1
|
Bialer M, Perucca E. From barbiturates to ganaxolone: The importance of chirality in drug development and in understanding the actions of old and new antiseizure medications. Pharmacol Ther 2025; 268:108808. [PMID: 39920975 DOI: 10.1016/j.pharmthera.2025.108808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/05/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
Out of 37 antiseizure medications (ASMs) currently in the market, 17 are chiral molecules and an additional one (oxcarbazepine) is a prodrug of the chiral compound licarbazepine. Of the 17 chiral ASMs, six (ethosuximide, fenfluramine, methsuximide, mephobarbital, stiripentol and vigabatrin) are marketed as racemates, and the remainder are licensed as enantiomerically pure medicines. Of note, all chiral ASMs introduced prior to 1990 were marketed as racemates. Stiripentol, fenfluramine and vigabatrin are the only racemic ASMs approved by the FDA >10 years after the release of regulatory guidelines on the development of chiral medicines. Despite the fact that pharmacokinetic and pharmacodynamic differences between enantiomers have been recognized for decades, the importance of chirality in understanding the biological actions of ASMs is not widely appreciated, and many recent publications on racemic ASMs refer to these medications as if they were a single molecular entity. In the present article, we provide a critical review of chiral ASMs developed between the 1920s, when mephobarbital was introduced, and 2022, when the last chiral ASM (ganaxolone) was approved. We summarize available data on stereoselective differences in pharmacokinetics and pharmacodynamics of ASMs marketed as racemates. We also discuss regulatory aspects related to the introduction of racemic medicines within the current regulatory scenario in Europe and the U.S., focusing on stiripentol, vigabatrin and fenfluramine as examples of different approaches. We identified a number of critical knowledge gaps that are relevant to the use of chiral drugs in epilepsy, including a remarkable lack of published information on the comparative pharmacokinetics, toxicity and antiseizure activity of the enantiomers of most racemic ASMs. The importance of chirality aspects in understanding the clinical actions of racemic ASMs is discussed, together with the rationale for the development of enantiomerically pure follow-up compounds with potentially improved efficacy, safety and commercial viability.
Collapse
Affiliation(s)
- Meir Bialer
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Emilio Perucca
- Department of Medicine (Austin Health), The University of Melbourne, Melbourne, Victoria, Australia; Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Massey I, Yadav S, Kumar D, Maharia RS, Kumari K, Singh P. An insight for the inhibition of anxiolytic and anti-convulsant effects in zebrafish using the curcumins via exploring molecular docking and molecular dynamics simulations. Mol Divers 2025; 29:439-455. [PMID: 38758508 DOI: 10.1007/s11030-024-10865-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/28/2024] [Indexed: 05/18/2024]
Abstract
In the contemporary landscape, anxiety and seizures stand as major areas of concern, prompting researchers to explore potential drugs against them. While numerous drugs have shown the potential to treat these two neurological conditions, certain adverse effects emphasize the need for development of safer alternatives. This study seeks to employ an in silico approach to evaluate natural compounds, particularly curcumins, as potential inhibitors of GABA-AT to mitigate anxiety and seizures. The proposed methodology includes generating a compound library, minimizing energy, conducting molecular docking using AutoDock, molecular dynamics simulations using Amber, and MM-GBSA calculations. Remarkably, CMPD50 and CMPD88 exhibited promising binding affinities of - 9.0 kcal/mol and - 9.1 kcal/mol with chains A and C of GABA-AT, respectively. Further, MM-GBSA calculations revealed binding free energies of - 10.88 kcal/mol and - 10.72 kcal/mol in CMPD50 and CMPD88, respectively. ADME analysis showed that these compounds contain drug-likeness properties and might be considered as potential drug candidates. The findings from this study will have practical applications in the field of drug discovery for the development of safer and effective drugs for treatment of anxiety and seizures. Overall, this study will lay the groundwork for providing valuable insights into the potential therapeutic effects of curcumins in alleviating anxiety and seizures, establishing a computational framework for future experimental validation.
Collapse
Affiliation(s)
- Iona Massey
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Sandeep Yadav
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, NCR Campus, Ghaziabad, Uttar Pradesh, India
| | - Durgesh Kumar
- Department of Chemistry, Maitreyi College, University of Delhi, Delhi, India.
| | - Ram Swaroop Maharia
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India.
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India.
| |
Collapse
|
3
|
Groborz O, Marsalek P, Sefc L. New insights into the mechanisms and prevention of central nervous system oxygen toxicity: A prospective review. Life Sci 2025; 360:123169. [PMID: 39447734 DOI: 10.1016/j.lfs.2024.123169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/19/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Hyperbaric oxygen therapy (HBOT) elevates the partial pressure of life-sustaining oxygen (pO2), thereby saving lives. However, HBOT can also cause toxic effects like lung and retinal damage (peripheral oxygen toxicity) and violent myoclonic seizures (central nervous system (CNS) toxicity). The mechanisms behind these effects are not fully understood, hindering the development of effective therapies and preventive strategies. Herein, we critically reviewed the literature to understand CNS oxygen toxicity associated with HBOT to elucidate their mechanism, treatment, and prevention. We provide evidence that (1) increased pO2 increases reactive oxygen species (ROS) concentration in tissues, which irreversibly alters cell receptors, causing peripheral oxygen toxicity and contributing to CNS oxygen toxicity. Furthermore, (2) increased ROS concentration in the brain lowers the activity of glutamic decarboxylase (GD), which lowers concentrations of inhibitory neurotransmitter γ-aminobutyric acid (GABA), thereby contributing to the onset of HBOT-derived seizures. We provide long-overlooked evidence that (3) elevated ambient pressure directly inhibits GABAA, glycine and other receptors, leading to the rapid onset of seizures. Additionally, (4) acidosis facilitates the onset of seizures by an unknown mechanism. Only a combination of these mechanisms explains most phenomena seen in peripheral and CNS oxygen toxicity. Based on these proposed intertwined mechanisms, we suggest administering antioxidants (lowering ROS concentrations), pyridoxine (restoring GD activity), low doses of sedatives/anesthetics (reversing inhibitory effects of pressure on GABAA and glycine receptors), and treatment of acidemia before routine HBOT to prevent peripheral and CNS oxygen toxicity. Theoretically, similar preventive strategies can be applied before deep-sea diving to prevent life-threatening convulsions.
Collapse
Affiliation(s)
- Ondrej Groborz
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic; Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Petr Marsalek
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Czech Republic; Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ludek Sefc
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
4
|
Lin CH, Ho CJ, Chen SY, Lu YT, Tsai MH. Review of pharmacogenetics of antiseizure medications: focusing on genetic variants of mechanistic targets. Front Pharmacol 2024; 15:1411487. [PMID: 39228521 PMCID: PMC11368862 DOI: 10.3389/fphar.2024.1411487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024] Open
Abstract
Antiseizure medications (ASMs) play a central role in seizure management, however, unpredictability in the response to treatment persists, even among patients with similar seizure manifestations and clinical backgrounds. An objective biomarker capable of reliably predicting the response to ASMs would profoundly impact epilepsy treatment. Presently, clinicians rely on a trial-and-error approach when selecting ASMs, a time-consuming process that can result in delays in receiving alternative non-pharmacological therapies such as a ketogenetic diet, epilepsy surgery, and neuromodulation therapies. Pharmacogenetic studies investigating the correlation between ASMs and genetic variants regarding their mechanistic targets offer promise in predicting the response to treatment. Sodium channel subunit genes have been extensively studied along with other ion channels and receptors as targets, however, the results have been conflicting, possibly due to methodological disparities including inconsistent definitions of drug response, variations in ASM combinations, and diversity of genetic variants/genes studied. Nonetheless, these studies underscore the potential effect of genetic variants on the mechanism of ASMs and consequently the prediction of treatment response. Recent advances in sequencing technology have led to the generation of large genetic datasets, which may be able to enhance the predictive accuracy of the response to ASMs.
Collapse
Affiliation(s)
- Chih-Hsiang Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chen-Jui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Ying Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yan-Ting Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Ng ACH, Choudhary A, Barrett KT, Gavrilovici C, Scantlebury MH. Mechanisms of infantile epileptic spasms syndrome: What have we learned from animal models? Epilepsia 2024; 65:266-280. [PMID: 38036453 DOI: 10.1111/epi.17841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
The devastating developmental and epileptic encephalopathy of infantile epileptic spasms syndrome (IESS) has numerous causes, including, but not limited to, brain injury, metabolic, and genetic conditions. Given the stereotyped electrophysiologic, age-dependent, and clinical findings, there likely exists one or more final common pathways in the development of IESS. The identity of this final common pathway is unknown, but it may represent a novel therapeutic target for infantile spasms. Previous research on IESS has focused largely on identifying the neuroanatomic substrate using specialized neuroimaging techniques and cerebrospinal fluid analysis in human patients. Over the past three decades, several animal models of IESS were created with an aim to interrogate the underlying pathogenesis of IESS, to identify novel therapeutic targets, and to test various treatments. Each of these models have been successful at recapitulating multiple aspects of the human IESS condition. These animal models have implicated several different molecular pathways in the development of infantile spasms. In this review we outline the progress that has been made thus far using these animal models and discuss future directions to help researchers identify novel treatments for drug-resistant IESS.
Collapse
Affiliation(s)
- Andy Cheuk-Him Ng
- Department of Pediatrics, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anamika Choudhary
- Department of Pediatrics, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Karlene T Barrett
- Department of Pediatrics, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cezar Gavrilovici
- Department of Pediatrics, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Morris H Scantlebury
- Department of Pediatrics, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Zheng Q, He S, Xu SL, Ma MD, Fan M, Ge JF. Pharmacokinetics and tissue distribution of vigabatrin enantiomers in rats. Saudi Pharm J 2024; 32:101934. [PMID: 38223203 PMCID: PMC10787297 DOI: 10.1016/j.jsps.2023.101934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024] Open
Abstract
Purpose To investigate the pharmacokinetics and tissue distribution of VGB racemate and its single enantiomers, and explore the potential of clinic development for single enantiomer S-VGB. Methods In the pharmacokinetics study, male Sprague-Dawley rats were gavaged with VGB racemate or its single enantiomers dosing 50, 100 or 200 mg/kg, and the blood samples were collected during 12 h at regular intervals. In the experiment of tissue distribution, VGB and its single enantiomers were administered intravenously dosing 200 mg/kg, and the tissues including heart, liver, spleen, lung and kidney, eyes, hippocampus, and prefrontal cortex were separated at different times. The concentrations of R-VGB and S-VGB in the plasma and tissues were measured using HPLC. Results Both S-VGB and R-VGB could be detected in the plasma of rats administered with VGB racemate, reaching Cmax at approximately 0.5 h with t1/2 2-3 h. There was no significant pharmacokinetic difference between the two enantiomers when VGB racemate was given 200 mg/kg and 100 mg/kg. However, when given at the dose of 50 mg/kg, S-VGB presented a shorter t1/2 and a higher Cl/F than R-VGB, indicating a faster metabolism of S-VGB. Furthermore, when single enantiomer was administered respectively, S-VGB presented a slower metabolism than R-VGB, as indicated by a longer t1/2 and MRT but a lower Cmax. Moreover, compared with the VGB racemate, the single enantiomers S-VGB and R-VGB had shorter t1/2 and MRT, higher Cmax and AUC/D, and lower Vz/F and Cl/F, indicating the stronger oral absorption and faster metabolism of single enantiomer. In addition, regardless of VGB racemate administration or single enantiomer administration, S-VGB and R-VGB had similar characteristics in tissue distribution, and the content of S-VGB in hippocampus, prefrontal cortex and liver was much higher than that of R-VGB. Conclusions Although there is no transformation between S-VGB and R-VGB in vivo, those two enantiomers display certain disparities in the pharmacokinetics and tissue distribution, and interact with each other. These findings might be a possible interpretation for the pharmacological and toxic effects of VGB and a potential direction for the development and optimization of the single enantiomer S-VGB.
Collapse
Affiliation(s)
- Qiang Zheng
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, PR China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, PR China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Shuai He
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, PR China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, PR China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Song-Lin Xu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, PR China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, PR China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Meng-Die Ma
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, PR China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, PR China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Min Fan
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, PR China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, PR China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, PR China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, PR China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, PR China
| |
Collapse
|
7
|
MacKeigan D, Feja M, Gernert M. Chronic intermittent convection-enhanced delivery of vigabatrin to the bilateral subthalamic nucleus in an acute rat seizure model. Epilepsy Res 2024; 199:107276. [PMID: 38091904 DOI: 10.1016/j.eplepsyres.2023.107276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Targeted intracerebral drug delivery is an attractive experimental approach for the treatment of drug-resistant epilepsies. In this regard, the subthalamic nucleus (STN) represents a focus-independent target involved in the remote modulation and propagation of seizure activity. Indeed, acute and chronic pharmacological inhibition of the STN with vigabatrin (VGB), an irreversible inhibitor of GABA transaminase, has been shown to produce antiseizure effects. This effect, however, is lost over time as tolerance develops with chronic, continuous intracerebral pharmacotherapy. Here we investigated the antiseizure effects of chronic intermittent intra-STN convection-enhanced delivery of VGB in an acute rat seizure model focusing on circumventing tolerance development and preventing adverse effects. Timed intravenous pentylenetetrazol (PTZ) seizure threshold testing was conducted before and after implantation of subcutaneous drug pumps and bilateral intra-STN cannulas. Drug pumps infused vehicle or VGB twice daily (0.4 µg) or once weekly (2.5 µg, 5 µg) over three weeks. Putative adverse effects were evaluated and found to be prevented by intermittent compared to previous continuous VGB delivery. Clonic seizure thresholds were more clearly raised by intra-STN VGB compared to myoclonic twitch. Both twice daily and once weekly intra-STN VGB significantly elevated clonic seizure thresholds depending on dose and time point, with responder rates of up to 100% observed at tolerable doses. However, tolerance could not be completely avoided, as tolerance rates of 40-75% were observed with chronic VGB treatment. Results indicate that the extent of tolerance development after intermittent intra-STN VGB delivery varies depending on infusion dose and regimen.
Collapse
Affiliation(s)
- Devlin MacKeigan
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Bünteweg 2, D-30559 Hannover, Germany
| | - Malte Feja
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Bünteweg 2, D-30559 Hannover, Germany.
| | - Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Bünteweg 2, D-30559 Hannover, Germany.
| |
Collapse
|
8
|
Tierradentro-García LO, Zandifar A, Stern J, Nel JH, Ub Kim JD, Andronikou S. Magnetic Resonance Imaging-Based Distribution and Reversibility of Lesions in Pediatric Vigabatrin-Related Brain Toxicity. Pediatr Neurol 2023; 148:86-93. [PMID: 37690269 DOI: 10.1016/j.pediatrneurol.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND We aimed to systematically characterize the magnetic resonance imaging (MRI) findings in vigabatrin-related neurotoxicity in children and determine the reversibility of lesions based on follow-up images. METHODS We evaluated children with a history of refractory seizures who had a brain MRI while on vigabatrin therapy. We included available brain MRI studies before vigabatrin therapy initiation, during vigabatrin treatment, and after vigabatrin was discontinued. A pediatric neuroradiologist systematically assessed images on T2/fluid-attenuated inversion recovery (FLAIR) and diffusion-weighted imaging /apparent diffusion coefficient sequences to identify hyperintense lesions and/or restricted diffusion. The frequency of abnormal signal at each location was determined, as well as the reversibility of these after vigabatrin discontinuation. RESULTS MRIs of 43 patients were reviewed: 13 before vigabatrin initiation, 18 during treatment, and 12 after vigabatrin discontinuation. In the MRIs acquired during vigabatrin treatment, most lesions on T2/FLAIR occurred in the globus pallidi, thalami, and midbrain. Correspondingly, the most common locations for restricted diffusion were the globus pallidi, thalami, and subthalamic nuclei. On MRI after vigabatrin discontinuation, complete resolution of lesions on T2/FLAIR in all patients was seen in the midbrain, dentate nuclei, subthalamic nuclei, and hypothalami. Complete resolution of restricted diffusion was observed in the globus pallidi, midbrain, dentate nuclei, hippocampi, anterior commissure, and hypothalami. CONCLUSION Globus pallidi and thalami are the most commonly affected structures in vigabatrin-related toxicity, and most vigabatrin-related neuroimaging findings are reversible.
Collapse
Affiliation(s)
- Luis Octavio Tierradentro-García
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Alireza Zandifar
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Joseph Stern
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jean Henri Nel
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jorge Du Ub Kim
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Savvas Andronikou
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Nimgampalle M, Chakravarthy H, Sharma S, Shree S, Bhat AR, Pradeepkiran JA, Devanathan V. Neurotransmitter systems in the etiology of major neurological disorders: Emerging insights and therapeutic implications. Ageing Res Rev 2023; 89:101994. [PMID: 37385351 DOI: 10.1016/j.arr.2023.101994] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Neurotransmitters serve as chemical messengers playing a crucial role in information processing throughout the nervous system, and are essential for healthy physiological and behavioural functions in the body. Neurotransmitter systems are classified as cholinergic, glutamatergic, GABAergic, dopaminergic, serotonergic, histaminergic, or aminergic systems, depending on the type of neurotransmitter secreted by the neuron, allowing effector organs to carry out specific functions by sending nerve impulses. Dysregulation of a neurotransmitter system is typically linked to a specific neurological disorder. However, more recent research points to a distinct pathogenic role for each neurotransmitter system in more than one neurological disorder of the central nervous system. In this context, the review provides recently updated information on each neurotransmitter system, including the pathways involved in their biochemical synthesis and regulation, their physiological functions, pathogenic roles in diseases, current diagnostics, new therapeutic targets, and the currently used drugs for associated neurological disorders. Finally, a brief overview of the recent developments in neurotransmitter-based therapeutics for selected neurological disorders is offered, followed by future perspectives in that area of research.
Collapse
Affiliation(s)
- Mallikarjuna Nimgampalle
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Harshini Chakravarthy
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India.
| | - Sapana Sharma
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Shruti Shree
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Anoop Ramachandra Bhat
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | | | - Vasudharani Devanathan
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India.
| |
Collapse
|
10
|
Astrocytes regulate inhibitory neurotransmission through GABA uptake, metabolism, and recycling. Essays Biochem 2023; 67:77-91. [PMID: 36806927 DOI: 10.1042/ebc20220208] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 02/23/2023]
Abstract
Synaptic regulation of the primary inhibitory neurotransmitter γ-aminobutyric acid (GABA) is essential for brain function. Cerebral GABA homeostasis is tightly regulated through multiple mechanisms and is directly coupled to the metabolic collaboration between neurons and astrocytes. In this essay, we outline and discuss the fundamental roles of astrocytes in regulating synaptic GABA signaling. A major fraction of synaptic GABA is removed from the synapse by astrocytic uptake. Astrocytes utilize GABA as a metabolic substrate to support glutamine synthesis. The astrocyte-derived glutamine is subsequently transferred to neurons where it serves as the primary precursor of neuronal GABA synthesis. The flow of GABA and glutamine between neurons and astrocytes is collectively termed the GABA-glutamine cycle and is essential to sustain GABA synthesis and inhibitory signaling. In certain brain areas, astrocytes are even capable of synthesizing and releasing GABA to modulate inhibitory transmission. The majority of oxidative GABA metabolism in the brain takes place in astrocytes, which also leads to synthesis of the GABA-related metabolite γ-hydroxybutyric acid (GHB). The physiological roles of endogenous GHB remain unclear, but may be related to regulation of tonic inhibition and synaptic plasticity. Disrupted inhibitory signaling and dysfunctional astrocyte GABA handling are implicated in several diseases including epilepsy and Alzheimer's disease. Synaptic GABA homeostasis is under astrocytic control and astrocyte GABA uptake, metabolism, and recycling may therefore serve as relevant targets to ameliorate pathological inhibitory signaling.
Collapse
|
11
|
The Discordance between Network Excitability and Cognitive Performance Following Vigabatrin Treatment during Epileptogenesis. Life (Basel) 2021; 11:life11111213. [PMID: 34833089 PMCID: PMC8618433 DOI: 10.3390/life11111213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Vigabatrin (VGB), a potent selective γ-aminobutyric acid transaminase (GABA-T) inhibitor, is an approved non-traditional anti-seizure drug for patients with intractable epilepsy. Nevertheless, its effect on epileptogenesis, and whether this effect is correlated with post-epileptogenic cognitive function remain unclear. Based on lithium-pilocarpine-induced seizure modeling, we evaluated the effect of VGB on epileptogenesis and neuronal damage following status epilepticus in Sprague-Dawley rats. Cognitive evaluations were performed with the aid of inhibitory avoidance testing. We found that VGB could interrupt epileptogenesis by reducing spontaneous recurrent seizures, hippocampal neuronal damage, and chronic mossy fiber sprouting. Nevertheless, VGB did not help with the retention of cognitive performance. Our findings suggest that further research into the role of VGB in epileptogenesis and the treatment of epilepsy in clinical practice is warranted.
Collapse
|
12
|
Nelson JA, Demarest S, Thomas J, Juarez-Colunga E, Knupp KG. Evolution of Infantile Spasms to Lennox-Gastaut Syndrome: What Is There to Know? J Child Neurol 2021; 36:752-759. [PMID: 33764203 DOI: 10.1177/08830738211000514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Children with infantile spasms may develop Lennox-Gastaut syndrome. The diagnostic criteria for Lennox-Gastaut syndrome are vague, and many experts use varying combinations of the following criteria for diagnosis: paroxysmal fast activity on electroencephalography (EEG), slow spike and wave on EEG, developmental delay, multiple seizure types, and nocturnal tonic seizures. Our objective was to determine the prevalence of Lennox-Gastaut syndrome in a high-risk cohort of children with a history of infantile spasms and the characteristics of infantile spasms that were associated with the diagnosis of Lennox-Gastaut syndrome. METHODS Children with infantile spasms who were diagnosed and treated at Children's Hospital Colorado between 2012 and 2018 were included. Lennox-Gastaut syndrome was defined as having 3 of 5 of the following characteristics: paroxysmal fast activity, slow spike and wave, current developmental delay, multiple seizure types, or tonic seizures. Descriptive statistics were performed using median and interquartile range. Univariable analysis was performed with Pearson chi-square, Fisher exact, or the Kruskal-Wallis test. RESULTS Ninety-seven children met inclusion criteria, and 36% (35/97) met criteria for Lennox-Gastaut syndrome. Developmental delay and history of seizures prior to the onset of infantile spasms were identified as risk factors for the development of Lennox-Gastaut syndrome (P = .003) as was poor response to first treatment for spasms (P = .004). Children with an unknown etiology of infantile spasms were less likely to develop Lennox-Gastaut syndrome (P = .019). Eighty percent (28/35) of the children who met Lennox-Gastaut syndrome criteria lacked a documented diagnosis. CONCLUSIONS Thirty-six percent of children with infantile spasms met criteria for Lennox-Gastaut syndrome. Risk factors for development of Lennox-Gastaut syndrome were developmental delay and seizures prior to the onset of infantile spasms and poor response to first treatment for infantile spasms. Children with an unknown etiology of infantile spasms were less likely to develop Lennox-Gastaut syndrome. Eighty percent of the children who met our criteria were not given a documented diagnosis of Lennox-Gastaut syndrome, which highlights the fact that many children may not be receiving a diagnosis of Lennox-Gastaut syndrome. We recommend establishing clear guidelines for the diagnosis of Lennox-Gastaut syndrome to ensure that the diagnosis is being made accurately.
Collapse
Affiliation(s)
- Julie A Nelson
- Department of Pediatrics and Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Scott Demarest
- Department of Pediatrics and Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jake Thomas
- Adult and Child Consortium for Health Outcomes Research and Delivery Science, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth Juarez-Colunga
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kelly G Knupp
- Department of Pediatrics and Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
13
|
WeiWei Y, WenDi F, Mengru C, Tuo Y, Chen G. The cellular mechanism by which the rostral ventromedial medulla acts on the spinal cord during chronic pain. Rev Neurosci 2021; 32:545-558. [PMID: 33565739 DOI: 10.1515/revneuro-2020-0121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/18/2020] [Indexed: 11/15/2022]
Abstract
Clinical therapies for chronic pain are limited. While targeted drugs are promising therapies for chronic pain, they exhibit insufficient efficacy and poor targeting. The occurrence of chronic pain partly results from central changes caused by alterations in neurons in the rostral ventromedial medulla (RVM) in the brainstem regulatory pathway. The RVM, which plays a key role in the descending pain control pathway, greatly contributes to the development and maintenance of pain. However, the exact roles of the RVM in chronic pain remain unclear, making it difficult to develop new drugs targeting the RVM and related pathways. Here, we first discuss the roles of the RVM and related circuits in chronic pain. Then, we analyze synaptic transmission between RVM neurons and spinal cord neurons, specifically focusing on the release of neurotransmitters, to explore the cellular mechanisms by which the RVM regulates chronic pain. Finally, we propose some ideas for the development of drugs targeting the RVM.
Collapse
Affiliation(s)
- Yu WeiWei
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong226001, China
| | - Fei WenDi
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong226001, China
| | - Cui Mengru
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong226001, China
| | - Yang Tuo
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun130033, China
| | - Gang Chen
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong226001, China.,Department of Tissue and Embryology, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong University, Nantong226001, China
| |
Collapse
|
14
|
Guery D, Rheims S. Is the mechanism of action of antiseizure drugs a key element in the choice of treatment? Fundam Clin Pharmacol 2020; 35:552-563. [PMID: 33090514 DOI: 10.1111/fcp.12614] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/02/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022]
Abstract
About 25 antiseizure drugs are available for the treatment of patients with epilepsy. The choice of the most suited drug for a specific patient is primarily based on the results of the pivotal randomized clinical trials and on the patient's characteristics and comorbidities. Whether or not the mechanism of action of the antiseizure drugs should be also taken into account to better predict the patient's response to the treatment remains a matter of debate. Despite the apparent complexity and diversity of antiseizure drug mechanisms of action, the reality unfortunately remains that they are very close, in particular with regard to their relationship with the pathophysiology of epilepsy. With the only exception of the association between lamotrigine and sodium valproate, there are no clinical data that formally support a synergistic association between certain antiseizure drugs in terms of efficacy. However, anticipating risk of adverse events by limiting as far as possible the combination of drugs, which share the same mechanisms of action, is undoubtedly an important driver of daily therapeutic decisions.
Collapse
Affiliation(s)
- Deborah Guery
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France.,Lyon's Neuroscience Research Center, INSERM U1028 / CNRS UMR 5292, Lyon, France.,Epilepsy Institute, Lyon, France
| |
Collapse
|
15
|
Park JY, Lee Y, Lee HJ, Kwon YS, Chun W. In silico screening of GABA aminotransferase inhibitors from the constituents of Valeriana officinalis by molecular docking and molecular dynamics simulation study. J Mol Model 2020; 26:228. [PMID: 32780180 DOI: 10.1007/s00894-020-04495-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/30/2020] [Indexed: 12/28/2022]
Abstract
Modulation of γ-aminobutyric acid (GABA) levels has been required in various disorders. GABA itself cannot be directly introduced into central nervous system (CNS) because of the blood brain barrier; inhibition of GABA aminotransferase (GABA-AT), which degrades GABA in CNS, has been the target for the modulation of GABA levels in CNS. Given that root extract of valerian (Valeriana officinalis) has been used for millennia as anti-anxiolytic and sedative, in silico approach was carried out to investigate valerian compounds exhibiting GABA-AT inhibiting activity. The 3D structure of human GABA-AT was created from pig crystal structure via homology modeling. Inhibition of GABA-AT by 18 valerian compounds was analyzed using molecular docking and molecular dynamics simulations and compared with known GABA-AT inhibitors such as vigabatrin and valproic acid. Isovaleric acid and didrovaltrate exhibited GABA-AT inhibiting activity in computational analysis, albeit less potent compared with vigabatrin. However, multiple compounds with low activity may have additive effects when the total extract of valeriana root was used in traditional usage. In addition, isovaleric acid shares similar backbone structure to GABA, suggesting that isovaleric acid might be a valuable starting structure for the development of more efficient GABA-AT inhibitors for disorders related with low level of GABA in the CNS.
Collapse
Affiliation(s)
- Jin-Young Park
- Department of Pharmacology, College of Medicine, Kangwon National University, Hyoja-2, Chuncheon, Kangwon, 200-701, South Korea
| | - Yuno Lee
- Korea Chemical Bank, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Hyoja-2, Chuncheon, Kangwon, 200-701, South Korea
| | - Yong-Soo Kwon
- College of Pharmacy, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Hyoja-2, Chuncheon, Kangwon, 200-701, South Korea.
| |
Collapse
|
16
|
Si W, Li H, Kang T, Ye J, Yao Z, Liu Y, Yu T, Zhang Y, Ling Y, Cao H, Wang J, Li Y, Fang F. Effect of GABA-T on Reproductive Function in Female Rats. Animals (Basel) 2020; 10:ani10040567. [PMID: 32230949 PMCID: PMC7222393 DOI: 10.3390/ani10040567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 12/29/2022] Open
Abstract
This study explored the role of γ-aminobutyric acid transaminase (GABA-T) in the puberty and reproductive performance of female rats. Immunofluorescence technique, quantitative real-time PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect the distribution of GABA-T and the expression of genes and hormones in female rats, respectively. The results showed that GABA-T was mainly distributed in the arcuate nucleus (ARC), paraventricular nucleus (PVN) and periventricular nucleus (PeN) of the hypothalamus, and in the adenohypophysis, ovarian granulosa cells and oocytes. Abat mRNA level at 28 d was lowest in the hypothalamus and the pituitary; at puberty, it was lowest in the ovary. Abat mRNA level was highest in adults in the hypothalamus; at infancy and puberty, it was highest in the pituitary; and at 21 d it was highest in the ovary. After vigabatrin (GABA-T irreversible inhibitor) was added to hypothalamus cells, the levels of Abat mRNA and Rfrp-3 mRNA were significantly reduced, but Gnrh mRNA increased at the dose of 25 and 50 μg/mL; Kiss1 mRNA was significantly increased but Gabbr1 mRNA was reduced at the 50 μg/mL dose. In prepubertal rats injected with vigabatrin, puberty onset was delayed. Abat mRNA, Kiss1 mRNA and Gnrh mRNA levels were significantly reduced, but Rfrp-3 mRNA level increased in the hypothalamus. Vigabatrin reduced the concentrations of GABA-T, luteinizing hormone (LH) and progesterone (P4), and the ovarian index. Lactation performance was reduced in adult rats with vigabatrin treatment. Four hours after vigabatrin injection, the concentrations of GABA-T and LH were significantly reduced in adult and 25 d rats, but follicle-stimulating hormone (FSH) increased in 25 d rats. In conclusion, GABA-T affects the reproductive function of female rats by regulating the levels of Gnrh, Kiss1 and Rfrp-3 in the hypothalamus as well as the concentrations of LH and P4.
Collapse
Affiliation(s)
- Wenyu Si
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (W.S.); (H.L.); (T.K.); (J.Y.); (Z.Y.); (Y.L.); (T.Y.); (Y.Z.); (Y.L.); (H.C.); (J.W.); (Y.L.)
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei 230036, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Hailing Li
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (W.S.); (H.L.); (T.K.); (J.Y.); (Z.Y.); (Y.L.); (T.Y.); (Y.Z.); (Y.L.); (H.C.); (J.W.); (Y.L.)
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Tiezhu Kang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (W.S.); (H.L.); (T.K.); (J.Y.); (Z.Y.); (Y.L.); (T.Y.); (Y.Z.); (Y.L.); (H.C.); (J.W.); (Y.L.)
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jing Ye
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (W.S.); (H.L.); (T.K.); (J.Y.); (Z.Y.); (Y.L.); (T.Y.); (Y.Z.); (Y.L.); (H.C.); (J.W.); (Y.L.)
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Zhiqiu Yao
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (W.S.); (H.L.); (T.K.); (J.Y.); (Z.Y.); (Y.L.); (T.Y.); (Y.Z.); (Y.L.); (H.C.); (J.W.); (Y.L.)
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Ya Liu
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (W.S.); (H.L.); (T.K.); (J.Y.); (Z.Y.); (Y.L.); (T.Y.); (Y.Z.); (Y.L.); (H.C.); (J.W.); (Y.L.)
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei 230036, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Tong Yu
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (W.S.); (H.L.); (T.K.); (J.Y.); (Z.Y.); (Y.L.); (T.Y.); (Y.Z.); (Y.L.); (H.C.); (J.W.); (Y.L.)
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei 230036, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yunhai Zhang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (W.S.); (H.L.); (T.K.); (J.Y.); (Z.Y.); (Y.L.); (T.Y.); (Y.Z.); (Y.L.); (H.C.); (J.W.); (Y.L.)
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei 230036, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yinghui Ling
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (W.S.); (H.L.); (T.K.); (J.Y.); (Z.Y.); (Y.L.); (T.Y.); (Y.Z.); (Y.L.); (H.C.); (J.W.); (Y.L.)
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei 230036, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Hongguo Cao
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (W.S.); (H.L.); (T.K.); (J.Y.); (Z.Y.); (Y.L.); (T.Y.); (Y.Z.); (Y.L.); (H.C.); (J.W.); (Y.L.)
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei 230036, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Juhua Wang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (W.S.); (H.L.); (T.K.); (J.Y.); (Z.Y.); (Y.L.); (T.Y.); (Y.Z.); (Y.L.); (H.C.); (J.W.); (Y.L.)
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei 230036, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yunsheng Li
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (W.S.); (H.L.); (T.K.); (J.Y.); (Z.Y.); (Y.L.); (T.Y.); (Y.Z.); (Y.L.); (H.C.); (J.W.); (Y.L.)
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei 230036, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Fugui Fang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (W.S.); (H.L.); (T.K.); (J.Y.); (Z.Y.); (Y.L.); (T.Y.); (Y.Z.); (Y.L.); (H.C.); (J.W.); (Y.L.)
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei 230036, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- Correspondence:
| |
Collapse
|
17
|
Ji X, Wright T, VandenHoven C, MacKeen L, McFarlane M, Liu H, Dupuis A, Westall C. Reliability of Handheld Optical Coherence Tomography in Children Younger Than Three Years of Age Undergoing Vigabatrin Treatment for Childhood Epilepsy. Transl Vis Sci Technol 2020; 9:9. [PMID: 32704429 PMCID: PMC7347507 DOI: 10.1167/tvst.9.3.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose Vigabatrin-associated retinal toxicity manifests as reduction in the clinical electroretinogram and retinal nerve fiber layer (RNFL) thinning. This observational investigation of RNFL thickness in young vigabatrin-treated children was to identify intravisit and intervisit reliabilities of peripapillary RNFL thickness measurements performed with Envisu (optical coherence tomography) OCT. Secondarily, a longitudinal assessment investigated the presence and extent of RNFL thinning. Methods We measured the handheld OCT in sedated children to evaluate the RNFL thickness using segmentation software. Intraclass correlation coefficient (ICC) statistics identified intravisit and intervisit reliabilities for RNFL thickness. Results Twenty-nine children (10.1 ± 6.0 months old) underwent handheld optical coherence tomography (OCT). Fourteen of these completed follow-up assessments. Intravisit reliability was good for the right eye (ICCs = 0.82-0.98) and the left eye (ICCs = 0.75-0.89) for each of the 4 retinal quadrants. Inter-visit ICCs for each of the 4 retinal quadrants were good (ICC = 0.82-0.98). There was no consistent change in RNFL thickness longitudinally. Conclusions In this pediatric cohort, RNFL thickness measures using handheld OCT provided good reliability within a single visit and between consecutive visits supporting its use as an adjunctive tool in the clinical setting. Further long-term follow-up is required to understand RNFL thickness changes in this specific population and its association with vigabatrin toxicity. Translational Relevance The findings of good reliability and clinical feasibility would provide an opportunity for the handheld OCT to monitor reliably for vigabatrin-associated retinal toxicity in children who often show noncompliance to traditional testing approaches.
Collapse
Affiliation(s)
- Xiang Ji
- Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Tom Wright
- Kensington Eye Institute, Toronto, ON, Canada
| | - Cynthia VandenHoven
- Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada
| | - Leslie MacKeen
- Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michelle McFarlane
- Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada
| | - Henry Liu
- Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Annie Dupuis
- Clinical Research Services, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carol Westall
- Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Sills GJ, Rogawski MA. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology 2020; 168:107966. [PMID: 32120063 DOI: 10.1016/j.neuropharm.2020.107966] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 02/08/2023]
Abstract
Antiseizure drugs (ASDs) prevent the occurrence of seizures; there is no evidence that they have disease-modifying properties. In the more than 160 years that orally administered ASDs have been available for epilepsy therapy, most agents entering clinical practice were either discovered serendipitously or with the use of animal seizure models. The ASDs originating from these approaches act on brain excitability mechanisms to interfere with the generation and spread of epileptic hyperexcitability, but they do not address the specific defects that are pathogenic in the epilepsies for which they are prescribed, which in most cases are not well understood. There are four broad classes of such ASD mechanisms: (1) modulation of voltage-gated sodium channels (e.g. phenytoin, carbamazepine, lamotrigine), voltage-gated calcium channels (e.g. ethosuximide), and voltage-gated potassium channels [e.g. retigabine (ezogabine)]; (2) enhancement of GABA-mediated inhibitory neurotransmission (e.g. benzodiazepines, tiagabine, vigabatrin); (3) attenuation of glutamate-mediated excitatory neurotransmission (e.g. perampanel); and (4) modulation of neurotransmitter release via a presynaptic action (e.g. levetiracetam, brivaracetam, gabapentin, pregabalin). In the past two decades there has been great progress in identifying the pathophysiological mechanisms of many genetic epilepsies. Given this new understanding, attempts are being made to engineer specific small molecule, antisense and gene therapies that functionally reverse or structurally correct pathogenic defects in epilepsy syndromes. In the near future, these new therapies will begin a paradigm shift in the treatment of some rare genetic epilepsy syndromes, but targeted therapies will remain elusive for the vast majority of epilepsies until their causes are identified. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Graeme J Sills
- School of Life Sciences, University of Glasgow, Glasgow, UK.
| | - Michael A Rogawski
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA; Department of Pharmacology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
19
|
Zheng Y, McTavish J, Smith PF. Pharmacological Evaluation of Drugs in Animal Models of Tinnitus. Curr Top Behav Neurosci 2020; 51:51-82. [PMID: 33590458 DOI: 10.1007/7854_2020_212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the pressing need for effective drug treatments for tinnitus, currently, there is no single drug that is approved by the FDA for this purpose. Instead, a wide range of unproven over-the-counter tinnitus remedies are available on the market with little or no benefit for tinnitus but with potential harm and adverse effects. Animal models of tinnitus have played a critical role in exploring the pathophysiology of tinnitus, identifying therapeutic targets and evaluating novel and existing drugs for tinnitus treatment. This review summarises and compares the studies on pharmacological evaluation of tinnitus treatment in different animal models based on the pharmacological properties of the drug and provides insights into future directions for tinnitus drug discovery.
Collapse
Affiliation(s)
- Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand. .,Brain Research New Zealand, Auckland, New Zealand. .,Brain Health Research Centre, University of Otago, Dunedin, New Zealand. .,Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand.
| | - Jessica McTavish
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand, Auckland, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand, Auckland, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Abstract
Focal-onset seizures are among the most common forms of seizures in children and adolescents and can be caused by a wide diversity of acquired or genetic etiologies. Despite the increasing array of antiseizure drugs available, treatment of focal-onset seizures in this population remains problematic, with as many as one-third of children having seizures refractory to medications. This review discusses contemporary concepts in focal seizure classification and pathophysiology and describes the antiseizure medications most commonly chosen for this age group. As antiseizure drug efficacy is comparable in children and adults, here we focus on pharmacokinetic aspects, drug-drug interactions, and side effect profiles. Finally, we provide some suggestions for choosing the optimal medication for the appropriate patient.
Collapse
Affiliation(s)
- Clare E Stevens
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins Hospital, The Johns Hopkins University School of Medicine, Rubenstein Bldg 2157, 200N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins Hospital, The Johns Hopkins University School of Medicine, Rubenstein Bldg 2157, 200N. Wolfe Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
21
|
Walters DC, Jansen EEW, Ainslie GR, Salomons GS, Brown MN, Schmidt MA, Roullet J, Gibson KM. Preclinical tissue distribution and metabolic correlations of vigabatrin, an antiepileptic drug associated with potential use-limiting visual field defects. Pharmacol Res Perspect 2019; 7:e00456. [PMID: 30631446 PMCID: PMC6321982 DOI: 10.1002/prp2.456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 01/30/2023] Open
Abstract
Vigabatrin (VGB; (S)-(+)/(R)-(-) 4-aminohex-5-enoic acid), an antiepileptic irreversibly inactivating GABA transaminase (GABA-T), manifests use-limiting ocular toxicity. Hypothesizing that the active S enantiomer of VGB would preferentially accumulate in eye and visual cortex (VC) as one potential mechanism for ocular toxicity, we infused racemic VGB into mice via subcutaneous minipump at 35, 70, and 140 mg/kg/d (n = 6-8 animals/dose) for 12 days. VGB enantiomers, total GABA and β-alanine (BALA), 4-guanidinobutyrate (4-GBA), and creatine were quantified by mass spectrometry in eye, brain, liver, prefrontal cortex (PFC), and VC. Plasma VGB concentrations increased linearly by dose (3 ± 0.76 (35 mg/kg/d); 15.1 ± 1.4 (70 mg/kg/d); 34.6 ± 3.2 μmol/L (140 mg/kg/d); mean ± SEM) with an S/R ratio of 0.74 ± 0.02 (n = 14). Steady state S/R ratios (35, 70 mg/kg/d doses) were highest in eye (5.5 ± 0.2; P < 0.0001), followed by VC (3.9 ± 0.4), PFC (3.6 ± 0.3), liver (2.9 ± 0.1), and brain (1.5 ± 0.1; n = 13-14 each). Total VGB content of eye exceeded that of brain, PFC and VC at all doses. High-dose VGB diminished endogenous metabolite production, especially in PFC and VC. GABA significantly increased in all tissues (all doses) except brain; BALA increases were confined to liver and VC; and 4-GBA was prominently increased in brain, PFC and VC (and eye at high dose). Linear correlations between enantiomers and GABA were observed in all tissues, but only in PFC/VC for BALA, 4-GBA, and creatine. Preferential accumulation of the VGB S isomer in eye and VC may provide new insight into VGB ocular toxicity.
Collapse
Affiliation(s)
- Dana C. Walters
- Department of PharmacotherapyCollege of Pharmacy and Pharmaceutical SciencesWashington State UniversitySpokaneWashington
| | - Erwin E. W. Jansen
- Metabolic LaboratoryDepartment of Clinical ChemistryAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Garrett R. Ainslie
- Department of PharmacotherapyCollege of Pharmacy and Pharmaceutical SciencesWashington State UniversitySpokaneWashington
| | - Gajja S. Salomons
- Metabolic LaboratoryDepartment of Clinical ChemistryAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Madalyn N. Brown
- Department of PharmacotherapyCollege of Pharmacy and Pharmaceutical SciencesWashington State UniversitySpokaneWashington
| | - Michelle A. Schmidt
- Department of PharmacotherapyCollege of Pharmacy and Pharmaceutical SciencesWashington State UniversitySpokaneWashington
| | - Jean‐Baptiste Roullet
- Department of PharmacotherapyCollege of Pharmacy and Pharmaceutical SciencesWashington State UniversitySpokaneWashington
| | - K. M. Gibson
- Department of PharmacotherapyCollege of Pharmacy and Pharmaceutical SciencesWashington State UniversitySpokaneWashington
| |
Collapse
|
22
|
Navarrete-Modesto V, Orozco-Suárez S, Feria-Romero IA, Rocha L. The molecular hallmarks of epigenetic effects mediated by antiepileptic drugs. Epilepsy Res 2019; 149:53-65. [DOI: 10.1016/j.eplepsyres.2018.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/16/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
|
23
|
|
24
|
Silverman RB. Design and Mechanism of GABA Aminotransferase Inactivators. Treatments for Epilepsies and Addictions. Chem Rev 2018; 118:4037-4070. [PMID: 29569907 PMCID: PMC8459698 DOI: 10.1021/acs.chemrev.8b00009] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
When the brain concentration of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) diminishes below a threshold level, the excess neuronal excitation can lead to convulsions. This imbalance in neurotransmission can be corrected by inhibition of the enzyme γ-aminobutyric acid aminotransferase (GABA-AT), which catalyzes the conversion of GABA to the excitatory neurotransmitter l-glutamic acid. It also has been found that raising GABA levels can antagonize the rapid elevation and release of dopamine in the nucleus accumbens, which is responsible for the reward response in addiction. Therefore, the design of new inhibitors of GABA-AT, which increases brain GABA levels, is an important approach to new treatments for epilepsy and addiction. This review summarizes findings over the last 40 or so years of mechanism-based inactivators (unreactive compounds that require the target enzyme to catalyze their conversion to the inactivating species, which inactivate the enzyme prior to their release) of GABA-AT with emphasis on their catalytic mechanisms of inactivation, presented according to organic chemical mechanism, with minimal pharmacology, except where important for activity in epilepsy and addiction. Patents, abstracts, and conference proceedings are not covered in this review. The inactivation mechanisms described here can be applied to the inactivations of a wide variety of unrelated enzymes.
Collapse
Affiliation(s)
- Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, 60208-3113, United States
| |
Collapse
|
25
|
Affiliation(s)
- D Chadwick
- Department of Neuroscience, Walton Hospital, Rice Lane, Liverpool L9 1AE
| |
Collapse
|
26
|
Prescot AP, Miller SR, Ingenito G, Huber RS, Kondo DG, Renshaw PF. In Vivo Detection of CPP-115 Target Engagement in Human Brain. Neuropsychopharmacology 2018; 43:646-654. [PMID: 28741622 PMCID: PMC5770752 DOI: 10.1038/npp.2017.156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 11/09/2022]
Abstract
CPP-115, a next-generation γ-amino butyric acid (GABA)-aminotransferase (AT) inhibitor, shows comparable pharmacokinetics, improved safety and tolerability, and a more favorable toxicity profile when compared with vigabatrin. The pharmacodynamic characteristics of CPP-115 remain to be evaluated. The present study employed state-of-the-art proton magnetic resonance spectroscopy techniques to measure changes in brain GABA+ (the composite resonance of GABA, homocarnosine, and macromolecules) concentrations in healthy subjects receiving oral daily doses of CPP-115 or placebo. Six healthy adult males were randomized to receive either single daily 80 mg doses of CPP-115 (n=4) or placebo (n=2) for 6, 10, or 14 days. Metabolite-edited spectra and two-dimensional J-resolved spectroscopy data were acquired from the parietal-occipital cortex and supplementary motor area in all subjects. Four scans were performed in each subject that included a predrug baseline measure, two scans during the dosing timeframe, and a final scan that occurred 1 week after drug cessation. CPP-115 induced robust and significant increases in brain GABA+ concentrations that ranged between 52 and 141% higher than baseline values. Elevated GABA+ concentrations returned to baseline values following drug clearance. Subjects receiving placebo showed no significant changes in GABA+ concentration. CPP-115-induced changes were exclusive to GABA and homocarnosine, and CPP-115 afforded brain GABA+ concentration changes comparable to or greater than previous vigabatrin spectroscopy studies in healthy epilepsy-naive subjects. The return to baseline GABA+ concentration indicates the reversible GABA-AT resynthesis following drug washout. These preliminary data warrant further spectroscopy studies that characterize the acute pharmacodynamic effects of CPP-115 with additional dose-descending measures.
Collapse
Affiliation(s)
- Andrew P Prescot
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA,Department of Radiology and Imaging Sciences, University of Utah School of Medicine, 383 Colorow Drive, Salt Lake City, UT 84108, USA, Tel: +1 801 587 1441, Fax: +1 801 585 5375, E-mail:
| | | | | | - Rebekah S Huber
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Douglas G Kondo
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA,Rocky Mountain Mental Illness Research, Education, and Clinical Center (MIRECC), Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Perry F Renshaw
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA,Rocky Mountain Mental Illness Research, Education, and Clinical Center (MIRECC), Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| |
Collapse
|
27
|
Iftikhar H, Batool S, Deep A, Narasimhan B, Sharma PC, Malhotra M. In silico analysis of the inhibitory activities of GABA derivatives on 4-aminobutyrate transaminase. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2013.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
28
|
Ordóñez M, Cativiela C, Romero-Estudillo I. An update on the stereoselective synthesis of γ-amino acids. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.tetasy.2016.08.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Blancquaert L, Baba SP, Kwiatkowski S, Stautemas J, Stegen S, Barbaresi S, Chung W, Boakye AA, Hoetker JD, Bhatnagar A, Delanghe J, Vanheel B, Veiga‐da‐Cunha M, Derave W, Everaert I. Carnosine and anserine homeostasis in skeletal muscle and heart is controlled by β-alanine transamination. J Physiol 2016; 594:4849-63. [PMID: 27062388 PMCID: PMC5009790 DOI: 10.1113/jp272050] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/05/2016] [Indexed: 01/04/2023] Open
Abstract
KEY POINTS Using recombinant DNA technology, the present study provides the first strong and direct evidence indicating that β-alanine is an efficient substrate for the mammalian transaminating enzymes 4-aminobutyrate-2-oxoglutarate transaminase and alanine-glyoxylate transaminase. The concentration of carnosine and anserine in murine skeletal and heart muscle depends on circulating availability of β-alanine, which is in turn controlled by degradation of β-alanine in liver and kidney. Chronic oral β-alanine supplementation is a popular ergogenic strategy in sports because it can increase the intracellular carnosine concentration and subsequently improve the performance of high-intensity exercises. The present study can partly explain why the β-alanine supplementation protocol is so inefficient, by demonstrating that exogenous β-alanine can be effectively routed toward oxidation. ABSTRACT The metabolic fate of orally ingested β-alanine is largely unknown. Chronic β-alanine supplementation is becoming increasingly popular for improving high-intensity exercise performance because it is the rate-limiting precursor of the dipeptide carnosine (β-alanyl-l-histidine) in muscle. However, only a small fraction (3-6%) of the ingested β-alanine is used for carnosine synthesis. Thus, the present study aimed to investigate the putative contribution of two β-alanine transamination enzymes, namely 4-aminobutyrate-2-oxoglutarate transaminase (GABA-T) and alanine-glyoxylate transaminase (AGXT2), to the homeostasis of carnosine and its methylated analogue anserine. We found that, when transfected into HEK293T cells, recombinant mouse and human GABA-T and AGXT2 are able to transaminate β-alanine efficiently. The reaction catalysed by GABA-T is inhibited by vigabatrin, whereas both GABA-T and AGXT2 activity is inhibited by aminooxyacetic acid (AOA). Both GABA-T and AGXT2 are highly expressed in the mouse liver and kidney and the administration of the inhibitors effectively reduced their enzyme activity in liver (GABA-T for vigabatrin; GABA-T and AGXT2 for AOA). In vivo, injection of AOA in C57BL/6 mice placed on β-alanine (0.1% w/v in drinking water) for 2 weeks lead to a 3-fold increase in circulating β-alanine levels and to significantly higher levels of carnosine and anserine in skeletal muscle and heart. By contrast, specific inhibition of GABA-T by vigabatrin did not affect carnosine and anserine levels in either tissue. Collectively, these data demonstrate that homeostasis of carnosine and anserine in mammalian skeletal muscle and heart is controlled by circulating β-alanine levels, which are suppressed by hepatic and renal β-alanine transamination upon oral β-alanine intake.
Collapse
Affiliation(s)
- Laura Blancquaert
- Department of Movement and Sports SciencesGhent UniversityGhentBelgium
| | - Shahid P. Baba
- Diabetes and Obesity CenterDepartment of MedicineUniversity of LouisvilleLouisvilleKTUSA
| | - Sebastian Kwiatkowski
- Laboratory of Physiological Chemistryde Duve InstituteUniversité Catholique de LouvainBrusselsBelgium
| | - Jan Stautemas
- Department of Movement and Sports SciencesGhent UniversityGhentBelgium
| | - Sanne Stegen
- Department of Movement and Sports SciencesGhent UniversityGhentBelgium
| | - Silvia Barbaresi
- Department of Movement and Sports SciencesGhent UniversityGhentBelgium
| | - Weiliang Chung
- Department of Movement and Sports SciencesGhent UniversityGhentBelgium
| | - Adjoa A. Boakye
- Diabetes and Obesity CenterDepartment of MedicineUniversity of LouisvilleLouisvilleKTUSA
| | - J. David Hoetker
- Diabetes and Obesity CenterDepartment of MedicineUniversity of LouisvilleLouisvilleKTUSA
| | - Aruni Bhatnagar
- Diabetes and Obesity CenterDepartment of MedicineUniversity of LouisvilleLouisvilleKTUSA
| | - Joris Delanghe
- Department of Clinical ChemistryGhent University HospitalGhentBelgium
| | - Bert Vanheel
- Department of Basic Medical SciencesDivision of PhysiologyGhent UniversityGhentBelgium
| | - Maria Veiga‐da‐Cunha
- Laboratory of Physiological Chemistryde Duve InstituteUniversité Catholique de LouvainBrusselsBelgium
| | - Wim Derave
- Department of Movement and Sports SciencesGhent UniversityGhentBelgium
| | - Inge Everaert
- Department of Movement and Sports SciencesGhent UniversityGhentBelgium
| |
Collapse
|
30
|
Zhao H, Carney KE, Falgoust L, Pan JW, Sun D, Zhang Z. Emerging roles of Na⁺/H⁺ exchangers in epilepsy and developmental brain disorders. Prog Neurobiol 2016; 138-140:19-35. [PMID: 26965387 DOI: 10.1016/j.pneurobio.2016.02.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/03/2016] [Accepted: 02/27/2016] [Indexed: 12/15/2022]
Abstract
Epilepsy is a common central nervous system (CNS) disease characterized by recurrent transient neurological events occurring due to abnormally excessive or synchronous neuronal activity in the brain. The CNS is affected by systemic acid-base disorders, and epileptic seizures are sensitive indicators of underlying imbalances in cellular pH regulation. Na(+)/H(+) exchangers (NHEs) are a family of membrane transporter proteins actively involved in regulating intracellular and organellar pH by extruding H(+) in exchange for Na(+) influx. Altering NHE function significantly influences neuronal excitability and plays a role in epilepsy. This review gives an overview of pH regulatory mechanisms in the brain with a special focus on the NHE family and the relationship between epilepsy and dysfunction of NHE isoforms. We first discuss how cells translocate acids and bases across the membrane and establish pH homeostasis as a result of the concerted effort of enzymes and ion transporters. We focus on the specific roles of the NHE family by detailing how the loss of NHE1 in two NHE mutant mice results in enhanced neuronal excitability in these animals. Furthermore, we highlight new findings on the link between mutations of NHE6 and NHE9 and developmental brain disorders including epilepsy, autism, and attention deficit hyperactivity disorder (ADHD). These studies demonstrate the importance of NHE proteins in maintaining H(+) homeostasis and their intricate roles in the regulation of neuronal function. A better understanding of the mechanisms underlying NHE1, 6, and 9 dysfunctions in epilepsy formation may advance the development of new epilepsy treatment strategies.
Collapse
Affiliation(s)
- Hanshu Zhao
- Department of Neurology, The First Affiliated Hospital of the Harbin Medical University, Harbin, China.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Karen E Carney
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lindsay Falgoust
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jullie W Pan
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA 15213, USA
| | - Zhongling Zhang
- Department of Neurology, The First Affiliated Hospital of the Harbin Medical University, Harbin, China
| |
Collapse
|
31
|
Phillips TJ, Mootz JRK, Reed C. Identification of Treatment Targets in a Genetic Mouse Model of Voluntary Methamphetamine Drinking. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:39-85. [PMID: 27055611 DOI: 10.1016/bs.irn.2016.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Methamphetamine has powerful stimulant and euphoric effects that are experienced as rewarding and encourage use. Methamphetamine addiction is associated with debilitating illnesses, destroyed relationships, child neglect, violence, and crime; but after many years of research, broadly effective medications have not been identified. Individual differences that may impact not only risk for developing a methamphetamine use disorder but also affect treatment response have not been fully considered. Human studies have identified candidate genes that may be relevant, but lack of control over drug history, the common use or coabuse of multiple addictive drugs, and restrictions on the types of data that can be collected in humans are barriers to progress. To overcome some of these issues, a genetic animal model comprised of lines of mice selectively bred for high and low voluntary methamphetamine intake was developed to identify risk and protective alleles for methamphetamine consumption, and identify therapeutic targets. The mu opioid receptor gene was supported as a target for genes within a top-ranked transcription factor network associated with level of methamphetamine intake. In addition, mice that consume high levels of methamphetamine were found to possess a nonfunctional form of the trace amine-associated receptor 1 (TAAR1). The Taar1 gene is within a mouse chromosome 10 quantitative trait locus for methamphetamine consumption, and TAAR1 function determines sensitivity to aversive effects of methamphetamine that may curb intake. The genes, gene interaction partners, and protein products identified in this genetic mouse model represent treatment target candidates for methamphetamine addiction.
Collapse
Affiliation(s)
- T J Phillips
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States; Veterans Affairs Portland Health Care System, Portland, OR, United States.
| | - J R K Mootz
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - C Reed
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
32
|
Insular Cortex is Critical for the Perception, Modulation, and Chronification of Pain. Neurosci Bull 2016; 32:191-201. [PMID: 26898298 DOI: 10.1007/s12264-016-0016-y] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/22/2015] [Indexed: 12/20/2022] Open
Abstract
An increasing body of neuroimaging and electrophysiological studies of the brain suggest that the insular cortex (IC) integrates multimodal salient information ranging from sensation to cognitive-affective events to create conscious interoception. Especially with regard to pain experience, the IC has been supposed to participate in both sensory-discriminative and affective-motivational aspects of pain. In this review, we discuss the latest data proposing that subregions of the IC are involved in isolated pain networks: the posterior sensory circuit and the anterior emotional network. Due to abundant connections with other brain areas, the IC is likely to serve as an interface where cross-modal shaping of pain occurs. In chronic pain, however, this mode of emotional awareness and the modulation of pain are disrupted. We highlight some of the molecular mechanisms underlying the changes of the pain modulation system that contribute to the transition from acute to chronic pain in the IC.
Collapse
|
33
|
Duveau V, Pouyatos B, Bressand K, Bouyssières C, Chabrol T, Roche Y, Depaulis A, Roucard C. Differential Effects of Antiepileptic Drugs on Focal Seizures in the Intrahippocampal Kainate Mouse Model of Mesial Temporal Lobe Epilepsy. CNS Neurosci Ther 2016; 22:497-506. [PMID: 26899987 DOI: 10.1111/cns.12523] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 02/01/2023] Open
Abstract
AIMS Mesial temporal lobe epilepsy (MTLE) is the most common form of drug-refractory epilepsy. Most of the morphological and electrophysiological features of human MTLE can be reproduced in a mouse by a unilateral intrahippocampal injection of kainate (MTLE mouse model). The effects of antiepileptic drugs (AEDs) on the occurrence of recurrent focal hippocampal seizures in this model remain to be specified. Here, we addressed the pharmacological reactivity of this model to the most commonly used AEDs. METHODS Using depth electroencephalographical (EEG) recordings, we tested the dose-response effects of acute injection of nine AEDs on the occurrence of hippocampal paroxysmal discharges (HPDs) as well as on ictal and interictal power spectra in the MTLE mouse model. RESULTS Valproate, carbamazepine, and lamotrigine dose dependently suppressed HPDs and modified the general behavior and/or EEG activity. Levetiracetam and pregabalin suppressed HPDs at high doses but without any behavioral nor interictal EEG changes. Finally, phenobarbital, tiagabine, vigabatrin, and diazepam suppressed HPDs in a dose-dependent manner at doses devoid of obvious behavioral effects. CONCLUSION The MTLE mouse model displays a differential sensitivity to AEDs with a greater efficacy of drug that facilitates GABAergic transmission. This model provides an efficient tool to identify new treatment for drug-resistant forms of focal epilepsies.
Collapse
Affiliation(s)
| | | | | | | | - Tanguy Chabrol
- INSERM, U836, Grenoble, France.,University Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| | | | - Antoine Depaulis
- INSERM, U836, Grenoble, France.,University Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France.,CHU de Grenoble, Hôpital Michallon, Grenoble, France
| | | |
Collapse
|
34
|
Schipper S, Aalbers MW, Rijkers K, Swijsen A, Rigo JM, Hoogland G, Vles JSH. Tonic GABAA Receptors as Potential Target for the Treatment of Temporal Lobe Epilepsy. Mol Neurobiol 2015; 53:5252-65. [PMID: 26409480 PMCID: PMC5012145 DOI: 10.1007/s12035-015-9423-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/03/2015] [Indexed: 12/11/2022]
Abstract
Tonic GABAA receptors are a subpopulation of receptors that generate long-lasting inhibition and thereby control network excitability. In recent years, these receptors have been implicated in various neurological and psychiatric disorders, including Parkinson’s disease, schizophrenia, and epilepsy. Their distinct subunit composition and function, compared to phasic GABAA receptors, opens the possibility to specifically modulate network properties. In this review, the role of tonic GABAA receptors in epilepsy and as potential antiepileptic target will be discussed.
Collapse
Affiliation(s)
- S Schipper
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands.
- Faculty of Health Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - M W Aalbers
- Faculty of Health Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - K Rijkers
- Faculty of Health Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Neurosurgery and Orthopedic Surgery, Atrium Hospital Heerlen, Heerlen, The Netherlands
| | - A Swijsen
- BIOMED Research Institute, Hasselt University/Transnational University Limburg, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - J M Rigo
- BIOMED Research Institute, Hasselt University/Transnational University Limburg, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - G Hoogland
- Faculty of Health Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - J S H Vles
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
- Faculty of Health Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
35
|
Frost JD, Le JT, Lee CL, Ballester-Rosado C, Hrachovy RA, Swann JW. Vigabatrin therapy implicates neocortical high frequency oscillations in an animal model of infantile spasms. Neurobiol Dis 2015; 82:1-11. [PMID: 26026423 DOI: 10.1016/j.nbd.2015.04.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 03/24/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022] Open
Abstract
Abnormal high frequency oscillations (HFOs) in EEG recordings are thought to be reflections of mechanisms responsible for focal seizure generation in the temporal lobe and neocortex. HFOs have also been recorded in patients and animal models of infantile spasms. If HFOs are important contributors to infantile spasms then anticonvulsant drugs that suppress these seizures should decrease the occurrence of HFOs. In experiments reported here, we used long-term video/EEG recordings with digital sampling rates capable of capturing HFOs. We tested the effectiveness of vigabatrin (VGB) in the TTX animal model of infantile spasms. VGB was found to be quite effective in suppressing spasms. In 3 of 5 animals, spasms ceased after a daily two week treatment. In the other 2 rats, spasm frequency dramatically decreased but gradually increased following treatment cessation. In all animals, hypsarrhythmia was abolished by the last treatment day. As VGB suppressed the frequency of spasms, there was a decrease in the intensity of the behavioral spasms and the duration of the ictal EEG event. Analysis showed that there was a burst of high frequency activity at ictal onset, followed by a later burst of HFOs. VGB was found to selectively suppress the late HFOs of ictal complexes. VGB also suppressed abnormal HFOs recorded during the interictal periods. Thus VGB was found to be effective in suppressing both the generation of spasms and hypsarrhythmia in the TTX model. Vigabatrin also appears to preferentially suppress the generation of abnormal HFOs, thus implicating neocortical HFOs in the infantile spasms disease state.
Collapse
Affiliation(s)
- James D Frost
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - John T Le
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chong L Lee
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Carlos Ballester-Rosado
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Richard A Hrachovy
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA; The Michael E. Debakey Veterans Affairs Medical Center, Houston, TX, USA
| | - John W Swann
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
36
|
Wang P, Eshaq RS, Meshul CK, Moore C, Hood RL, Leidenheimer NJ. Neuronal gamma-aminobutyric acid (GABA) type A receptors undergo cognate ligand chaperoning in the endoplasmic reticulum by endogenous GABA. Front Cell Neurosci 2015; 9:188. [PMID: 26041994 PMCID: PMC4435044 DOI: 10.3389/fncel.2015.00188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/28/2015] [Indexed: 01/01/2023] Open
Abstract
GABAA receptors mediate fast inhibitory neurotransmission in the brain. Dysfunction of these receptors is associated with various psychiatric/neurological disorders and drugs targeting this receptor are widely used therapeutic agents. Both the efficacy and plasticity of GABAA receptor-mediated neurotransmission depends on the number of surface GABAA receptors. An understudied aspect of receptor cell surface expression is the post-translational regulation of receptor biogenesis within the endoplasmic reticulum (ER). We have previously shown that exogenous GABA can act as a ligand chaperone of recombinant GABAA receptors in the early secretory pathway leading us to now investigate whether endogenous GABA facilitates the biogenesis of GABAA receptors in primary cerebral cortical cultures. In immunofluorescence labeling experiments, we have determined that neurons expressing surface GABAA receptors contain both GABA and its degradative enzyme GABA transaminase (GABA-T). Treatment of neurons with GABA-T inhibitors, a treatment known to increase intracellular GABA levels, decreases the interaction of the receptor with the ER quality control protein calnexin, concomittantly increasing receptor forward-trafficking and plasma membrane insertion. The effect of GABA-T inhibition on the receptor/calnexin interaction is not due to the activation of surface GABAA or GABAB receptors. Consistent with our hypothesis that GABA acts as a cognate ligand chaperone in the ER, immunogold-labeling of rodent brain slices reveals the presence of GABA within the rough ER. The density of this labeling is similar to that present in mitochondria, the organelle in which GABA is degraded. Lastly, the effect of GABA-T inhibition on the receptor/calnexin interaction was prevented by pretreatment with a GABA transporter inhibitor. Together, these data indicate that endogenous GABA acts in the rough ER as a cognate ligand chaperone to facilitate the biogenesis of neuronal GABAA receptors.
Collapse
Affiliation(s)
- Ping Wang
- Department of Biochemistry and Molecular Biology, Louisiana State University, Health Sciences Center-Shreveport Shreveport, LA, USA
| | - Randa S Eshaq
- Department of Biochemistry and Molecular Biology, Louisiana State University, Health Sciences Center-Shreveport Shreveport, LA, USA
| | - Charles K Meshul
- Veterans Hospital Portland/Research Services/Neurocytology Laboratory and Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Cynthia Moore
- Veterans Hospital Portland/Research Services/Neurocytology Laboratory and Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Rebecca L Hood
- Veterans Hospital Portland/Research Services/Neurocytology Laboratory and Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Nancy J Leidenheimer
- Department of Biochemistry and Molecular Biology, Louisiana State University, Health Sciences Center-Shreveport Shreveport, LA, USA
| |
Collapse
|
37
|
Nielsen JC, Hutmacher MM, Wesche DL, Tolbert D, Patel M, Kowalski KG. Population dose-response analysis of daily seizure count following vigabatrin therapy in adult and pediatric patients with refractory complex partial seizures. J Clin Pharmacol 2014; 55:81-92. [PMID: 25117853 DOI: 10.1002/jcph.378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/06/2014] [Indexed: 11/09/2022]
Abstract
Vigabatrin is an irreversible inhibitor of γ-aminobutyric acid transaminase (GABA-T) and is used as an adjunctive therapy for adult patients with refractory complex partial seizures (rCPS). The purpose of this investigation was to describe the relationship between vigabatrin dosage and daily seizure rate for adults and children with rCPS and identify relevant covariates that might impact seizure frequency. This population dose-response analysis used seizure-count data from three pediatric and two adult randomized controlled studies of rCPS patients. A negative binomial distribution model adequately described daily seizure data. Mean seizure rate decreased with time after first dose and was described using an asymptotic model. Vigabatrin drug effects were best characterized by a quadratic model using normalized dosage as the exposure metric. Normalized dosage was an estimated parameter that allowed for individualized changes in vigabatrin exposure based on body weight. Baseline seizure rate increased with decreasing age, but age had no impact on vigabatrin drug effects after dosage was normalized for body weight differences. Posterior predictive checks indicated the final model was capable of simulating data consistent with observed daily seizure counts. Total normalized vigabatrin dosages of 1, 3, and 6 g/day were predicted to reduce seizure rates 23.2%, 45.6%, and 48.5%, respectively.
Collapse
|
38
|
Pharmacokinetic aspects of the anti-epileptic drug substance vigabatrin: focus on transporter interactions. Ther Deliv 2014; 5:927-42. [DOI: 10.4155/tde.14.55] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Drug transporters in various tissues, such as intestine, kidney, liver and brain, are recognized as important mediators of absorption, distribution, metabolism and excretion of drug substances. This review gives a current status on the transporter(s) mediating the absorption, distribution, metabolism and excretion properties of the anti-epileptic drug substance vigabatrin. For orally administered drugs, like vigabatrin, the absorption from the intestine is a prerequisite for the bioavailability. Therefore, transporter(s) involved in the intestinal absorption of vigabatrin in vitro and in vivo are discussed in detail. Special focus is on the contribution of the proton-coupled amino acid transporter 1 (PAT1) for intestinal vigabatrin absorption. Furthermore, the review gives an overview of the pharmacokinetic parameters of vigabatrin across different species and drug–food and drug–drug interactions involving vigabatrin.
Collapse
|
39
|
Knych HK, Steinmetz SJ, McKemie DS. Endogenous concentrations, pharmacokinetics, and selected pharmacodynamic effects of a single dose of exogenous GABA in horses. J Vet Pharmacol Ther 2014; 38:113-22. [DOI: 10.1111/jvp.12146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/27/2014] [Indexed: 11/28/2022]
Affiliation(s)
- H. K. Knych
- K.L. Maddy Equine Analytical Chemistry Laboratory; School of Veterinary Medicine; University of California; Davis CA USA
- Department of Veterinary Molecular Biosciences; School of Veterinary Medicine; University of California; Davis CA USA
| | - S. J. Steinmetz
- K.L. Maddy Equine Analytical Chemistry Laboratory; School of Veterinary Medicine; University of California; Davis CA USA
| | - D. S. McKemie
- K.L. Maddy Equine Analytical Chemistry Laboratory; School of Veterinary Medicine; University of California; Davis CA USA
| |
Collapse
|
40
|
Kostić N, Dotsikas Y, Jović N, Stevanović G, Malenović A, Medenica M. Vigabatrin in dried plasma spots: Validation of a novel LC–MS/MS method and application to clinical practice. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 962:102-108. [DOI: 10.1016/j.jchromb.2014.05.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/12/2014] [Accepted: 05/17/2014] [Indexed: 11/28/2022]
|
41
|
Rae CD, Davidson JE, Maher AD, Rowlands BD, Kashem MA, Nasrallah FA, Rallapalli SK, Cook JM, Balcar VJ. Ethanol, not detectably metabolized in brain, significantly reduces brain metabolism, probably via action at specific GABA(A) receptors and has measureable metabolic effects at very low concentrations. J Neurochem 2013; 129:304-14. [PMID: 24313287 DOI: 10.1111/jnc.12634] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 11/12/2013] [Accepted: 12/04/2013] [Indexed: 11/28/2022]
Abstract
Ethanol is a known neuromodulatory agent with reported actions at a range of neurotransmitter receptors. Here, we measured the effect of alcohol on metabolism of [3-¹³C]pyruvate in the adult Guinea pig brain cortical tissue slice and compared the outcomes to those from a library of ligands active in the GABAergic system as well as studying the metabolic fate of [1,2-¹³C]ethanol. Analyses of metabolic profile clusters suggest that the significant reductions in metabolism induced by ethanol (10, 30 and 60 mM) are via action at neurotransmitter receptors, particularly α4β3δ receptors, whereas very low concentrations of ethanol may produce metabolic responses owing to release of GABA via GABA transporter 1 (GAT1) and the subsequent interaction of this GABA with local α5- or α1-containing GABA(A)R. There was no measureable metabolism of [1,2-¹³C]ethanol with no significant incorporation of ¹³C from [1,2-¹³C]ethanol into any measured metabolite above natural abundance, although there were measurable effects on total metabolite sizes similar to those seen with unlabelled ethanol.
Collapse
Affiliation(s)
- Caroline D Rae
- Neuroscience Research Australia, and Brain Sciences UNSW, Randwick, NSW, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Patsalos PN. Drug Interactions with the Newer Antiepileptic Drugs (AEDs)—Part 1: Pharmacokinetic and Pharmacodynamic Interactions Between AEDs. Clin Pharmacokinet 2013; 52:927-66. [DOI: 10.1007/s40262-013-0087-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
44
|
Vigabatrin inhibits seizures and mTOR pathway activation in a mouse model of tuberous sclerosis complex. PLoS One 2013; 8:e57445. [PMID: 23437388 PMCID: PMC3577710 DOI: 10.1371/journal.pone.0057445] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/24/2013] [Indexed: 11/25/2022] Open
Abstract
Epilepsy is a common neurological disorder and cause of significant morbidity and mortality. Although antiseizure medication is the first-line treatment for epilepsy, currently available medications are ineffective in a significant percentage of patients and have not clearly been demonstrated to have disease-specific effects for epilepsy. While seizures are usually intractable to medication in tuberous sclerosis complex (TSC), a common genetic cause of epilepsy, vigabatrin appears to have unique efficacy for epilepsy in TSC. While vigabatrin increases gamma-aminobutyric acid (GABA) levels, the precise mechanism of action of vigabatrin in TSC is not known. In this study, we investigated the effects of vigabatrin on epilepsy in a knock-out mouse model of TSC and tested the novel hypothesis that vigabatrin inhibits the mammalian target of rapamycin (mTOR) pathway, a key signaling pathway that is dysregulated in TSC. We found that vigabatrin caused a modest increase in brain GABA levels and inhibited seizures in the mouse model of TSC. Furthermore, vigabatrin partially inhibited mTOR pathway activity and glial proliferation in the knock-out mice in vivo, as well as reduced mTOR pathway activation in cultured astrocytes from both knock-out and control mice. This study identifies a potential novel mechanism of action of an antiseizure medication involving the mTOR pathway, which may account for the unique efficacy of this drug for a genetic epilepsy.
Collapse
|
45
|
Li C, Liu C, Nissim I, Chen J, Chen P, Doliba N, Zhang T, Nissim I, Daikhin Y, Stokes D, Yudkoff M, Bennett MJ, Stanley CA, Matschinsky FM, Naji A. Regulation of glucagon secretion in normal and diabetic human islets by γ-hydroxybutyrate and glycine. J Biol Chem 2012; 288:3938-51. [PMID: 23266825 DOI: 10.1074/jbc.m112.385682] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Paracrine signaling between pancreatic islet β-cells and α-cells has been proposed to play a role in regulating glucagon responses to elevated glucose and hypoglycemia. To examine this possibility in human islets, we used a metabolomic approach to trace the responses of amino acids and other potential neurotransmitters to stimulation with [U-(13)C]glucose in both normal individuals and type 2 diabetics. Islets from type 2 diabetics uniformly showed decreased glucose stimulation of insulin secretion and respiratory rate but demonstrated two different patterns of glucagon responses to glucose: one group responded normally to suppression of glucagon by glucose, but the second group was non-responsive. The non-responsive group showed evidence of suppressed islet GABA levels and of GABA shunt activity. In further studies with normal human islets, we found that γ-hydroxybutyrate (GHB), a potent inhibitory neurotransmitter, is generated in β-cells by an extension of the GABA shunt during glucose stimulation and interacts with α-cell GHB receptors, thus mediating the suppressive effect of glucose on glucagon release. We also identified glycine, acting via α-cell glycine receptors, as the predominant amino acid stimulator of glucagon release. The results suggest that glycine and GHB provide a counterbalancing receptor-based mechanism for controlling α-cell secretory responses to metabolic fuels.
Collapse
Affiliation(s)
- Changhong Li
- Division of Endocrinology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
POSTER COMMUNICATIONS. Br J Pharmacol 2012. [DOI: 10.1111/j.1476-5381.1991.tb14726.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
47
|
Effects of vigabatrin, an irreversible GABA transaminase inhibitor, on ethanol reinforcement and ethanol discriminative stimuli in mice. Behav Pharmacol 2012; 23:178-90. [PMID: 22336593 DOI: 10.1097/fbp.0b013e3283512c56] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We tested the hypothesis that the irreversible γ-amino butyric acid transaminase inhibitor, γ-vinyl γ-amino butyric acid [vigabatrin (VGB)], would reduce ethanol reinforcement and enhance the discriminative-stimulus effect of ethanol, effectively reducing ethanol intake. The present studies used adult C57BL/6J (B6) mice in well-established operant, two-bottle choice consumption, locomotor activity, and ethanol discrimination procedures to comprehensively examine the effects of VGB on ethanol-supported behaviors. VGB dose-dependently reduced operant responding for ethanol and ethanol consumption for long periods of time. Importantly, a low dose (200 mg/kg) of VGB was selective for reducing ethanol responding without altering the intake of food or water reinforcement. Higher VGB doses (>200mg/kg) reduced ethanol intake, but also significantly increased water consumption and, more modestly, increased food consumption. Although not affecting locomotor activity on its own, VGB interacted with ethanol to reduce the stimulatory effects of ethanol on locomotion. Finally, VGB (200 mg/kg) significantly enhanced the discriminative-stimulus effects of ethanol as evidenced by significant leftward and upward shifts in ethanol generalization curves. Interestingly, VGB treatment was associated with slight increases in blood ethanol concentrations. The reduction in ethanol intake by VGB appears to be related to the ability of VGB to potentiate the pharmacological effects of ethanol.
Collapse
|
48
|
Abstract
Discovered more than three decades ago, vigabatrin is approved in more than 50 countries as adjunctive therapy for adult patients with refractory complex partial seizures who have responded inadequately to several alternative treatments and as monotherapy for pediatric patients aged 1 month to 2 years with infantile spasms. Contrary to a fairly common misperception, the compound's mechanism of action is very well-characterized in animal models and cell cultures. γ-Aminobutyric acid (GABA)-ergic synapses comprise approximately 30% of all synapses within the central nervous system, and therein underlies the primary mode of synaptic inhibition. Vigabatrin was rationally designed to have a specific effect on brain chemistry by inhibiting the GABA-degrading enzyme, GABA transaminase, resulting in a widespread increase in GABA concentrations in the brain. The increase in GABA functions as a brake on the excitatory processes that can initiate seizure activity. Despite the short half-life of vigabatrin in the body (5-7 h) and its relatively low concentration in cerebrospinal fluid (10% of the concentration observed in plasma), it has the profound effect of increasing GABA concentration in the brain for more than a week after a single dose in humans. This effect persists steadily over years of vigabatrin administration and results in significant and persistent decreases in seizure activity. Vigabatrin can be effective with once-daily dosing. Because of its specificity, vigabatrin has helped researchers explore the specific mechanisms within the brain that underlie seizure activity.
Collapse
Affiliation(s)
- E Ben-Menachem
- Department of Clinical Neuroscience, Sahlgrenska Academy, Göteborg University, Göteborg, Sweden.
| |
Collapse
|
49
|
Bröer S, Backofen-Wehrhahn B, Bankstahl M, Gey L, Gernert M, Löscher W. Vigabatrin for focal drug delivery in epilepsy: Bilateral microinfusion into the subthalamic nucleus is more effective than intranigral or systemic administration in a rat seizure model. Neurobiol Dis 2012; 46:362-76. [DOI: 10.1016/j.nbd.2012.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/23/2011] [Accepted: 01/31/2012] [Indexed: 01/04/2023] Open
|
50
|
Abstract
PURPOSE OF REVIEW Various medications can modify the physiology of retinal and cochlear neurons and lead to major, sometime permanent, sensory loss. A better knowledge of pathogenic mechanisms and the establishment of relevant monitoring protocols are necessary to prevent permanent sensory impairment. In this article, we review main systemic medications associated with direct neuronal toxicity on the retina and cochlea, their putative pathogenic mechanisms, when identified, as well as current recommendations, when available, for monitoring protocols. RECENT FINDINGS Pathogenic mechanisms and cellular target of retinotoxic drugs are often not well characterized but a better knowledge of the course of visual defect has recently helped in defining more relevant monitoring protocols especially for antimalarials and vigabatrin. Mechanisms of ototoxicity have recently been better defined, from inner ear entry with the use of fluorescent tracers to evidence for the role of oxidative stress and program cell death pathways. SUMMARY Experimental and clinical studies have elucidated some of the pathogenic mechanisms, courses and risk factors of retinal toxicity and ototoxicity, which have led to establishment of relevant monitoring protocols. Further studies are, however, warranted to better understand cellular pathways leading to degeneration. These would help to build more efficient preventive intervention and may also contribute to understanding of other degenerative processes such as genetic disorders.
Collapse
|