1
|
Jakkamsetti V, Ma Q, Pascual JM. A subset of synaptic transmission events is coupled to acetyl coenzyme A production. J Neurophysiol 2022; 127:623-636. [PMID: 35080429 PMCID: PMC8897004 DOI: 10.1152/jn.00200.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Biological principles sustain the inference that synaptic function is coupled to neural metabolism, but the precise relationship between these two activities is not known. For example, it is unclear whether all synaptic transmission events are uniformly dependent on metabolic flux. Most synapses use glutamate, and the principal metabolic function of the brain is glucose oxidation, which starts with glycolysis. Thus, we asked how glutamatergic synaptic currents are modified by partial deficiency of the main glycolytic enzyme pyruvate dehydrogenase (PDH), which generates the intermediary metabolism product acetyl coenzyme A (acetyl-CoA). Using brain slices obtained from mice that were genetically modified to harbor a behaviorally relevant degree of PDH suppression, we also asked whether such impact is indeed metabolic via the bypassing of PDH with a glycolysis-independent acetyl-CoA substrate. We analyzed spontaneous synaptic currents under recording conditions that minimize artificial metabolic augmentation. Principal component analysis identified synaptic charge transfer as the major difference between a subset of wild-type and PDH-deficiency (PDHD) postsynaptic currents. This was due to reduced charge transfer as well as diminished current rise and decay times. The alternate acetyl-CoA source acetate rapidly restored these features but only for events of large amplitude as revealed by correlational and kernel density analyses. Application of tetrodotoxin to block large-amplitude events evoked by action potentials removed synaptic event charge transfer and decay-time differences between wild-type and PDHD neurons. These results suggest that glucose metabolic flux and excitatory transmission are intimately coupled for synaptic events characterized by large current amplitude.NEW & NOTEWORTHY In all tissues, metabolism and excitation are coupled but the details of this relationship remain elusive. Using a brain-targeted genetic approach in mice, reduction of pyruvate dehydrogenase, a major gateway in glucose metabolism, leads to changes that affect the synaptic event charge associated primarily with large excitatory (i.e., glutamate mediated) synaptic potentials. This can be modified in the direction of normal using the alternative fuel acetate, indicating that this phenomenon depends on rapid metabolic flux.
Collapse
Affiliation(s)
- Vikram Jakkamsetti
- 1Rare Brain Disorders Program, Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Qian Ma
- 1Rare Brain Disorders Program, Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Juan M. Pascual
- 1Rare Brain Disorders Program, Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, Texas,2Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas,3Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas,4Eugene McDermott Center for Human Growth & Development/Center for Human Genetics, The University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
2
|
Jakkamsetti V, Marin-Valencia I, Ma Q, Good LB, Terrill T, Rajasekaran K, Pichumani K, Khemtong C, Hooshyar MA, Sundarrajan C, Patel MS, Bachoo RM, Malloy CR, Pascual JM. Brain metabolism modulates neuronal excitability in a mouse model of pyruvate dehydrogenase deficiency. Sci Transl Med 2019; 11:eaan0457. [PMID: 30787166 PMCID: PMC6637765 DOI: 10.1126/scitranslmed.aan0457] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/25/2018] [Accepted: 01/31/2019] [Indexed: 12/25/2022]
Abstract
Glucose is the ultimate substrate for most brain activities that use carbon, including synthesis of the neurotransmitters glutamate and γ-aminobutyric acid via mitochondrial tricarboxylic acid (TCA) cycle. Brain metabolism and neuronal excitability are thus interdependent. However, the principles that govern their relationship are not always intuitive because heritable defects of brain glucose metabolism are associated with the paradoxical coexistence, in the same individual, of episodic neuronal hyperexcitation (seizures) with reduced basal cerebral electrical activity. One such prototypic disorder is pyruvate dehydrogenase (PDH) deficiency (PDHD). PDH is central to metabolism because it steers most of the glucose-derived flux into the TCA cycle. To better understand the pathophysiology of PDHD, we generated mice with brain-specific reduced PDH activity that paralleled salient human disease features, including cerebral hypotrophy, decreased amplitude electroencephalogram (EEG), and epilepsy. The mice exhibited reductions in cerebral TCA cycle flux, glutamate content, spontaneous, and electrically evoked in vivo cortical field potentials and gamma EEG oscillation amplitude. Episodic decreases in gamma oscillations preceded most epileptiform discharges, facilitating their prediction. Fast-spiking neuron excitability was decreased in brain slices, contributing to in vivo action potential burst prolongation after whisker pad stimulation. These features were partially reversed after systemic administration of acetate, which augmented cerebral TCA cycle flux, glutamate-dependent synaptic transmission, inhibition and gamma oscillations, and reduced epileptiform discharge duration. Thus, our results suggest that dysfunctional excitability in PDHD is consequent to reduced oxidative flux, which leads to decreased neuronal activation and impaired inhibition, and can be mitigated by an alternative metabolic substrate.
Collapse
Affiliation(s)
- Vikram Jakkamsetti
- Rare Brain Disorders Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Isaac Marin-Valencia
- Rare Brain Disorders Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - Qian Ma
- Rare Brain Disorders Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Levi B Good
- Rare Brain Disorders Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tyler Terrill
- Rare Brain Disorders Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Karthik Rajasekaran
- Rare Brain Disorders Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kumar Pichumani
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chalermchai Khemtong
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - M Ali Hooshyar
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Chandrasekhar Sundarrajan
- Rare Brain Disorders Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mulchand S Patel
- Department of Biochemistry, SUNY Buffalo, Buffalo, NY 14203, USA
| | - Robert M Bachoo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Juan M Pascual
- Rare Brain Disorders Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Eugene McDermott Center for Human Growth & Development / Center for Human Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
3
|
Fitzgerald E, Boardman JP, Drake AJ. Preterm Birth and the Risk of Neurodevelopmental Disorders - Is There a Role for Epigenetic Dysregulation? Curr Genomics 2018; 19:507-521. [PMID: 30386170 PMCID: PMC6158617 DOI: 10.2174/1389202919666171229144807] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/06/2017] [Accepted: 12/17/2017] [Indexed: 12/29/2022] Open
Abstract
Preterm Birth (PTB) accounts for approximately 11% of all births worldwide each year and is a profound physiological stressor in early life. The burden of neuropsychiatric and developmental impairment is high, with severity and prevalence correlated with gestational age at delivery. PTB is a major risk factor for the development of cerebral palsy, lower educational attainment and deficits in cognitive functioning, and individuals born preterm have higher rates of schizophrenia, autistic spectrum disorder and attention deficit/hyperactivity disorder. Factors such as gestational age at birth, systemic inflammation, respiratory morbidity, sub-optimal nutrition, and genetic vulnerability are associated with poor outcome after preterm birth, but the mechanisms linking these factors to adverse long term outcome are poorly understood. One potential mechanism linking PTB with neurodevelopmental effects is changes in the epigenome. Epigenetic processes can be defined as those leading to altered gene expression in the absence of a change in the underlying DNA sequence and include DNA methylation/hydroxymethylation and histone modifications. Such epigenetic modifications may be susceptible to environmental stimuli, and changes may persist long after the stimulus has ceased, providing a mechanism to explain the long-term consequences of acute exposures in early life. Many factors such as inflammation, fluctuating oxygenation and excitotoxicity which are known factors in PTB related brain injury, have also been implicated in epigenetic dysfunction. In this review, we will discuss the potential role of epigenetic dysregulation in mediating the effects of PTB on neurodevelopmental outcome, with specific emphasis on DNA methylation and the α-ketoglutarate dependent dioxygenase family of enzymes.
Collapse
Affiliation(s)
| | | | - Amanda J. Drake
- Address correspondence to this author at the University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK; Tel: 44 131 2426748; Fax: 44 131 2426779; E-mail:
| |
Collapse
|
4
|
Glucose and Intermediary Metabolism and Astrocyte–Neuron Interactions Following Neonatal Hypoxia–Ischemia in Rat. Neurochem Res 2016; 42:115-132. [DOI: 10.1007/s11064-016-2149-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 11/27/2022]
|
5
|
Brekke E, Morken TS, Walls AB, Waagepetersen H, Schousboe A, Sonnewald U. Anaplerosis for Glutamate Synthesis in the Neonate and in Adulthood. ADVANCES IN NEUROBIOLOGY 2016; 13:43-58. [PMID: 27885626 DOI: 10.1007/978-3-319-45096-4_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A central task of the tricarboxylic acid (TCA, Krebs, citric acid) cycle in brain is to provide precursors for biosynthesis of glutamate, GABA, aspartate and glutamine. Three of these amino acids are the partners in the intricate interaction between astrocytes and neurons and form the so-called glutamine-glutamate (GABA) cycle. The ketoacids α-ketoglutarate and oxaloacetate are removed from the cycle for this process. When something is removed from the TCA cycle it must be replaced to permit the continued function of this essential pathway, a process termed anaplerosis. This anaplerotic process in the brain is mainly carried out by pyruvate carboxylation performed by pyruvate carboxylase. The present book chapter gives an introduction and overview into this carboxylation and additionally anaplerosis mediated by propionyl-CoA carboxylase under physiological conditions in the adult and in the developing rodent brain. Furthermore, examples are given about pathological conditions in which anaplerosis is disturbed.
Collapse
Affiliation(s)
- Eva Brekke
- Department of Pediatrics, Nordland Hospital Trust, Bodo, Norway
| | - Tora Sund Morken
- Department of Ophthalmology, Trondheim University Hospital, Trondheim, 7006, Norway.,Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology (NTNU), Trondheim, 7489, Norway
| | - Anne B Walls
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Helle Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Ursula Sonnewald
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100, Denmark. .,Department of Neuroscience, Norwegian University of Science and Technology (NTNU), Postboks 8905, Trondheim, 7489, Norway.
| |
Collapse
|
6
|
Wille M, Schümann A, Wree A, Kreutzer M, Glocker MO, Mutzbauer G, Schmitt O. The Proteome Profiles of the Cerebellum of Juvenile, Adult and Aged Rats--An Ontogenetic Study. Int J Mol Sci 2015; 16:21454-85. [PMID: 26370973 PMCID: PMC4613263 DOI: 10.3390/ijms160921454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/04/2015] [Accepted: 08/25/2015] [Indexed: 11/16/2022] Open
Abstract
In this study, we searched for proteins that change their expression in the cerebellum (Ce) of rats during ontogenesis. This study focuses on the question of whether specific proteins exist which are differentially expressed with regard to postnatal stages of development. A better characterization of the microenvironment and its development may result from these study findings. A differential two-dimensional polyacrylamide gel electrophoresis (2DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of the samples revealed that the number of proteins of the functional classes differed depending on the developmental stages. Especially members of the functional classes of biosynthesis, regulatory proteins, chaperones and structural proteins show the highest differential expression within the analyzed stages of development. Therefore, members of these functional protein groups seem to be involved in the development and differentiation of the Ce within the analyzed development stages. In this study, changes in the expression of proteins in the Ce at different postnatal developmental stages (postnatal days (P) 7, 90, and 637) could be observed. At the same time, an identification of proteins which are involved in cell migration and differentiation was possible. Especially proteins involved in processes of the biosynthesis and regulation, the dynamic organization of the cytoskeleton as well as chaperones showed a high amount of differentially expressed proteins between the analyzed dates.
Collapse
Affiliation(s)
- Michael Wille
- Department of Anatomy, Gertrudenstr. 9, 18055 Rostock, Germany.
| | - Antje Schümann
- Department of Anatomy, Gertrudenstr. 9, 18055 Rostock, Germany.
| | - Andreas Wree
- Department of Anatomy, Gertrudenstr. 9, 18055 Rostock, Germany.
| | - Michael Kreutzer
- Proteome Center Rostock, Schillingallee 69, 18055 Rostock, Germany.
| | | | - Grit Mutzbauer
- Department of Pathology, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.
| | - Oliver Schmitt
- Department of Anatomy, Gertrudenstr. 9, 18055 Rostock, Germany.
| |
Collapse
|
7
|
Wille M, Schümann A, Kreutzer M, Glocker MO, Wree A, Mutzbauer G, Schmitt O. The proteome profiles of the olfactory bulb of juvenile, adult and aged rats - an ontogenetic study. Proteome Sci 2015; 13:8. [PMID: 25709559 PMCID: PMC4337183 DOI: 10.1186/s12953-014-0058-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/19/2014] [Indexed: 12/30/2022] Open
Abstract
Background In this study, we searched for proteins that change their expression in the olfactory bulb (oB) of rats during ontogenesis. Up to now, protein expression differences in the developing animal are not fully understood. Our investigation focused on the question whether specific proteins exist which are only expressed during different development stages. This might lead to a better characterization of the microenvironment and to a better determination of factors and candidates that influence the differentiation of neuronal progenitor cells. Results After analyzing the samples by two-dimensional polyacrylamide gel electrophoresis (2DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), it could be shown that the number of expressed proteins differs depending on the developmental stages. Especially members of the functional classes, like proteins of biosynthesis, regulatory proteins and structural proteins, show the highest differential expression in the stages of development analyzed. Conclusion In this study, quantitative changes in the expression of proteins in the oB at different developmental stages (postnatal days (P) 7, 90 and 637) could be observed. Furthermore, the expression of many proteins was found at specific developmental stages. It was possible to identify these proteins which are involved in processes like support of cell migration and differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s12953-014-0058-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Wille
- Department of Anatomy, Gertrudenstr. 9, 18055 Rostock, Germany
| | - Antje Schümann
- Department of Anatomy, Gertrudenstr. 9, 18055 Rostock, Germany
| | - Michael Kreutzer
- Proteome Center Rostock, Schillingallee 69, 18055 Rostock, Germany
| | | | - Andreas Wree
- Department of Anatomy, Gertrudenstr. 9, 18055 Rostock, Germany
| | - Grit Mutzbauer
- Department of Pathology, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Oliver Schmitt
- Department of Anatomy, Gertrudenstr. 9, 18055 Rostock, Germany
| |
Collapse
|
8
|
Brekke E, Morken TS, Sonnewald U. Glucose metabolism and astrocyte-neuron interactions in the neonatal brain. Neurochem Int 2015; 82:33-41. [PMID: 25684072 DOI: 10.1016/j.neuint.2015.02.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/07/2015] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
Abstract
Glucose is essentially the sole fuel for the adult brain and the mapping of its metabolism has been extensive in the adult but not in the neonatal brain, which is believed to rely mainly on ketone bodies for energy supply. However, glucose is absolutely indispensable for normal development and recent studies have shed light on glycolysis, the pentose phosphate pathway and metabolic interactions between astrocytes and neurons in the 7-day-old rat brain. Appropriately (13)C labeled glucose was used to distinguish between glycolysis and the pentose phosphate pathway during development. Experiments using (13)C labeled acetate provided insight into the GABA-glutamate-glutamine cycle between astrocytes and neurons. It could be shown that in the neonatal brain the part of this cycle that transfers glutamine from astrocytes to neurons is operating efficiently while, in contrast, little glutamate is shuttled from neurons to astrocytes. This lack of glutamate for glutamine synthesis is compensated for by anaplerosis via increased pyruvate carboxylation relative to that in the adult brain. Furthermore, compared to adults, relatively more glucose is prioritized to the pentose phosphate pathway than glycolysis and pyruvate dehydrogenase activity. The reported developmental differences in glucose metabolism and neurotransmitter synthesis may determine the ability of the brain at various ages to resist excitotoxic insults such as hypoxia-ischemia.
Collapse
Affiliation(s)
- Eva Brekke
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim N-7489, Norway; Department of Pediatrics, Division of Pediatrics, Obstetrics and Women's Health, Nordland Hospital Trust, Bodo, Norway
| | - Tora Sund Morken
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology (NTNU), Trondheim N-7489, Norway; Department of Ophthalmology, St. Olav's Hospital HF, Trondheim, Norway
| | - Ursula Sonnewald
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim N-7489, Norway.
| |
Collapse
|
9
|
The pentose phosphate pathway and pyruvate carboxylation after neonatal hypoxic-ischemic brain injury. J Cereb Blood Flow Metab 2014; 34:724-34. [PMID: 24496178 PMCID: PMC3982102 DOI: 10.1038/jcbfm.2014.8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 01/04/2014] [Accepted: 01/06/2014] [Indexed: 11/09/2022]
Abstract
The neonatal brain is vulnerable to oxidative stress, and the pentose phosphate pathway (PPP) may be of particular importance to limit the injury. Furthermore, in the neonatal brain, neurons depend on de novo synthesis of neurotransmitters via pyruvate carboxylase (PC) in astrocytes to increase neurotransmitter pools. In the adult brain, PPP activity increases in response to various injuries while pyruvate carboxylation is reduced after ischemia. However, little is known about the response of these pathways after neonatal hypoxia-ischemia (HI). To this end, 7-day-old rats were subjected to unilateral carotid artery ligation followed by hypoxia. Animals were injected with [1,2-(13)C]glucose during the recovery phase and extracts of cerebral hemispheres ipsi- and contralateral to the operation were analyzed using (1)H- and (13)C-NMR (nuclear magnetic resonance) spectroscopy and high-performance liquid chromatography (HPLC). After HI, glucose levels were increased and there was evidence of mitochondrial hypometabolism in both hemispheres. Moreover, metabolism via PPP was reduced bilaterally. Ipsilateral glucose metabolism via PC was reduced, but PC activity was relatively preserved compared with glucose metabolism via pyruvate dehydrogenase. The observed reduction in PPP activity after HI may contribute to the increased susceptibility of the neonatal brain to oxidative stress.
Collapse
|
10
|
Pliss L, Hausknecht KA, Stachowiak MK, Dlugos CA, Richards JB, Patel MS. Cerebral Developmental Abnormalities in a Mouse with Systemic Pyruvate Dehydrogenase Deficiency. PLoS One 2013; 8:e67473. [PMID: 23840713 PMCID: PMC3694023 DOI: 10.1371/journal.pone.0067473] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 05/17/2013] [Indexed: 12/29/2022] Open
Abstract
Pyruvate dehydrogenase (PDH) complex (PDC) deficiency is an inborn error of pyruvate metabolism causing a variety of neurologic manifestations. Systematic analyses of development of affected brain structures and the cellular processes responsible for their impairment have not been performed due to the lack of an animal model for PDC deficiency. METHODS: In the present study we investigated a murine model of systemic PDC deficiency by interrupting the X-linked Pdha1 gene encoding the α subunit of PDH to study its role on brain development and behavioral studies. RESULTS: Male embryos died prenatally but heterozygous females were born. PDC activity was reduced in the brain and other tissues in female progeny compared to age-matched control females. Immunohistochemical analysis of several brain regions showed that approximately 40% of cells were PDH−. The oxidation of glucose to CO2 and incorporation of glucose-carbon into fatty acids were reduced in brain slices from 15 day-old PDC-deficient females. Histological analyses showed alterations in several structures in white and gray matters in 35 day-old PDC-deficient females. Reduction in total cell number and reduced dendritic arbors in Purkinje neurons were observed in PDC-deficient females. Furthermore, cell proliferation, migration and differentiation into neurons by newly generated cells were reduced in the affected females during pre- and postnatal periods. PDC-deficient mice had normal locomotor activity in a novel environment but displayed decreased startle responses to loud noises and there was evidence of abnormal pre-pulse inhibition of the startle reflex. CONCLUSIONS: The results show that a reduction in glucose metabolism resulting in deficit in energy production and fatty acid biosynthesis impairs cellular differentiation and brain development in PDC-deficient mice.
Collapse
Affiliation(s)
- Lioudmila Pliss
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Kathryn A. Hausknecht
- Research Institute on Addictions, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Michal K. Stachowiak
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Cynthia A. Dlugos
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Jerry B. Richards
- Research Institute on Addictions, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Mulchand S. Patel
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
11
|
Hertz L. The Glutamate-Glutamine (GABA) Cycle: Importance of Late Postnatal Development and Potential Reciprocal Interactions between Biosynthesis and Degradation. Front Endocrinol (Lausanne) 2013; 4:59. [PMID: 23750153 PMCID: PMC3664331 DOI: 10.3389/fendo.2013.00059] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/02/2013] [Indexed: 01/28/2023] Open
Abstract
The gold standard for studies of glutamate-glutamine (GABA) cycling and its connections to brain biosynthesis from glucose of glutamate and GABA and their subsequent metabolism are the elegant in vivo studies by (13)C magnetic resonance spectroscopy (NMR), showing the large fluxes in the cycle. However, simpler experiments in intact brain tissue (e.g., immunohistochemistry), brain slices, cultured brain cells, and mitochondria have also made important contributions to the understanding of details, mechanisms, and functional consequences of glutamate/GABA biosynthesis and degradation. The purpose of this review is to attempt to integrate evidence from different sources regarding (i) the enzyme(s) responsible for the initial conversion of α-ketoglutarate to glutamate; (ii) the possibility that especially glutamate oxidation is essentially confined to astrocytes; and (iii) the ontogenetically very late onset and maturation of glutamine-glutamate (GABA) cycle function. Pathway models based on the functional importance of aspartate for glutamate synthesis suggest the possibility of interacting pathways for biosynthesis and degradation of glutamate and GABA and the use of transamination as the default mechanism for initiation of glutamate oxidation. The late development and maturation are related to the late cortical gliogenesis and convert brain cortical function from being purely neuronal to becoming neuronal-astrocytic. This conversion is associated with huge increases in energy demand and production, and the character of potentially incurred gains of function are discussed. These may include alterations in learning mechanisms, in mice indicated by lack of pairing of odor learning with aversive stimuli in newborn animals but the development of such an association 10-12 days later. The possibility is suggested that analogous maturational changes may contribute to differences in the way learning is accomplished in the newborn human brain and during later development.
Collapse
Affiliation(s)
- Leif Hertz
- Clinical Pharmacology, Medical University of ChinaShenyang, China
| |
Collapse
|
12
|
Neuron-astrocyte interactions, pyruvate carboxylation and the pentose phosphate pathway in the neonatal rat brain. Neurochem Res 2013; 39:556-69. [PMID: 23504293 DOI: 10.1007/s11064-013-1014-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/04/2013] [Accepted: 03/02/2013] [Indexed: 10/27/2022]
Abstract
Glucose and acetate metabolism and the synthesis of amino acid neurotransmitters, anaplerosis, glutamate-glutamine cycling and the pentose phosphate pathway (PPP) have been extensively investigated in the adult, but not the neonatal rat brain. To do this, 7 day postnatal (P7) rats were injected with [1-(13)C]glucose and [1,2-(13)C]acetate and sacrificed 5, 10, 15, 30 and 45 min later. Adult rats were injected and sacrificed after 15 min. To analyse pyruvate carboxylation and PPP activity during development, P7 rats received [1,2-(13)C]glucose and were sacrificed 30 min later. Brain extracts were analysed using (1)H- and (13)C-NMR spectroscopy. Numerous differences in metabolism were found between the neonatal and adult brain. The neonatal brain contained lower levels of glutamate, aspartate and N-acetylaspartate but similar levels of GABA and glutamine per mg tissue. Metabolism of [1-(13)C]glucose at the acetyl CoA stage was reduced much more than that of [1,2-(13)C]acetate. The transfer of glutamate from neurons to astrocytes was much lower while transfer of glutamine from astrocytes to glutamatergic neurons was relatively higher. However, transport of glutamine from astrocytes to GABAergic neurons was lower. Using [1,2-(13)C]glucose it could be shown that despite much lower pyruvate carboxylation, relatively more pyruvate from glycolysis was directed towards anaplerosis than pyruvate dehydrogenation in astrocytes. Moreover, the ratio of PPP/glucose-metabolism was higher. These findings indicate that only the part of the glutamate-glutamine cycle that transfers glutamine from astrocytes to neurons is operating in the neonatal brain and that compared to adults, relatively more glucose is prioritised to PPP and pyruvate carboxylation. Our results may have implications for the capacity to protect the neonatal brain against excitotoxicity and oxidative stress.
Collapse
|
13
|
Pliss L, Pentney RJ, Johnson MT, Patel MS. Biochemical and structural brain alterations in female mice with cerebral pyruvate dehydrogenase deficiency. J Neurochem 2005; 91:1082-91. [PMID: 15569252 DOI: 10.1111/j.1471-4159.2004.02790.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyruvate dehydrogenase complex (PDC) deficiency is an inborn metabolic disorder associated with a variety of neurologic abnormalities. This report describes the development and initial characterization of a novel murine model system in which PDC deficiency has been introduced specifically into the developing nervous system. The absence of liveborn male and a roughly 50% reduction in female offspring following induction of the X-linked mutation indicate that extensive deficiency of PDC in the nervous system leads to pre-natal lethality. Brain tissue from surviving females at post-natal days 15 and 35 was shown to have approximately 75% of wild-type PDC activity, suggesting that a threshold of enzyme activity exists for post-natal survival. Detailed histological analyses of brain tissue revealed structural defects such as disordered neuronal cytoarchitecture and neuropil fibers in grey matter, and reduced size of bundles and disorganization of fibers in white matter. Many of the histologic abnormalities resemble those found in human female patients who carry mutations in the X-linked ortholog. These findings demonstrate a requirement for PDC activity within the nervous system for survival in utero and suggest that impaired pyruvate metabolism in the developing brain can affect neuronal migration, axonal growth and cell-cell interactions.
Collapse
Affiliation(s)
- Lioudmila Pliss
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
14
|
Erecinska M, Cherian S, Silver IA. Energy metabolism in mammalian brain during development. Prog Neurobiol 2004; 73:397-445. [PMID: 15313334 DOI: 10.1016/j.pneurobio.2004.06.003] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 06/09/2004] [Indexed: 12/28/2022]
Abstract
Production of energy for the maintenance of ionic disequilibria necessary for generation and transmission of nerve impulses is one of the primary functions of the brain. This review attempts to link the plethora of information on the maturation of the central nervous system with the ontogeny of ATP metabolism, placing special emphasis on variations that occur during development in different brain regions and across the mammalian species. It correlates morphological events and markers with biochemical changes in activities of enzymes and pathways that participate in the production of ATP. The paper also evaluates alterations in energy levels as a function of age and, based on the tenet that ATP synthesis and utilization cannot be considered in isolation, investigates maturational profiles of the key processes that utilize energy. Finally, an attempt is made to assess the relevance of currently available animal models to improvement of our understanding of the etiopathology of various disease states in the human infant. This is deemed essential for the development and testing of novel strategies for prevention and treatment of several severe neurological deficits.
Collapse
Affiliation(s)
- Maria Erecinska
- Department of Anatomy, School of Veterinary Science, Southwell Street, Bristol BS2 8EJ, UK.
| | | | | |
Collapse
|
15
|
Abstract
Prematurity-mediated cerebral damage has been associated with oxidative stress. The aim of the present work was to study the possible role played by free oxygen radicals generated by mitochondrial respiratory function in cerebral injury in preterm neonates. Our results show that whereas total glutathione concentrations are similar in term and preterm neonates, the GSH/GSSG ratio decreases sharply in preterm neonates immediately after birth. This effect is not due to a lack of enzymes involved in GSH regeneration, such as glutathione reductase and glucose-6-phosphate dehydrogenase, but to a significant increase in free-radical generation in preterm rat brain as shown by the increase in lipoperoxidation. Because the mitochondrion is the main source of free radicals in the cell, mitochondrial respiratory function was studied in the brain of preterm neonates. Our results show that prematurity prevented the postnatal increases in complex II-III activity and ATP concentrations that occur in term neonates at 5 min after delivery. All these effects were counteracted by the oxygen supply, suggesting that the inhibition of mitochondrial function is caused by restricted oxygen availability. Consequently, cerebral damage associated with prematurity may be mediated by mitochondrial free-radical generation as a consequence of hypoxia undergone by preterm neonates at birth.
Collapse
Affiliation(s)
- Rosa Sánchez-Alvarez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
| | | | | |
Collapse
|
16
|
Lieth E, LaNoue KF, Berkich DA, Xu B, Ratz M, Taylor C, Hutson SM. Nitrogen shuttling between neurons and glial cells during glutamate synthesis. J Neurochem 2001; 76:1712-23. [PMID: 11259489 DOI: 10.1046/j.1471-4159.2001.00156.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The relationship between neuronal glutamate turnover, the glutamate/glutamine cycle and de novo glutamate synthesis was examined using two different model systems, freshly dissected rat retinas ex vivo and in vivo perfused rat brains. In the ex vivo rat retina, dual kinetic control of de novo glutamate synthesis by pyruvate carboxylation and transamination of alpha-ketoglutarate to glutamate was demonstrated. Rate limitation at the transaminase step is likely imposed by the limited supply of amino acids which provide the alpha-amino group to glutamate. Measurements of synthesis of (14)C-glutamate and of (14)C-glutamine from H(14)CO(3) have shown that (14)C-amino acid synthesis increased 70% by raising medium pyruvate from 0.2 to 5 mM. The specific radioactivity of (14)C-glutamine indicated that approximately 30% of glutamine was derived from (14)CO(2) fixation. Using gabapentin, an inhibitor of the cytosolic branched-chain aminotransferase, synthesis of (14)C-glutamate and (14)C-glutamine from H(14)CO(3)(-) was inhibited by 31%. These results suggest that transamination of alpha-ketoglutarate to glutamate in Müller cells is slow, the supply of branched-chain amino acids may limit flux, and that branched-chain amino acids are an obligatory source of the nitrogen required for optimal rates of de novo glutamate synthesis. Kinetic analysis suggests that the glutamate/glutamine cycle accounts for 15% of total neuronal glutamate turnover in the ex vivo retina. To examine the contribution of the glutamate/glutamine cycle to glutamate turnover in the whole brain in vivo, rats were infused intravenously with H(14)CO(3)(-). (14)C-metabolites in brain extracts were measured to determine net incorporation of (14)CO(2) and specific radioactivity of glutamate and glutamine. The results indicate that 23% of glutamine in the brain in vivo is derived from (14)CO(2) fixation. Using published values for whole brain neuronal glutamate turnover, we calculated that the glutamate/glutamine cycle accounts for approximately 60% of total neuronal turnover. Finally, differences between glutamine/glutamate cycle rates in these two model systems suggest that the cycle is closely linked to neuronal activity.
Collapse
Affiliation(s)
- E Lieth
- Department of Neuroscience and Anatomy, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Almeida A, Bolaños JP, Medina JM. Nitric oxide mediates brain mitochondrial maturation immediately after birth. FEBS Lett 1999; 452:290-4. [PMID: 10386608 DOI: 10.1016/s0014-5793(99)00628-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The possible role of nitric oxide (*NO) in brain mitochondrial maturation was studied. Within the first 5 min after birth, a sharp increase in ATP concentrations was observed, coinciding with an increase in mitochondrial complex II-III (succinate-cytochrome c reductase) activity, while complex I (NADH-CoQ1 reductase) and complex IV (cytochrome c oxidase) activities remained unchanged. Under the same circumstances, cGMP concentrations were increased by 5 min after birth, correlating significantly with ATP concentrations. Since ATP concentrations also correlated significantly with mitochondrial complex II-III activity, these three parameters may be associated. Inhibition of *NO synthase activity brought about by the administration of N(omega)-nitro-L-arginine monomethyl ester to mothers prevented the postnatal increase in cGMP and ATP levels and complex II-III activity. These results suggest that early postnatal mitochondrial maturation in the brain is a *NO-mediated process.
Collapse
Affiliation(s)
- A Almeida
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Salamanca, Spain
| | | | | |
Collapse
|
18
|
Takakubo F, Dahl HH. Analysis of pyruvate dehydrogenase expression in embryonic mouse brain: localization and developmental regulation. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1994; 77:63-76. [PMID: 7510589 DOI: 10.1016/0165-3806(94)90214-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Brain malformations and neurological dysfunctions are often seen in pyruvate dehydrogenase (PDH) deficient patients. To understand these clinical presentations, we have analyzed the localization and developmental expression of PDH in the embryonic mouse nervous system. Immunostaining was performed to localize PDH E1 alpha protein. PDH activities were measured before and after activation. PDH E1 alpha mRNA levels were quantitated by reverse transcriptase-polymerase chain reaction. Abundant PDH E1 alpha protein was localized in the central nervous system and other neural tissues in embryos at embryonic day (E) 11 onwards. The PDH activity was very low in E9 brain and it increased continuously until the end of gestation. The proportion of active form of PDH increased significantly in E15 brain. Analysis of the PDH E1 alpha mRNA showed that only the X-linked form of the gene was transcribed. The overall mRNA level of E9 brain was approximately 93% of the adult value. It decreased gradually during embryogenesis. A large increase took place at the end of gestation. The mRNA level of PDH was approximately 100 times higher than that of the acetoacetyl-CoA thiolase gene. These results suggest that PDH E1 alpha transcripts of E9 brain are not translated at a high level. The appearance of PDH activity and its increase during E11 and E15 are mainly due to increased levels of translation and activation of PDH. Increased PDH activity at the end of gestation is attributed to an increase in transcription. Our data to a large extent explain pathological presentations in PDH E1 alpha deficient patients with congenital brain disorders.
Collapse
Affiliation(s)
- F Takakubo
- Murdoch Institute for Research into Birth Defects, Royal Children's Hospital, Parkville, Victoria, Australia
| | | |
Collapse
|
19
|
Nehlig A, Pereira de Vasconcelos A. Glucose and ketone body utilization by the brain of neonatal rats. Prog Neurobiol 1993; 40:163-221. [PMID: 8430212 DOI: 10.1016/0301-0082(93)90022-k] [Citation(s) in RCA: 221] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- A Nehlig
- INSERM U 272, Pathologie et Biologie du Développement Humain, Université de Nancy I, France
| | | |
Collapse
|
20
|
Cain ST, Akers RF, Routtenberg A. Functional regulation of brain pyruvate dehydrogenase: Postnatal development, anesthesia and food-deprivation. Neurochem Int 1991. [DOI: 10.1016/0197-0186(91)90075-o] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Kelly DP, Gordon JI, Alpers R, Strauss AW. The Tissue-specific Expression and Developmental Regulation of Two Nuclear Genes Encoding Rat Mitochondrial Proteins. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)47245-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Dombrowski GJ, Swiatek KR, Chao KL. Lactate, 3-hydroxybutyrate, and glucose as substrates for the early postnatal rat brain. Neurochem Res 1989; 14:667-75. [PMID: 2779727 DOI: 10.1007/bf00964877] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The dependence of cerebral energy metabolism upon glucose, 3-hydroxybutyrate, and lactate as fuel sources during the postnatal period was investigated. The brain of 6 day old suckling pups used very little glucose, but by the 15th postnatal day glucose was the major catabolite. Hydroxybutyrate was not a major brain fuel at either 6 or 15 days of age. Its utilization accounted for only 19% of the brain's total energy needs at 15 days of age, even through blood ketone concentrations are near maximal at this time. Seventy percent of the cerebral metabolic requirements were met by lactate in animals aged 6 days. The major role played by lactate as a substrate for brain metabolism in young pups was not a result of abnormally elevated blood lactate concentrations. The slow catabolism of glucose in young brain can not be explained by low rates of influx or inadequate enzymatic capacity.
Collapse
Affiliation(s)
- G J Dombrowski
- Institute for the Study of Developmental Disabilities, University of Illinois, Chicago 60680
| | | | | |
Collapse
|
23
|
Abstract
The activities of thiamine diphosphatase (TDPase), thiamine triphosphatase (TTPase), and thiamine pyrophosphokinase and the contents of thiamine and its phosphate esters were determined in rat brain cortex, cerebellum, and liver from birth to adulthood. Microsomal TTPase activity in the cerebral cortex and cerebellum increased from birth to 3 weeks, whereas that in the liver did not change during postnatal development. Microsomal TDPase activity in the cerebral cortex showed a transient increase at 1-2 weeks, but that in the cerebellum did not change during development. In contrast to the activity of the brain enzyme, that of liver microsomal TDPase increased stepwise after birth. Thiamine pyrophosphokinase activity in the cerebellum increased from birth to 3 weeks and then decreased, whereas that in the cerebral cortex and liver showed less change during development. TDP and thiamine monophosphate (TMP) levels increased after birth and plateaued at 3 weeks whereas TTP and thiamine levels showed little change during development in the cerebral cortex and cerebellum. The contents of thiamine and its phosphate esters in the liver showed more complicated changes during development. It is concluded that thiamine metabolism in the brain changes during postnatal development in a different way from that in the liver and that the development of thiamine metabolism differs among brain regions.
Collapse
Affiliation(s)
- T Matsuda
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Osaka University, Japan
| | | | | | | | | |
Collapse
|
24
|
Elnageh KM, Gaitonde MK. Effect of a deficiency of thiamine on brain pyruvate dehydrogenase: enzyme assay by three different methods. J Neurochem 1988; 51:1482-9. [PMID: 3139833 DOI: 10.1111/j.1471-4159.1988.tb01115.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A simple and rapid method based on the NADH-linked reduction of a tetrazolium dye was described for the determination of pyruvate dehydrogenase activity in rat brain homogenates. The method (method 3) gave a value of 36.06 +/- 1.24 nmol of pyruvate utilised/min/mg of whole brain protein. This value was higher than that obtained by measurement of the rate of decarboxylation of [1-14C]pyruvate (15.10 +/- 0.88 nmol/min/mg of protein; method 1) and was comparable with the rate of transfer of acetyl groups to an arylamine (39.04 +/- 1.32 nmol/min/mg of protein; method 2). A critique of the values reported by others by different methods was given. The pyruvate dehydrogenase activity in the mitochondria isolated from rat brain was in the "active" (nonphosphorylated) form. A deficiency of thiamine in rats was produced by treatment with pyrithiamine, an antagonist of thiamine. This treatment resulted in abnormal neurological signs, such as ataxia and convulsions. The measurement of the total activity of pyruvate dehydrogenase in the brain by all three methods showed no significant change in the enzymic activity in thiamine-deficient rats after treatment with pyrithiamine. The activities of the enzyme in the brains of pair-fed animals were similar to those in the controls.
Collapse
Affiliation(s)
- K M Elnageh
- Department of Biochemistry, St. George's Hospital Medical School, London, England
| | | |
Collapse
|
25
|
Iwata H, Tonomura H, Matsuda T. Transketolase and 2-oxoglutarate dehydrogenase activities in the brain and liver of the developing rat. EXPERIENTIA 1988; 44:780-1. [PMID: 3416997 DOI: 10.1007/bf01959164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Rat brain transketolase showed little change in activity from birth to adulthood, whereas the liver enzyme activity increased in a biphasic way. In both brain and liver, 2-oxoglutarate dehydrogenase activity increased gradually after birth and reached a plateau at 5 weeks of age. A developmental change in thiamin content in the brain was similar to the change in the 2-oxoglutarate dehydrogenase activity, but this was not the case in the liver.
Collapse
Affiliation(s)
- H Iwata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Osaka University, Japan
| | | | | |
Collapse
|
26
|
Veerkamp JH, Wagenmakers AJ. Postnatal development of the actual and total activity of the branched-chain 2-oxo acid dehydrogenase complex in rat tissues. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1987; 19:205-7. [PMID: 3569650 DOI: 10.1016/0020-711x(87)90334-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Actual and total activities of the branched-chain 2-oxo acid dehydrogenase complex were determined in homogenates of quadriceps muscle, heart, liver, kidney and brain from rats of 0-70 days age. All rat tissues except quadriceps muscle showed a marked increase of total activity between 0 and 21 days, heart and kidney also after weaning. The actual activity rose after birth in liver, kidney and brain and after weaning in liver, kidney and heart. The activity state was always about 100% in liver and varied between 40-60% in kidney and brain, 10-23% in heart and 6-12% in quadriceps muscle. The actual activities measured indicate, that the degradation of branched-chain 2-oxo acids mainly takes place in the liver of the newborn, suckling and young-adult rat.
Collapse
|
27
|
Peterson C, Goldman JE. In vitro acetylcholine synthesis and oxidative metabolism during development of normal and brindled mouse brain. Brain Res 1986; 394:153-9. [PMID: 3768723 DOI: 10.1016/0165-3806(86)90091-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
During early development normal and brindled mouse brain use 3-hydroxy-butyrate preferentially to glucose as a source for biosynthetic carbon units. On postnatal days 5-60, CO2 and acetylcholine production from 3-hydroxybutyrate decrease while that from glucose increases. Glucose metabolism exceeds that of 3-hydroxybutyrate after weaning (day 21). These findings indicate that the immature brain uses 3-hydroxybutyrate to support effectively oxidative metabolism and acetylcholine synthesis. Deficits in oxidative and acetylcholine metabolism occur in the developing brindled mouse, a genetic mutant with a defect in copper homeostasis. In the brindled mouse forebrain and cerebellum, the incorporation of either substrate into CO2 and acetylcholine was decreased 15%, 50% and 80% at days 5, 10 and 15 postnatal, respectively, when compared to the normal littermates. The brindled mouse demonstrates deficits in both oxidative metabolism and acetylcholine synthesis before the appearance of neuropathology.
Collapse
|
28
|
Haney PM, Patel MS. Regulation of succinyl-CoA:3-oxoacid CoA-transferase in developing rat brain: responsiveness associated with prenatal but not postnatal hyperketonemia. Arch Biochem Biophys 1985; 240:426-34. [PMID: 3860190 DOI: 10.1016/0003-9861(85)90047-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Activities of ketone body-metabolizing enzymes in rat brain rise 3- to 5-fold during the suckling period, then fall more than 50% after weaning. Our purpose was to determine the mechanism of the developmental changes in activity of 3-oxoacid CoA-transferase in rat brain and to study its regulation by dietary modification. Purified rat brain 3-oxoacid CoA-transferase was used to generate specific antibody. Immunotitrations of the enzyme from brains of 4-, 24-, and 90-day-old rats indicated that changes in 3-oxoacid CoA-transferase activity during development are due to changes in content of the enzyme protein. Pulse-labeling studies showed that changes in enzyme specific activity reflected changes in its relative rate of synthesis, which increased 2.5-fold between the nineteenth day of gestation and the third postnatal day, remained at this high level until the twelfth postnatal day, and declined thereafter, returning by Day 38 to the level observed in utero. The enzyme is apparently degraded very slowly during early postnatal life. Fetal hyperketonemia induced by feeding pregnant rats a high-fat diet was associated with an increase in the relative rate of synthesis of 3-oxoacid CoA-transferase in brains of 19-day-old fetuses and newborn rats and with an increase in the specific activity of the enzyme at birth. To examine the role of postnatal hyperketonemia in the development of the enzyme in brains of suckling rats, neonates received intragastric cannulas and were fed, for up to 13 days, a modified milk formula low in fat. Postnatal hyperketonemia was abolished but cerebral 3-oxoacid CoA-transferase specific activity on Days 10 and 17 was not significantly affected. Thus, the physiological hyperketonemia caused by the high fat content of rat milk is not required for the normal development of 3-oxoacid CoA-transferase in rat brain.
Collapse
|
29
|
Shank RP, Bennett GS, Freytag SO, Campbell GL. Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 1985; 329:364-7. [PMID: 3884090 DOI: 10.1016/0006-8993(85)90552-9] [Citation(s) in RCA: 361] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Pyruvate carboxylase is the predominant anaplerotic enzyme in CNS tissues, and thus provides for net utilization of glucose to generate citric acid cycle intermediates such as alpha-ketoglutarate and malate for replenishment of the neurotransmitter pools of glutamate, GABA and aspartate. Studies reported in this paper involving immunocytochemical and biochemical techniques demonstrate: (1) the enzyme is localized in astrocytes as visualized by immunofluorescence in sections of cerebellum and (2) the enzyme activity in astrocyte-enriched populations is 3 X higher than in granule cell-enriched populations isolated from the cerebellum; similarly activity in different synaptosomal preparations parallels that for glutamine synthetase. We conclude from these results that the enzyme pyruvate carboxylase is an astrocyte-specific marker. This localization substantiates some recent hypotheses for astrocyte functions, including CO2 fixation in the CNS and the replenishment of citric acid cycle intermediates by astrocytes as precursors for amino acid neurotransmitter pools.
Collapse
|
30
|
Regunathan S, Sundaresan R. Pyruvate metabolism in the brain of young rats intoxicated with organic and inorganic lead. J Neurochem 1984; 43:1346-51. [PMID: 6548509 DOI: 10.1111/j.1471-4159.1984.tb05393.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The activities of lipoyl dehydrogenase, aspartate transaminase, and alanine transaminase, and levels of lactate were estimated in cerebral cortex, cerebellum, and brainstem of rats intoxicated acutely with tetraethyl lead and chronically with lead acetate. A significant inhibition of lipoyl dehydrogenase was observed in both groups of animals, whereas transaminase activities were increased in inorganic lead toxicity. Oxidative decarboxylation and anaplerosis of pyruvate was assessed in brain slices using [1-14C]pyruvate. Pyruvate dehydrogenase activity was decreased in both organic and inorganic lead toxicity, whereas labelling of aspartate and alanine was increased in inorganic lead toxicity. In studies in vitro, lead acetate showed a more significant effect than tetraethyl lead. The higher anaerobic metabolism in inorganic lead toxicity, as evidenced by increased anaerobic lactate production by brain slices, could either be an adaptive mechanism or be due to the delayed maturation of brain in the developing rat. Such a mechanism does not occur in acute organic lead toxicity, as the compound brings about massive and rapid degenerative changes in brain, resulting in convulsive seizures and death of the animals.
Collapse
|
31
|
Swiatek KR, Dombrowski GJ, Chao KL. The metabolism of D- and L-3-hydroxybutyrate in developing rat brain. BIOCHEMICAL MEDICINE 1984; 31:332-46. [PMID: 6477538 DOI: 10.1016/0006-2944(84)90089-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The incorporation of L- and D-3-hydroxybutyrate into rat brain protein, lipid, and amino acids during development was studied. L-3-Hydroxybutyrate was found to label brain protein and amino acids in addition to sterols and fatty acids throughout the first 32 postnatal days. Age related changes in L- and D-3-hydroxybutyrate labeling of protein and amino acids were similar. Whereas L-3-hydroxybutyrate incorporation into brain lipids rose sharply between 6-15 days of age, D-3-HOB incorporation into the lipid fraction gradually increased from birth through the age of 15 days. Incorporation by both isomers into lipid was greatest during the third week of suckling and then declined when the animals were weaned. At 15 days of age, the distribution of L-3-hydroxybutyrate into glutamate, glutamine + aspartate, and gamma-aminobutyrate was similar to that obtained with D-3-hydroxybutyrate. L-3-Hydroxybutyrate was poorly oxidized to CO2 by brain slices and mitochondria. Oxidation capacity was maximal from 15-21 days of age for both isomers. The activity of L-3-hydroxybutyrl-CoA ligase increased between 6-28 days of age, and its increase is well correlated with the developmental pattern of L-3-hydroxybutyrate incorporation and mitochondrial oxidation. L-3-Hydroxybutyrate was not detected in the blood of palmitate-injected pups or fasted adult animals. These results suggest that although L-3-hydroxybutyrate can be utilized for the synthesis of brain components during development, its negligible blood concentration precludes a significant contribution to either tissue synthesis or energy balance during the suckling period.
Collapse
|
32
|
Abstract
The development of several key enzymes of pyruvate and 3-hydroxybutyrate metabolism and of the tricarboxylic acid cycle was studied in six regions (cerebellum, medulla oblongata and pons, hypothalamus, striatum, mid-brain and cortex) of the neonatal, suckling and adult rat brain (2 days before birth to 60 days after birth). The enzymes whose developmental patterns were studied were: pyruvate dehydrogenase (EC 1.2.4.1), 3-hydroxybutyrate dehydrogenase (EC 1.1.1.30), citrate synthase (EC 4.1.3.7), NAD-linked isocitrate dehydrogenase (EC 1.1.1.41) and fumarase (EC 4.2.1.2). Citrate synthase, isocitrate dehydrogenase and pyruvate dehydrogenase develop as a cluster in each region, although the pyruvate dehydrogenase appears to lag slightly behind the others. As with the glycolytic-enzyme cluster [Leong & Clark (1984) Biochem. J. 218, 131-138] the timing of the development of the activity of this group of enzymes varies from region to region; 50% of the adult activity developed first in the medulla oblongata, followed by the hypothalamus, striatum and mid-brain, and then in the cortex and cerebellum respectively. The 3-hydroxybutyrate dehydrogenase activity also develops earlier in the medulla oblongata than in the other regions. The results are discussed with respect to the neurophylogenetic development of the brain regions studied and the importance of the development of the enzymes of aerobic glycolysis in relationship to the development of neurological maturation.
Collapse
|
33
|
|
34
|
Ruscák M, Orlický J, Zúbor V, Hager H. Alanine aminotransferase in bovine brain: purification and properties. J Neurochem 1982; 39:210-6. [PMID: 7086411 DOI: 10.1111/j.1471-4159.1982.tb04720.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mitochondrial and cytosolic alanine aminotransferases (EC 2.6.1.2) were partially purified (140- and 180-fold), respectively) from bovine brain cortex by means of (NH4)2SO4 precipitation, gel filtration on Sephadex G-150, and in-exchange chromatography on DEAE A-50 and characterized. The enzymes exhibited identical molecular weights (110,000 +/- 10,000) and pH optima (7.8), but were eluted from CM Sephadex C-50 at different ionic strengths. Isoelectric focusing of the enzymes indicated a pI value of 5.2 for the cytosolic enzyme and 7.2 for the mitochondrial enzyme. The Km values of the mitochondrial enzyme were 5.1 mM, 6.6 mM, 0.7 mM, and 0.4 mM and of the cytosolic isozyme were 30.3 mM, 4.3 mM, 0.7 mM, and 0.5 mM for alanine, glutamate, 2-oxoglutarate, and pyruvate, respectively. The results indicated that two forms of alanine aminotransferase exist in nerve tissue, which suggests that they may play different roles in the cellular metabolism of nerve tissue.
Collapse
|
35
|
Hawkes R, Niday E, Matus A. MIT-23: a mitochondrial marker for terminal neuronal differentiation defined by a monoclonal antibody. Cell 1982; 28:253-8. [PMID: 7060130 DOI: 10.1016/0092-8674(82)90343-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We describe a monoclonal antibody directed against a neuron-specific mitochondrial protein from rat brain. On protein blots the antibody recognizes a single polypeptide of apparent molecular weight of 23,000. By solid-phase immunoassay the antigen was detected in nonneural tissues. Within neurons, the antibody stains cytoplasmic granules that immunoelectron microscopy shows are mitochondria, hence the designation MIT-23. Immunocytochemical staining of the cerebellar cortex showed that MIT-23 occurs in all the neuronal types but is absent from glial and other nonneuronal cells. During neonatal development of the cerebellum, MIT-23 appears in neurons after their final cell division or migration is completed, suggesting that specific proteins associated with mitochondria participate in neuronal maturation.
Collapse
|
36
|
Vitorica J, Cano J, Satrústegui J, Machado A. Comparison between developmental and senescent changes in enzyme activities linked to energy metabolism in rat heart. Mech Ageing Dev 1981; 16:105-16. [PMID: 7266074 DOI: 10.1016/0047-6374(81)90087-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The developmental and senescent patterns of a number of heart enzyme activities linked to energy metabolism have been studied in rats aged between 4 days and 21 months. A morphometric study of mitochondrial volume fractions and numbers has been also carried out. Developmental changes result in a rise of most mitochondrial enzymes (NADP+-isocitrate dehydrogenase, malic enzyme, succinate dehydrogenase, citrate synthase) and mitochondrial volume fractions. Exceptions are NAD+-isocitrate dehydrogenase, which declines from 4 days onwards, and NAD+-malate dehydrogenase, which declines and then rises over the same period. Senescent changes follow two different trends. While pyruvate kinase and those mitochondrial enzymes lying between citrate formation and isocitrate oxidation (citrate synthase, NADP+-and NAD+-isocitrate dehydrogenases) decline to some degree, mitochondrial succinate dehydrogenase and NAD+-malate dehydrogenase activities increase over the same period. This could point towards a partial impairment of Krebs cycle function, and a reduced energy-producing capacity in the aged rat heart.
Collapse
|
37
|
Raghunathan R, Foster HW. Phosphoenolpyruvate carboxykinase activity in human amniotic fluid. Am J Obstet Gynecol 1981; 139:939-41. [PMID: 7223794 DOI: 10.1016/0002-9378(81)90963-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Amniotic fluid samples obtained from normal pregnancies during gestation were used to quantitate the levels of phosphoenolpyruvate carboxykinase (PEPCK) activity. It is concluded that: (1) PEPCK activity was highest in the amniotic fluid cells of midtrimester pregnancies as compared to those of pregnancies close to term; (2) the activity of PEPCK seen in the amniotic fluid supernatant was about one fourth to one half of that seen in the amniotic cells; (3) the amniotic fluid supernatant PEPCK activity fluctuated very little during the entire gestation.
Collapse
|
38
|
Vitorica J, Andrés A, Satrústegui J, Machado A. Age-related quantitative changes in enzyme activities of rat brain. Neurochem Res 1981; 6:127-36. [PMID: 7242774 DOI: 10.1007/bf00964829] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The patterns of brain enzymes linked to energy metabolism have been determined in rats aged between 3 and 21 months and compared to those of the developing brain as an estimate of the senescent energy capacity of this organ. During aging, pyruvate kinase increases, pointing towards an enhancement of the glucose-dependence of this organ. However, NAD-isocitrate dehydrogenase declines, suggesting a reduction of Krebs cycle activity in the aged rat brain. An increase in cytoplasmic NAD-malate dehydrogenase found during aging could provide an alternative mechanism of NAD recovery.
Collapse
|
39
|
Perry EK, Perry RH, Tomlinson BE, Blessed G, Gibson PH. Coenzyme A-acetylating enzymes in Alzheimer's disease: possible cholinergic 'compartment' of pyruvate dehydrogenase. Neurosci Lett 1980; 18:105-10. [PMID: 6133246 DOI: 10.1016/0304-3940(80)90220-7] [Citation(s) in RCA: 161] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In the mammalian central cholinergic system the precise mechanism for the production of acetyl-CoA used in acetylcholine synthesis has not yet been identified. As a possible means of investigating this problem the relationship between the activities of several enzymes which can synthesize acetyl-CoA and the cholinergic defect of Alzheimer's disease has been examined. Small, but significant reductions in the activities of pyruvate dehydrogenase, ATP-citrate lyase and acetoacetyl-CoA thiolase were found in post mortem brain tissue from cases of Alzheimer's disease, and the decrease in pyruvate dehydrogenase appeared to be related to the extent of the cholinergic defect (as indicated by loss of choline acetyltransferase). Furthermore, the regional distribution of choline acetyltransferase was similar to that of pyruvate dehydrogenase but not to the distribution of the other enzymes investigated in normal human brain tissue. These observations tend to support a recent suggestion that there may be a particular form of pyruvate dehydrogenase associated with cholinergic neurones.
Collapse
|
40
|
Koeppen AH, Mitzen EJ, Papandrea JD. Lipid labeling after intracerebral injection of radioactive malonic acid. J Neurochem 1980; 34:261-8. [PMID: 7411143 DOI: 10.1111/j.1471-4159.1980.tb06591.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
41
|
Szutowicz S, Kabata J, Lysiak W. ATP citrate lyase and other enzymes of acetyl-CoA metabolism in developing rat cerebrum and cerebellum. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1980; 11:545-9. [PMID: 6103828 DOI: 10.1016/0020-711x(80)90263-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
42
|
Booth RF, Patel TB, Clark JB. The development of enzymes of energy metabolism in the brain of a precocial (guinea pig) and non-precocial (rat) species. J Neurochem 1980; 34:17-25. [PMID: 6108983 DOI: 10.1111/j.1471-4159.1980.tb04616.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Key enzymes of ketone body metabolism (3-hydroxybutyrate dehydrogenase, 3-oxo-acid:CoA transferase, acetoacetyl-CoA thiolase) and glucose metabolism (hexokinase, lactate dehydrogenase, pyruvate dehydrogenase, citrate synthase) have been measured in the brains of foetal, neonatal, and adult guinea pigs and compared to those in the brains of neonatal and adult rats. The activities of the guinea pig brain ketone-body-metabolising enzymes remain relatively low in activity throughout the foetal and neonatal periods, with only slight increases occurring at birth. This contrasts with the rat brain, where three- to fourfold increases in activity occur during the suckling period (0-21 days post partum), followed by a corresponding decrease in the adult. The activities of the hexokinase (mitochondrial and cytosolic), pyruvate dehydrogenase, lactate dehydrogenase, and citrate synthase of guinea pig brain show marked increases in the last 10-15 days before birth, so that at birth the guinea pig possesses activities of these enzymes similar to the adult state. This contrasts with the rat brain where these enzymes develop during the late suckling period (10-15 days after birth). The development of the enzymes of aerobic glycolytic metabolism correlate with the onset of neurological competence in the two species, the guinea pig being a "precocial" species born neurologically competent and the rat being a "non-precocial" species born neurologically immature. The results are discussed with respect to the enzymatic activities required for the energy metabolism of a fully developed, neurologically competent mammalian brain and its relative sensitivity to hypoxia.
Collapse
|
43
|
Larrabee MG. Addendum to a new mathematical approach to metabolism of [14C]glucose: the pyruvate carboxylase reaction. J Neurochem 1979; 33:123-31. [PMID: 572412 DOI: 10.1111/j.1471-4159.1979.tb11714.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Abstract
A number of excellent and comprehensive reviews on various aspects of pyruvate dehydrogenase multienzyme complex have been written recently. The purpose of the present review is to summarize briefly the reaction mechanism and the regulation of this enzyme. Emphasis is put on the most recent literature not covered by previous reviews. Particular attention is also paid to the regulation of brain pyruvate dehydrogenase multienzyme complex, since a number of patients with neuromuscular diseases, such as Friedreich's ataxia, show a decreased rate of pyruvate oxidation.
Collapse
|
45
|
Raghunathan R, Russell JD, Arinze IJ. Pyruvate carboxylase and phosphoenopyruvate carboxykinase in cultured human fibroblasts. J Cell Physiol 1977; 92:285-92. [PMID: 881436 DOI: 10.1002/jcp.1040920217] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The activities of pyruvate carboxylase and phosphoenolpyruvate carboxykinase were measured in cultural human fibroblasts. Considerable variation was observed in strains derived from different individuals. The activities of both enzymes throughout the culture cycle were measured in two strains. In these strains the specific activities of the enzymes increased during log phase and remained constant during the stationary phase. However, one cell strain exhibited a high activity of pyruvate carboxylase which remained unchanged throughout the culture cycle, suggesting that this enzyme may be regulated differently in different strains of cultured human cells. Familial studies suggest that the observed variations in pyruvate carboxylase activity may be due to a genetic polymorphism.
Collapse
|
46
|
Land JM, Booth RF, Berger R, Clark JB. Development of mitochondrial energy metabolism in rat brain. Biochem J 1977; 164:339-48. [PMID: 880241 PMCID: PMC1164798 DOI: 10.1042/bj1640339] [Citation(s) in RCA: 110] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
1. The development of pyruvate dehydrogenase and citrate synthase activity in rat brain mitochondria was studied. Whereas the citrate synthase activity starts to increase at about 8 days after birth, that of pyruvate dehydrogenase starts to increase at about 15 days. Measurements of the active proportion of pyruvate dehydrogenase during development were also made. 2. The ability of rat brain mitochondria to oxidize pyruvate follows a similar developmental pattern to that of the pyruvate dehydrogenase. However, the ability to oxidize 3-hydroxybutyrate shows a different developmental pattern (maximal at 20 days and declining by half in the adult), which is compatible with the developmental pattern of the ketone-body-utilizing enzymes. 3. The developmental pattern of both the soluble and the mitochondrially bound hexokinase of rat brain was studied. The total brain hexokinase activity increases markedly at about 15 days, which is mainly due to an increase in activity of the mitochondrially bound form, and reaches the adult situation (approx. 70% being mitochondrial) at about 30 days after birth. 4. The release of the mitochondrially bound hexokinase under different conditions by glucose 6-phosphate was studied. There was insignificant release of the bound hexokinase in media containing high KCl concentrations by glucose 6-phosphate, but in sucrose media half-maximal release of hexokinase was achieved by 70mum-glucose 6-phosphate 5. The production of glucose 6-phosphate by brain mitochondria in the presence of Mg(2+)+glucose was demonstrated, together with the inhibition of this by atractyloside. 6. The results are discussed with respect to the possible biological significance of the similar developmental patterns of pyruvate dehydrogenase and the mitochondrially bound kinases, particularly hexokinase, in the brain. It is suggested that this association may be a mechanism for maintaining an efficient and active aerobic glycolysis which is necessary for full neural expression.
Collapse
|
47
|
Shrago E, Ball M, Sul HS, Baquer NZ, McLean P. Interrelationship in the regulation of pyruvate dehydrogenase and adenine-nucleotide translocase by palmitoyl-CoA in isolated mitochondria. EUROPEAN JOURNAL OF BIOCHEMISTRY 1977; 75:83-9. [PMID: 862623 DOI: 10.1111/j.1432-1033.1977.tb11506.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Full activation of rat liver pyruvate dehydrogenase in vitro by ADP was prevented by palmitoyl-CoA at a concentration sufficiently low to preclude substrate effects secondary to its oxidation by mitochondria. Activation of pyruvate dehydrogenase by ADP in livers of fat-fed rats was less than in the control animal. The results are consistent with the experiments demonstrating an inhibition of adenine nucleotide translocase and on increased intramitochondrial ATP/ADP ratio by palmitoyl-CoA which could account for the effect on pyruvate dehydrogenase. Inactivation of brain pyruvate dehydrogenase by ATP was also diminished by palmitoyl-CoA indicating that the effect was at the level of the adenine nucleotides rather than at either the pyruvate dehydrogenase kinase or phosphatase enzymes.
Collapse
|
48
|
Abstract
This review of the literature on aging and the central nervous system attempts to cover the basic perameters investigated at both human and infrahuman levels for the better part of the last century. The results have indicated that there is a rather considerable lack of consistency in the data both within the frame of reference of a single species, and with regard to intraspecies comparisons. We have suggested that possible reasons for the contradictory findings would rest upon variability in techniques employed but, perhaps more importantly, on the failure of investigators in this area to standardize terminology. It is suggested that such a standardization might well be one of the more useful things to be accomplished in order to facilitate the interpretation of future work. The literature review first dealt with gross, i.e., macroscopic changes in brain morphology that could correlate with age, and then covered changes at the microscopic level. Finally, a brief review of the literature with regard to the biochemistry of aging was carried out. Implications of the data were noted where appropriate.
Collapse
|
49
|
Patel MS, Johnson CA, Rajan R, Owen OE. The metabolism of ketone bodies in developing human brain: development of ketone-body-utilizing enzymes and ketone bodies as precursors for lipid synthesis. J Neurochem 1975; 25:905-8. [PMID: 1206409 DOI: 10.1111/j.1471-4159.1975.tb04428.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
Patel MS. Inhibition by the branched-chain 2-oxo acids of the 2-oxoglutarate dehydrogenase complex in developing rat and human brain. Biochem J 1974; 144:91-7. [PMID: 4462577 PMCID: PMC1168468 DOI: 10.1042/bj1440091] [Citation(s) in RCA: 45] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
1. The effect of the branched-chain amino acids, namely leucine, isoleucine and valine and their corresponding 2-oxo acids on the metabolism of 2-oxoglutarate by developing rat and human brain preparations was investigated. 2. The decarboxylation of 2-oxo[1-(14)C]glutarate to (14)CO(2) by mitochondria from adult rat brain was inhibited by the branched-chain 2-oxo acids whereas the branched-chain amino acids had no inhibitory effect on this process. 3. The activity of 2-oxoglutarate dehydrogenase complex was about 0.2unit/g of brain from 2-day-old rats and increased by about fourfold reaching an adult value by the end of the third postnatal week. 4. The K(m) value for 2-oxoglutarate of the 2-oxoglutarate dehydrogenase complex in rat and human brain was 100 and 83mum respectively. 5. The branched-chain 2-oxo acids competitively inhibited this enzyme from suckling and adult rats brains as well as from foetal and adult human brains, whereas the branched-chain amino acids had no effect on this enzyme. 6. Approximate K(i) values for the branched-chain 2-oxo acids found for this enzyme were in the range found for these 2-oxo acids in plasma from patients with maple-syrup-urine disease. 7. The possible significance of the inhibition by the branched-chain 2-oxo acids of the 2-oxoglutarate dehydrogenase complex in brains of untreated patients with maple-syrup-urine disease is discussed in relation to the energy metabolism and the biosynthesis of lipids from ketone bodies.
Collapse
|