disease (AD) pathogenesis. Here, we assert that a universal short-term PSR associated with acute stimuli is beneficial for survival. However, it becomes detrimental and maladaptive following chronic noxious stimuli, especially in an aging organism. Furthermore, we regard cellular senescence as an adaptive response to stress and suggest that PSR plays a central role in age-related neurodegenerative diseases' pathogenesis. Our perspective on AD proposes an inclusive reassessment of the causal relationships between the classical hallmarks and clinical manifestation. Consequently, we offer a novel treatment strategy predicated upon this view and suggest fine-tuning of arginase activity with natural inhibitors to preclude or halt the development of AD-related dementia.
Collapse
Affiliation(s)
- Baruh Polis
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - David Karasik
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA 02131, USA
- Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Abraham O. Samson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
4
|
Jóźwiak-Bębenista M, Wiktorowska-Owczarek A, Kowalczyk E. Beta-adrenoceptor-mediated cyclic AMP signal in different types of cultured nerve cells in normoxic and hypoxic conditions. Mol Biol 2016. [DOI: 10.1134/s0026893316050071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Wiktorowska-Owczarek A, Owczarek J. The effect of hypoxia on PGE2-stimulated cAMP generation in HMEC-1. Cell Mol Biol Lett 2016. [PMID: 26204403 DOI: 10.1515/cmble-2015-0013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Prostaglandin E2 (PGE2) is generated in various cells, including endothelial cells, and is responsible for various functions, such as vascular relaxation and angiogenesis. Effects of PGE2 are mediated via receptors EP1-EP4, among which EP2 and EP4 are coupled to Gs protein which activates adenylate cyclase (AC) and cAMP synthesis. The aim of this work was to study the ability of human microvascular endothelial cells (HMEC-1) to synthesize cAMP in the presence of PGE2, and to determine the effect of hypoxia on the PGE2- stimulated cAMP level. It was decided to evaluate the effect of PGE2 on the secretion of VEGF, an inducer of angiogenesis. In summary, our findings show that PGE2 induces cAMP production, but hypoxia may impair PGE2-stimulated activity of the AC-cAMP signaling pathway. These results suggest that the cardioprotective effect of PGE2/EP4/cAMP may be attenuated during ischemia. Furthermore, this study indicates that the pro-angiogenic effect of PGE2 is not associated with VEGF secretion in HMEC-1 cells.
Collapse
|
6
|
Jóźwiak-Bębenista M, Kowalczyk E, Nowak JZ. The cyclic AMP effects and neuroprotective activities of PACAP and VIP in cultured astrocytes and neurons exposed to oxygen-glucose deprivation. Pharmacol Rep 2014; 67:332-8. [PMID: 25712659 DOI: 10.1016/j.pharep.2014.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/24/2014] [Accepted: 10/02/2014] [Indexed: 01/30/2023]
Abstract
BACKGROUND Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are endogenous peptides, widely expressed in the central and peripheral nervous system. The adenylyl cyclase (AC)/cyclic AMP (cAMP) is their main intracellular signal transduction pathway. Numerous data suggest that PACAP and VIP have considerable neuroprotective potential, indicating the possibility for their use as new therapeutic strategies in stroke treatment. The aim of this study was to evaluate the effect of oxygen-glucose deprivation (OGD) - an established in vitro model for ischemic cell stress - on PACAP and VIP-evoked receptor-mediated cAMP generation in glial and neuronal cells, and to determine whether PACAP and VIP have neuroprotective activity under these conditions. METHODS The formation of [(3)H]cAMP by PACAP, VIP and forskolin (a direct activator of AC) was measured in [(3)H]adenine prelabeled primary rat glial and neuronal cells under normoxia and OGD conditions. The effects of PACAP and VIP on cell viability were measured using the MTT conversion method, and were compared to tacrolimus (FK506), a well known neuroprotective agent. RESULTS The OGD model inhibited the PACAP and VIP-induced cAMP formation in rat astrocytes and neurons. Incubation of neuronal cells with PACAP prevented OGD-induced cell death, more efficiently than VIP and FK506. CONCLUSION The obtained results showed that hypoxia/ischemia may trigger down-regulation of the brain AC-coupled PACAP/VIP receptors, with a consequent decrease of PACAP- and/or VIP-ergic-dependent cAMP-driven signaling. Moreover, our findings indicate that PACAP and VIP can prevent the deleterious effect of OGD on rat neuronal cells.
Collapse
Affiliation(s)
- Marta Jóźwiak-Bębenista
- Department of Pharmacology and Toxicology, The Interfaculty Chair of Basic and Clinical Pharmacology, Medical University of Lodz, Łódź, Poland.
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, The Interfaculty Chair of Basic and Clinical Pharmacology, Medical University of Lodz, Łódź, Poland
| | - Jerzy Z Nowak
- Department of Pharmacology and Toxicology, The Interfaculty Chair of Basic and Clinical Pharmacology, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
7
|
Ananthan S, Saini SK, Zhou G, Hobrath JV, Padmalayam I, Zhai L, Bostwick JR, Antonio T, Reith MEA, McDowell S, Cho E, McAleer L, Taylor M, Luedtke RR. Design, synthesis, and structure-activity relationship studies of a series of [4-(4-carboxamidobutyl)]-1-arylpiperazines: insights into structural features contributing to dopamine D3 versus D2 receptor subtype selectivity. J Med Chem 2014; 57:7042-60. [PMID: 25126833 PMCID: PMC4148173 DOI: 10.1021/jm500801r] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
Antagonist and partial agonist modulators
of the dopamine D3 receptor
(D3R) have emerged as promising therapeutics for the treatment of
substance abuse and neuropsychiatric disorders. However, development
of druglike lead compounds with selectivity for the D3 receptor has
been challenging because of the high sequence homology between the
D3R and the dopamine D2 receptor (D2R). In this effort, we synthesized
a series of acylaminobutylpiperazines incorporating aza-aromatic units
and evaluated their binding and functional activities at the D3 and
D2 receptors. Docking studies and results from evaluations against
a set of chimeric and mutant receptors suggest that interactions at
the extracellular end of TM7 contribute to the D3R versus D2R selectivity
of these ligands. Molecular insights from this study could potentially
enable rational design of potent and selective D3R ligands.
Collapse
Affiliation(s)
- Subramaniam Ananthan
- Organic Chemistry Department, Southern Research Institute , Birmingham, Alabama 35205, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ikari J, Michalski JM, Iwasawa S, Gunji Y, Nogel S, Park JH, Nelson AJ, Farid M, Wang X, Schulte N, Basma H, Toews ML, Feghali-Bostwick C, Tenor H, Liu X, Rennard SI. Phosphodiesterase-4 inhibition augments human lung fibroblast vascular endothelial growth factor production induced by prostaglandin E2. Am J Respir Cell Mol Biol 2014; 49:571-81. [PMID: 23656623 DOI: 10.1165/rcmb.2013-0004oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lung fibroblasts are believed to be a major source of vascular endothelial growth factor (VEGF), which supports the survival of lung endothelial cells and modulates the maintenance of the pulmonary microvasculature. VEGF has been related to the pathogenesis of lung diseases, including chronic obstructive pulmonary disease (COPD). Prostaglandin E2 (PGE2) stimulates VEGF production from lung fibroblasts via the E-prostanoid (EP)-2 receptor. The EP2 signaling pathway uses cyclic adenosine monophosphate (cAMP) as a second messenger, and cAMP is degraded by phosphodiesterases (PDEs). This study investigates whether phosphodiesterase inhibition modulates the human lung fibroblast VEGF production induced by PGE2. Human fetal lung fibroblasts were cultured with PGE2 and PDE inhibitors. The PDE4 inhibitors roflumilast, roflumilast N-oxide, and rolipram with PGE2 increased VEGF release, as quantified in supernatant media by ELISA. In contrast, PDE3, PDE5, and PDE7 inhibitors did not affect VEGF release. Roflumilast increased VEGF release with either an EP2 or an EP4 agonist. Roflumilast augmented the cytosolic cAMP levels induced by PGE2 and VEGF release with other agents that use the cAMP signaling pathway. Roflumilast-augmented VEGF release was completely inhibited by a protein kinase A (PKA) inhibitor. Roflumilast with PGE2 increased VEGF mRNA levels, and the blockade of mRNA synthesis inhibited the augmented VEGF release. The stimulatory effect of roflumilast on VEGF release was replicated using primary healthy and COPD lung fibroblasts. These findings demonstrate that PDE4 inhibition can modulate human lung fibroblast VEGF release by PGE2 acting through the EP2 and EP4 receptor-cAMP/PKA signaling pathway. Through this action, PDE4 inhibitors such as roflumilast could contribute to the survival of lung endothelial cells.
Collapse
Affiliation(s)
- Jun Ikari
- 1 Department of Internal Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cheung THC, Loriaux AL, Weber SM, Chandler KN, Lenz JD, Schaan RF, Mach RH, Luedtke RR, Neisewander JL. Reduction of cocaine self-administration and D3 receptor-mediated behavior by two novel dopamine D3 receptor-selective partial agonists, OS-3-106 and WW-III-55. J Pharmacol Exp Ther 2013; 347:410-23. [PMID: 24018640 PMCID: PMC3807071 DOI: 10.1124/jpet.112.202911] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 08/01/2013] [Indexed: 01/26/2023] Open
Abstract
Dopamine D3 receptor (D3R)-selective compounds may be useful medications for cocaine dependence. In this study, we identified two novel arylamide phenylpiperazines, OS-3-106 and WW-III-55, as partial agonists at the D3R in the adenylyl cyclase inhibition assay. OS-3-106 and WW-III-55 have 115- and 862-fold D3R:D2 receptor (D2R) binding selectivity, respectively. We investigated their effects (0, 3, 5.6, or 10 mg/kg) on operant responding by using a multiple variable-interval (VI) 60-second schedule that alternated components with sucrose reinforcement and components with intravenous cocaine reinforcement (0.375 mg/kg). Additionally, we evaluated the effect of OS-3-106 (10 mg/kg) on the dose-response function of cocaine self-administration and the effect of WW-III-55 (0-5.6 mg/kg) on a progressive ratio schedule with either cocaine or sucrose reinforcement. Both compounds were also examined for effects on locomotion and yawning induced by a D3R agonist. OS-3-106 decreased cocaine and sucrose reinforcement rates, increased latency to first response for cocaine but not sucrose, and downshifted the cocaine self-administration dose-response function. WW-III-55 did not affect cocaine self-administration on the multiple-variable interval schedule, but it reduced cocaine and sucrose intake on the progressive ratio schedule. Both compounds reduced locomotion at doses that reduced responding, and both compounds attenuated yawning induced by low doses of 7-OH-DPAT (a D3R-mediated behavior), but neither affected yawning on the descending limb of the 7-OH-DPAT dose-response function (a D2R-mediated behavior). Therefore, both compounds blocked a D3R-mediated behavior. However, OS-3-106 was more effective in reducing cocaine self-administration. These findings support D3Rs, and possibly D2Rs, as targets for medications aimed at reducing the motivation to seek cocaine.
Collapse
Affiliation(s)
- Timothy H C Cheung
- School of Life Sciences (T.H.C.C., A.L.L., S.M.W., K.N.C., R.F.S., J.L.N.) and Department of Psychology (T.H.C.C., S.M.W., K.N.C., J.D.L., J.L.N.), Arizona State University, Tempe, Arizona; Washington University School of Medicine, St. Louis, Missouri (R.H.M.); and Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas (R.R.L.)
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Luedtke RR, Mishra Y, Wang Q, Griffin SA, Bell-Horner C, Taylor M, Vangveravong S, Dillon GH, Huang RQ, Reichert DE, Mach RH. Comparison of the binding and functional properties of two structurally different D2 dopamine receptor subtype selective compounds. ACS Chem Neurosci 2012; 3:1050-62. [PMID: 23259040 DOI: 10.1021/cn300142q] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/12/2012] [Indexed: 11/28/2022] Open
Abstract
We previously reported on the synthesis of substituted phenyl-4-hydroxy-1-piperidyl indole analogues with nanomolar affinity at D2 dopamine receptors, ranging from 10- to 100-fold selective for D2 compared to the D3 dopamine receptor subtype. More recently, we evaluated a panel of aripiprazole analogues, identifying several analogues that also exhibit D2 vs D3 dopamine receptor binding selectivity. These studies further characterize the intrinsic efficacy of the compound with the greatest binding selectivity from each chemical class, 1-((5-methoxy-1H-indol-3-yl)methyl)-4-(4-(methylthio)phenyl)piperidin-4-ol (SV 293) and 7-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butoxy)-3,4-dihydroquinolin-2(1H)-one (SV-III-130s), using an adenylyl cyclase inhibition assay, a G-protein-coupled inward-rectifying potassium (GIRK) channel activation assay, and a cell based phospho-MAPK (pERK1/2) assay. SV 293 was found to be a neutral antagonist at D2 dopamine receptors using all three assays. SV-III-130s is a partial agonist using an adenylyl cyclase inhibition assay but an antagonist in the GIRK and phospho ERK1/2 assays. To define the molecular basis for the binding selectivity, the affinity of these two compounds was evaluated using (a) wild type human D2 and D3 receptors and (b) a panel of chimeric D2/D3 dopamine receptors. Computer-assisted modeling techniques were used to dock these compounds to the human D2 and D3 dopamine receptor subtypes. It is hoped that these studies on D2 receptor selective ligands will be useful in the future design of (a) receptor selective ligands used to define the function of D2-like receptor subtypes, (b) novel pharmacotherapeutic agents, and/or (c) in vitro and in vivo imaging agents.
Collapse
Affiliation(s)
- Robert R. Luedtke
- The Department of Pharmacology
and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas
76107, United States
| | - Yogesh Mishra
- The Department of Pharmacology
and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas
76107, United States
| | - Qi Wang
- Division
of Radiological Sciences, Washington University School of Medicine, Mallinckrodt
Institute of Radiology, 510 S. Kingshighway, St. Louis, Missouri 63110,
United States
| | - Suzy A. Griffin
- The Department of Pharmacology
and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas
76107, United States
| | - Cathy Bell-Horner
- The Department of Pharmacology
and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas
76107, United States
| | - Michelle Taylor
- The Department of Pharmacology
and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas
76107, United States
| | - Suwanna Vangveravong
- Division
of Radiological Sciences, Washington University School of Medicine, Mallinckrodt
Institute of Radiology, 510 S. Kingshighway, St. Louis, Missouri 63110,
United States
| | - Glenn H. Dillon
- The Department of Pharmacology
and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas
76107, United States
| | - Ren-Qi Huang
- The Department of Pharmacology
and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas
76107, United States
| | - David E. Reichert
- Division
of Radiological Sciences, Washington University School of Medicine, Mallinckrodt
Institute of Radiology, 510 S. Kingshighway, St. Louis, Missouri 63110,
United States
| | - Robert H. Mach
- Division
of Radiological Sciences, Washington University School of Medicine, Mallinckrodt
Institute of Radiology, 510 S. Kingshighway, St. Louis, Missouri 63110,
United States
| |
Collapse
|
11
|
Michalski J, Kanaji N, Liu X, Nogel S, Wang X, Basma H, Nakanishi M, Sato T, Gunji Y, Fahrid M, Nelson A, Muller KC, Holz O, Magnussen H, Rabe KF, Toews ML, Rennard SI. Attenuation of inhibitory prostaglandin E2 signaling in human lung fibroblasts is mediated by phosphodiesterase 4. Am J Respir Cell Mol Biol 2012; 47:729-37. [PMID: 23043089 DOI: 10.1165/rcmb.2012-0057oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The etiology of chronic obstructive pulmonary disease (COPD) is complex and involves an aberrant inflammatory response. Prostaglandin (PG)E2 is elevated in COPD, is a key modulator of lung fibroblast functions, and may influence COPD progression. Most studies evaluating the effects of PGE2 on lung fibroblasts have used acute exposures. The current study evaluated whether longer-term exposure would induce attenuation of PGE2 signaling as part of an autoregulatory pathway. Human fetal lung fibroblasts were pretreated with PGE2 for 24 hours, and migration and cAMP accumulation in response to acute stimulation with PGE2 were assessed. Fibroblasts from adults with and without COPD were pretreated, and migration was assessed. PGE2 pretreatment attenuated subsequent PGE2-mediated inhibition of chemotaxis and cAMP stimulation. This attenuation was predominantly due to an increase in phosphodiesterase (PDE)4-mediated degradation of cAMP rather than to decreased activation of PGE2 receptors (receptor desensitization). Albuterol- and iloprost-mediated signaling were also attenuated after PGE2 pretreatment, suggesting that activation of PDE4 was able to broadly modulate multiple cAMP-coupled pathways. Lung fibroblasts from adult control subjects pretreated with PGE2 also developed attenuation of PGE2-mediated inhibition of chemotaxis. In contrast, fibroblasts obtained from patients with COPD maintained inhibitory PGE2 signaling after PGE2 pretreatment. These data identify a PDE4-mediated attenuation of PGE2 inhibitory signaling in normal fibroblasts that appears to be altered in COPD fibroblasts. These alterations may contribute to COPD pathogenesis and could provide novel therapeutic targets.
Collapse
Affiliation(s)
- Joel Michalski
- Department of Internal Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy, University of Nebraska Medical Center, 985910 Nebraska Medical Center, Omaha, NE 68198-5910, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
|
14
|
Woldan-Tambor A, Biegańska K, Wiktorowska-Owczarek A, Zawilska JB. Activation of orexin/hypocretin type 1 receptors stimulates cAMP synthesis in primary cultures of rat astrocytes. Pharmacol Rep 2011; 63:717-23. [PMID: 21857082 DOI: 10.1016/s1734-1140(11)70583-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 11/29/2010] [Indexed: 01/29/2023]
Abstract
The effects of orexins, which are also named hypocretins, on cAMP formation were examined in primary cultures of rat astrocytes. Orexin A, an agonist of OX₁ and OX₂ receptors, stimulated cAMP production with an EC₅₀ value of 0.68 μM and potentiated the forskolin-induced increase in the nucleotide synthesis. [Ala¹¹-D-Leu¹⁵]orexin B, an agonist of OX₂ receptors, was inactive. The effects of orexin A were antagonized by SB 408124, a selective blocker of OX₁ receptors, but were not affected by TCS OX2 29, a selective antagonist of OX₃ receptors. We hypothesized that the activation of OX₁ receptors stimulated cAMP synthesis in primary rat astrocyte cultures.
Collapse
Affiliation(s)
- Agata Woldan-Tambor
- Department of Pharmacodynamics, Medical University of Łódź, Muszyńskiego 1, PL 90-151 Łódź, Poland
| | | | | | | |
Collapse
|
15
|
Tu Z, Li S, Xu J, Chu W, Jones LA, Luedtke RR, Mach RH. Effect of cyclosporin A on the uptake of D3-selective PET radiotracers in rat brain. Nucl Med Biol 2011; 38:725-39. [PMID: 21718948 PMCID: PMC3128788 DOI: 10.1016/j.nucmedbio.2011.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/28/2010] [Accepted: 01/03/2011] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Four benzamide analogs having a high affinity and selectivity for D(3) versus D(2) receptors were radiolabeled with (11)C or (18)F for in vivo evaluation. METHODS Precursors were synthesized, and the four D(3) selective benzamide analogs were radiolabeled. The tissue distribution and brain uptake of the four compounds were evaluated in control rats and rats pretreated with cyclosporin A, a modulator of P-glycoprotein and an inhibitor of other ABC efflux transporters that contribute to the blood brain barrier. Micro-positron emission tomographic (PET) imaging was carried out for [(11)C]6 in a control and a cyclosporin A pretreated rat. RESULTS All four compounds showed low brain uptake in control rats at 5 and 30 min post-injection; despite recently reported rat behavioral studies conducted on analogs 6 (WC-10) and 7 (WC-44). Following administration of cyclosporin A, increased brain uptake was observed with all four PET radiotracers at both 5 and 30 min post-intravenous injection. An increase in brain uptake following modulation/inhibition of the ABC transporters was also observed in the microPET study. CONCLUSIONS These data suggest that D3 selective conformationally-flexible benzamide analogs which contain a N-2-methoxyphenylpiperazine moiety are substrates for P-glycoprotein or other adenosine triphosphate (ATP)-binding cassette transporters expressed at the blood-brain barrier, and that PET radiotracers containing this pharmacophore may display low brain uptake in rodents due to the action of these efflux transporters.
Collapse
Affiliation(s)
- Zhude Tu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Shihong Li
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Wenhua Chu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Lynne A. Jones
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Robert R. Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Robert H. Mach
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
16
|
Vangveravong S, Zhang Z, Taylor M, Bearden M, Xu J, Cui J, Wang W, Luedtke RR, Mach RH. Synthesis and characterization of selective dopamine D₂ receptor ligands using aripiprazole as the lead compound. Bioorg Med Chem 2011; 19:3502-11. [PMID: 21536445 PMCID: PMC3118479 DOI: 10.1016/j.bmc.2011.04.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/06/2011] [Accepted: 04/11/2011] [Indexed: 11/23/2022]
Abstract
A series of compounds structurally related to aripiprazole (1), an atypical antipsychotic and antidepressant used clinically for the treatment of schizophrenia, bipolar disorder, and depression, have been prepared and evaluated for affinity at D(₂-like) dopamine receptors. These compounds also share structural elements with the classical D(₂-like) dopamine receptor antagonists, haloperidol, N-methylspiperone, domperidone and benperidol. Two new compounds, 7-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butoxy)-3,4-dihydroquinolin-2(1H)-one oxalate (6) and 7-(4-(4-(2-(2-fluoroethoxy)phenyl)piperazin-1-yl)butoxy)-3,4-dihydroquinolin-2(1H)-one oxalate (7) were found to (a) bind to the D₂ receptor subtype with high affinity (K(i) values < 0.3 nM), (b) exhibit >50-fold D₂ versus D₃ receptor binding selectivity and (c) be partial agonists at both the D₂ and D₃ receptor subtype.
Collapse
Affiliation(s)
- Suwanna Vangveravong
- Division of Radiological Sciences, Washington University School of Medicine, Mallinckrodt Institute of Radiology, 510 S. Kingshighway, St. Louis, MO 63110, USA
| | - Zhanbin Zhang
- Division of Radiological Sciences, Washington University School of Medicine, Mallinckrodt Institute of Radiology, 510 S. Kingshighway, St. Louis, MO 63110, USA
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Melissa Bearden
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Jinbin Xu
- Division of Radiological Sciences, Washington University School of Medicine, Mallinckrodt Institute of Radiology, 510 S. Kingshighway, St. Louis, MO 63110, USA
| | - Jinquan Cui
- Division of Radiological Sciences, Washington University School of Medicine, Mallinckrodt Institute of Radiology, 510 S. Kingshighway, St. Louis, MO 63110, USA
| | - Wei Wang
- Division of Radiological Sciences, Washington University School of Medicine, Mallinckrodt Institute of Radiology, 510 S. Kingshighway, St. Louis, MO 63110, USA
| | - Robert R. Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Robert H. Mach
- Division of Radiological Sciences, Washington University School of Medicine, Mallinckrodt Institute of Radiology, 510 S. Kingshighway, St. Louis, MO 63110, USA
| |
Collapse
|
17
|
Urbańska A, Sokołowska P, Woldan-Tambor A, Biegańska K, Brix B, Jöhren O, Namiecińska M, Zawilska JB. Orexins/hypocretins acting at Gi protein-coupled OX 2 receptors inhibit cyclic AMP synthesis in the primary neuronal cultures. J Mol Neurosci 2011; 46:10-7. [PMID: 21547533 PMCID: PMC3260434 DOI: 10.1007/s12031-011-9526-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/19/2011] [Indexed: 11/24/2022]
Abstract
Orexins A and B are newly discovered neuropeptides with pleiotropic activity. They signal through two G protein-coupled receptors: OX1 and OX2. In this study, we examined the expression of orexin receptors and effects of the receptors’ activation on cyclic AMP formation in the primary neuronal cell cultures from rat cerebral cortex. Both types of orexin receptors were expressed in rat cortical neurons; the level of OX2R was markedly higher compared to OX1R. Orexin A (an agonist of OX1R and OX2R) and [Ala11-D-Leu15]orexin B (a selective agonist of OX2R) did not affect basal cyclic AMP formation in the primary neuronal cell cultures. Both peptides (0.001–1 μM) inhibited, in a concentration-dependent manner and IC50 values in low nanomolar range, the increase in the nucleotide production evoked by forskolin (1 μM; a direct activator of adenylyl cyclase), pituitary adenylate cyclase-activating polypeptide (PACAP27; 0.1 μM), and vasoactive intestinal peptide (VIP; 3 μM). Effects of orexin A on forskolin-, PACAP27-, and VIP-stimulated cyclic AMP synthesis were blocked by TCS OX2 29 (a selective antagonist of OX2R), and unaffected by SB 408124 (a selective antagonist of OX1R). Pretreatment of neuronal cell cultures with pertussis toxin (PTX) abolished the inhibitory action of orexin A on forskolin- and PACAP-stimulated cyclic AMP accumulation. It is suggested that in cultured rat cortical neurons orexins, acting at OX2 receptors coupled to PTX-sensitive Gi protein, inhibit cyclic AMP synthesis.
Collapse
Affiliation(s)
- Anna Urbańska
- Institute for Medical Biology, Polish Academy of Sciences, Lodowa 106, PL 93-232, Łódź, Poland
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Depolarizing and calcium-mobilizing stimuli fail to enhance synthesis and release of endocannabinoids from rat brain cerebral cortex slices. J Neurochem 2011; 117:665-77. [DOI: 10.1111/j.1471-4159.2011.07235.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Tu Z, Li S, Cui J, Xu J, Taylor M, Ho D, Luedtke RR, Mach RH. Synthesis and pharmacological evaluation of fluorine-containing D₃ dopamine receptor ligands. J Med Chem 2011; 54:1555-64. [PMID: 21348515 PMCID: PMC3066655 DOI: 10.1021/jm101323b] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of fluorine-containing N-(2-methoxyphenyl)piperazine and N-(2-fluoroethoxy)piperazine analogues were synthesized, and their affinities for human dopamine D(2), D(3), and D(4) receptors were determined. Radioligand binding studies identified five compounds, 18a, 20a, 20c, 20e, and 21e, which bind with high affinity at D(3) (K(i) = 0.17-5 nM) and moderate to high selectivity for D(3) vs D(2) receptors (ranging from ∼25- to 163-fold). These compounds were also evaluated for intrinsic activity at D(2) and D(3) receptors using a forskolin-dependent adenylyl cyclase assay. This panel of compounds exhibits varying receptor subtype binding selectivity and intrinsic activity at D(2) vs D(3) receptors. These compounds may be useful for behavioral pharmacology studies on the role of D(2)-like dopamine receptors in neuropsychiatric and neurological disorders. Furthermore, compound 20e, which has the highest binding affinity and selectivity for the D(3) receptor (K(i) = 0.17 nM for D(3), 163-fold selectivity for D(3) vs D(2) receptors), represents a candidate fluorine-18 radiotracer for in vivo PET imaging studies on the regulation of D(3) receptor expression.
Collapse
Affiliation(s)
- Zhude Tu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Shihong Li
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Jinquan Cui
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - David Ho
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Robert R. Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Robert H. Mach
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
- Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110
- Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
20
|
Bone DBJ, Choi DS, Coe IR, Hammond JR. Nucleoside/nucleobase transport and metabolism by microvascular endothelial cells isolated from ENT1−/− mice. Am J Physiol Heart Circ Physiol 2010; 299:H847-56. [DOI: 10.1152/ajpheart.00018.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleoside and nucleobase uptake is integral to mammalian cell function, and its disruption has significant effects on the cardiovasculature. The predominant transporters in this regard are the equilibrative nucleoside transporter subtypes 1 (ENT1) and 2 (ENT2). To examine the role of ENT1 in more detail, we have assessed the mechanisms by which microvascular endothelial cells (MVECs) from ENT1−/− mice transport and metabolize nucleosides and nucleobases. Wild-type murine MVECs express mainly the ENT1 subtype with only trace levels of ENT2. These cells also have a Na+-independent equilibrative nucleobase transport mechanism for hypoxanthine (ENBT1). In the ENT1−/− cells, there is no change in ENT2 or ENBT1, resulting in a very low level of nucleoside uptake in these cells, but a high capacity for nucleobase accumulation. Whereas there were no significant changes in nucleoside transporter subtype expression, there was a dramatic increase in adenosine deaminase and adenosine A2a receptors (both transcript and protein) in the ENT1−/− tissues compared with WT. These changes in adenosine deaminase and A2a receptors likely reflect adaptive cellular mechanisms in response to reduced adenosine flux across the membranes of ENT1−/− cells. Our study also revealed that mouse MVECs have a nucleoside/nucleobase transport profile that is more similar to human MVECs than to rat MVECs. Thus mouse MVECs from transgenic animals may prove to be a useful preclinical model for studies of the effects of purine metabolite modifiers on vascular function.
Collapse
Affiliation(s)
- Derek B. J. Bone
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | - Doo-Sup Choi
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota; and
| | - Imogen R. Coe
- Department of Biology, York University, Toronto, Canada
| | - James R. Hammond
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| |
Collapse
|
21
|
Vangveravong S, Taylor M, Xu J, Cui J, Calvin W, Babic S, Luedtke RR, Mach RH. Synthesis and characterization of selective dopamine D2 receptor antagonists. 2. Azaindole, benzofuran, and benzothiophene analogs of L-741,626. Bioorg Med Chem 2010; 18:5291-300. [PMID: 20542439 PMCID: PMC2946321 DOI: 10.1016/j.bmc.2010.05.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/15/2010] [Accepted: 05/18/2010] [Indexed: 11/28/2022]
Abstract
A series of indole, 7-azaindole, benzofuran, and benzothiophene compounds have been prepared and evaluated for affinity at D2-like dopamine receptors. These compounds share structural elements with the classical D2-like dopamine receptor antagonists haloperidol, N-methylspiperone and benperidol. Two new compounds, 4-(4-iodophenyl)-1-((4-methoxy-1H-indol-3-yl)methyl)piperidin-4-ol (6) and 4-(4-iodophenyl)-1-((5-methoxy-1H-indol-3-yl)methyl)piperidin-4-ol (7), were found to have high affinity to and selectivity for D2 versus D3 receptors. Changing the aromatic ring system from an indole to other heteroaromatic ring systems reduced the D2 binding affinity and the D2 versus D3 selectivity.
Collapse
Affiliation(s)
- Suwanna Vangveravong
- Division of Radiological Sciences, Washington University School of Medicine, Mallinckrodt Institute of Radiology, 510 S. Kingshighway, St. Louis, MO 63110, USA
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Jinbin Xu
- Division of Radiological Sciences, Washington University School of Medicine, Mallinckrodt Institute of Radiology, 510 S. Kingshighway, St. Louis, MO 63110, USA
| | - Jinquan Cui
- Division of Radiological Sciences, Washington University School of Medicine, Mallinckrodt Institute of Radiology, 510 S. Kingshighway, St. Louis, MO 63110, USA
| | - Wesley Calvin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Sonja Babic
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Robert R. Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Robert H. Mach
- Division of Radiological Sciences, Washington University School of Medicine, Mallinckrodt Institute of Radiology, 510 S. Kingshighway, St. Louis, MO 63110, USA
| |
Collapse
|
22
|
Burnstock G, Fredholm BB, North RA, Verkhratsky A. The birth and postnatal development of purinergic signalling. Acta Physiol (Oxf) 2010; 199:93-147. [PMID: 20345419 DOI: 10.1111/j.1748-1716.2010.02114.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The purinergic signalling system is one of the most ancient and arguably the most widespread intercellular signalling system in living tissues. In this review we present a detailed account of the early developments and current status of purinergic signalling. We summarize the current knowledge on purinoceptors, their distribution and role in signal transduction in various tissues in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, UK.
| | | | | | | |
Collapse
|
23
|
Taylor M, Grundt P, Griffin SA, Newman AH, Luedtke RR. Dopamine D3 receptor selective ligands with varying intrinsic efficacies at adenylyl cyclase inhibition and mitogenic signaling pathways. Synapse 2010; 64:251-66. [PMID: 19924694 PMCID: PMC3821045 DOI: 10.1002/syn.20725] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A panel of structurally related substituted 4-phenylpiperazines with nanomolar affinity and selectivity at D3 dopamine receptors has been synthesized. Compounds in which a heterocyclic (2-phenyl pyridyl, 3-phenyl pyridyl, benzothiophene, or benzofuran) moiety is adjacent to the amide was varied and/or a double bond (trans-butenyl) replaced the four-carbon aliphatic chain linking the arylamide with the 4-phenylpiperazine moiety were compared for (a) affinity at human D2 and D3 dopamine receptors, (b) intrinsic efficacy using an adenylyl cyclase inhibition assay, and (c) intrinsic efficacy using a mitogenic assay. All 16 compounds were (a) more efficacious for the D3 receptor cyclase inhibition assay than for the D3 receptor mitogenic assay and (b) exhibited the same or greater efficacy at D3 compared to D2 receptor (with the exception of one compound). Although the heterocyclic amide moiety appears to be the pivotal structural element determining the intrinsic efficacy of our D3 receptor selective compounds, the magnitude of the efficacy is modulated by the (a) substituent(s) on the phenyl piperazine and (b) the saturation of the four-carbon chain that links the arylamide and the phenylpiperazine. In addition, our ligands are functionally selective, because they can have differing intrinsic efficacies for the cyclase inhibition and the mitogenic activation signaling pathways. Compounds that are essentially full agonists at the cyclase assay appear to be only partial agonists in the mitogenic assay and compounds that are partial agonists in our cyclase assay are partial agonists or antagonists in the mitogenic assay.
Collapse
Affiliation(s)
- Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX,76109 USA
| | - Peter Grundt
- Medicinal Chemistry Section, NIDA-IRP, NIH, Baltimore, MD, USA
| | - Suzy A. Griffin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX,76109 USA
| | | | - Robert R. Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX,76109 USA
| |
Collapse
|
24
|
Montgomery MD, Bylund DB. Lack of effect of the alpha2C-adrenoceptor Del322-325 polymorphism on inhibition of cyclic AMP production in HEK293 cells. Br J Pharmacol 2010; 159:820-30. [PMID: 20128806 DOI: 10.1111/j.1476-5381.2009.00584.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE The alpha(2C)-adrenoceptor has multiple functions, including inhibiting release of noradrenaline from presynaptic nerve terminals. A human alpha(2C) polymorphism, Del322-325, a potential risk factor for heart failure, has been reported to exhibit reduced signalling in CHO cells. To further understand the role of the Del322-325 polymorphism on receptor signalling, we attempted to replicate and further study the reduced signalling in HEK293 cells. EXPERIMENTAL APPROACH Human alpha(2C) wild-type (WT) and Del322-325 adrenoceptors were stably transfected into HEK293 cells. Radioligand binding was performed to determine affinities for both receptors. In intact cells, inhibition of forskolin-stimulated cyclic AMP production by WT and Del322-325 clones with a range of receptor densities (200-2320 fmol.mg(-1) protein) was measured following agonist treatment. KEY RESULTS Noradrenaline, brimonidine and clonidine exhibited similar binding affinities for WT and Del322-325. Brimonidine and clonidine also had similar efficacies and potencies for both receptors for the inhibition of cyclic AMP production at all receptor densities tested. A linear regression analysis comparing efficacy and potency with receptor expression levels showed no differences in slopes between WT and Del322-325. CONCLUSIONS AND IMPLICATIONS The alpha(2C) WT and Del322-325 adrenoceptors exhibited similar binding properties. Additionally, inhibition of cyclic AMP production by Del322-325 was similar to that of WT over a range of receptor densities. Therefore, in intact HEK293 cells, the alpha(2C)-Del322-325 polymorphism does not exhibit reduced signalling to adenylyl cyclase and may not represent a clinically important phenotype.
Collapse
Affiliation(s)
- M D Montgomery
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska 69198-5800, USA
| | | |
Collapse
|
25
|
Elwi AN, Damaraju VL, Kuzma ML, Mowles DA, Baldwin SA, Young JD, Sawyer MB, Cass CE. Transepithelial fluxes of adenosine and 2′-deoxyadenosine across human renal proximal tubule cells: roles of nucleoside transporters hENT1, hENT2, and hCNT3. Am J Physiol Renal Physiol 2009; 296:F1439-51. [DOI: 10.1152/ajprenal.90411.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study examined the roles of human nucleoside transporters (hNTs) in mediating transepithelial fluxes of adenosine, 2′-deoxyadenosine, and three purine nucleoside anti-cancer drugs across polarized monolayers of human renal proximal tubule cells (hRPTCs), which were shown in previous studies to have human equilibrative NT 1 (hENT1) and 2 (hENT2) and human concentrative NT 3 (hCNT3) activities ( 11 ). Early passage hRPTCs were cultured on transwell inserts under conditions that induced formation of polarized monolayers with experimentally accessible apical and basolateral domains. Polarized hRPTC cultures were monitored for inhibitor sensitivities and sodium-dependence of the following: 1) transepithelial fluxes of radiolabeled adenosine, 2′-deoxyadenosine, fludarabine (9-β-d-arabinosyl-2-fluoroadenine), cladribine (2-chloro-2′-deoxyadenosine), and clofarabine (2-chloro-2′-fluoro-deoxy-9-β-d-arabinofuranosyladenine); 2) mediated uptake of radiolabeled adenosine, 2′-deoxyadenosine, fludarabine, cladribine, and clofarabine from either apical or basolateral surfaces; and 3) relative apical cell surface hCNT3 protein levels. Transepithelial fluxes of adenosine were mediated from apical-to-basolateral sides by apical hCNT3 and basolateral hENT2, whereas transepithelial fluxes of 2′-deoxyadenosine were mediated from basolateral-to-apical sides by apical hENT1 and basolateral human organic anion transporters (hOATs). The transepithelial fluxes of adenosine, hCNT3-mediated cellular uptake of adenosine, and relative apical cell surface hCNT3 protein levels correlated positively in polarized hRPTCs. The purine nucleoside anti-cancer drugs fludarabine, cladribine, and clofarabine, like adenosine exhibited apical-to-basolateral fluxes. Collectively, this evidence suggested that apical hCNT3 and basolateral hENT2 are involved in proximal tubular reabsorption of adenosine and some nucleoside drugs and that apical hENT1 and basolateral hOATs are involved in proximal tubular secretion of 2′-deoxyadenosine.
Collapse
|
26
|
Kumar R, Riddle LR, Griffin SA, Chu W, Vangveravong S, Neisewander J, Mach RH, Luedtke RR. Evaluation of D2 and D3 dopamine receptor selective compounds on L-dopa-dependent abnormal involuntary movements in rats. Neuropharmacology 2009; 56:956-69. [PMID: 19371586 PMCID: PMC4106465 DOI: 10.1016/j.neuropharm.2009.01.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
Abstract
A panel of novel D2 and D3 dopamine receptor selective antagonists, partial agonists and full agonists have been evaluated for the ability to attenuate L-dopa-associated abnormal involuntary movements (AIMs) in 6-hydroxydopamine (6-OHDA) unilaterally lesioned male Sprague Dawley rats, which is an animal model of L-dopa-induced dyskinesia (LID). LID is often observed in patients with Parkinson's Disease following chronic treatment with L-dopa. The intrinsic activity of these dopaminergic compounds was determined using a forskolin-dependent adenylyl cyclase inhibition assay with transfected HEK 293 cells expressing either the human D2Long or D3 dopamine receptor subtype. For the initial experiments the 5-HT1A receptor selective partial agonist buspirone was used to verify our ability to quantitate changes in total AIMs and AIMs minus locomotor scores. Two D2 dopamine receptor selective antagonists, SV 156 and SV 293, were evaluated and found to minimally attenuate AIM scores in these animals. Four members of our WC series of D3 dopamine receptor selective compounds of varying intrinsic activity at the D3 dopamine receptor subtype, WC 10, WC 21, WC 26 and WC 44, were also evaluated and found to attenuate AIM scores in a dose dependent manner. The in vivo efficacy of the compounds increased when they were administered simultaneously with L-dopa, as compared to when the compounds were administered 60 min prior to the L-dopa/benserazide. It was also found that the D3 receptor antagonist WC 10 could inhibit the involuntary movements after they had achieved maximum intensity. Unlike the D1-like dopamine receptor selective agonist SKF 81297 and the D2-like dopamine receptor agonist bromocriptine which can precipitate abnormal involuntary movements in these unilaterally lesioned animals, abnormal involuntary movements were not observed after administration of our D3 receptor selective agonist WC 44. In addition, we evaluated the effect of these four D3 dopamine receptor selective compounds for their effect on a) spontaneous locomotion and b) coordination and agility using a rotarod apparatus. We also used a cylinder test to assess the effect of L-dopa on spontaneous and independent use of each of the rat's forelimbs in the presence or absence of test compound. The results of these studies suggest that substituted phenylpiperazine D3 dopamine receptor selective compounds are potential pharmacotherapeutic agents for the treatment of L-dopa-associated dyskinesia in patients with Parkinson's Disease.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie, Fort Worth, TX 76107 USA
| | - Lindsay R. Riddle
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie, Fort Worth, TX 76107 USA
| | - Suzy A. Griffin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie, Fort Worth, TX 76107 USA
| | - Wenjua Chu
- Department of Radiology, Division of Radiological Sciences, Washington University School of Medicine, Campus Box 8225, 510 S. Kingshighway Blvd., St. Louis, MO 63110, USA
| | - Suwanna Vangveravong
- Department of Radiology, Division of Radiological Sciences, Washington University School of Medicine, Campus Box 8225, 510 S. Kingshighway Blvd., St. Louis, MO 63110, USA
| | - Janet Neisewander
- Department of Psychology, Arizona State University, Box 871104, Tempe, AZ 85287-1104, USA
| | - Robert H. Mach
- Department of Radiology, Division of Radiological Sciences, Washington University School of Medicine, Campus Box 8225, 510 S. Kingshighway Blvd., St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert R. Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie, Fort Worth, TX 76107 USA
| |
Collapse
|
27
|
Pandey GN, Sudershan P, Davis JM. Beta adrenergic receptor function in depression and the effect of antidepressant drugs. ACTA PHARMACOLOGICA ET TOXICOLOGICA 2009; 56 Suppl 1:66-79. [PMID: 2984893 DOI: 10.1111/j.1600-0773.1985.tb02500.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
It has been suggested that alterations of monoamine receptor sensitivity in the central nervous system may be associated with some forms of affective illness. It has been observed by several investigators that chronic treatment with antidepressant drugs causes down regulation of NE receptor coupled adenylate cyclase and beta adrenergic receptor binding in rat brain. This observation has led to the suggestion that the therapeutic effects of antidepressant drugs may be related to the changes in the responsivity of beta adrenergic receptors. In order to examine if depressive illness may be associated with altered beta adrenergic function, we studied adenylate cyclase and its responsiveness to norepinephrine and isoproterenol in the leukocytes obtained from patients with psychiatric illness and normal controls as an index of beta adrenergic receptor function. We also studied the effects of antidepressant drugs, in vitro, on isoproterenol sensitive leukocyte adenylate cyclase. We observed that norepinephrine and isoproterenol sensitive leukocyte adenylate cyclase in depressed patients are significantly decreased as compared to normal controls. Our results appear to have been replicated by another group of investigators. We also observed that certain antidepressant drugs potentiate isoproterenol stimulated accumulation of cyclic AMP in human leukocytes. This potentiation was most pronounced in the case of iprindole. These results thus indicated a decreased beta adrenergic receptor function in patients with depressive illness. Whether or not such decreased receptor function is associated with depressive illness or is a manifestation of some other changes unrelated to the illness is not clear. Our results also indicate that some antidepressant drugs may enhance adrenergic transmission by potentiating the effects of neurotransmitters on beta adrenergic receptors.
Collapse
|
28
|
Abstract
John Daly played an important role in defining adenosine receptors as an important target for drug discovery. His systematic work characterized the effects of adenosine analogues on cyclic AMP in the brain that were antagonized by methylxanthines. He also played a decisive role in establishing these receptors as bona fide biochemical entities and contributed to the discovery of receptor heterogeneity. This brief review will cover some of his important early discoveries in the pharmacology and medicinal chemistry of adenosine receptors.
Collapse
Affiliation(s)
- Bertil B Fredholm
- Department of Physiology and Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| |
Collapse
|
29
|
L. Kirk K, Gusovsky F. John W. Daly: The Early Years. The NIH Shift and Cyclic-AMP Assays: Early Pharmacological Breakthroughs. HETEROCYCLES 2009. [DOI: 10.3987/com-08-s(d)memoire-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Effects of PACAP and VIP on cAMP-generating system and proliferation of C6 glioma cells. J Mol Neurosci 2008; 36:286-91. [PMID: 18491045 DOI: 10.1007/s12031-008-9071-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 04/08/2008] [Indexed: 10/22/2022]
Abstract
An identification of PAC1- and VPAC-type receptors in a great number of neoplastic cells gave rise to intensive studies on the biochemical and physiological role of the mentioned peptides in cancers. Our earlier studies focused on effects of pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) in C6 glioma cells have shown their stimulatory receptor-mediated action on the cyclic adenosine monophosphate (cAMP)-generating system. In the present study, we demonstrated that truncated peptides, i.e., PACAP6-38 and VIP6-28, both produced a significant inhibition of the VIP-induced increase in cAMP production, whereas only PACAP6-38 did antagonize the PACAP-38 effect. In contrast to the well-expressed PACAP-38 and VIP effects on cAMP production in C6 cells, helodermin and secretin were poorly active as cAMP stimulators in this cell line, displaying some activity only at a high 5-microM dose. PACAP-38 and, to a lesser extent VIP stimulated the proliferation of C6 glioma cells, which was shown by an increased incorporation of 3H-thymidine into the cells, and the effects of these two peptides were antagonized by PACAP6-38. The truncated PACAP (10 microM) by itself significantly inhibited C6 cell proliferation. The study with the use of forskolin and dibutyryl-cAMP revealed that the growth effects of PACAP were cAMP independent. Our findings suggest that glioma C6 cells possess PAC1- and VPAC-type receptors, but the density of PAC1 seems to be much larger than VPAC receptors. Although the proliferative activity of PACAP and VIP is mediated via the PAC1-type receptor, the signaling cascade underlying this phenomenon does not seem to involve cAMP.
Collapse
|
31
|
Gusovsky F. Measurement of second messengers in signal transduction: cAMP and inositol phosphates. ACTA ACUST UNITED AC 2008; Chapter 7:Unit7.12. [PMID: 18428523 DOI: 10.1002/0471142301.ns0712s05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
cAMP acts as an intracellular mediator of hormone action and the importance of accurate quantitative determination of cAMP levels in cells and tissues is widely recognized. The most utilized procedures for the determination of adenylate cyclase activity in membranes are described here for measuring the conversion of [alpha-(32)P]ATP into [(32)P]cAMP after a two-step chromatographic separation. Also critical in signal transduction is phosphoinositide turnover, which is linked to receptor activation resulting from changes in cytosolic calcium concentrations. Phosphoinositide turnover can be measured as described in this unit by labeling phospholipid pools with [(3)H]-inositol and then analyzing for tritiated inositol phosphates.
Collapse
Affiliation(s)
- F Gusovsky
- Eisai Research Institute, Andover, Massachusetts, USA
| |
Collapse
|
32
|
Ivanova TN, Alonso-Gomez AL, Iuvone PM. Dopamine D4 receptors regulate intracellular calcium concentration in cultured chicken cone photoreceptor cells: relationship to dopamine receptor-mediated inhibition of cAMP formation. Brain Res 2008; 1207:111-9. [PMID: 18371938 PMCID: PMC2480521 DOI: 10.1016/j.brainres.2008.02.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
Abstract
Dopamine is a retinal neuromodulator secreted from amacrine and interplexiform cells. Activation of dopamine D4 receptors on photoreceptor cells reduces a light-sensitive pool of cAMP. The aim of the present study was to evaluate the role of dopamine receptors and cAMP in the regulation of intracellular Ca(2+) concentrations ([Ca(2+)](i)) in photoreceptor cells of chick retina. Retinal cells from 6 day-old chicken embryos were isolated and cultured for 5-7 days prior to experiments. Cone photoreceptors were the predominant cell type in these cultures. Dopamine and agonists of dopamine D4 receptors suppressed K(+)-stimulated uptake of (45)Ca(2+) and [Ca(2+)](i), measured with the Ca(2+)-sensitive fluorescent dye fura-2AM. The effects of the agonists were blocked by dopamine D2/D4 receptor antagonists or by pertussis toxin. 8Br-cAMP, a cell-permeable analog of cAMP, had no effect on inhibition of K(+)-stimulated (45)Ca(2+) influx or [Ca(2+)](i) by dopamine D2/D4 receptor agonists. Quinpirole inhibited the increase in cAMP level elicited by K(+), which requires Ca(2+) influx through voltage-gated Ca(2+) channels, but not that induced by the calcium ionophore A23187. Moreover, dopamine had no effect on either forskolin-stimulated or Ca(2+)/calmodulin-stimulated adenylyl cyclase activity in cell membranes prepared from the cultured cells. These data indicate that the decrease of cAMP elicited by dopamine D4 receptor stimulation may be secondary to decreased [Ca(2+)](i).
Collapse
Affiliation(s)
- Tamara N. Ivanova
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - P. Michael Iuvone
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
33
|
Kassel KM, Wyatt TA, Panettieri RA, Toews ML. Inhibition of human airway smooth muscle cell proliferation by beta 2-adrenergic receptors and cAMP is PKA independent: evidence for EPAC involvement. Am J Physiol Lung Cell Mol Physiol 2007; 294:L131-8. [PMID: 17993585 DOI: 10.1152/ajplung.00381.2007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mechanisms by which beta-adrenergic receptor (beta AR) agonists inhibit proliferation of human airway smooth muscle (HASM) cells were investigated because of their potential relevance to smooth muscle hyperplasia in asthma. We hypothesized that beta AR agonists would inhibit mitogenesis in HASM cells via the beta 2AR, an increase in cAMP, and PKA activation. HASM cells were treated for 24 h with various agents and then analyzed for [3H]thymidine incorporation as a measure of cell proliferation. EGF stimulated proliferation by approximately 10-fold. The nonselective beta AR agonist isoproterenol and the beta 2AR-selective agonists albuterol and salmeterol inhibited EGF-stimulated proliferation by more than 50%, with half-maximal effects at 4.8 nM, 110 nM, and 6.7 nM, respectively. A beta 2AR-selective antagonist inhibited the isoproterenol effect with 100-fold greater potency than a beta 1AR-selective antagonist, confirming beta 2AR involvement in the inhibition of proliferation. The cAMP-elevating agents PGE2 and forskolin decreased EGF-induced proliferation, suggesting cAMP as the mediator. beta 2AR agonists and forskolin also inhibited proliferation stimulated by lysophosphatidic acid (LPA) as well as the synergistic proliferation stimulated by LPA+EGF. Importantly, PKA-selective cAMP analogs did not inhibit proliferation at concentrations that maximally activated PKA (10-100 microM), whereas a cAMP analog selective for the exchange protein directly activated by cAMP (EPAC), 8-(4-chlorophenylthio)-2'-O-methyl-cAMP, maximally inhibited proliferation at a concentration that did not activate PKA (10 microM). These data show that beta 2AR agonists and other cAMP-elevating agents decrease proliferation in HASM cells via a PKA-independent mechanism, and they provide pharmacological evidence for involvement of EPAC or an EPAC-like cAMP effector protein instead.
Collapse
Affiliation(s)
- Karen M Kassel
- Department of Pharmacology and Experimental Neuroscience,University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | | | | | | |
Collapse
|
34
|
Robillard KR, Bone DBJ, Hammond JR. Hypoxanthine uptake and release by equilibrative nucleoside transporter 2 (ENT2) of rat microvascular endothelial cells. Microvasc Res 2007; 75:351-7. [PMID: 18048066 DOI: 10.1016/j.mvr.2007.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 10/09/2007] [Indexed: 12/21/2022]
Abstract
The cardioprotective actions of adenosine are terminated by its uptake into endothelial cells with subsequent metabolism through hypoxanthine to uric acid. This process involves xanthine oxidase-mediated generation of reactive oxygen species (ROS), which have been implicated in the vascular dysfunction observed in ischemia-reperfusion injury. The equilibrative nucleoside transporter, ENT2, mediates the transfer of hypoxanthine into cells. We hypothesize that ENT2 also mediates the cellular release of hypoxanthine, which would limit the amount of intracellular hypoxanthine available for xanthine oxidase-mediated ROS production. Rat microvascular endothelial cells (MVECs) were isolated from skeletal muscle by lectin-affinity purification. The transport of [(3)H]hypoxanthine was assessed using an oil-stop method, and hypoxanthine metabolites were identified by thin-layer chromatography. MVECs accumulated hypoxanthine with a K(m) of 300 microM and a V(max) of 2.8 pmol microl(-1) s(-1). ATP-depleted cells loaded with [(3)H]hypoxanthine released the radiolabel with kinetics similar to that obtained for [(3)H]hypoxanthine influx. The uptake and release of [(3)H]hypoxanthine were both blocked by ENT2 inhibitors with similar order of potency. Thus, ENT2 mediates both the influx and efflux of hypoxanthine. Inhibition of ENT2 in MVECs might be expected to increase the amount of intracellular hypoxanthine available for metabolism by xanthine oxidase and enhance the intracellular production of ROS.
Collapse
Affiliation(s)
- Kevin R Robillard
- Department of Physiology and Pharmacology, M216 Medical Sciences Building, University of Western Ontario London, ON, Canada N6A 5C1
| | | | | |
Collapse
|
35
|
Nowak JZ, Jozwiak-Bebenista M, Bednarek K. Effects of PACAP and VIP on cyclic AMP formation in rat neuronal and astrocyte cultures under normoxic and hypoxic condition. Peptides 2007; 28:1706-12. [PMID: 17521773 DOI: 10.1016/j.peptides.2007.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/10/2007] [Accepted: 04/12/2007] [Indexed: 11/30/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) concentration (0.001-1000 nM)-dependently stimulated cyclic AMP production in rat primary neuronal and glial cell (astrocyte) cultures. The actions of both peptides were much more pronounced in astrocytes than in neuronal cultures. Stimulatory effects of PACAP and VIP on cyclic AMP formation were significantly smaller in cell cultures subjected to 24h lasting hypoxic conditions, induced either chemically (100 microM cobalt chloride) or by low 3% oxygen hypoxia, compared to the normoxic condition (95% air and 5% CO(2)). This picture contrasted with the effects of forskolin that were similar under normoxic and hypoxic conditions. It is suggested that hypoxia leads to changes in PACAP- and VIP-driven cyclic AMP-dependent signaling in the rat brain by influencing molecular processes likely occurring at the level of receptor protein or receptor-Gs protein coupling.
Collapse
Affiliation(s)
- Jerzy Z Nowak
- Department of Pharmacology, Medical University, 7/9 Zeligowskiego Street, PL 90-752 Lodz, Poland.
| | | | | |
Collapse
|
36
|
Brooker G. Newer developments in the determination of cyclic AMP and other cyclic nucleotides, adenylate cyclase, and phosphodiesterase. METHODS OF BIOCHEMICAL ANALYSIS 2006; 22:95-121. [PMID: 4373637 DOI: 10.1002/9780470110423.ch2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
37
|
Dismukes K, Rogers M, Daly JW. CYCLIC ADENOSINE 3′,5′-MONOPHOSPHATE FORMATION IN GUINEA-PIG BRAIN SLICES: EFFECT OF H1- AND H2-HISTAMINERGIC AGONISTS. J Neurochem 2006. [DOI: 10.1111/j.1471-4159.1976.tb04451.x-i1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Vangveravong S, McElveen E, Taylor M, Xu J, Tu Z, Luedtke RR, Mach RH. Synthesis and characterization of selective dopamine D2 receptor antagonists. Bioorg Med Chem 2006; 14:815-25. [PMID: 16288878 DOI: 10.1016/j.bmc.2005.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 08/31/2005] [Accepted: 09/01/2005] [Indexed: 10/25/2022]
Abstract
A series of indole compounds have been prepared and evaluated for affinity at D2-like dopamine receptors using stably transfected HEK cells expressing human D2, D3, or D4 dopamine receptors. These compounds share structural elements with the classical D2-like dopamine receptor antagonists, haloperidol, N-methylspiperone, and benperidol. The compounds that share structural elements with N-methylspiperone and benperidol bind non-selectively to the D2 and D3 dopamine receptor subtypes. However, several of the compounds structurally similar to haloperidol were found to (a) bind to the human D2 receptor subtype with nanomolar affinity, (b) be 10- to 100-fold selective for the human D2 receptor compared to the human D3 receptor, and (c) bind with low affinity to the human D4 dopamine receptor subtype. Binding at sigma (sigma) receptor subtypes, sigma1 and sigma2, were also examined and it was found that the position of the methoxy group on the indole was pivotal in both (a) D2 versus D3 receptor selectivity and (b) affinity at sigma1 receptors. Adenylyl cyclase studies indicate that our indole compounds with the greatest D2 receptor selectivity are neutral antagonists at human D2 dopamine receptor subtypes. With stably transfected HEK cells expressing human D2 (hD2-HEK), these compounds (a) have no intrinsic activity and (b) attenuated quinpirole inhibition of adenylyl cyclase. The D2 receptor selective compounds that have been identified represent unique pharmacological tools that have potential for use in studies on the relative contribution of the D2 dopamine receptor subtypes in physiological and behavioral situations where D2-like dopaminergic receptor involvement is indicated.
Collapse
Affiliation(s)
- Suwanna Vangveravong
- Division of Radiological Sciences, Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Rao LG, Murray TM, Wylie JN, McBroom RJ, Sutherland MK. Long-term culture in dexamethasone unmasks an abnormal phenotype in osteoblasts isolated from osteoporotic subjects. J Endocrinol Invest 2005; 28:919-27. [PMID: 16419495 DOI: 10.1007/bf03345324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have shown that osteoblastic cells derived from trabecular bone explants of osteoporotic subjects (OP cells) exhibited an altered alkaline phosphatase (ALP) response to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] compared to control (CON) cells. Our hypothesis that OP cells have other intrinsic abnormalities was investigated using our cell models representing two different stages of differentiation. OP and CON cells were cultured in the absence (-DEX) or presence (+DEX) of 10 nM dexamethasone (DEX) in 10% fetal calf serum (FCS) prior to exposure to serum-free medium containing 1 nM of PTH and/or 17-beta estradiol (E2). Both OP and CON cells responded to DEX with a two-fold increase in basal ALP activity. While E2 or PTH+E2 had no effect on OP cells, both treatments inhibited ALP activity in CON cells (p<0.05). OP and CON cells grown in DEX also expressed PTH-stimulated adenylate cyclase (AC) activities higher than those of (-DEX) cells. OP+DEX cells, however, exhibited activities which were 8-fold higher than those of CON+DEX cells (p<0.001). In OP+DEX cells, E2 stimulated basal AC activity (p<0.05) but did not affect PTH-stimulated activity. In contrast, in CON+DEX cells, E2 had no effect on basal activity but inhibited PTH-stimulated AC activity (p<0.001). Osteocalcin production was 4-fold lower in OP+DEX cells compared to OP-DEX and CON cells (p<0.05) while osteocalcin mRNA levels were significantly lower in OP+DEX and CON+/-DEX cells compared to OP-DEX cells (p<0.05). E2 did not affect osteocalcin protein or mRNA levels in either OP or CON cells. No differences in mRNA levels were found for estrogen receptor-alpha (ER-a) in OP+/-DEX cells whereas these levels were significantly higher in CON+DEX compared to CON-DEX cells (p<0.05). These results indicate that DEX amplified the differences between OP and CON cells and confirm the presence of intrinsic osteoblastic abnormalities in patients with osteoporosis that persist in culture.
Collapse
Affiliation(s)
- L G Rao
- Calcium Research Laboratory, suite 2022, St. Michael's Hospital, 38 Shuter Street, Toronto, Ontario, Canada M5B 1A6.
| | | | | | | | | |
Collapse
|
40
|
Zawilska JB, Dejda A, Niewiadomski P, Gozes I, Nowak JZ. Receptors for VIP and PACAP in guinea pig cerebral cortex: effects on cyclic AMP synthesis and characterization by 125I-VIP binding. J Mol Neurosci 2005; 25:215-24. [PMID: 15800375 DOI: 10.1385/jmn:25:3:215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Accepted: 08/22/2004] [Indexed: 11/11/2022]
Abstract
Receptors for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) in guinea pig cerebral cortex were characterized by (1) radioreceptor binding of 125I-labeled VIP (human/rat/porcine), and (2) cyclic AMP (cAMP) formation. Saturation analysis of 125I-VIP binding to membranes of guinea pig cerebral cortex resulted in a linear Scatchard plot, suggesting the presence of a single class of high-affinity receptor-binding sites, with a Kd of 0.63 nM and a B(max) of 77 fmol/mg protein. Various peptides from the PACAP/VIP/secretin family displaced the specific binding of 125I-VIP to guinea pig cerebrum with the relative rank order of potency: chicken VIP (cVIP) > or = PACAP38 approximately PACAP27 approximately guinea pig VIP (gpVIP) > or = mammalian (human/rat/porcine) VIP (mVIP) > peptide histidine-methionine (PHM) > peptide histidine-isoleucine (PHI) > secretin. Analysis of the competition curves revealed displacement of 125I-VIP from high- and lower-affinity binding sites, with IC50 values in the picomolar and the nanomolar range, respectively. About 70% of the specific 125I-VIP-binding sites in guinea pig cerebral cortex were sensitive to Gpp(NH)p, a nonhydrolyzable analog of GTP. Pituitary adenylate cyclase-activating polypeptide 38 (PACAP38), PACAP27, cVIP, gpVIP, mVIP, PHM, and PHI stimulated cAMP production in [3H]adenine-prelabeled slices of guinea pig cerebral cortex in a concentration-dependent manner. Of the tested peptides, the most effective were PACAP38 and PACAP27, which at a 1 microM concentration produced a 17- to 19-fold rise in cAMP synthesis, increasing the nucleotide production to approx 11% conversion above the control value. The three forms of VIP (cVIP, mVIP, and gpVIP) at the highest concentration used, i.e., 3 microM, produced net increases in cAMP production in the range of 8-9% conversion, whereas 5 microM PHM and PHI, by, respectively, 6.7% and 4.9% conversion. It is concluded that cerebral cortex of guinea pig contains VPAC- type receptors positively linked to cAMP formation. In addition, the observed stronger action of PACAP (both PACAP38 and PACAP27), when compared to any form of VIP, on cAMP production in this tissue, suggests its interaction with both PAC1 and VPAC receptors.
Collapse
Affiliation(s)
- Jolanta B Zawilska
- Centre for Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland.
| | | | | | | | | |
Collapse
|
41
|
Chu W, Tu Z, McElveen E, Xu J, Taylor M, Luedtke RR, Mach RH. Synthesis and in vitro binding of N-phenyl piperazine analogs as potential dopamine D3 receptor ligands. Bioorg Med Chem 2005; 13:77-87. [PMID: 15582454 DOI: 10.1016/j.bmc.2004.09.054] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 09/29/2004] [Accepted: 09/29/2004] [Indexed: 10/26/2022]
Abstract
A series of N-(2-methoxyphenyl)piperazine and N-(2,3-dichlorophenyl)piperazine analogs were prepared and their affinities for dopamine D(2), D(3), and D(4) receptors were measured in vitro. Binding studies were also conducted to determine if the compounds bound to sigma (sigma(1) and sigma(2)) and serotonin (5-HT(1A), 5-HT(2A), 5-HT(2B), 5-HT(2C), 5-HT(3), 5-HT(4), 5-HT(5), 5-HT(6), and 5-HT(7)) receptors. The results of the current study revealed a number of compounds (12b, 12c, 12e, and 12g) having a high affinity for D(3) (K(i) at D(3) receptors ranging from 0.3 to 0.9 nM) versus D(2) (K(i) at D(2) receptors ranging from 40 to 53 nM) receptors and a log P value indicating that they should readily cross the blood brain barrier (log P = 2.6-3.5). All of the compounds evaluated in this study had a high affinity for serotonin 5-HT(1A) receptors. These compounds may be useful as probes for studying the behavioral pharmacology of the dopamine D(3) receptor, as well as lead compounds for the development of radiotracers for studying D(3) receptor regulation in vivo with the functional imaging technique, positron emission tomography.
Collapse
Affiliation(s)
- Wenhua Chu
- Department of Radiology, Division of Radiological Sciences, Washington University School of Medicine, Campus Box 8225, 510 S. Kingshighway Blvd., St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Librowski T, Vetulani J, Nalepa I. Carane derivative stereoisomers of different local anaesthetic and antiplatelet activity similarly potentiate forskolin-stimulated cyclic AMP response and bind to beta-adrenoceptors in the rat brain cortex. J Pharm Pharmacol 2005; 56:1429-34. [PMID: 15525450 DOI: 10.1211/0022357044742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
A carane derivative, KP-23 [RS](-)-4-(2-hydroxy-3)N-isopropylamino)-propoxyimino)-cis-carane, was earlier described as a potential local anaesthetic and antiplatelet agent, and the following studies revealed that its R and S stereoisomers, KP-23R and KP-23S, have different potencies in the infiltration anaesthesia and platelet aggregation tests. The effects of these stereoisomers on the cyclic AMP (cAMP) generating system and the displacement of [(3)H]CGP 12177 (a beta-adrenoceptor ligand) from its binding sites in the rat cerebral cortical tissue were investigated. The stereoisomers did not affect the basal cAMP level, but, at concentrations between 10(-4) and 10(-3) M, they elevated the forskolin-induced accumulation of cAMP with similar potency. The compounds displaced [(3)H]CGP 12177, however the stereoisomer R was less potent than the racemic KP-23 and the S form (K(i) = 64.1 +/- 5.9 nM, 161.1 +/- 10 nM and 62.1 +/- 5.6 nM for KP-23, KP-23R and KP-23S, respectively). The fact that the stereoisomers differed in both tests only slightly, if at all, suggests that their pharmacological effects are not related to the action on the beta-adrenoceptor/adenylate cyclase system.
Collapse
Affiliation(s)
- Tadeusz Librowski
- Department of Pharmacodynamics, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | | | | |
Collapse
|
43
|
Doherty JJ, Alagarsamy S, Bough KJ, Conn PJ, Dingledine R, Mott DD. Metabotropic glutamate receptors modulate feedback inhibition in a developmentally regulated manner in rat dentate gyrus. J Physiol 2004; 561:395-401. [PMID: 15513941 PMCID: PMC1665349 DOI: 10.1113/jphysiol.2004.074930] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We investigated group II metabotropic glutamate receptor (mGluR) modulation of glutamatergic input onto hilar-border interneurones and its regulation of feedback inhibition in the dentate gyrus. Selective activation of group II mGluRs with (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) depressed mossy fibre (MF)-evoked excitatory drive to these interneurones with significantly greater depression in juvenile than adult rats. During 20 Hz MF stimulus trains, EPSCs became depressed. Depression during the early, but not later part of the train was significantly greater in juvenile than adult rats and was blocked by the mGluR antagonist (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495). In dentate granule cells from juvenile rats polysynaptic feedback IPSCs, but not monosynaptic IPSCs, were strongly suppressed by DCG-IV. DCG-IV also suppressed feedback inhibition of perforant path-evoked population spikes. In contrast, in adult animals DCG-IV did not significantly depress feedback inhibition. During 20 Hz stimulus trains in juvenile animals the summation of polysynaptic, but not monosynaptic IPSCs was suppressed by synaptically activated group II mGluRs. Blockade of these mGluRs with LY341495 significantly increased the area and duration of the summated IPSC, causing greater feedback inhibition of granule cell firing. In contrast, in adult animals LY341495 did not alter feedback inhibition following the stimulus train. These findings indicate that group II mGluRs modulate excitatory drive to interneurones in a developmentally regulated manner and thereby modulate feedback inhibition in the dentate gyrus.
Collapse
Affiliation(s)
- James J Doherty
- Department of Pharmacology, Emory University Medical School, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
44
|
Zawilska JB, Niewiadomski P, Nowak JZ. Receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide in turkey cerebral cortex: characterization by [125I]-VIP binding and effects on cyclic AMP synthesis. Gen Comp Endocrinol 2004; 137:187-95. [PMID: 15158130 DOI: 10.1016/j.ygcen.2004.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 03/08/2004] [Accepted: 03/12/2004] [Indexed: 10/26/2022]
Abstract
Receptors for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) in turkey cerebral cortex were characterized using two approaches: (1) in vitro radioreceptor binding of [125I]-VIP, and (2) effects of peptides from the PACAP/VIP/secretin family on cyclic AMP formation. The binding of [125I]-VIP to turkey cortical membranes was rapid, stable, and reversible. Saturation analysis resulted in a linear Scatchard plot, suggesting binding to a single class of high affinity receptor binding sites with a Kd of 0.70 nM and a Bmax of 52 fmol/mg protein. Various peptides displaced the specific binding of 0.12 nM [125I]-VIP to turkey cerebral cortical membranes in a concentration-dependent manner. The relative rank order of potency of the tested peptides to inhibit [125I]-VIP binding to turkey cerebrum was: PACAP38 approximately PACAP27 approximately chicken VIP approximately mammalian VIP >>> PHI >> secretin, chicken VIP16-28 (inactive). About 65% of specific [125I]-VIP binding sites in turkey cerebral cortex was sensitive to Gpp(NH)p, a nonhydrolysable analogue of GTP. PACAP38, PACAP27, chicken VIP and, to a lesser extent, mammalian VIP potently stimulated cyclic AMP formation in turkey cerebral cortical slices in a concentration-dependent manner, displaying EC50 values of 8.7 nM (PACAP38), 21.3 nM (PACAP27), 67.4 nM (chicken VIP), and 202 nM (mammalian VIP). On the other hand, PHI and secretin very weakly affected the nucleotide production. The obtained results indicate that cerebral cortex of turkey contains VPAC type receptors that are positively linked to cyclic AMP-generating system and are labeled with [125I]-VIP.
Collapse
Affiliation(s)
- Jolanta B Zawilska
- Department of Pharmacodynamics, Medical University of Lodz, 1 Muszynskiego St., 90-151 Lodz, Poland.
| | | | | |
Collapse
|
45
|
Nowak JZ, Sedkowska P, Zawilska JB, Gozes I, Brenneman DE. Antagonism of VIP-stimulated cyclic AMP formation in chick brain. J Mol Neurosci 2003; 20:163-72. [PMID: 12794310 DOI: 10.1385/jmn:20:2:163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2002] [Accepted: 12/08/2002] [Indexed: 11/11/2022]
Abstract
Of eight peptides tested (0.01-5 microM), only two, that is, pituitary adenylate cyclase-activating polypeptide (PACAP27) and chicken vasoactive intestinal peptide (cVIP), potently stimulated cyclic AMP (cAMP) production in cerebral cortical slices of the chick. Mammalian VIP (mVIP) showed some activity only at the highest dose tested, whereas truncated forms of PACAP or VIP, that is, PACAP6-27, cVIP6-28, and mVIP6-28, or hybrid compounds, that is, neurotensin6-11-cVIP7-28 (NT-cVIP) and neurotensin6-11-mVIP7-28 (NT-mVIP), were inactive. Thirty-minute preincubation of chick cortical slices with 5 microM PACAP6-27, NT-cVIP, or NT-mVIP competitively antagonized the cAMP effects of cVIP (0.03-1 microM), with the truncated form of PACAP being the best antagonist. Preincubation of slices with 5 microM mVIP6-28 also produced a significant inhibition of the cVIP (0.1-1 microM)-induced increase in cAMP production; however its action was independent of the concentration of cVIP. In contrast to mVIP6-28, cVIP6-28 showed no antagonistic activity against the full-length peptide. In parallel experiments, 30-min pretreatment of cortical slices with 5 microM PACAP6-27 significantly antagonized the PACAP38-evoked increase in cAMP formation, whereas mVIP6-28 or the NT-mVIP hybrid was ineffective. It has been concluded that in the chick brain, PACAP and cVIP stimulate cAMP biosynthesis via PAC1 and VPAC-type receptors, respectively, and PACAP6-27 seems to be the most potent, yet PACAP/VIP receptor-nonselective antagonist. Unlike truncated PACAP, the NT-VIP hybrid peptides tested may represent VPACtype receptor-selective blocking activity.
Collapse
Affiliation(s)
- Jerzy Z Nowak
- Institute of Biogenic Amines, Polish Academy of Sciences, P-225 90-950 Lodz, Poland.
| | | | | | | | | |
Collapse
|
46
|
Kirstein SL, Davidson KL, Ehringer MA, Sikela JM, Erwin VG, Tabakoff B. Quantitative trait loci affecting initial sensitivity and acute functional tolerance to ethanol-induced ataxia and brain cAMP signaling in BXD recombinant inbred mice. J Pharmacol Exp Ther 2002; 302:1238-45. [PMID: 12183685 DOI: 10.1124/jpet.302.3.1238] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In previous work, we identified genetic correlations between cAMP accumulation in the cerebellum and sensitivity to the incoordinating effects of ethanol. A genetic correlation suggests that common genes underlie the phenotypes investigated. One method for provisionally identifying genes involved in a given phenotypic measure is quantitative trait locus (QTL) analysis. Using a panel of 30 BXD recombinant inbred strains of mice and the progenitors (DBA/2J and C57BL/6J), and the dowel test for ataxia, we measured the blood ethanol concentrations at the time an animal first fell from the dowel and acute functional tolerance (AFT), and investigated cAMP signaling in the cerebellum. Cyclic AMP accumulation was measured in whole-cell preparations of cerebellar minces from individual mice under basal or stimulated conditions. We conducted a genome-wide QTL analysis of the behavioral and biochemical measures with >2000 genetic markers to identify significant associations. Western blot and comparative sequencing analysis were used to compare cAMP response element binding protein (CREB) levels and protein-coding sequence, respectively. QTL analyses correlating strain means with allelic status at genetic markers identified several significant associations (p < 0.01). Analysis of variance revealed an effect of strain on behavioral and biochemical measures. There was a significant genetic correlation between initial sensitivity and basal cAMP accumulation in the cerebellum. We identified 6 provisional QTLs for initial sensitivity on four chromosomes, 6 provisional QTLs for AFT on four chromosomes, and 11 provisional QTLs for cAMP signaling on nine chromosomes. Two loci were found to overlap for measures of initial sensitivity and for cAMP signaling. Given the genetic correlation between initial sensitivity and basal cAMP accumulation, we investigated candidate genes in a QTL on chromosome 1. Comparative sequence analysis was performed, and protein levels were compared between C57 and DBA mice for Creb1. No significant differences were detected in coding sequence or protein levels for CREB. These results suggest that although ethanol sensitivity and cAMP signaling are determined by multiple genes, they may share certain genetic codetermination.
Collapse
Affiliation(s)
- Shelli L Kirstein
- Department of Pharmacology, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | | | | | | | |
Collapse
|
47
|
Zawilska JB, Woldan-Tambor A, Nowak JZ. Histamine H(2) -like receptors in chick cerebral cortex: effects on cyclic AMP synthesis and characterization by [(3) H]tiotidine binding. J Neurochem 2002; 81:935-46. [PMID: 12065605 DOI: 10.1046/j.1471-4159.2002.00870.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, histamine (HA) receptors in chick cerebral cortex were characterized using two approaches: (1) analysis of the effects of HA-ergic drugs on the cAMP-generating system, and (2) radioreceptor binding of [(3) H]tiotidine, a selective H(2) antagonist. HA was a weak activator of adenylyl cyclase in a crude membrane preparation of chick cerebrum. On the other hand, HA (0.1-1000 microm) potently and concentration dependently stimulated cAMP production in [(3) H]adenine pre-labelled slices of chick cerebral cortex, displaying an EC(50) value (concentration that produces 50% of maximum response) of 2.65 microm. The effect of HA was mimicked by agonists of HA receptors with the following rank order of potency: HA >or= 4-methylHA (H(2)) >or= N alpha,N alpha-dimethylHA (H(3) >> H(2) = H(1)) >> 2-methylHA (H(1)) >> 2-thiazolylethylamine (H(1)) >or= R alpha-methylHA (H(3)) >> amthamine, dimaprit (H(2)), immepip (H(3), H(4)). The HA-evoked increase in cAMP production in chick cerebral cortex was antagonized by selective H(2) receptor blockers (aminopotentidine >or= tiotidine > ranitidine >> zolantidine), and not significantly affected by mepyramine and thioperamide, selective H(1) and H(3) /H(4) receptor blockers, respectively. A detailed analysis of the antagonistic action of aminopotentidine (vs. HA) revealed a non-competitive mode of action. The binding of [(3) H]tiotidine to chick cortical membranes was rapid, stable and reversible. Saturation analysis resulted in a linear Scatchard plot, suggesting binding to a single class of receptor binding site with high affinity [equilibrium dissociation constant (K (d)) = 4.42 nm] and high capacity [maximum number of binding sites (B (max) ) = 362 fmol/mg protein]. The relative rank order of HA-ergic drugs to inhibit [(3) H]tiotidine binding to chick cerebrum was: antagonists - tiotidine >> aminopotentidine = ranitidine >or= zolantadine >> thioperamide - triprolidine; agonists - HA >or= 4-methylHA >> 2-methylHA >or=R alpha-methylHA - dimaprit. In conclusion, chick cerebral cortex contains H(2) -like HA receptors that are linked to the cAMP-generating system and are labelled with [(3) H]tiotidine. The pharmacological profile of these receptors is different from that described for their mammalian counterpart. It is suggested that the studied receptors represent either an avian-specific H(2) -like HA receptors or a novel subtype of HA receptors.
Collapse
Affiliation(s)
- Jolanta B Zawilska
- Department of Biogenic Amines, Polish Academy of Sciences, Lodz, Poland.
| | | | | |
Collapse
|
48
|
Papp M, Nalepa I, Antkiewicz-Michaluk L, Sánchez C. Behavioural and biochemical studies of citalopram and WAY 100635 in rat chronic mild stress model. Pharmacol Biochem Behav 2002; 72:465-74. [PMID: 11900821 DOI: 10.1016/s0091-3057(01)00778-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reversal of chronic mild stress (CMS)-induced decrease of sucrose consumption has been studied in rats after 2, 7, 14, and 35 days treatment with imipramine, citalopram (both 10 mg/kg per day, i.p.), WAY 100635 (0.2 mg/kg sc, b.i.d.), and citalopram plus WAY 100635. Bmax, Kd, and functional status [cyclic AMP (cAMP) generation] of beta1-adrenoceptors were assessed in cortical tissue at the same time points. Citalopram reversed CMS-induced reduction of sucrose intake at an earlier time point than imipramine. WAY 100635 was not effective and did not potentiate the effect of citalopram. CMS produced increase of Bmax. Imipramine decreased Bmax in controls (Days 2, 7, 14, and 35) and normalised Bmax in stressed animals (Day 35). Citalopram, WAY 100635, and the combination increased Bmax in stressed animals and controls (Days 14 and 35). Inconsistent changes of Kd values and of cAMP responses to noradrenaline (NA) stimulation were observed. Thus stress- and drug-induced effects on beta1-adrenoceptors do not appear to be a common biochemical marker of antidepressant-like activity in the CMS model.
Collapse
Affiliation(s)
- Mariusz Papp
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Cracow, Poland
| | | | | | | |
Collapse
|
49
|
Chilmonczyk Z, Mazgajska M, Iskra-Jopa J, Chojnacka-Wójcik E, Tatarczyńska E, Kłodziriska A, Nowak JZ. Pharmacological properties and SAR of new 1,4-disubstituted piperazine derivatives with hypnotic-sedative activity. J Pharm Pharmacol 2002; 54:689-98. [PMID: 12005364 DOI: 10.1211/0022357021778844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Preparation, pharmacological properties and structure-activity relationships of new pyrimidyl-piperazine derivatives, exhibiting sedative and hypnotic activity in mice, are reported. The hypnotic activity of the compounds was comparable with that of zopiclone (the known hypnotic-sedative agent), their interaction with ethanol, however, being much lower. The obtained results suggested that zopiclone and pyrimidylpiperazines 2, 4 and 5 exerted their pharmacological activity through a different mechanism - zopiclone through the interaction with benzodiazepine receptors and compounds 2, 4 and 5 through an unidentified molecular target. The pharmacological properties of compound 3 could be the result of a mixed mechanism of action, combining the properties of zopiclone and those of compounds 2, 4 and 5. A common feature of zopiclone and compounds 2 and 3 was that, after their systemic administration, independently of mechanism of action, together with the hypnotic effect a reduction of the 5-HT turnover in the mouse brain was observed. Minimum structural requirements for the hypnotic activity were formulated. Structural considerations have shown that removing the alpha-carbonyl group did not influence the drug's ability to inhibit the locomotor activity. However, it did influence its ability to disturb motor coordination or abolish the righting reflex within non-lethal doses.
Collapse
|
50
|
Nowak JZ, Kuba K. Pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal peptide-stimulated cyclic AMP synthesis in rat cerebral cortical slices: interaction with noradrenaline, adrenaline, and forskolin. J Mol Neurosci 2002; 18:47-52. [PMID: 11931349 DOI: 10.1385/jmn:18:1-2:47] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP; 0.001-1 microM) and vasoactive intestinal peptide (VIP; 0.01-1 microM) produced a concentration-dependent stimulation of cyclic AMP (cAMP) formation in rat cerebral cortical slices prelabeled with [3H]adenine. The effects of PACAP38 and PACAP27 were similar, and more efficacious (at 0.1 and 1 microM) than those of VIP. Adrenaline and noradrenaline (each at 100 microM) also stimulated cAMP formation, with the latter compound being more effective. Combination of PACAP38, PACAP27 (each at 0.1 microM) and VIP (1 microM) with adrenaline or noradrenaline resulted in most cases in additive effects, with some supraadditive (PACAP27 plus adrenaline) or subadditive (PACAP38 or VIP plus noradrenaline) fluctuations. In contrast, combination of each of the three peptides with 3 microM forskolin resulted in synergistic effects. These results indicate that in rat cerebral cortex there is no synergism between PACAP or VIP with noradrenaline or adrenaline; however, based on the forskolin data, it seems likely that synergistic effects may take place with VIP or PACAP and other cAMP-stimulating neuroregulators.
Collapse
Affiliation(s)
- Jerzy Z Nowak
- Department of Biogenic Amines, Polish Academy of Sciences, Lodz.
| | | |
Collapse
|